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a b s t r a c t 

Multi-object tracking (MOT) systems often rely on accurate object detectors; however, accurate detec- 

tors are not available in every application domain. We present Robust Confidence Tracking (RCT), an 

offline MOT algorithm designed for settings where detection quality is poor. Whereas prior methods 

simply threshold and discard detection confidence information, RCT relies on the exact detection con- 

fidence values to increase track quality throughout the entire tracking pipeline. This innovation (along 

with some simple and well-studied heuristics) allows RCT to achieve robust performance with minimal 

identity switches, even when provided with completely unfiltered detections. To compare trackers in the 

presence of unreliable detections, we present a challenging real-world underwater fish tracking dataset, 

FISHTRAC. In an large-scale evaluation across FISHTRAC, UA-DETRAC, and MOTChallenge data, RCT outper- 

forms a wide variety of trackers, including deep trackers and more classic approaches. We have publically 

released our FISHTRAC codebase and training dataset at https://github.com/tmandel/fish-detrac , which 

will facilitate comparing trackers on understudied problems. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Multi-object tracking (MOT) is a longstanding computer vision 

problem in which the goal is to keep track of the identities and 

locations of multiple objects throughout a video. A popular MOT 

approach is tracking-by-detection, in which an object detector is 

first run on every frame, and those detections are fed as input to 

a MOT algorithm. Convolutional neural networks (CNNs) have led 

to the creation of highly accurate detectors, thus spurring the de- 

velopment of approaches that rely heavily on these high-quality 

detections [1] . 

Training such highly accurate detectors requires significant la- 

beled data. The majority of the MOT literature has focused on 

tracking pedestrians and vehicles [2,3] , two settings in which la- 

beled data is plentiful. However, in specialized tracking scenarios 

we may have considerably less data; for instance, tracking a new 

species of insect, or tracking fish off the coast of a tropical island. 

With limited training data, even the best detectors will have lim- 

ited performance. Although historically researchers have often sep- 
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arated the problems of tracking and detection (especially for un- 

derstudied domains such as fish [4] and insects [5] ) by assuming 

access to a perfect detector, reduced detection quality has the po- 

tential to compound into extremely poor-quality tracks. In contrast, 

an ideal tracking algorithm would be able to perform robustly even 

given an imperfect detector [6] , but it is still not clear how to ac- 

complish this. 

Most of the recent top performers have been deep tracking ap- 

proaches, which either learn to associate detections into coherent 

tracks [7] , or learn how to recover tracks from videos in an end-to- 

end fashion without relying on an external detector [8,9] . However, 

these systems require training on large amounts of labeled data; in 

the cases we study, little to no labeled video data is available. In- 

deed, even properly labeled still image data needed to train an ob- 

ject detector may be fairly scarce, greatly increasing the difficulty 

of the problem compared to the standard MOT setting. 

We have found that even when (pretrained) CNN detectors are 

trained on little data, they often are still able to predict the gen- 

eral location of objects in the scene, albeit sometimes with very 

low confidence and many false positives. However, the traditional 

MOT pipeline discards most of this information, first filtering out 

the low-confidence detections, and thereafter discarding the de- 

https://doi.org/10.1016/j.patcog.2022.109107 
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tection confidence values [3] . Ideally, a tracker could make use of 

the full unfiltered set of detections to achieve more robust perfor- 

mance. Unfortunately, removing this filtering step greatly increases 

the computational burden, and requires algorithms to cope with 

extremely noisy input. Due to these challenges, we are not aware 

of any tracking-by-detection approaches capable of efficiently re- 

covering high-quality tracks from the unfiltered output of a low- 

accuracy detector. 

Therefore, we present Robust Confidence Tracking (RCT), an al- 

gorithm which tracks efficiently and robustly given unfiltered de- 

tections as input. The key idea behind RCT is that, instead of dis- 

carding detection confidence values, we can use these values to 

guide the tracking process, using lower-confidence detections only 

to “fill in gaps” between higher-confidence detections. Specifically, 

RCT uses detection confidence in three ways: To determine where 

to best initialize tracks, probabilistically combined with a motion 

model to optimally extend tracks, and to filter out low-quality 

tracks. Alongside this novel idea, RCT incorporates some simple 

and well-studied heuristics, such as a Kalman filter to model mo- 

tion, a MedianFlow single object tracker (SOT) to incorporate visual 

information, and greedy track agglomeration to join tracklets into 

overall tracks. Despite these simple heuristics, RCT’s incorporation 

of detection confidence achieves excellent performance, even com- 

pared to more complicated and resource-intensive deep tracking 

methods. To test trackers such as RCT in challenging scenarios 

where data is scarce, datasets of common objects do not suffice. 

Therefore, we present a new, challenging real-world fish tracking 

dataset, FISHTRAC. We conduct a comprehensive evaluation of RCT 

and an extremely diverse set of multi-object tracking approaches 

across both FISHTRAC as well as two more standard datasets when 

using a low-accuracy detector, UA-DETRAC [3] and MOT17 [2] . The 

primary contributions of our work are as follows: 

• To cope with a lack of high-quality detections, existing ap- 

proaches that simply threshold the detection confidence do 

not suffice. Therefore, RCT uses the exact (unfiltered) detec- 

tion confidence values to increase track quality in three distinct 

ways (initializing tracks, extending tracks, and filtering tracks). 

This novel idea, combined with a few simple and well-studied 

heuristics (Kalman-filter, MedianFlow, and greedy track agglom- 

eration), results in a tracker which outperforms a wide variety 

of other algorithms in this setting. We show in our experiments 

that RCT’s performance critically relies on this novel method 

for incorporating detection confidence: Thresholding the con- 

fidence at any fixed value worsens performance greatly. 
• Through public competitions like MOTChallenge, the computer 

vision community has an accurate sense of how MOT algo- 

rithms perform in the regime of high-quality detections. How- 

ever, it is unknown how these algorithms perform when pro- 

vided low-quality detections, a scenario that occurs in many 

real-world domains. We are the first to perform a systematic 

comparison of a wide range of trackers in this setting, including 

classic tracking approaches, single object tracking approaches, 

specialized fish trackers, and deep tracking approaches (includ- 

ing three top performers on recent challenges). Moreover, this 

comparison is performed over three distinct domains; we are 

not aware of any MOT paper that compares a more diverse set 

of baselines over multiple domains. 
• We present a new high-resolution real-world fish tracking 

dataset, FISHTRAC, which covers the setting of tracking fish in 

an underwater environment, a scenario not well covered by ex- 

isting datasets. Real-world fish tracking is a very challenging 

setting due to complex camera motion, object motion, lighting, 

and background effects. 
• Our codebase has been made publicly available at https:// 

github.com/tmandel/fish-detrac . This codebase is an important 

contribution, as there do not exist codebases that allow one to 

compare a wide variety of MOT trackers on new datasets. 

2. Problem setup 

We consider offline multi-object tracking problems within a 

tracking-by-detection framework, where the goal is to track all ob- 

jects of a desired class ℓ . Note that ℓ is often known to be of 

practical importance, but in the settings we consider may be rare 

enough that accurate detection is difficult. Specifically, we assume 

there exists a video V with N frames v 1 , . . . , v N and a detector D

which outputs detections on each frame d 1 , . . . , d N . Each d i is a set 

containing tuples b = (x, y, w, h, c) denoting the detected bounding 

box and its confidence 0 ≤ c ≤ 1 that the box corresponds to an in- 

stance of an object of class ℓ (here we use b ∈ ℓ to denote the case 

that a box is a member of the class ℓ ). The goal of the tracking 

algorithm T is to produce an optimal set of tracks T = T 1 , . . . , T K 
where each track T j consists of a list of tuples t j, f = (x, y, w, h, c) 

where f ∈ [1 , N] is the frame number. 

3. Related work 

Multi-object Tracking Datasets and Codebases There are sev- 

eral public MOT datasets, see Table 1 . However, tracking fish in 

natural underwater scenarios is a challenging and understudied 

problem which is not well-represented by existing datasets. Al- 

though some datasets do include fish data, the video is usu- 

ally of artificial settings such as aquarium tanks, which greatly 

simplifies the tracking problem. The one significant exception 

is Fish4Knowledge/SeaCLEF [10–12] , however that dataset suffers 

from several problems, including low image quality and low FPS 

(5 FPS). Indeed, most of the datasets with more variety have sacri- 

ficed FPS (e.g. 1 FPS for TAO [13] ), and some such as TAO also have 

incomplete annotations, making comprehensive evaluation diffi- 

cult. Low FPS is a particularly poor choice for fish tracking, since 

fish move and change direction rapidly. Our FISHTRAC dataset con- 

tains high-quality (at least 1920x1080) video of real-world under- 

water fish behavior, and is completely annotated at 24 FPS. While 

not as diverse or large as datasets like TAO [13] , FISHTRAC fills an 

important gap by helping shed light on a highly challenging real- 

world application. 

