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A Diffeomorphic Flow-Based Variational Framework
for Multi-Speaker Emotion Conversion

Ravi Shankar

Abstract—This paper introduces a new framework for non-
parallel emotion conversion in speech. Our framework is based
on two key contributions. First, we propose a stochastic version
of the popular Cycle-GAN model. Our modified loss function
introduces a Kullback-Leibler (KL) divergence term that aligns
the source and target data distributions learned by the generators,
thus overcoming the limitations of sample-wise generation. By
using a variational approximation to this stochastic loss function,
we show that our KL divergence term can be implemented via
a paired density discriminator. We term this new architecture a
variational Cycle-GAN (VCGAN). Second, we model the prosodic
features of target emotion as a smooth and learnable deformation
of the source prosodic features. This approach provides implicit
regularization that offers key advantages in terms of better range
alignment to unseen and out-of-distribution speakers. We conduct
rigorous experiments and comparative studies to demonstrate that
our proposed framework is fairly robust with high performance
against several state-of-the-art baselines.

Index  Terms—Cycle-GAN, diffeomorphic  registration,
nonparallel emotion conversion, variational approximation.

1. INTRODUCTION

PEECH is perhaps our primary mode of communication
S as humans. It is a rich medium, in the sense that both
semantic information and speaker intent are intertwined together
in a complex manner. The ability to convey emotion is an
important yet poorly understood attribute of speech. Common
work in speech analysis focuses on decomposing the signal into
compact representations and probing their relative importance
in imparting one emotion versus another. These representations
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can be broadly categorized into two groups: acoustic features
and prosodic features. Acoustic features (e.g., spectrum) con-
trol resonance and speaker identity. Prosodic features (e.g., FO,
energy contour) are linked to vocal inflections that include the
relative pitch, duration, and intensity of each phoneme. Together,
the prosodic features encode stress, intonation, and rhythm, all
of which impact emotion perception. For example, expressions
of anger often exhibit large variations in pitch, coupled with
increases in both articulation rate and signal energy. In this paper,
we develop an automated framework to transform an utterance
from one emotional class to another. The problem, known as
emotion conversion, is an important stepping stone to affective
speech synthesis.

Broadly, the goal of emotion conversion is to modify the
perceived affect of a speech utterance without changing its
linguistic content or speaker identity. This setting allows the
user to control the speaking style, while allowing the model to
be trained on limited data. Emotion conversion is a particularly
challenging problem due to the inherent ambiguity of emotions
themselves [1], [2]. The boundaries between emotion classes
are also blurry, and prior knowledge about the speaker can
sometimes play a major role in the emotion perception. That
being said, one of the main application of emotion conversion
is to evaluate the quality of human-machine dialog systems [3].
Here, intonation changes can indicate the level of naturalness
of a conversation between a machine and a person. Emotion
conversion can also be helpful in studying neurodevelopmental
disorders such as autism, which is characterized by poor emotion
perception capability. On the technical front, being able to
control the granularity of the emotion expression in synthesized
speech is an important step towards developing an intelligent
conversational system. Finally, emotion conversion can be used
for data augmentation when training emotion classification or
speaker recognition systems [4], [5].

Early work in emotion conversion traces its roots to neurosci-
entific experiments, which were designed to study the influence
of emotions in the brain. Interestingly, many of the implicated
features tend to generalize across languages. For example, the
work of [6] determined the FO (i.e., pitch) contour and the
energy (loudness) profile as the main factors responsible for
primary emotions. Additionally, voice quality and utterance
duration have also been identified as features affecting emotion
perception [7]. Voice quality is a function of the spectrum
representation and duration can be called as a proxy for the
speaking rate. A comprehensive study was conducted by [8] to
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understand the impact of systematically changing acoustic and
prosodic features on emotional perception. These experiments
were performed on a Japanese language database with some
consistency shown for English.

Algorithms for emotion conversion fall into three general
categories. The first approach relies on constructing a statistical
model of the source and target prosodic features to allow infer-
ence from one domain to another. One example of this approach
is the work of [9], which uses classification and regression trees
(CART) to modify the FO contour in Mandarin. An alternate
strategy uses a Gaussian Mixture Model (GMM) for voice and
emotion conversion. The central idea is to learn a GMM that
captures the joint distribution of the source and target emotional
speech features during training. Inference of a new conversion
is done via the conditional mean of the target features given the
test source features. Mathematically, let z; = [x; yi]T denote
the concatenated source and target features and c; denote the
latent cluster assignment for utterance ¢. From here, we have:

K
P(zilc;) = Y Plzile; = k)P(c; = k) )
k=1

where, P(z;|c; = k) ~ N(z;; py,, i) and its parameters are
estimated via the Expectation-Maximization (EM) algorithm,
along with the latent prior P(c¢; = k).

Using properties of the Gaussian distribution, it can be shown
that the conditional mean of the target features y; given the
source features x; is given by the expression

K
Blyilxi] =Y Ple: = klxi) [uf + B3 (2F) 7 (xi — )]

k=1
(2)

where, P(cp|x) can be computed via Bayes’ Rule. One of
the main drawback of this approach is the over-smoothing of
spectral parameters in inference stage due to averaging effect.
To counter this, a global variance constraint based inference
proposed by [10] was adopted for emotion conversion by [11].

