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Abstract—This paper introduces a new framework for non-
parallel emotion conversion in speech. Our framework is based
on two key contributions. First, we propose a stochastic version
of the popular Cycle-GAN model. Our modified loss function
introduces a Kullback–Leibler (KL) divergence term that aligns
the source and target data distributions learned by the generators,
thus overcoming the limitations of sample-wise generation. By
using a variational approximation to this stochastic loss function,
we show that our KL divergence term can be implemented via
a paired density discriminator. We term this new architecture a
variational Cycle-GAN (VCGAN). Second, we model the prosodic
features of target emotion as a smooth and learnable deformation
of the source prosodic features. This approach provides implicit
regularization that offers key advantages in terms of better range
alignment to unseen and out-of-distribution speakers. We conduct
rigorous experiments and comparative studies to demonstrate that
our proposed framework is fairly robust with high performance
against several state-of-the-art baselines.

Index Terms—Cycle-GAN, diffeomorphic registration,
nonparallel emotion conversion, variational approximation.

I. INTRODUCTION

S
PEECH is perhaps our primary mode of communication

as humans. It is a rich medium, in the sense that both

semantic information and speaker intent are intertwined together

in a complex manner. The ability to convey emotion is an

important yet poorly understood attribute of speech. Common

work in speech analysis focuses on decomposing the signal into

compact representations and probing their relative importance

in imparting one emotion versus another. These representations
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can be broadly categorized into two groups: acoustic features

and prosodic features. Acoustic features (e.g., spectrum) con-

trol resonance and speaker identity. Prosodic features (e.g., F0,

energy contour) are linked to vocal inflections that include the

relative pitch, duration, and intensity of each phoneme. Together,

the prosodic features encode stress, intonation, and rhythm, all

of which impact emotion perception. For example, expressions

of anger often exhibit large variations in pitch, coupled with

increases in both articulation rate and signal energy. In this paper,

we develop an automated framework to transform an utterance

from one emotional class to another. The problem, known as

emotion conversion, is an important stepping stone to affective

speech synthesis.

Broadly, the goal of emotion conversion is to modify the

perceived affect of a speech utterance without changing its

linguistic content or speaker identity. This setting allows the

user to control the speaking style, while allowing the model to

be trained on limited data. Emotion conversion is a particularly

challenging problem due to the inherent ambiguity of emotions

themselves [1], [2]. The boundaries between emotion classes

are also blurry, and prior knowledge about the speaker can

sometimes play a major role in the emotion perception. That

being said, one of the main application of emotion conversion

is to evaluate the quality of human-machine dialog systems [3].

Here, intonation changes can indicate the level of naturalness

of a conversation between a machine and a person. Emotion

conversion can also be helpful in studying neurodevelopmental

disorders such as autism, which is characterized by poor emotion

perception capability. On the technical front, being able to

control the granularity of the emotion expression in synthesized

speech is an important step towards developing an intelligent

conversational system. Finally, emotion conversion can be used

for data augmentation when training emotion classification or

speaker recognition systems [4], [5].

Early work in emotion conversion traces its roots to neurosci-

entific experiments, which were designed to study the influence

of emotions in the brain. Interestingly, many of the implicated

features tend to generalize across languages. For example, the

work of [6] determined the F0 (i.e., pitch) contour and the

energy (loudness) profile as the main factors responsible for

primary emotions. Additionally, voice quality and utterance

duration have also been identified as features affecting emotion

perception [7]. Voice quality is a function of the spectrum

representation and duration can be called as a proxy for the

speaking rate. A comprehensive study was conducted by [8] to
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understand the impact of systematically changing acoustic and

prosodic features on emotional perception. These experiments

were performed on a Japanese language database with some

consistency shown for English.

Algorithms for emotion conversion fall into three general

categories. The first approach relies on constructing a statistical

model of the source and target prosodic features to allow infer-

ence from one domain to another. One example of this approach

is the work of [9], which uses classification and regression trees

(CART) to modify the F0 contour in Mandarin. An alternate

strategy uses a Gaussian Mixture Model (GMM) for voice and

emotion conversion. The central idea is to learn a GMM that

captures the joint distribution of the source and target emotional

speech features during training. Inference of a new conversion

is done via the conditional mean of the target features given the

test source features. Mathematically, let zi = [xi yi]
T denote

the concatenated source and target features and ci denote the

latent cluster assignment for utterance i. From here, we have:

P (zi|ci) =

K
∑

k=1

P (zi|ci = k)P (ci = k) (1)

where, P (zi|ci = k) ∼ N(zi;µk,Σk) and its parameters are

estimated via the Expectation-Maximization (EM) algorithm,

along with the latent prior P (ci = k).
Using properties of the Gaussian distribution, it can be shown

that the conditional mean of the target features yi given the

source features xi is given by the expression

E[yi|xi] =

K
∑

k=1

P (ci = k|xi)
[

µ
y
k +Σ

xy
k (Σxx

k )−1(xi − µ
x
k)
]

(2)

where, P (ck|x) can be computed via Bayes’ Rule. One of

the main drawback of this approach is the over-smoothing of

spectral parameters in inference stage due to averaging effect.

To counter this, a global variance constraint based inference

proposed by [10] was adopted for emotion conversion by [11].

The second approach for emotion conversion is based on

sparse recovery [12]. This technique entails learning an over-

complete dictionary of both acoustic and prosodic features for

each emotion class. During conversion, the input utterance is first

decomposed using the source emotion dictionary by estimating

a coefficient matrix with sparsity prior. These coefficients are

then used for reconstruction using the target emotion dictionary

elements/atoms. The authors of [12] used active Newton-set [13]

based non-negative matrix factorization [14] to estimate the

sparse coding. Mathematically, given a non-negative matrix

input X (e.g., spectrogram magnitude), we seek non-negative

matrices U and V to minimize:

J = ‖X−UV‖2F + λ

∑

j

‖V(:, j)‖1 (3)

The first term in (3) enforces the data fidelity, whereas the

second term encourages sparsity of the learned encoding V.