Additionally, there is currently a lack of MOT codebases that 

facilitate comparison to other methods. 1 Leaderboards such as 

MOTChallenge [2] are the predominant way to compare trackers, 

but this does not allow one to compare algorithms on new videos 

or detections. Running trackers on a new dataset takes substan- 

tial implementation time and effort (converting formats, handling 

very slow trackers, etc.). The UA-DETRAC [3] codebase allows one 

to compare 8 trackers, but it is intended for only a single dataset 

and is based on proprietary (paid) software (MATLAB). We present 

a heavily modified version of the DETRAC code which is adapted 

to open-source technologies and contains everything needed to 

run 17 trackers on fish data, car data, pedestrian data, or a new 

dataset. The code is available online at https://github.com/tmandel/ 

fish-detrac . 

Fish tracking Work in real-world fish tracking has been rela- 

tively scarce due to lack of suitable datasets. Most attention has 

focused on artificial settings, such as tracking Zebra Fish in a glass 

enclosure [16] . One exception is Jäger et al. [11] , who developed a 

custom approach to track fish in real-world scenarios. We compare 

to this tracker in our experiments. 

1 In the SOT community, substantial efforts have been made to develop pub- 

licly available codebases for comparing a wide variety of SOT algorithms on new 

datasets. 
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Table 1 

A comparison of public MOT datasets. FPS refers to the annotation FPS. 

Comparing UA-DETRAC, TAO, MOT17, YTVIS2021, OVIS, SeaCLEF, and our FISHTRAC data set on number of videos, number of "in the wild" fish videos, annotation FPS, 

minimum resolution, whether they provide unfiltered detections, whether they are completely labeled, and the number of trackers included in the associated codebase. 

Dataset Num Videos 

# “In the wild”

fish videos FPS Min resolution 

Provides unfiltered 

detections? 

Complete 

labels? 

# MOT algs in 

codebase 

UA-DETRAC [3] 100 0 24 960x540 No No 8 

TAO [13] 2907 2 1 640x480 N/A No 1 

MOT17 [2] 14 0 30 640x480 No Yes 0 

YTVIS 2021 [14] 3859 2 5 320x180 N/A Yes 0 

OVIS [15] 901 2 3–6 864 x 472 N/A Yes 0 

SeaCLEF [11,12] 10 10 5 320x240 N/A No 2 

FISHTRAC (Ours) 14 14 24 1920x1080 Yes Yes 17 

Detection Confidence Virtually all tracking-by-detection 

methods filter detections based on a confidence thresh- 

old h and thereafter discard confidence information, e.g. let 

d ′ 
f 

= b s.t. c b ≥ h, b ∈ d f , where c b denotes the confidence of 

the box b. Indeed, this is enforced by codebases such as UA- 

DETRAC [3] . The few exceptions add another threshold to dif- 

ferentiate between high and medium confidence [17] , or require 

modifying detection approaches to expose additional information 

which may not always be accessible [18,19] . Bayesian approaches 

like JPDA [20,21] incorporate a fixed detection probability, but do 

not utilize the individual detection confidences. Approaches such 

as CMOT and its variants [22] develop a version of track “con- 

fidence” that is based on factors such as kinematic plausibility, 

and/or appearance features over time [23] , but do not incorporate 

the confidence of the underlying object detector. Although such 

approaches can work well, one limitation is that in cases such 

as fish tracking, fish tend to dramatically change appearance and 

motion within a small period of time, for instance when a fish 

begins to turns around rapidly. These appearance and motion 

changes cause these approaches to produce many ID switches in 

this setting (as we see with CMOT in our experiments). We are 

not aware of any MOT algorithms that make use of the detection 

confidence values associated with each produced bounding box in 

a manner more sophisticated than just thresholding them, a pro- 

cedure which eliminates the more nuanced information contained 

in these values. 

4. Robust Confidence Tracking (RCT) 

Our Robust Confidence Tracking (RCT) algorithm contains 

four components: Initializing tracks based on detection confi- 

dence, probabilistically combining detection confidence with mo- 

tion probability, incorporating a single-object tracker as a fallback 

when detections alone are insufficient, and track postprocessing. 

Fig. 1 gives an overview. 

4.1. Initializing tracks based on detection confidence 

Unlike other MOT algorithms, our RCT algorithm uses the de- 

tection confidence as a key to distilling the detections into co- 

herent tracks. For each track T j , RCT chooses the maximum con- 

fidence detection (across all frames) for its initial box I j ( I j = 

argmax b∈ d 1 ∪ ···∪ d N c b ) ; we refer to the frame associated with I j 
as f I, j . To ensure that this detection does not overlap with a 

previously-used track, RCT excludes boxes from the max where 

there exists some track index W such that t W, f I, j 
∈ d f I, j and 

| B (t W, f I, j 
) ∩ B (I j ) | > 0 , where the function B returns the set of all 

pixel coordinates that fall within the box. Also, to avoid edge cases, 

we do not select detections that are near the edge of the screen 

(we enlarge I j by β% and check that it is still onscreen, where 

β is an RCT parameter). RCT works in a track-wise fashion: once 

the first track is built (described below), the next highest detec- 

tion confidence detection is selected as the start frame for the next 

track, and so on, as long as the initial confidence c I, j is above an 

RCT threshold parameter h I . Note that RCT uses detections with 

confidence < h I elsewhere. 

4.2. Combining detection confidence and motion 

Next, RCT initializes a Kalman filter k with the chosen detection 

I j . The Kalman filter state s k is a tuple (x k , y k , v k x , v 
k 
y , w k , h k ) where 

v k x and v 
k 
y are unobserved (latent) velocities which together form 

a vector � v k = < v k x , v 
k 
y > . Let b k = (x k , y k , w k , h k ) be the box derived 

from the state. 

From the initial box I j , RCT could extend the track either for- 

ward or backward in time, but it does not know which will best 

help estimate velocity. To handle this, RCT initially tries both op- 

tions, and selects the option with the best score (as defined be- 

low). For clarity we will describe the forward case, the backward 

case is analogous. 

Given a frame f , partial track j and a Kalman filter state s k 
f, j 
, 

RCT must score each detection in d f to find the best candidate to 

extend the track. The Kalman filter probability of the box based 

on the track so far P (b ′ = t j, f | t j, f−1 , . . . , t j, 1 ) can be used as a mo- 

tion model score. Similarly, the Detector D assigns a probabilistic 

score P (b ′ ∈ ℓ | v f ) = c b ′ reflecting the probability the detector be- 

lieves this object is of the desired class. Our goal is to find the 

joint probability P (b ′ = t j, f , b 
′ ∈ ℓ | v f , t j, f−1 , . . . , t j, 1 ) . If we make the 

simplifying assumption that the class and the track assignment are 

conditionally independent given the past sequence of boxes and 

frame image, we have: 

P (b ′ = t j, f , b 
′ ∈ ℓ | v f , t j, f−1 , . . . , t j, 1 ) 

= P (b ′ = t j, f | v f , t j, f−1 , . . . , t j, 1 ) P (b 
′ ∈ ℓ | v f , t j, f−1 , . . . , t j, 1 ) (1) 

Since our detector gives P (b ′ ∈ ℓ | v f , t j, f−1 , . . . , t j, 1 ) = P (b ′ ∈ ℓ | v f ) = 

c b ′ , and our Kalman filter assumes P (b ′ = t j, f | v f , t j, f−1 , . . . , t j, 1 ) = 

P (b ′ = t j, f | s 
k 
j, f 

) , the joint probability can be calculated as: 

P (b ′ = t j, f , b 
′ ∈ ℓ | v f , t j, f−1 , . . . , t j, 1 ) = c b ′ P (b 

′ = t j, f | s 
k 
j, f ) . (2) 

The conditional independence assumption is a simplification, but it 

is justified by the fact that we can determine whether a given box 

is an extension of the current track based on the object’s motion, 

independent of the object’s class. Conversely, we can determine the 

class of a given box based solely on the visual information con- 

tained in the image, independent of the track to which the object 

is assigned. 