The variable U denotes the overcomplete dictionary.

The third approach for emotion conversion relies on deep

neural networks to automatically learn complex and nonlin-

ear speech modifications. For example, a bidirectional LSTM

approach has been suggested by [15], [16] for modifying the

prosodic features. The authors further proposed using a con-

tinuous wavelet transform based parameterization for the F0

and energy contour to decompose into segmental and supra-

segmental components. Our prior work proposed an alternative

method for prosodic modification based on highway neural

networks [17], [18], which maximize the representation log

likelihood in an EM algorithm setting. We further proposed an

F0 modification scheme using the principle of diffeomorphic

curve warping as a smoothness prior for the transformed F0

contour [19]. This diffeomorphic parameterization was extended

to spectrum modification in [20]. Specifically, we used a latent

variable regularization technique to sequentially modify the F0

contour and the spectrum.

The methods discussed so far belong to the domain of su-

pervised learning. Namely, they rely on labeled parallel speech

data to learn the requisite emotion conversion. Curating parallel

corpora is expensive, which explains why there are only a

handful of such databases [21] available online. Beyond data

scarcity, most supervised emotion conversion methods require

the parallel utterances to be time-aligned using dynamic time

warping (DTW) [22] prior to analysis. This alignment procedure

allows us to learn a frame-wise mapping between the source

and target utterances. While simple and apt for smaller corpora,

DTW is prone to errors, particularly during periods of silence

or unvoiced sounds.

The current iteration of methods focus on unsupervised emo-

tion conversion and do not require parallel data. These models

rely on expressiveness of neural networks to learn a parametric

distribution for each pair of emotions. One of the most prominent

model in this space is Generative Adversarial Network (GAN).

Mathematically, let G and D denote the generator and discrimi-

nator, respectively. The objective of the GAN is a minimax loss

given by the following:

Ladv = min
G

max
D

Ex∼P (X)[log(D(x)]

+ Ez∼P (Z)[log(1−D(G(z))] (4)

where P (X) denotes the data distribution and P (Z) denotes a

noise density which is usually Normal i.e, N(0, I).
The Cycle-GAN architecture goes one step beyond (4) by

tying two separate GANs together via a cycle consistency

objective. Formally, let A and B denote the domains of the

source and target data distributions. The two generators in Cycle-

GAN are tasked with learning transformation from A → B and

B → A, respectively. The cycle consistency loss connects the

generators by enforcing that the sequence of transformations,

i.e. A → B → A should look similar to the original input. For

clarity, we will refer to these generators as the “forward” and

“backward” transformations of the Cycle-GAN and use the

notation Gγ (forward) and Gθ (backward). Mathematically, the

cyclic objective is written as:

Lcycle = Ex∼P (X) [‖x−Gθ(Gγ(x))‖1] (5)
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The algorithm of [23] uses a Cycle-GAN to disentangle

the content and style of a speech utterance into two separate

variables based on a priori information embedded into the

network architecture. Another approach proposed by [24] uses

a Cycle-GAN to transform the F0 contour and spectrum, as

parameterized by a discrete wavelet transform, for emotion

conversion. A Star GAN [4] model proposed by [5] relies on

a multi-task discriminator and a single generator for conversion

between multiple emotional classes. Due to the poor quality

of generated samples, the authors used this method for data

augmentation to improve emotion classification accuracy, rather

than for speech synthesis. While all these methods show tremen-

dous promise, one common drawback is that they have been

trained and evaluated on single speaker datasets. Thus, it is

unclear how they will perform in either a multi-speaker or an

out-of-sample generalization setting.

In this paper we propose a novel technique for emotion

conversion using a variational formulation of the Cycle-GAN.

Our novel loss formulation leads to a joint density discriminator

which minimizes the upper bound on KL-divergence between

the target data density and its parameterized counterpart. Our

method further learns the target emotion F0 and energy contour

by modeling them as a smooth deformation of the source emo-

tion features. A preliminary version of this work appeared in

Interspeech 2020 [25]. This paper provides the following novel

contributions above the conference paper. First, we model the

transformation of F0 and energy contours of an utterance jointly

using intermediate hidden variables. This is in contrast with

the previous approach where we modify the F0 contour and

spectrum, independently. Second, our graphical model for the

conversion strategy allows us to disentangle the discriminator’s

objective for energy and F0 contour using conditional indepen-

dencies directly inferred from the graph. Finally, we evaluate

our proposed framework in both, a multi-speaker setting as well

as on out-of-distribution speakers which the model does not see

during training. We further provide comparative studies about

the distribution and stability properties of our technique with a

state-of-the-art baseline.

II. METHOD

Our strategy is to manipulate two key prosodic features: the

F0 (pitch) contour, and the energy (loudness) contour. Fig. 1

shows the relationship between the features during the inference

step of the process. We begin with taking an utterance in source

emotion A from which we extract the F0 contour (pA) and the

mel-cepstral features (SA) using the WORLD vocoder [26].

The energy contour (eA) is extracted directly from the spectral

features. We define latent variables called momenta (mp,me),
which serve as intermediaries between the two emotion classes

under consideration. The F0 contour in target emotion (pB)
is a deterministic function of the momenta (mp) and source

F0 contour, through a diffeomorphic warping process that we

describe in Section II-B. The estimated F0 contour and the

source spectrum together generate the momenta (me) for the

energy contour which is then further used to generate the cepstral

features (SB). The estimated F0 contour and cepstral features

Fig. 1. Graphical representation of our emotion conversion strategy. mp

and me serve as an intermediaries for pitch and energy contours, respectively.

combine together to give the converted utterance in the target

emotion B.

We take an unsupervised approach to model training and

evaluation using a Cycle-GAN framework. This strategy al-

lows us to handle non-parallel and multi-speaker datasets. For

robustness, we introduce a novel KL-divergence loss to align

the distribution of the source and target emotional classes, as

described in Section II-A. The KL-divergence gives rise to a

new class of discriminators that operate on pairs of samples.

To summarize, our technical innovations are as follows:
� We propose a joint model for F0 and energy modification

which uses latent variables called momenta as an interme-

diary between source and target emotion features.
� We highlight several shortcomings of cyclic consistency

loss which is the backbone of our baseline reference model

and analyze them theoretically.
� We propose a new KL-divergence penalty and minimize its

upper bound to address the limitations of cyclic loss. We

verify its advantages through multiple experiments.
� We evaluate our model on multiple experiment paradigms

i.e, single speaker, mixed speaker, leave-one-fold and

Wavenet to paint a complete picture of our model.

A. Variational Cycle-GAN

The cycle consistency loss of a traditional Cycle-GAN is given

by (5) and repeated below for convenience:

Lcycle = Ex∼P (X) [‖x−Gθ(Gγ(x))‖1] (6)

This formulation imposes just a point-wise regularization on the

input X and the cyclic converted sample Gθ(Gγ(x)).
It is easy to show that (6) is not a well-behaved loss function

(Propositions 1 and 2 in Appendix A). Specifically,

1) It only enforces a first-order moment matching between

the generated and target data distributions.

2) The expectation in (6) depends on the sampling variance,

which leads to a noisy gradient estimate when optimizing

the parameters of the generator.

The first point establishes a weak coupling between the two

generators. In addition, the discriminators Dθ and Dγ do not

have information about the complementary generators when

training a traditional Cycle-GAN. At a high level, the min-max

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 03,2023 at 15:49:25 UTC from IEEE Xplore.  Restrictions apply. 



42 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

game played by the generators and discriminators is operating

on incomplete information about the underlying data.

The second point often results in poor calibration of the

gradients under scenarios where the target distribution is per-

fectly learnable. Practically speaking, this sampling variance is

unknown, which can lead to instability during the optimization.

For example, it may prompt the generator to take a step that

does not reduce the cycle consistency loss (e.g., overshooting

the local optimum). Further, because this variance is inherently

tied to the parameters of the neural network, the generators can

potentially end up learning a null or an identity function in order

to minimize the expected cycle consistency loss (e.g., mode

collapse). Finally, due to the expected loss being a function of

the dimensionality of the data, it scales the gradients computed

during backpropagation making the impact of sampling variance

more pronounce.

We approach these problems by considering KL-divergence

based penalty on the input data distribution and the cyclic

transformation. Formally, let (SA,pA) and (SB ,pB) be the

source and target cepstrum and F0 contours of two non-parallel

utterances in emotion A and B, respectively. The generators are

denoted by Gγ : (SA,pA) → (SB ,pB) and Gθ : (SB ,pB) →
(SA,pA). The corresponding distributions learned by the gen-

erator functions are given by Pγ(SB ,pB) and Pθ(SA,pA). Our

new penalty for the generator Gγ is:

LGγ
= KL (P (SA,pA)‖Pθ(SA,pA)) (7)

Using the law of total probability, we can write:

Pθ(SA,pA) =

∫ ∫

Pθ(SA,pA|SB ,pB)

× P (SB ,pB) dSB dpB (8)

Equation (8) is generally intractable, but we can derive an

upper bound on the loss in (7) that can be optimized easily (see

Appendix B). Effectively, we can minimize:

L̃Gγ
= E(SA,pA)

[

E(SB ,pB)∼Pγ
[log (Pγ(SB ,pB |SA,pA)

×P (SA,pA))]] (9)

Equation (9) highlights an important difference between tra-

ditional Cycle-GAN and our variational approach. Namely, our

min-max objective leverages higher-order relationships by com-

paring the joint density of source and target data factorized by

the two generators. This transparency is noticeably absent in the

traditional Cycle-GAN, in which the discriminator operates on

the marginal densitiesP (SA,pA) andPθ(SA,pA) to determine

whether the sample is “real” or “fake”. Finally, we implement

the spectrum modification module solely by changing the energy

contour; this strategy avoids degradation in speech quality due to

errors in spectrum prediction. We have conducted an experiment

(see Appendix G), which demonstrates no difference in user

preference for speech generated with the original (mismatched)

spectrum and speech generated with a modified spectrum based

on the new F0 contour.

B. Prosodic Regularization via Momenta

As shown in the Fig. 1, we use two intermediate repre-

sentations (denoted by mp and me) to model the transition

of prosodic features from the source to target emotion. This

technique can be viewed as an implicit regularization on the

conversion procedure. Practically, we model the target prosodic

contours as a smooth deformation of the source F0/energy

contours. This idea stems from the domain of image registration

where a moving image is iteratively deformed to align or match

with a fixed image [27]. We adapt this registration framework

from 2-dimensional image surfaces to 1-dimensional curves in

the Euclidean space.

While there are multiple ways to represent the deformation

process, one popular technique is known as the Large Defor-

mation Diffeomorphic Metric Mapping (LDDMM) [28], [29].

These functions are defined as a smooth and invertible mapping

between two topological manifolds. An important feature of this

LDDMM model is the ability to parameterize diffeomorphic

transformations by low-dimensional embeddings known as mo-

menta [30]. Effectively, the source prosodic contour specifies

the initial state, while the momenta (mp) specifies the initial

trajectory of the dynamical system. Thus, specifying the input

curve and momenta are sufficient to generate the final state of a

target curve. Fig. 2 shows an example of momenta acting on a

source F0 contour to match it with a target F0 contour via the

LDDMM registration process.