RCT uses Eq. (2) to score a detected box based on both detec- 

tion confidence and motion model score. However, this does not 

tell us when none of the detected boxes on a certain frame are 

a reasonable extension of the track - a situation that arises fre- 

quently with an imperfect detector. To do so, RCT checks two cri- 

teria. First, RCT checks whether the center point of the chosen de- 

tection b ′ is contained within the box derived from the Kalman 
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Fig. 1. Process diagram of our Robust Confidence Tracking (RCT) algorithm. 

A flowchart showing a visual flow of the RCT algorithm. Covers how RCT initializes tracks, how RCT combines detection confidence and a motion model to extend tracks. 

The diagram also shows how, if RCT has to resort to a motion model, it first checks if a MedianFlow box is a reasonable extension of the track. The diagram also shows the 

postprocessing steps (joining, filtering, trimming, etc.) that occur in our algorithm. 

filter state, specifically C(b ′ ) ∈ B (b k 
j, f 

) where C is a function that 

returns the geometrical center of the box. If not, it is likely not a 

kinematically plausible extension of the track. 2 Next, RCT checks if 

P (b ′ = t j, f | s 
k 
j, f 

) ≥ P (b ′ = t j, f−1 | s 
k 
j, f−1 

) , in other words, whether the 

previous detection is more likely under the current Kalman filter 

state than the previous Kalman filter state: if not, it is likely mov- 

ing in the wrong direction. If the detection is rejected due to either 

of the above reasons, RCT sets t j, f to a placeholder value indicating 

a missing observation. Otherwise, RCT sets t j, f = b ′ , and marks b ′ 

so that it cannot be re-used in another track. 

After δ ( δ is an RCT parameter) iterations extending the track in 

both directions, RCT then switches to a single direction (forward, 

then backward) as the estimate of the velocity is likely sufficiently 

accurate. RCT stops this process when the current box is more off- 

screen than the last box, setting the rest of the t j to missing since 

the object is offscreen. 

The Kalman filter is used to perform one final smooth at the 

end, letting t j, f = b k 
j, f 

to smooth out any noise in the track and 

replace missing observations with inferred boxes. 3 

4.3. Incorporating a single object tracker 

The aforementioned approach forms the core of the RCT algo- 

rithm; however, the Kalman filter assumes linear motion if we do 

not find a matching detection, which performs poorly when mo- 

tion is complex. Therefore, RCT uses a SOT algorithm as a fallback 

option if no reasonable detections can be found. Specifically, we 

use the MedianFlow tracker [24] : MedianFlow has been success- 

fully used in past MOT approaches [17] ; a strength is that it can 

determine when it has lost track of an object. As with the Kalman 

filter, we initialize the MedianFlow tracker on frame I f and update 

it in both the forwards and the backwards directions. 

We observed that the Kalman filter could overcome a short se- 

quence of missing detections or occlusions, while visual informa- 

tion is critical to overcoming a longer sequence of missing detec- 

tions. Therefore, RCT switches to MedianFlow only if, when detect- 

ing on frame f of track j, for all f ′ ∈ { f, f − 1 , . . . , f − δm } t j, f ′ 	∈ d f ′ 

(i.e. the last δm frames also have no valid detections), where δm 

is an RCT parameter. Additionally, we require that the Median- 

2 We optimize by only considering detections that overlap b k 
j, f . 

3 Specifically, RCT runs a (forward-backward) smoothing pass separately on 

frames f ′ < f I, j + δ and f ′ > f I, j − δ, where the δ extra frames past the start frame 

are used as context. 

Flow track is plausible according to our Kalman filter, specifically 

RCT tests that C(m j, f ) ∈ B (b k 
j, f 

) , where m j, f is the MedianFlow box 

on frame f of track j. If these conditions are met, and Median- 

Flow did not report a tracking failure, RCT sets t j, f ′ = m j, f ′ for 

f ′ ∈ { f, f − 1 , . . . , f − δm } . In the case where both a MedianFlow 

box m j, f and an acceptable detected box b 
′ ∈ d j are available, and 

the previous box was MedianFlow ( t j, f−1 = m j, f−1 ), RCT only sets 

t j, f = b ′ if C(b ′ ) ∈ B (m j, f ) and C(m j, f ) ∈ B (b ′ ) , which tests whether 

the detection diverges significantly from the MedianFlow predic- 

tion. If it does, it is likely a spurious detection and RCT keeps using 

the MedianFlow boxes. 

To further reduce the reliance on motion, RCT replaces some 

boxes with MedianFlow after the track is built. If on some track 

j and frame f , either the detection is a missing placeholder or 

it overlaps with another track (i.e. there exists some w 	 = j such 

that t w, f ∈ d f and | B (t j, f ) ∩ B (t w, f ) | > 0 ), we try to see if we can 

replace t j, f with a better box. First, RCT tries a MedianFlow box: 

if | B (m j, f ) ∩ B (t j, f−1 ) | > 0 , it is a reasonable extension of the track, 

so we let t j, f = m j, f . Else, RCT sets t j, f to indicate a missing obser- 

vation. 

4.4. Track joining, confidence-based filtering, trimming 

The approach so far can produce tracks that are fragmented 

- therefore, RCT joins smaller tracks (tracklets) as a postpro- 

cessing step. Instead of computationally expensive matching ap- 

proaches [25] , we use a greedy agglomerative track joining ap- 

proach based on a simple heuristic that joins two tracks if they 

are similar enough in terms of time and motion. Specifically, RCT 

examines the time period in which the tracks switched to purely 

motion. Without loss of generality, let f j be the last non-motion- 

box frame of track j, and f W be the first non-motion-box frame of 

track W (we try every possible ordered pairing of tracks). If f j ≤

f W , then RCT computes the temporal distance as D time = f W − f j If 

f j > f W , then we require there to be at most two frames f where 

IoU(t f,W , t f, j ) < h u , where IoU is the intersection over union func- 

tion and h u is an RCT parameter. In other words, the track needs to 

overlap on almost every frame in which there are detections, if so 

RCT sets D time = 0 . RCT only considers joining pairs of tracks where 

D time < D max , where D max is an RCT parameter. Next we consider 

whether the distance reached in that number of frames would be 

reasonable according to the Kalman filter. Specifically, let 

v max = max 
i ∈{ w, j} , f∈{ 1 , ... ,N} 

√ 
(

v k 
i, f,x 

)2 
+ 

(

v k 
i, f,y 

)2 
, (3) 

4 



T. Mandel, M. Jimenez, E. Risley et al. Pattern Recognition 135 (2023) 109107 

which gives the fastest speed it is reasonable for these objects to 

have under the Kalman filter. Then we test whether 

d euclid (C(b f w ,w ) , C(b f j , j )) ≤ D time v max , (4) 

where d euclid gives the Euclidean distance. If not, the distance be- 

tween tracks is too large to reasonably join them. Additionally, RCT 

checks that the tracked boxes are moving in the right direction: 

that is, that a Kalman filter initialized on track w and extended to 

track j would determine that P (b j, f j | s 
k 
f j 
) ≥ P (b j, f j | s 

k 
f j −1 

) . RCT iter- 

ates this process, greedily adding tracks until there are no more 

pairs that meet our join criteria. After each join, RCT re-smooths 

the tracks. 

Since the detector is low-accuracy, it may be that long se- 

quences of detections occur on objects outside ℓ (e.g. coral instead 

of fish), necessitating track filtering. RCT again relies on detection 

confidence to filter tracks: Detections of smaller objects tend to be 

naturally lower confidence, but if a track is both exceptionally long 

and contains many large boxes, at least some of the detections 

should be fairly high confidence if it is truly the target class. To 

determine if a track T q qualifies as large and long, we first define 

a set T l consisting of all the high-quality large long tracks. Specifi- 

cally, T j ∈ T l if two conditions are met: c I, j > h q , where h q is an RCT 

parameter, and S(T j ) ≥

∑ 
T i ∈ T 

S(T i ) 

| T | 
, where S(T i ) = 

∑ 

f∈{ 1 , ... ,N} | B (t i, f ) | , 

that is, the total size (as calculated by summing the box sizes 

across all frames) greater than the mean across all tracks. For each 

T i ∈ T l , RCT computes S(T i ) , producing a set of scalar sizes S l . RCT 

then fits a Gaussian distribution to the mean and standard devi- 

ation of the elements in S l , the intuition being that the Gaussian 

distribution captures what sizes are reasonable for large tracks to 

have in the dataset. If for the track in question T q , S(T q ) is above 

the 95% Gaussian tail, and it is low confidence ( c I,q < h q ), T q is re- 

moved from the track set. RCT also removes redundant tracks, i.e. 

where the average IoU between two tracks is greater than RCT pa- 

rameter h u . 