Mathematically, letpt
A andpt

B denote a pair of source and tar-

get F0 contours, respectively. The variable t corresponds to the

location of the analysis window as it moves across a given speech

utterance. The goal of the deformation process is to estimate a

series of small vertical displacements vt(x; s) over frequency

and time. The integral of these small displacements produces a

final large vector field denoted by φv
t =

∫ 1

0 vt(·; s)ds [28]. Rep-

resenting the momenta variable by mp, the LDDMM objective

function can be written as:

Γ(mp) =
1

2

T
∑

i,j=1

γij [mp]i[mp]j + λ

T
∑

t=1

‖φv
t (p

t
A; 1)− pt

B‖
2
2

(10)

The variable γij is an exponential smoothing kernel evaluated on

pairs of time points of the source contour pt
A whereas, λ is the

trade-off between smoothness of momenta and the difference

between the source and target F0 contours.

Rather than solving (10) explicitly to obtain the momenta,

we estimate it blindly via sampling from the generators. From

a practical standpoint, the continuous time process specified by

LDDMM can be easily discretized to run for a fixed number

of iterations. The main advantage of using a latent regularizer

is that it allows the F0 and energy contours to be generated

in a dynamically controlled fashion. Adversarial training can

be susceptible to mode collapse due to imbalance between

generator-discriminator losses, learning rates, and the architec-

ture of the neural networks. Deformation based F0 estimation

stabilizes the generative process and prevents it from swinging

wildly and leading to mode collapse. We will also demonstrate
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Fig. 2. Demonstration of the warping procedure. The leftmost figure shows the source and target F0 contours and the initial momenta. The middle figure shows
the F0 contours at an intermediate time step. The rightmost figure is the final result of warping where modified F0 contour matches with the target F0.

Fig. 3. Architecture of the neural network for F0 and energy prediction. The output of F0 prediction is fed as input for energy estimation. Each generator has
two blocks: a stochastic block for sampling momenta and a generative/deterministic block for curve warping (represented as an RNN).

that this latent regularization improves the generalization ca-

pabilities of our framework to unseen speakers. Algorithm 1

outlines the warping process given a momenta, an F0 contour

and an exponential smoothing kernel having a scaleσ. This scale

parameter controls the smoothness of the velocity vector fields

and is fixed for all our experiments.

C. Hybrid Generative Architecture

Our F0/energy conversion is a two-step process: first, we

estimate the momenta, then, we modify the source prosodic

contours via a deterministic warping using momenta. Our gener-

ators mimic this process by integrating a stochastic component

with trainable parameters and a deterministic component with

fixed/static parameters. The stochastic component for F0 mo-

menta prediction takes the spectrum and source F0 as its inputs.

For energy momenta prediction, the stochastic component relies

on the source spectrum (which implicitly contains the energy

information) and converted F0. The dimensions of the momenta

are the same as F0 and energy contour. We empirically fix the

smoothness parameter, σ at 50 for F0 and at 2 for energy contour

to span the appropriate ranges. We adapt the 1-D convolutional

architecture from [31] for the stochastic block of the generators

as shown in Fig. 3. It has been experimentally verified that fully

convolutional networks are more stable in a GAN framework

than including fully-connected layers [32]. The deterministic

LDDMM warping function can be represented as a recurrent

neural network (RNN) with a fixed set of parameters due to its

iterative nature.

We constrain the generators to sample smoothly varying

momenta by adding a Laplacian penalty Lm = E[‖∇mp‖
2] +

E[‖∇me‖
2] to the overall generator loss. The gradient of this

term is approximated by the first-order difference of the mo-

menta along the time axis. The final objective to minimize for
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the loss of generator Gγ is as follows:

LGγ
= λc1E [‖pA − pc

A‖] + λmE
[

‖∇mp‖
2
2 + ‖∇me‖

2
2

]

+ λiE
[

‖eA − eIA‖
]

+ λc2E [‖eA − ecA‖]

+ λdE(SA,pA)

[

E(SB ,pB)∼Pγ
[log (Dγ(SA,pA,SB ,pB))]

]

(11)

In the case of energy contour modification, we add an identity

loss to the generator, which keeps the modified contour “close”

to the original. The superscripts I and c denote the identity and

cyclic components, respectively. Identity loss has been proposed

by [33] in Cycle-GANs to make the generators more robust and

allow them to reduce distortion when presented with a sample

from target density itself. We omit the identity loss for the F0

conversion, as this contour tends to vary widely across utterances

and emotional classes.

Finally, we update the parameters of the stochastic block of

the generators by back-propagating through the deterministic

LDDMM transformation, as implemented by an RNN.

D. Discriminator Loss and Architecture

We model the probability ratio term in (9) by a discriminator

denoted by Dγ . Conceptually, this discriminator distinguishes

between the joint distributions of (SA,pA) and (SB ,pB)
learned by generators Gγ and Gθ, respectively.

During training of the discriminator Dγ , we minimize:

LDγ
=−E(SA,pA)

[

E(SB ,pB)∼Pγ
[log (Dγ(SA,pA,SB ,pB))]

]

− E(SB ,pB)

[

E(SA,pA)∼Pθ
[log (1−Dγ(SA,pA,SB ,pB))]

]

(12)

A similar discriminator has been proposed to train autoencoders

in an adversarial setting [35], [36]. We use this discriminator

to establish a macro connection between the two generators by

providing them complete information about the generators. An-

other way to interpret (12) is that it classifies between different

factorizations of the complete data distribution by the two gener-

ators. In fact, the optimal discriminators train the corresponding

generators to minimize the Jensen-Shannon divergence between

Pγ(SA,pA,SB ,pB) and Pθ(SA,pA,SB ,pB) (derived in Ap-

pendix B).