Finally, RCT trims the ends of tracks (which has a large impact 

on scores, see our ablation study). Specifically, RCT stops tracking 

objects when the width of the box is offscreen by more than ω
percent of the frame width, and the height of the box is offscreen 

by more than ω percent of the frame height where ω is an RCT 

parameter. When an object is moving offscreen, RCT applies con- 

stant acceleration of α� v k to the Kalman-derived velocity vector � v k 

to move the track swiftly offscreen, where α is an RCT parame- 

ter. Additionally, to avoid incorrect extrapolation of the tracks by 

the Kalman filter, RCT trims all boxes that are based on missing 

Kalman observations at the tail ends of the tracks as long as there 

are at least δn boxes, where δn is an RCT parameter. 

5. FISHTRAC Dataset 

5.1. A high-resolution MOT fish dataset 

Real-world underwater fish tracking is a particularly challenging 

MOT problem. Fish move unpredictably, change appearance, and 

are frequently occluded. When video is collected by divers, addi- 

tional complicated motion and parallax effects arise; additionally, 

fish often intentionally try to swim away or hide from the diver. 

And yet fish tracking is an important task in marine science, for 

instance to aid in studies of fish behavior, and also has recreational 

applications. 

We present FISHTRAC, which is, to our knowledge, the first 

high-resolution fish dataset designed for multi-object tracking. 

FISHTRAC contains 14 videos totaling 3449 fully-annotated frames 

of real-world underwater video. Annotators were instructed that, if 

a fish is unambiguously identifiable in at least one frame of video, 

it should be annotated for all frames that it is believed to be within 

Fig. 2. FISHTRAC frame marked with ground truth (GT). 

A frame of real-world underwater video with 5 fish marked, some of which are 

relatively difficult to see due to the complex coral reef background. 

the camera’s Field of View (FOV). This results in 131 total indi- 

vidual fish annotated (5–20 per video). Video is in high-resolution 

1920x1080 (or higher) format collected at 24 frames per second, 

see Fig. 2 for an example. The videos were collected off the coast 

of Hawai‘i island, primarily by a SCUBA diver, although we also in- 

clude a video collected by a snorkeler and a video from a station- 

ary camera. To simulate tracking with scarce data, just 3 videos are 

designated for training, the other 11 are reserved for testing. Like- 

wise, when training on UA-DETRAC, we use just 3 videos from the 

train set (MVI_41073, MVI_40732, MVI_40141). 

To test generalization, we test trackers on the MOT17 dataset, 

specifically the seven train videos (the test set annotations have 

not been publicly released and so the test set cannot be processed 

through our evaluation pipeline). This is a test of how well trackers 

can generalize to a different dataset, as we did not examine any 

pedestrian data during development of RCT, and we likewise do 

not tune any parameters or train any models on this dataset for 

the other methods (although some of them examined this dataset 

during their development, we would expect this to only strengthen 

their results). 4 

Additionally, we present the FISHTRAC codebase which includes 

everything needed (conversion/visualization scripts, etc.) to evalu- 

ate 17 tracking algorithms on a new MOT problem. Our code is 

based entirely on free technologies (GNU Octave and Python) and 

supports Linux. This should enable researchers to more easily com- 

pare MOT algorithms on new problems. 

5.2. FISHTRAC object detection 

In order to run a tracking-by-detection MOT pipeline on FISH- 

TRAC, we need to train an object detector; however, this requires 

significant training data (even after pretraining the network on 

a general-purpose dataset like ImageNet [26] ). Although manu- 

ally annotating images is one option, that is time-consuming and 

expensive, and for many applications significant training data is 

available in large public datasets. Therefore, to generate train- 

ing data for our FISHTRAC detectors, we scraped all human- 

annotated bounding boxes labeled “fish” from Google Open Images 

Dataset [27] , one of the largest bounding box datasets. However, 

this resulted in only 1800 images (many of which were not in real- 

world underwater environments), which is more limited than the 

data usually used to train a deep learning model. 

Next we examine different object detection approaches - al- 

though we wish to study cases where detections are low-quality, 

it is important to select a detection pipeline that maximizes the 

4 For methods that we trained a separate model for FISHTRAC and DETRAC (DAN 

and TransCenter), we tried both and selected the one with best performance on the 

MOT17 data. 
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Table 2 

Precision, recall and mean average precision (mAP) of RetinaNet com- 

pared to YOLOv4 on FISHTRAC train. 

RetinaNet is compared to YOLOv4 at 1024x1024 and 608x608, as well 

as YOLOv4 Tiny at 608x608. Columns are precision at a 0.5 confidence 

threshold, Recall at a 0.5 confidence threshold, and the mAP. RetinaNet 

achieves the best on all three measure, with 85.83% precision, 42.25% 

recall, and 60.41 mAp. 

Algorithm Precision @ 0.5 Recall @ 0.5 mAP 

RetinaNet 85.83 42.25 60.41 

YOLOv4 - 1024x1024 76.90 16.30 25.11 

YOLOv4 - 608x608 83.89 18.51 30.40 

YOLOv4 Tiny - 608x608 69.94 23.64 39.32 

quality of detections given our limited training data. Therefore, we 

compared state-of-the-art detectors on our FISHTRAC set and se- 

lected the one with the best performance. Specifically, we com- 

pared the RetinaNet [28] architecture to variants of YOLOv4 [29] . 

For RetinaNet, we selected a ResNet50 backbone pretrained on Im- 

ageNet [26] , and trained it for 10 epochs. For YOLOv4, we used 

the officially published model architectures (both full size and tiny 

variants). 

We followed the official guide in the GitHub repo 5 to train the 

YOLO models on our custom objects, using the pretrained MSCOCO 

weights. RetinaNet rescales images to between 80 0–10 0 0 pixels 

on each side, whereas YOLOv4 by default rescales its input to 

608x608, so we also tried a variant of YOLOv4 with a larger input 

data size (1024 x 1024). 

We evaluated the various object detection models on the FISH- 

TRAC train dataset, using an IoU threshold of 0.5. As one can see 

from the results in Table 2 , RetinaNet significantly outperforms the 

more recent YOLOv4 model on FISHTRAC data. Hence we use Reti- 

naNet as our detector in all further experiments. Still, the result- 

ing RetinaNet detector still has mediocre performance on FISHTRAC 

train: at a 0.5 confidence threshold, it has 85.53% precision and 

just 42.25% recall (60.4 mAP). 

Detection for UA-DETRAC: For DETRAC, one can train an ac- 

curate detector given the ubiquity of vehicle data; but we inten- 

tionally trained on limited data to realistically simulate low-quality 

detections. Specifically, we trained RetinaNet with 200 car images 

from Open Images. We then trained the same RetinaNet architec- 

ture used in FISHTRAC. Unsurprisingly, this resulted in mediocre 

performance on our DETRAC train set: just 62% precision and 46% 

recall (50.3 mAP). 

Detection for MOT17: For MOT17, one can likewise train an ac- 

curate detector given the ubiquity of pedestrian/person data, but 

we instead trained RetinaNet with 1800 person images from Open 

Images. This resulted in mediocre performance the MOT17 train set 

at 91% precision but only 24% recall (58.9 mAP). 

6. Experiment setup 

6.1. Evaluation metrics 

As a primary metric we use the recent HOTA metric [30] , which 

has gained popularity due to its strong performance in user stud- 

ies [30] . But we also report more classic CLEAR MOT metrics like 

MOTA [31] as secondary metrics. 