We split each discriminator in two partial discriminators

which separately provide the feedback for F0 and energy con-

version task (see Appendix B). There are three advantages to

splitting up the discriminator’s loss into an F0 and an energy

contribution. First, this strategy provides greater flexibility, as

the user can decide whether or not to perform energy con-

version without altering the F0 transformation. This scenario

may be useful in cases of limited training data, as we empir-

ically observe greater variability in energy across utterances,

thus making it harder to learn a conversion model. Second,

as noted in this section, decoupling the F0 and energy back-

propagation procedures prevents either variable from domi-

nating the joint distribution during training. Third, we found

empirically that training a unified discriminator results in an

unstable model (see Appendix C). This is because the gradient

information must backpropagate through the energy generator

to update the F0 model parameters. Thus, the error signal

suffers from a vanishing gradient problem, which makes it

challenging to properly train the generative models. In contrast,

splitting the discriminator allows F0 model to get a direct

feedback from its corresponding discriminator for improved

learning.

We refer to this combined framework for F0 and energy

conversion as a Variational Cycle-GAN (VCGAN).

E. Modifying the Spectrum via Energy

The spectral envelope is highly sensitive to changes in the

location and filter response of the resonance frequencies. In fact,

even minor changes can substantially degrade the quality and

intelligibility of resynthesized speech. Our VCGAN framework

circumvents this problem by modifying just the energy profile

of the spectral envelope, i.e., the energy contour.

First, we extract the energy contour of the given speech signal

from its spectral representation using:

eA =

Fs
2

∑

f=0

[SA]
t
f (13)

where, f corresponds to the frequency and t is the time. Once the

energy contour has been modified through the VCGAN, denoted

as eB , then the converted spectrum SB is given by:

SB = SA ×
eB

eA
(14)

This operation scales the frequency bins uniformly and simply

modifies the overall intensity profile of the speech utterance.

During training, we use 23-dimensional MFCC features for

spectrum representation over a context of 128 frames extracted

using a 5 ms windows. The dimensionality of F0/energy contour

is 128x1 while that of spectrum is 128x23. The smoothing kernel

for registration is chosen to be [6, 50] and [6, 2] for the F0 and

energy contour, respectively. The generator and discriminator
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networks are optimized alternately in every mini-batch update.

We fix the mini-batch size to 2 and the learning rates are fixed at

1e-5 and 1e-7 for the generators and discriminators, respectively.

We use Adam optimizer [37] with an exponential decay of

0.5 for the first moment. Sampling process in the generators

is implemented via dropout [38] rate of 0.3 during both training

and testing.

III. EXPERIMENTAL RESULTS: DEMONSTRATING MODEL

STABILITY

In this section, we demonstrate the desirable properties of our

variational formulation, as compared to the traditional Cycle-

GAN proposed in [23]. We also demonstrate the effectiveness

of momenta regularization over the standard discrete wavelet

transform representation. These experiments highlight the ben-

efits of our VCGAN for emotion conversion.

A. VESUS Dataset

We evaluate our algorithms on the VESUS dataset [21]

collected at Johns Hopkins University. VESUS contains 250

utterances/phrases spoken by 10 different actors (gender bal-

anced) in neutral, sad, angry and happy emotional classes.

Each spoken utterance has a crowd-sourced emotional saliency

rating collected from 10 workers on Amazon Mechanical Turk

(AMT) [39]. These ratings represent the ratio of workers who

correctly identify the intended emotion in a recorded utterance.

For robustness, we restrict our experiments in this section and

the next to utterances that were correctly and consistently rated

as emotional by at least 5 out of the 10 AMT workers. The total

number of utterances for each emotion class are:
� Neutral to Angry conversion: 1667 utterances.
� Neutral to Happy conversion: 876 utterances.
� Neutral to Sad conversion: 1587 utterances.

B. Stability of Training

We first evaluate model stability during training. Here, we

borrow from game theory to quantify performance. Namely,

the optimal outcome of an adversarial game occurs when both

participants achieve the Nash equilibrium [40]. Translating this

idea into generative adversarial training implies equality of

generator and discriminator losses. While a strict equality is

difficult to achieve in practice, similar losses typically indicate

better quality of the generated samples. Fig. 4 shows the dif-

ference between the generator and discriminator losses for the

Cycle-GAN (orange) and our proposed VCGAN (blue). We note
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Fig. 4. Comparing Cycle-GAN with its variational counterpart. On Y-axis, we denote the difference between the generator and discriminator loss. On X-axis,
we denote the number of epochs. The plots represent the mismatch between the adversarial losses which is an indicator of instability in training [34].

Fig. 5. Visualizing t-SNE embeddings of source, converted and target F0
contours. The left column shows the embeddings generated using Cycle-GAN
and the right column shows the same for variational model.

that the VCGAN achieves better calibration of the generator and

discriminator objectives (i.e., near equality), whereas traditional

Cycle-GAN fails to do so. Thus, we conclude that our training

algorithm exhibits better stability in practice. Another important

aspect of our proposed strategy is that computed training loss

wiggles around the optimal point. It is crucial for adversarial

training as the absence of this variance can sometimes signal

mode collapse [41].

To illustrate the improved generator calibration, Fig. 5 shows

the tSNE plots [42] of the source, generated, and target emotion

F0 values extracted over 640 ms long windows. This duration

typically encompasses multiple syllables in conversational En-

glish, often corresponding to words, and is therefore supra-

segmental in nature. Notice that the point cloud of generated

F0 values by the Cycle-GAN shows poor overlap with the target

F0 distribution. We hypothesize that, as the Cycle-GAN focuses

on just the first-order moments, the generators ultimately learn

a mapping function whose output lies on a completely different

manifold than the actual data distribution. This further indicates

that the Cycle-GAN acts as a poor estimator of the target data

density due to the weak constraint imposed by cycle-consistency

loss. The VCGAN, on the other hand, does a much better job

of approximating the target data density. This is because the

KL-divergence penalty between the given data distribution and

its cyclic counterpart enforces a stronger global dependency

between the two generators. This macro connection in the

form of feedback from the joint-density discriminator facilitates

learning a better mapping function, especially given the limited

data.

C. Effect of Momenta Regularization

The second critical component of our proposed VCGAN

framework is the momenta based regularization for modeling the

target prosodic contours. As discussed, the momenta specify an

iterative warping process. In contrast, the works of [16], [24] use

a continuous wavelet transform to parameterize the F0 contour to

stabilize its generative process. Empirically, we observe that our

proposed momenta-based warping allows more flexible transfor-

mations and better scale matching between the generated and

target contours. Fig. 6 shows example pitch contours generated

during testing. As seen, the momenta-based VCGAN is less

sensitive to extreme local fluctuations in the generated contours

due to the iterative warping process. Moreover, our warping

approach takes the source F0 contour as a baseline curve and

estimates a perturbation on top of it. This results in a better

alignment of the scale of F0 values in going from one emotion

to the other (see Fig. 6).

To establish our claim objectively, we use paired samples from

the VESUS dataset to compute root mean square error (RMSE)

between the generated and target frames of the F0 (Fig. 7) and

energy (Fig. 8) contours. As seen, our momenta-based warping

is significantly better than wavelet based regularization used
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Fig. 6. Comparing the F0 contours generated by Cycle-GAN and our momenta regularized variational model. Using diffeomorphic warping as a regularizer leads
to more stable F0 contour generation in comparison to wavelet based regularization.

Fig. 7. F0 RMSE comparison between Cycle-GAN and VCGAN. The results
are statistically significant at level 0.05 (* denote p-value ≤ 1e− 10).

Fig. 8. Energy RMSE comparison between Cycle-GAN and VCGAN. Results
are statistically significant at level 0.05 (* denote p-value ≤ 1e− 10).

in [16], [23] for all three emotion conversion tasks. The overall

F0 loss is slightly higher for neutral-angry and neutral-sad

conversion in comparison to the neutral-happy conversion. This

is because the sad and angry emotions are portrayed in a more

diverse manner in the VESUS dataset.

IV. EXPERIMENTAL RESULTS: EMOTION CONVERSION

In this section we evaluate the emotion conversion perfor-

mance against several supervised and unsupervised baseline

algorithms. We train a separate model for each pair of emotions.

However, the model architecture remains fixed in each case. Our

subjective evaluation includes both an emotion perception query

and a quality assessment test carried out on Amazon Mechanical

Turk (AMT). Specifically, each pair of speech utterances (neutral

and converted) is rated by 5 workers on AMT. The perception

test asks the raters to identify the emotion in the converted speech

sample after listening the corresponding neutral utterance. The

quality assessment test asks them to rate the quality of the speech

sample on a 1-5 scale, also called as mean opinion score or MOS.

The reason we include both the neutral and converted utterances

is to account for the speaker bias. Given the known variability

in emotional perception across people, we collect 5 ratings for

each converted sample and report the average. Finally, some

samples were randomly and intentionally corrupted to mitigate

the effects of non-diligent raters and to identify/flag bots.

We conduct four evaluations of increasing level of difficulty.

The simplest scenario is single-speaker emotion conversion, in

which we train and evaluate the model on utterances from the

same speaker. Next is a mixed-speaker evaluation, in which we

pool the utterances across speakers for each emotion class and

randomly divide them into training, validation, and testing. The

third assessment is out-of-speaker evaluation; here the models

are trained and tested on different speakers. Finally, our Wavenet

evaluation is the most difficult and queries how well the models

generalize to synthetic speech.

A. Baseline Models

We compare our proposed VCGAN with several state-of-

the-art algorithms from supervised and unsupervised learning

domains. The first baseline is the global variance constrained

GMM used for voice conversion, which learns the join density

of source and target emotion features [11]. The second baseline

uses a Bi-LSTM model [16] to learn the conditional density of

the target emotion features namely, the F0 and energy contours.

This method uses the wavelet decomposition of the prosodic

features to control the segmental and supra-segmental nature of
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Fig. 9. Single-Speaker Evaluation: we create the training, validation and testing sets for each emotion pair based on the speaker from VESUS with the highest
number of emotionally salient utterances. The asterisk (∗) denotes statistical significance for the test (VCGAN-II (F0+Energy) > Method) at p < 0.05.

prosody. The third technique is a recently proposed Cycle-GAN

framework [24] to modify the F0 contour using its wavelet

parameterization. Further, the authors learn a secondary set of

Cycle-GANs to modify the mel-cepstral features for every pair

of source-target emotions. Our fourth baseline is a simplified

version of the proposed VCGAN model [25] (referred in exper-

iments as VCGAN-I). It is a mixed approach in the sense that

it learns a variational Cycle-GAN for the F0 conversion and a

traditional Cycle-GAN for converting the Mel-cepstral features.

In essence, all of the baseline techniques in this work modify

the F0 and energy contour (as extracted from the spectrum or

MFCC features). Finally, we compare our complete F0+energy

modification framework with just F0 modification to understand

the role of energy contour. We refer the reader to the Appendix C

for detail descriptions of each baseline architecture, including

size and number of parameters.

B. Single Speaker Evaluation

We first evaluate how well our VCGAN framework can

convert emotions for a single speaker. Note that, this is the

simplest setting in which our goal is to show generalization on

a single speaker. To maximize the amount of data, we select the

VESUS speaker with the highest number of consistently rated

utterances (see Section III-A) for each emotion pair. This yields

the following sample sizes:
� Neutral to Angry Conversion: 200 utterances for training,

25 for validation and, 10 for testing.
� Neutral to Happy Conversion: 100 utterances for train-

ing, 5 for validation and, 10 for testing.
� Neutral to Sad Conversion: 200 utterances for training,

25 for validation and, 10 for testing.