However, one limitation of these MOT evaluation metrics is that 

they are both based on the IoU (intersection over union) between 

each box in the predicted track and each box in the ground truth 

track. MOTA uses a fixed threshold on IoU to determine whether 

a ground truth and a predicted box are close enough to match, 

5 https://github.com/AlexeyAB/darknet 

Fig. 3. The scores of DIoU and IoU in a real fish tracking scenario. The orange box 

is the ground truth and the red is the predicted (tracked) box. The middle image 

seems best from an end-use perspective, but using IoU there is no way to differ- 

entiate it from the bottom image, which is clearly much worse. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Three scenarios are shown vertically, with IoU and DIoU scores posted for each sce- 

nario. In all three scenarios, a small ground truth box is correctly marked around 

a fish in the center of the screen. In the topmost scenario, we see a much larger 

predicted box, which is in the wrong position but overlaps slightly with the ground 

truth box. In this case, the IoU is 0.1 and the DIoU is 1.09. In the middle scenario, 

we see that the predicted box is the right shape and size but slightly to the right of 

the ground truth box, so they don’t overlap. The IoU is 0.0 and the DIoU is 1.13. In 

the bottom secnario, the predicted box is the completely wrong size, shape, and lo- 

cation - the IoU is still 0.0 but the DIoU is now 1.67, providing a way to differentiate 

it from the middle scenario. 

whereas recent improvements like HOTA take the average score 

over many possible thresholds. However, regardless of the exact 

threshold, if the predicted and the ground truth track do not over- 

lap, the IoU value is zero. So a predicted box which does not over- 

lap any ground truth box will count as a false positive. Indeed, in 

such situations the tracker would have received a better score if it 

had simply not tracked the object at all. The rationale behind this 

approach is that a tracker which completely loses track of the ob- 

ject should detect that it has failed and not issue a prediction so 

as not to confuse the downstream pipeline. 

Although at first this seems reasonable, in our setting we found 

that this produced highly counter-intuitive results. Consider Fig. 3 

for instance. The middle image is clearly better than the top im- 

age at giving the user a sense of where the fish is: it has roughly 

the right size box in roughly the right location, whereas with the 

6 
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top image the location and size of the target are both completely 

inaccurate. Yet with a low enough IoU threshold, the top image 

will count as a matched detection due to the overlap, while the 

middle image never will no matter the IoU threshold. Additionally, 

with the IoU metric, there is no way to differentiate the middle im- 

age from the bottom image, even though the middle prediction is 

clearly much more useful to an end-user than the bottom predic- 

tion. With low-accuracy detections, situations similar to the mid- 

dle image will happen a lot: especially when targets become small 

(such as fish swimming away from the camera) the tracker may 

have to rely on a motion model rather than visual information to 

determine where the object is. In these situations, as long as the 

tracker produces a track that is “close” to the original it will still 

be helpful for downstream applications even if there is no overlap, 

especially for small targets. 

Therefore, we instead use Distance-IoU (DIoU) [32] , a recent 

metric that combines IoU with the normalized distance between 

the boxes to give more “partial credit” to non-overlapping detec- 

tions. Specifically, DIoU computes 

DIoU(b 1 , b 2 ) = 1 − IoU(b 1 , b 2 ) + 
d 2 
euclid 

(C(b 1 ) , C(b 2 )) 

g 2 (b 1 , b 2 ) 
, (5) 

where g is the diagonal length of the smallest box enclosing the 

two boxes and C is the center point operator. Intuitively, this com- 

bines IoU with the normalized distance between the boxes. Since 

DIoU contains both distance and IoU as components, it is suitable 

for a wide range of different scenarios and domains, allowing the 

practitioner to select a threshold that best meets the needs of their 

setting. 

DIoU ranges from between 0 to 2 (note that, unlike IoU, lower 

is better), and since in our setting detections are low-quality and 

the tracker may have to interpolate between sequences of missing 

detections or occlusions, we select a threshold greater than 1 but 

less than 2 to admit boxes that may not overlap but are still rel- 

atively close. Specifically, if two equally-sized boxes barely touch 

at a corner, they will have DIoU 1.25, so this is the value we use 

to initialize the track. DETRAC’s CLEAR MOT implementation orig- 

inally allowed 20% variability in the threshold to allow for more 

leeway while tracking the object; we followed this approach, al- 

lowing the DIoU to rise up to 1.5 while tracking an object. To en- 

sure our HOTA and MOTA metrics were considering a similar range 

of DIoU values, we modified HOTA to integrate over DIoU values 

between 1.25 and 1.5. The resulting scores on the training set of 

FISHTRAC more closely matched our intuition than the IoU-based 

scores, for instance DIoU with these thresholds would successfully 

count the middle scenario in Fig. 3 as a match while excluding the 

much worse bottom scenario. 

6.2. Evaluation protocol 

Trackers fed low-accuracy detections might take an extremely 

long time, or might fail to produce any results. To handle the time 

issue, our code kills the tracker after 30 minutes have passed on 

a single video - this is recorded as a timeout . In contrast, a fail- 

ure occurs when a tracker fails to produce any results at all for an 

entire video, usually due to an assumption in the original code not 

being met - e.g. assuming that there are detections on every frame. 

Additionally, each tracker other than RCT requires setting h , the 

threshold on detection confidence. To compare to the strongest 

possible baselines, we tune this separately for each tracker. A ro- 

bust tracker should never timeout or fail, so we first select the 

threshold(s) that minimize the sum of timeouts and failures over 

the DETRAC and FISHTRAC train sets. In the case of ties, we select 

based on average HOTA. We then use this threshold on the test 

videos. 

After this process, all trackers had zero timeouts/failures on the 

training data, except for the three slowest methods (D3S, GMMCP, 

and IHTLS), which often timed out. 

6.3. RCT and baseline implementations 

RCT Implementation Details: Like most other MOT algorithms, 

RCT has a number of parameters. In our case, other than h I = 0 . 5 

which was set purely based on intuition, we set the other 10 pa- 

rameters to maximize MOTA and qualitative performance on the 

6 FISHTRAC/DETRAC training videos. This resulted in the follow- 

ing settings: β = 50% , δ = 4 , δm = 2 , h u = 0 . 3 , D max = 20 , h q = 0 . 8 , 

h f = 0 . 2 , ω = 1% , α = 1 . 1 , and δn = 5 . The majority (7 of 10) of 

these parameters control the trimming and joining heuristics (see 

ablation study for the impact of these components). A list of the 

RCT parameters used in our experiments are provided in Table 3 . 

In terms of Kalman filter parameters, we set the transition and ob- 

servation covariance matrices to standard 1-diagonal form (with 0 

elements for the velocity observations since they are unobserved), 

although we did a small amount of tuning on the diagonal veloc- 

ity transition elements (which were set to 0.2), and the diagonal 

position observation elements (which were set to 0.5). 

Classic and Specialized Baselines: In total, we compare RCT to 

16 trackers. We compare to four classic trackers from the original 

DETRAC set ( GOG [33] , CMOT [34] , RMOT [35] , and IHTLS [36] ). 

To this we add GMMCP [25] , a tracker used in recent video- 

based person re-identification systems [37] . We compare two re- 

lated improvements of the IOU tracker [1] , KIOU [48] (which uses 

a Kalman filter) and VIOU [17] (which uses MedianFlow). We 

compare JPDA_m [21] , an optimization of the classic JPDA ap- 

proach [20] that, like RCT, incorporates motion model probability. 

We also compare to Visual Fish Tracking ( VFT ) [11] , which is spe- 

cially designed to track fish in real-world video. 

Deep Baselines: We compare to DAN [7] , which has excep- 

tional performance on UA-DETRAC and MOT17. We fine-tuned 

DAN on our train set (using the provided pretrained pedestrian 

model, which outperformed the base model) to maximize perfor- 

mance. We also compare AOA [38] , which won the recent 2020 

ECCV TAO challenge and uses an improved version of the pop- 

ular DeepSORT [39] algorithm. Finally, we compare to TransCen- 

ter [9] , a recent deep transformer-based approach which (as of 

June 2022) ranks in the top 20 in the MOT17 challenge and the 

top 10 in the MOT20 challenge. TransCenter trains its own (essen- 

tially end-to-end) object detection and tracking pipeline based on 

the DETR [40] object detector. We fine-tuned TransCenter on our 

train set (using the provided pretrained base model, which out- 

performed the pedestrian model), after which it achieved a near- 

perfect 92 HOTA on our training data. 

SOT Baselines: Comparing to SOT approaches is unusual in the 

MOT literature; however, SOT approaches rely less on detection 

quality and thus may be a viable approach in this setting. We 

adapt these approaches to the MOT setting in a way that mir- 

rors RCT: we initialize the tracker on the highest confidence de- 

tection that does not overlap previous tracks, and run the tracker 

forward and backward from that frame; continuing to add tracks 

while there are still uncovered detections. As SOT trackers, we try 

MedianFlow [24] and KCF [41] , which have shown good perfor- 

mance in MOT pipelines [17] . For KCF, we first downscale the video 

to 30 0x30 0 pixels as we observed that this improved performance, 

whereas for MedianFlow we use the original video resolution to 

mirror the way it is used inside RCT. We also compare D3S [42] , 

a deep segmentation approach which is one of the top perform- 

ers on the recent real-time VOT-RT 2020 challenge [43] . However, 

even “real-time” SOT trackers may be slow when applied to the 

more complex MOT task. Therefore, we compare to GOTURN [44] , 
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Table 3 

RCT parameters and meaning. 

Eleven parameters of RCT are listed, along with their meanings. 

Parameter Meaning 

h I Threshold for track initialization - we will not initialize tracks on a detection with lower confidence than this. 

β Percent box is enlarged to check if it is sufficiently far from image edge. 

δ Number of previous frames used to calculate approximate position and velocity using Kalman filter. 

δm Number of boxes needed to justify switching from Kalman filter to median flow. 

h u IoU threshold to determine if two detections are potentially on the same object 

D max Maximum number of frames with missing detections to permit joining two tracklets. 

h q Confidence threshold used to separately analyze “high-quality” tracks during the track filtering step. 

h f IoU threshold used to filter redundant tracks. 

ω Percentage offscreen an object must be in order to trim its track. 

α Acceleration factor when objects are moving offscreen. 

δn Number of frames of missing detections needed before deciding to trim them from track. 

Fig. 4. RCT on FISHTRAC train with/without a prefilter. 

A graph is shown - the x axis varies the prefilter threshold between 0 and 1, the 

left y axis shows the MOTA score, and the right y axis shows the HOTA scores. 

Four lines are shown: RCT MOTA (constant), RCT MOTA with prefilter, RCT HOTA 

(constant), and RCT HOTA with prefilter. The prefilter curves are roughly inverted U 

shapes, with values between 0.2 and 0.7 working best, but even the best values are 

still roughly 10 points worse in MOTA/HOTA than the unmodified RCT. 

a deep tracker which ranked #1 in terms of speed and #6 of 39 in 

accuracy on the large-scale GOT-10k benchmark [45] . 

7. Results 

7.1. RCT performance analysis 

One of the key aspects of RCT is its use of the exact detection 

confidence, instead of “prefiltering” the detections by a fixed con- 

fidence threshold, and then discarding the confidence. Fig. 4 shows 

a comparison of RCT to a variant with an initial prefilter. No mat- 

ter how we set the threshold, we cannot reach the original perfor- 

mance, showing the benefit of utilizing the exact detection confi- 

dence when tracking. 

RCT is capable of efficiently searching through an unfiltered 

set of detections to produce an effective track. Table 4 shows 

that this is usually not the case for other trackers. Several meth- 

ods could not cope with the large number of unfiltered detec- 

tions, being unable to return a result even after three days. 6 

In contrast, RCT was able to quickly produce accurate tracks in 

this setting, while the methods that completed generally showed 

6 The methods were either run on a state-of-the-art high-performance comput- 

ing cluster, or on a modern GPU-capable server, depending on their hardware and 

software requirements. 

poor performance. For instance, one of the fastest methods, MED- 

FLOW, is 3x slower than RCT and generates significantly negative 

MOTA scores. TransCenter is one of the only other methods that 

is able to quickly achieve good results in the UA-DETRAC case; 

however, this due to the fact that it largely discards the origi- 

nal detections in favor of running its own detector (the provided 

detections are used only as a filter on where to start a track). 

While this works well on UA-DETRAC since we trained TransCen- 

ter on our DETRAC train set, TransCenter cannot generalize to 

an environment different from what it was trained on, as shown 

by the near-zero HOTA and MOTA scores on pedestrian data. In 

contrast, RCT is able to quickly produce accurate tracks in both 

settings. 

Given that our method contains several non-essential compo- 

nents, we ran an ablation study to determine the impact of each 

factor on performance as well as on speed. The results are shown 

in Table 5 . From the first five rows of the table, we observe that re- 

moving any of the various features of RCT does result in a decrease 

in the training data HOTA and MOTA, and typically an increase in 

ID switches. Additionally, we observe that the majority of the time 

spent is on the MedianFlow tracker, with a significant percentage 

of that being loading the images (MedianFlow is the only aspect of 

RCT that uses visual information). This could likely be optimized, 

for instance by lowering the input resolution or loading images 

in parallel. We did find it surprising that the precise method of 

track trimming had such a large impact on performance, as shown 

in the last three rows of the table - for discussion of this, see 

Section 8.3 . 

7.2. Test results 

We ran all 17 trackers across all 11 FISHTRAC test videos, the 40 

UA-DETRAC test videos and the 7 MOT17 videos for which ground 

truth was available. We followed good practice regarding test data, 

in particular, we did not in any way evaluate RCT on the test videos 

during its development, with the exception of optimizing and re- 

formatting the code in ways that did not affect the tracks pro- 

duced. Our objective is the same as it was when selecting thresh- 

olds: we wish to minimize timeouts and failures for reliability, and 

then to maximize the combined HOTA score. FISHTRAC comprises 

50% of the combined score (since it is a more realistic example of 

having to cope with low-quality detections compared to the other 

two settings), and the remaining 50% is split evenly between UA- 

DETRAC and MOT17. 

Test results are shown in Table 6 . Our main result is that, of the 

trackers which successfully produced results for every sequence 

(i.e. no timeouts or failures), our RCT algorithm has the best com- 

bined HOTA across the three datasets. Additionally, RCT achieves by 
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Table 4 

Performance when trackers are fed unfiltered detections for one DETRAC video (MVI_40752, 2025 frames) and one 

MOT17 video (MOT17-04, 1050 frames). 

All 17 trackers compared on the DETRAC and MOT17 sequence given unfiltered detections, showing time taken, HOTA, 

MOTA, and ID Switches. RCT takes 2 minutes on the DETRAC sequence and 4 minutes on the MOT17 sequence. TRAN- 

SCTR takes similar amounts of time (4 min on UA-DETRAC and 3 min on MOT17), and even has better HOTA than 

RCT on the UA-DETRAC sequence (65.0 vs 51.44), but performs very poorly on the MOT17 sequence (HOTA of 10.13 and 

MOTA of 0.9). The next fastest tracker is MEDFLOW, but it takes three times the time of RCT (6 minutes on DETRAC and 

12 min on MOT17) with many more identity switches. The next fastest tracker is KCF with 57 minutes on DETRAC and 

105 minutes on MOT17. It only gets worse from there, with VFT, RMOT, IHTLS, CMOT, and GMMCP all taking more than 

three days to return results on the DETRAC sequence. This shows that existing trackers are not capable of efficiently 

extracting useful data from unfiltered detections. 

DETRAC sequence MOT17 sequence 

Tracker Time HOTA MOTA ID switches Time HOTA MOTA ID switches 

RCT 2 min 51.44 36.78 8 4 min 34.08 26.08 26 

TRANSCTR 4 min 65.00 62.89 139 3 min 10.13 0.90 0 

MEDFLOW 6 min 45.47 –8.21 88 12 min 40.49 -19.47 37 

KCF 57 min 44.89 2.13 307 105 min 38.20 29.63 688 

DAN 61 min 13.38 –757.63 843 28 min 30.47 11.13 1578 

VIOU 155 min 12.49 –984.70 219 58 min 15.49 –249.50 170 

KIOU 334 min 6.06 –4126.46 330 43 min 14.11 –875.87 181 

GOG 452 min 15.40 –828.10 367 119 min 20.31 –144.03 434 

GOTURN 524 min 2.84 –5499.44 189 816 min 9.47 –1905.40 127 

AOA 677 min 6.74 –2219.49 572 149 min 12.69 –907.29 262 

D3S 1010 min 10.09 –951.38 125 130 min 38.20 –18.01 33 

JPDA m 2483 min 9.50 –1688.34 835 2 min 4.50 1.28 1 

VFT > 3 days – – – > 3 days – – –

RMOT > 3 days – – – > 3 days – – –

IHTLS > 3 days – – – > 3 days – – –

CMOT > 3 days – – – Failed – – –

GMMCP > 3 days – – – Failed – – –

Table 5 

Ablation study. HOTA and MOTA are averaged over the two train datasets; ID switches are summed. The first 5 rows explore the impact of excluding 

components of RCT on performance and time, while the last three rows show the impact of trimming on HOTA and MOTA scores. 