Fig. 9 illustrates the performance across all models in this

single speaker setting. We notice that the Bi-LSTM suffers due

to the limited training utterances, which suggests that the model

cannot learn an appropriate mapping with this amount of data.

GMM model fares better because it has the least amount of

parameters among all the competing methods. It is capable of

learning some aspects of the transfer function in a data-starved

scenario. The Cycle-GAN achieves comparable performance to

VCGAN-II (F0+Energy) on emotional saliency and outperforms

our method on the MOS score. This behavior is unsurprising,

as the Cycle-GAN architecture was designed for and evaluated

on single speaker conversion tasks. VCGAN-II(F0+Energy)

achieves the most robust performance across the three VCGAN

models. We posit that this may be due to its reduced parameter-

ization and focus on both F0 and energy.

C. Mixed Speaker Evaluation

To evaluate the performance of our model in a mixed speaker

setting, we split the VESUS corpus as follows:
� Neutral to Angry Conversion: 1534 utterances for train-

ing, 72 for validation and, 61 for testing.
� Neutral to Happy Conversion: 790 utterances for train-

ing, 43 for validation and, 43 for testing.
� Neutral to Sad Conversion: 1449 utterances for training,

75 for validation and, 63 for testing.

We use the training and validation set to learn the parameters

of the models and then evaluate using the test set. Empirically,

we observe that the GMM does not produce intelligible speech

in this setting due to the wide variation of speakers. Therefore,

we have removed from the analysis. Fig. 10 shows the results

of the crowd-sourcing experiment on test dataset. The mixed

speaker setting is more challenging than the single speaker case

because of variability across speakers in terms of estimating the

dynamic range of the prosodic features. There is a high chance

of learning an average mapping by the model.
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Fig. 10. Mixed Speaker Evaluation: we create the training, validation and testing sets by randomly sampling utterances from VESUS across all speakers. The
asterisk (∗) denotes statistical significance for the one-tailed t-test (VCGAN (F0+Energy) > Method) at p < 0.05.

We note that the Bi-LSTM has the worst emotion conversion

accuracy (below 50%) for all three pairs of emotions. However,

it also generates reasonably good audio quality. Empirically,

we observe that the Bi-LSTM learns an near-identity map-

ping, meaning it does not perform any emotion conversion, but

simply reconstructs the (already high quality) input utterance.

The Cycle-GAN [23] model fairs reasonably well in terms of

emotional saliency; however, the speech reconstruction quality

is significantly lower than all three of our proposed models.

VCGAN-II (F0 and F0+energy), in comparison, shows a uni-

formly consistent performance across the three emotion classes

and does an extremely good job of retaining the speech natural-

ness post-conversion. We attribute this all-round performance

to the momenta based regularization and to the variational

formulation. The VCGAN-I model comes close to our proposed

F0+energy framework for angry and sad emotions, but its con-

version accuracy falls below 50% for the happy emotion, making

it the least consistent.

D. Out-of-Speaker Evaluation

We now tackle the more challenging task of out-of-speaker

generalization. Here, we create five folds from VESUS, each

one consisting of a single male and a single female speaker. We

then train five separate models for each neutral ⇐⇒ emotional

pair corresponding using four of these folds and then test on the

fifth remaining fold. Note that, this task tests the model’s ability

to generalize and learn transformation for speakers which are

not part of the training set. Since each speaker has a different

number of consistently rated emotional utterances, the data splits

are fold-dependent, as shown in Table I.

We sample 10 utterances for each fold and each emotion pair

to collect the final ratings. Fig. 11 shows the average perfor-

mance across the folds for all methods. Once again, we evaluate

TABLE I
DATA SPLITS USED FOR THE OUT-OF-SPEAKER EVALUATION

two variants of our proposed framework: VCGAN-II(F0) and

VCGAN-II(F0+Energy). Once again, the GMM fails to produce

intelligible speech for the out-of-speaker experiment. Therefore,

we have trained it for each speaker individually rather than

fold-wise. Ultimately, the GMM model is not suitable for a

real-world application, where the speakers may be unknown or

vary between training and deployment.

At a first glance, we can see that the unsupervised mod-

els (GANs) generally outperforms the supervised method (Bi-

LSTM). In fact, the Bi-LSTM model has the worst emotion

conversion accuracy (below 50%) for all three pairs of emotions.

However, it also generates the best audio quality among all

the competing models, likely due to the minimal conversion.

This result suggests a trade-off, which requires balancing the
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Fig. 11. Out-of-Speaker Evaluation: we create 5 folds from VESUS, each comprising of a male and a female speaker. We train the VCGAN model on four
folds and evaluate its performance on the fifth. The asterisk (∗) denotes statistical significance for the test (VCGAN-II (F0+Energy) > Method) at p < 0.05.

“strength” of the emotion conversion but not distorting the

spectrum and F0 contour by too much modification.

Among the unsupervised models, Cycle-GAN has uniformly

poor conversion accuracy across all emotion pairs. It fails

to generalize to unseen speakers due to its weak generator-

discriminator coupling and the variation between training and

testing speakers. The generated speech quality is however

higher, which is consistent with the behavior of the Bi-LSTM

model. VCGAN models (VCGAN-I and VCGAN-II) outper-

form the remaining models in the fold-wise evaluation in emo-

tion conversion task. They also achieve a good trade-off be-

tween emotion conversion and maintaining the naturalness of

speech. The VCGAN-II(F0+Energy) model has the best bal-

ance among the three and is consistent on 2 out of 3 emotion

conversion tasks. The difference between VCGAN-II(F0) and

VCGAN-II(F0+Energy) demonstrates how variation in energy

plays an important role in the perception of emotion. Angry and

sad emotions seem to be affected the most by this variation.