Ablation study, showing modifications of RCT, their HOTA and MOTA scores, ID switches, and FPS. We test removing features from RCT and find 

that they hurt the scores but improve the speed. The original average HOTA score is 60.61 and FPS is 23.37. Exlcuding loading time keeps the HOTA 

the same but increases the FPS to 30.51. Excluding MedianFlow drops the HOTA to 55.93 but raises the FPS to 60.20. Excluding MedianFlow+ Track 

joining drops the HOTA to 51.76 but raises the FPS to 64.57. Excluding MedianFlow+ Track joining + long-large filtering drops the HOTA to 50.27 and 

increases the FPS to 65.11. The final three rows show the impact of trimming: three trimming types are tested (Not trimming when box is offscreen, 

Trimming as soon as box touches offscreen, Not trimming when box is fully onscreen) and all three significantly drop the HOTA and MOTA scores. 

Variation Avg HOTA Avg MOTA Total ID Switches FPS 

Unmodified 60.61 45.86 32 23.37 

Excluding image loading from timing 60.61 45.86 32 30.51 

No MedianFlow 55.93 41.24 39 60.20 

No MedianFlow + no track joining 51.76 39.37 44 64.57 

No MedianFlow + no track joining + not filtering long, large, low confidence tracks 50.27 25.86 83 65.11 

Not trimming when box is offscreen 25.61 –608.37 38 24.31 

Trimming as soon as box touches offscreen 57.06 36.65 23 24.35 

Not trimming when box is fully onscreen 58.37 32.91 34 24.38 

far the lowest number of total identity switches of methods that 

completed on the majority of videos. 

8. Discussion 

8.1. RCT performance 

The fact that the RCT algorithm has the best combined HOTA of 

all methods without timeouts or failures demonstrates the robust 

performance of the algorithm. Many other trackers were not nearly 

as robust - for instance, while CMOT has an impressive HOTA score 

on the FISHTRAC dataset, it cannot cope with the longer DETRAC 

sequences, resulting in 5 timeouts and 1 failure. This is particularly 

notable for three reasons: 

1. RCT was developed based on examining its performance on just 

6 videos, in contrast to other methods where development typ- 

ically involved a much larger set of videos (such as the full 60- 

sequence DETRAC train set). 

2. For all other algorithms, which filter detections by a threshold, 

we adjusted the threshold so as to maximize performance on 

our train set. RCT must process all unfiltered detections, and 

the threshold used for the initial box of a new track ( h I ) is set 

purely based on intuition. 

3. Although RCT uses classic techniques for many components 

(MedianFlow for visual object tracking, Kalman filters for the 

motion model, greedy track joining), it can outperform more 

sophisticated classic approaches as well as more recent deep 

learning methods such as DAN, AOA, and TransCenter. The Tran- 

sCenter results exemplify the challenges deep trackers face in 

this setting. TransCenter performed near-perfectly on the train 

data but poorly on the test data, in spite of employing mech- 

anisms to combat overfitting (reserving validation data, etc.). 

While deep trackers perform very well in cases where large 

amounts of training data are available, our results show that 

they may not do so in cases where data is scarce. In constrast, 

RCT’s use of detection confidence allows it to recover high- 

quality tracks without needing to learn a specialized model. 
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Table 6 

Test set results for FISHTRAC (shorthand: Fish), DETRAC (shorthand: Car), and MOT17 (shorthand: Ped). Timeouts and Failures are summed across the datasets, while the 

combined HOTA and FPS are computed as a weighted average with 0.5 wt for FISHTRAC and 0.25 each for the other two datasets. The table is sorted first by the sum of 

timeouts and failures, and second by the combined HOTA. Bolded values indicate the best scores of trackers that produced results on all sequences. 

This table shows all 17 trackers in rows with columns Timeouts, Failures, Combined HOTA, Total ID Switches, Fish HOTA, Fish MOTA, Fish ID switches, Car HOTA, Car MOTA 

and Car ID switches, Pedestrian HOTA, Pedestrian MOTA and Pedestrian ID switches. KIOU, VIOU, JPDA_m, GOTURN, CMOT, RMOT, VFT, D3S, GMMCP, and IHTLS all timed 

out or failed on at least one video. Of the trackers that succeeded on all videos, RCT has the best combined HOTA (42.67), total ID switches (741) Fish HOTA (49.67), Fish 

MOTA (45.97), Fish ID switches (47), and Car ID switches (506). KCF has the best Car HOTA (55.87) and MOTA (47.86). MEDFLOW has the best Pedestrian HOTA (40.68). 

GOG has the best Pedestrian MOTA (36.40) and Combined FPS (103.81). TransCenter has the fewest pedestrian ID switches (53), but this is likely because it produced 

almost no tracks, as shown by the very low scores on that dataset (HOTA of 7.43 and MOTA of 0.36). Other trackers typically have many more ID switches than RCT, for 

instance the second-ranked in terms of combined HOTA is DAN, but it has 18,954 ID switches, compared to 741 for RCT. 

Tracker Timeouts Failures 

Comb. 

HOTA 

Total ID 

Sw 

Fish 

HOTA 

Fish 

MOTA 

Fish ID 

Sw 

Car 

HOTA 

Car 

MOTA 

Car ID 

Sw 

Ped 

HOTA 

Ped 

MOTA 

Ped ID 

Sw 

Comb. 

FPS 

RCT 0 0 42.67 741 49.67 45.97 47 39.49 29.6 506 31.84 27.21 188 11.39 

DAN 0 0 41.23 18,954 44.24 42.05 361 39.8 35 16,892 36.64 32.19 1701 3.63 

MEDFLOW 0 0 39.65 973 32.03 -58.51 108 53.87 33.67 692 40.68 33.28 173 26.12 

KCF 0 0 37.81 4355 30.45 27.75 884 55.87 47.86 2679 34.50 34.45 792 17.18 

GOG 0 0 37.61 17,764 37.85 45.08 414 40.98 39.42 15,459 33.76 36.40 1891 103.81 

AOA 0 0 35.69 23,592 39.28 13.79 593 31.14 3.6 20,255 33.04 30.81 2744 11.10 

TRANSCTR 0 0 21.24 6431 20.21 21.11 174 37.12 38.94 6204 7.43 0.36 53 8.45 

KIOU 0 1 45.7 5685 49.47 46.72 119 43.81 31.64 4990 40.04 36.78 576 174.49 

VIOU 0 1 44.53 3009 48.91 46.44 51 42.81 35.39 2717 37.49 34.67 241 4.41 

JPDA m 0 1 35.17 1701 34.11 35.75 77 41.47 32.99 1280 31.00 28.69 344 16.98 

GOTURN 0 2 20.73 1230 19.53 -281.09 114 21.41 -88.88 988 22.48 -21.09 128 7.65 

CMOT 5 1 47.42 6487 54.4 50.3 110 38.82 12.71 5621 42.05 41.40 756 2.50 

RMOT 6 0 36.16 1210 39.74 40.21 133 36.82 25.77 944 28.34 18.34 133 4.57 

VFT 9 0 23.94 5723 30.73 33.93 449 16.25 16.45 4808 18.03 13.23 466 12.81 

D3S 26 1 38.05 150 54.72 23.2 33 13.5 2.15 49 29.27 9.13 68 0.81 

GMMCP 36 12 16.07 138 29.76 31.1 114 4.75 0.4 24 0 0 0 0.16 

IHTLS 52 1 6.8 242 13.6 -2.54 242 0 0 0 0 0 0 0.08 

Fig. 5. The left four images show the performance of RCT and DAN on two frames of a FISHTRAC training video, while the right two images show the performance of RCT 

and TransCenter on a FISHTRAC test video. RCT shows good performance in both cases, whereas DAN causes several identity switches and TransCenter struggles to reliably 

localize the fish. (Please see the online version for a color version of this figure, which may assist with the interpretation.) 

A 3x2 array of images is shown. The first two images in the first row show RCT’s performance on frames 48 and 51 of a FISHTRAC Train video. The first two images in the 

second row shows DAN’s performance on the same two frames. RCT has no identity switches here, but DAN has swapped almost all identities, for instance taking a fish with 

label 0 on frame 48 and changing it to label 3 on frame 51. The final column of images shows RCT vs TransCenter on a FISHTRAC test video. RCT has correctly marked three 

large fish, but TransCenter has not marked these fish and instead marked one very small fish and one large box that is completely over coral. 

One of the most notable features of our RCT algorithm is how 

it achieves just 741 identity switches across all 58 test videos - 

the only algorithms with fewer are D3S, GMMCP, and IHTLS, al- 

gorithms that simply did not produce any tracks for the majority 

of videos. The other multi-object trackers have an order of magni- 

tude more total identity switches, even algorithms such as DAN, 

VIOU, and KIOU which achieve good HOTA. The reduction in ID 

switches makes a significant visual difference in the quality of the 

produced tracks - see Fig. 5 for an example. The small number 

of ID switches is due to RCT’s ability to fuse low-confidence de- 

tections, a motion model, and a single object tracker to rapidly 

produce high-quality continuous tracks even when high-confidence 

detections are sparse. Minimizing ID switches is very important for 

practical applications - for instance, we intend to use RCT to help 

divers keep track of individual fish while underwater. Numerous ID 

switches are likely to confuse the diver and cause them to follow 

the incorrect fish. In these types of applications, we would much 

rather miss some objects, but ensure the tracks we do provide are 

high-quality, with little to no identity switches, even in the face of 

unreliable detections; we expect RCT to excel in these situations. 

8.2. Single object trackers 

Most multi-object trackers do not compare to single object 

trackers as the tasks are quite different - SOT approaches are eval- 

uated on different metrics and make different assumptions. How- 
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ever, we found that, surprisingly, SOT approaches perform quite 

well here. Our adaptation of the KCF single-object tracker achieves 

the best HOTA score on the DETRAC dataset, and our adaptation 

of the MEDFLOW tracker achieves the best HOTA score on MOT17. 

The fact that KCF and MEDFLOW perform so well in these settings 

highlights the importance of comparing to SOT algorithms even 

when attempting to solve a MOT problem. The reduced reliance on 

detection quality compared to MOT algorithms helps significantly 

when objects are visually distinct. Moreover, our results highlight 

the importance of comparing trackers on multiple datasets: The 

SOT approaches perform much worse on FISHTRAC, which con- 

firms our intuition that fish are more difficult to track based purely 

on visual information, since they can change appearance dramati- 

cally from frame to frame. 

It is also surprising that KCF and MEDFLOW, which are typi- 

cally thought to be quite low baselines when it comes to SOT al- 

gorithms, outperform stronger (deep) single object trackers such 

as GOTURN and D3S. Our experiments indicate that stronger SOT 

trackers like D3S (despite being “real-time”) are too computation- 

ally expensive to run on MOT problems with low-quality detec- 

tions - in fact, D3S timed out on almost half of the test videos. This 

is consistent with past work which has observed that deep SOT 

approaches have insufficient speed when tracking multiple objects 

simultaneously [46] . GOTURN is an exception as it has sufficient 

speed, but performs poorly, in part due to not adequately handling 

MOT-specific issues such as track termination. 

8.3. Limitations of HOTA scores 

Our main evaluation metric is HOTA scores, but a close exami- 

nation of Tables 5 and 6 reveals some potential weaknesses in the 

scores. First, Table 5 shows that the precise method of track trim- 

ming (that is, stopping tracks when an object goes offscreen or is 

not visible) has a major impact on the HOTA and MOTA scores of 

our method. For instance, the scores penalize our tracker greatly 

if it does not make a track disappear in the middle of the screen 

when the tracker loses track of an object. But in a real-world sce- 

nario such as fish tracking, we know an object cannot instantly 

disappear and so it may be more useful to give the end user an 

estimate of its position even if that estimate is imperfect. Addi- 

tionally, Table 6 shows that algorithms with a very large number 

of ID switches can still achieve high HOTA and MOTA scores (e.g. 

on our test data, DAN with 18,954 ID switches has a better HOTA 

score than MEDFLOW which has just 973 ID switches). As such, al- 

though we concur with Luiten et al. [30] that HOTA represents a 

significant improvement over MOTA, we feel that it is important 

to create better MOT metrics that match human intuition regard- 

ing MOT results. 

8.4. Limitations 

A seeming limitation of RCT is that it is outperformed by MED- 

FLOW on the MOT17 dataset: MEDFLOW has a similar number of 

ID switches but a significantly higher HOTA score on that dataset. 

However, MEDFLOW has abysmal performance on the FISHTRAC 

dataset, as evidenced by the fact that the MOTA score goes signif- 

icantly negative in this case. The underlying reason for this is that 

MEDFLOW’s performance relies on the ability to distinguish fore- 

ground from background, which is easier in the car and pedestrian 

cases (constant lighting, fixed camera, etc.). Qualitatively, MED- 

FLOW often tracks background objects in FISHTRAC (i.e. coral in- 

stead of fish). This motivates RCT’s careful use of MEDFLOW to 

achieve good results on FISHTRAC - and while the performance on 

MOT17 is still quite strong, our results suggest that RCT may be 

able to be improved further in the case of high target density. 

Although RCT makes use of the full detection confidence when 

assigning detections to tracks, it still thresholds detections by h I = 

0 . 5 in order to determine where to initialize tracks. This is a limi- 

tation, as for instance, if a detector somehow produced only detec- 

tions below h I , no tracks would be produced. This is currently nec- 

essary to ensure that we only start tracking objects that are more 

likely than not to belong to the target class, thereby avoiding spuri- 

ous tracks. It would be interesting to investigate alternative meth- 

ods, for instance, the tracker could make the decision whether to 

accept or reject a track based on the relationship between track 

size, length, and average detection confidence, in a similar manner 

to our long-large filtering step, although this might increase the 

computational expense. 

While RCT does achieve good HOTA and low ID switches, it 

does miss some tracks. This is supported by the precision and 

recall results (found alongside the full set of MOTA/HOTA met- 

rics at https://github.com/tmandel/fish-detrac ) - RCT consistently 

leans towards high precision over high recall, achieving 84% pre- 

cision (with 57% recall) on FISHTRAC test data, 94% precision (with 

32% recall) on DETRAC test data, and 93% precision (with 30% re- 

call) on the MOT17 data. This matches with the fact that our in- 

tended application domains, high precision and low ID switches 

are more important than high recall - we want to produce high- 

quality tracks that do not confuse a diver, even if that means a 

few small fish may be missed. Nevertheless, improving the recall 

of our system (for instance by the aforementioned method of ini- 

tializing tracks on lower-confidence detections) is a direction for 

future work. 

We focus on the problem of offline multi-object tracking; this 

is a limitation as in many real-world applications, online tracking 

is more useful. We feel that understanding how to perform offline 

MOT in the presence of unreliable detections is an important goal 

in and of itself, as well as a first step to solving online MOT prob- 

lems in this setting. We also note that standard MOT testbeds like 

UA-DETRAC focus on the offline setting, and most of the algorithms 

we compare to are offline trackers. We believe it is possible to 

adapt RCT to the online setting, for instance by applying the mo- 

tion model update only in a single direction, but this is left for 

future work. 

9. Conclusion 

We have studied the problem of offline multi-object tracking- 

by-detection with unreliable detections. To illustrate this, we pre- 

sented a new MOT dataset, FISHTRAC, with high-resolution videos 

of underwater fish behavior. We also present RCT, which takes a 

different approach than other MOT algorithms, using the detection 

confidence to guide an efficient search through a completely un- 

filtered set of input detections. Despite the fact that RCT relies on 

simple heuristics such as greedy track agglomeration, we find that 

RCT outperforms baselines (including the 2020 TAO challenge win- 

ner, top performer on the VOT-RT 2020 challenge, and a recent top 

performer on the MOT17 and MOT20 challenges), tracking objects 

accurately with very few ID switches and no timeouts or failures. 

In addition to releasing our FISHTRAC data, we will release the 

code to our test harness, allowing other MOT researchers to eas- 

ily compare different trackers on new datasets. 

One practical benefit of RCT is that it does not use a GPU, which 

in edge settings may be fully utilized by the detection network - 

future work includes implementing and evaluating an online ver- 

sion of RCT in these settings. Also, while RCT does probabilistically 

integrate motion and detections, performance in high-density set- 

tings could likely be further improved by probabilistically incor- 

porating appearance information in a Bayesian fashion [47] . Ad- 

ditionally, we found many of the top-ranked MOT methods work 

poorly with a low-quality detector; so it would be interesting to 
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explore an adaptive approach which analyzes detection quality and 

adapts the tracker behavior accordingly. Pursuing these directions 

will help MOT algorithms be more easily deployed to solve a di- 

verse set of real-world problems. 
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