Angry emotion is often characterized by a significant rise in

the loudness, whereas sad emotion is exactly the opposite. Our

VCGAN-II(F0+Energy) model is able to capture and encapsu-

late this information to some extent.

E. Wavenet Evaluation

Our final evaluation is on synthetic speech. In this case, we use

the models trained in the mixed speaker evaluation (Section IV-

C) without any fine tuning. This paradigm is more challenging

because the test speaker characteristics are completely different

from the training set. We generate “neutral” utterances using

the Wavenet API provided by Google [43]. The utterances are

based on randomly sampled phrases from the VESUS dataset to

preserve syntactic similarity between training and testing. The

number of testing utterances is the same as in Section IV-C: 61

for neutral→ angry, 43 for neutral→happy, and 63 for neutral→
sad. Since, the Wavenet model generates audio in time domain

directly, we use the WORLD vocoder to extract acoustic and

prosodic features.

Fig. 12 shows that our VCGAN-II models are extremely

good at converting the emotions in synthesized speech. While

VCGAN-I matches the proposed model in terms of emotional

saliency, the quality of generated audio trends significantly

lower in comparison. This is likely due to the secondary spec-

trum modification, which is not harmonically matched with the

modified F0 contours. This experiment further demonstrates

our VCGAN-II framework is robust even when the unseen

speaker has completely different characteristics than the dataset

on which the model has been trained. This is a first model in

our knowledge that generalizes so well to a synthetic speaker

(simulated by Wavenet).

F. Summary of Results

Table II summarizes the crowd sourcing results across the dif-

ferent evaluation paradigms, i.e., single speaker, mixed speaker,

out-of-speaker, and Wavenet. Right away, we observe an incon-

sistency in performance as we progress from one experiment set-

ting to another. This variation is expected, due to the increasing

levels of difficulty of each evaluation. Specifically, our single

speaker evaluation queries the performance of each model on

utterances from the same speaker. In the mixed-speaker case,

we train and test the models on the same collection of speakers,
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Fig. 12. Wavenet Evaluation: We apply our mixed speaker models (without fine-tuning) to modify speech generated by the Wavenet model. The asterisk (∗)
denotes statistical significance for the one-tailed t-test (VCGAN (F0+Energy) > Method) at p < 0.05.

TABLE II
PERFORMANCE ACROSS THE FOUR EVALUATION PARADIGMS: SINGLE-SPEAKER, MIXED-SPEAKER, OUT-OF-SPEAKER, AND WAVENET
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but randomly split the utterances between the two sets. This

evaluation is more challenging because the models must learn

characteristics of multiple speakers. In the out-of-speaker eval-

uation, we train the models on a set of four male/female speaker

pairs and test on the remaining pair. Thus, the models never

see utterances from the test speakers during training, which is a

more difficult task. Finally, the Wavenet evaluation queries how

well the models generalize to synthetic speech, which by default

is produced under different environmental (and physiological)

conditions.

The asterisks (∗) in Figs. 9–12 denote significantly improved

performance between the VCGAN-II (F0+Energy) and the al-

ternate methods. This analysis was conducted via a one-sided

t-test for each emotion pair at significance level p < 0.05. We

observe that while the three VCGAN models perform similarly,

VCGAN-II tends to have more robust performance across eval-

uation settings. The traditional Cycle-GAN does well on the

single-speaker evaluation, likely because this architecture was

developed for voice conversion and can capitalize on individual

speaker characteristics. However, it achieves significantly lower

emotional saliency as the evaluation becomes more difficult (i.e.,

multi-speaker, out-of-speaker, Wavenet). The GMM has variable

emotion conversion performance in the single-speaker setting,

but fails to generate intelligible speech in the multi-speaker

paradigms, and performs poorly in the other two evaluations.

Finally, the Bi-LSTM achieve low emotional saliency but con-

sistently high MOS score. This is due to the fact that it collapses

into an identity transformation and fails to modify the utterance

at all. From Table II, we conclude that our VCGAN-II models

achieve the best trade off between emotional saliency and speech

reconstruction quality. Thus, combining F0 contour and spec-

trum modification (via energy) into a single unified framework

can achieve much better performance on emotion conversion

and reconstruction quality assessment tasks than modeling them

separately.

By using diffeomorphic registration for the F0 and energy con-

tour, our novel framework offers some key advantages over the

standard wavelet parameterization. Furthermore, our momenta-

based approach does not require any speaker/cohort specific

normalization to match the range of loudness and fundamental

frequency. The deformation process takes care of the individual

ranges, thereby, allowing the VCGAN to automatically adapt

to the test speaker. Additionally, the KL divergence penalty

between the target data density and the generator estimated

density constrains the model to behave in a predictable manner.

The conditional independence of the target spectrum and target

F0 contour (Fig. 1) is another notable aspect of our approach;

empirically, it helps preserve the naturalness of the modified

speech.

V. CONCLUSION

In this paper, we have proposed a novel method for robust

emotion conversion. Our technique uses a modified version of

Cycle-GAN called variational Cycle-GAN (VCGAN). VCGAN

was derived as an upper bound on the KL-divergence penalty

between the target data distribution and the generator estimated

distribution. We showed that this led to a new joint density

discriminator which constrained the forward-backward gener-

ators at the distribution level. Empirically, we demonstrated that

this distributional matching was better at learning the target

densities for emotion conversion. In addition, we modeled the

features in the target utterance as a smooth warped version of

the source. This allowed the algorithm to adaptively adjust the

F0 and loudness range of a test speaker without any feature

normalization. We showed that our approach led to a consistent

performance across four emotion conversion tasks. Further,

our framework achieved a good balance between the emotion

conversion accuracy and the naturalness of synthesized speech,

as demonstrated by real-world crowd sourcing experiments. We

also compared our proposed framework against state-of-the-art

emotion conversion baselines from supervised and unsupervised

learning domain. Our method universally outperformed these

techniques.
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