The second approach for emotion conversion is based on
sparse recovery [12]. This technique entails learning an over-
complete dictionary of both acoustic and prosodic features for
each emotion class. During conversion, the input utterance is first
decomposed using the source emotion dictionary by estimating
a coefficient matrix with sparsity prior. These coefficients are
then used for reconstruction using the target emotion dictionary
elements/atoms. The authors of [12] used active Newton-set [13]
based non-negative matrix factorization [14] to estimate the
sparse coding. Mathematically, given a non-negative matrix
input X (e.g., spectrogram magnitude), we seek non-negative
matrices U and V to minimize:

J =X -UVIE+2Y IVl &)

J
The first term in (3) enforces the data fidelity, whereas the

second term encourages sparsity of the learned encoding V.
The variable U denotes the overcomplete dictionary.

The third approach for emotion conversion relies on deep
neural networks to automatically learn complex and nonlin-
ear speech modifications. For example, a bidirectional LSTM
approach has been suggested by [15], [16] for modifying the
prosodic features. The authors further proposed using a con-
tinuous wavelet transform based parameterization for the FO
and energy contour to decompose into segmental and supra-
segmental components. Our prior work proposed an alternative
method for prosodic modification based on highway neural
networks [17], [18], which maximize the representation log
likelihood in an EM algorithm setting. We further proposed an
FO modification scheme using the principle of diffeomorphic
curve warping as a smoothness prior for the transformed FO
contour [19]. This diffeomorphic parameterization was extended
to spectrum modification in [20]. Specifically, we used a latent
variable regularization technique to sequentially modify the FO
contour and the spectrum.

The methods discussed so far belong to the domain of su-
pervised learning. Namely, they rely on labeled parallel speech
data to learn the requisite emotion conversion. Curating parallel
corpora is expensive, which explains why there are only a
handful of such databases [21] available online. Beyond data
scarcity, most supervised emotion conversion methods require
the parallel utterances to be time-aligned using dynamic time
warping (DTW) [22] prior to analysis. This alignment procedure
allows us to learn a frame-wise mapping between the source
and target utterances. While simple and apt for smaller corpora,
DTW is prone to errors, particularly during periods of silence
or unvoiced sounds.

The current iteration of methods focus on unsupervised emo-
tion conversion and do not require parallel data. These models
rely on expressiveness of neural networks to learn a parametric
distribution for each pair of emotions. One of the most prominent
model in this space is Generative Adversarial Network (GAN).
Mathematically, let G and D denote the generator and discrimi-
nator, respectively. The objective of the GAN is a minimax loss
given by the following:

Ladw = mCi¥n mgx Eme(X)[log(D(x)]

+ E.p(z)llog(1 — D(G())] )

where P(X') denotes the data distribution and P(Z) denotes a
noise density which is usually Normal i.e, N (0, I).

The Cycle-GAN architecture goes one step beyond (4) by
tying two separate GANs together via a cycle consistency
objective. Formally, let A and B denote the domains of the
source and target data distributions. The two generators in Cycle-
GAN are tasked with learning transformation from A — B and
B — A, respectively. The cycle consistency loss connects the
generators by enforcing that the sequence of transformations,
i.e. A — B — A should look similar to the original input. For
clarity, we will refer to these generators as the “forward” and
“backward” transformations of the Cycle-GAN and use the
notation G, (forward) and G (backward). Mathematically, the
cyclic objective is written as:

Lcycle = L P(X) [HZIJ - GQ(G’Y(x))Hl] (5)
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The algorithm of [23] uses a Cycle-GAN to disentangle
the content and style of a speech utterance into two separate
variables based on a priori information embedded into the
network architecture. Another approach proposed by [24] uses
a Cycle-GAN to transform the FO contour and spectrum, as
parameterized by a discrete wavelet transform, for emotion
conversion. A Star GAN [4] model proposed by [5] relies on
a multi-task discriminator and a single generator for conversion
between multiple emotional classes. Due to the poor quality
of generated samples, the authors used this method for data
augmentation to improve emotion classification accuracy, rather
than for speech synthesis. While all these methods show tremen-
dous promise, one common drawback is that they have been
trained and evaluated on single speaker datasets. Thus, it is
unclear how they will perform in either a multi-speaker or an
out-of-sample generalization setting.

In this paper we propose a novel technique for emotion
conversion using a variational formulation of the Cycle-GAN.
Our novel loss formulation leads to a joint density discriminator
which minimizes the upper bound on KL-divergence between
the target data density and its parameterized counterpart. Our
method further learns the target emotion FO and energy contour
by modeling them as a smooth deformation of the source emo-
tion features. A preliminary version of this work appeared in
Interspeech 2020 [25]. This paper provides the following novel
contributions above the conference paper. First, we model the
transformation of FO and energy contours of an utterance jointly
using intermediate hidden variables. This is in contrast with
the previous approach where we modify the FO contour and
spectrum, independently. Second, our graphical model for the
conversion strategy allows us to disentangle the discriminator’s
objective for energy and FO contour using conditional indepen-
dencies directly inferred from the graph. Finally, we evaluate
our proposed framework in both, a multi-speaker setting as well
as on out-of-distribution speakers which the model does not see
during training. We further provide comparative studies about
the distribution and stability properties of our technique with a
state-of-the-art baseline.

II. METHOD

Our strategy is to manipulate two key prosodic features: the
FO (pitch) contour, and the energy (loudness) contour. Fig. 1
shows the relationship between the features during the inference
step of the process. We begin with taking an utterance in source
emotion A from which we extract the FO contour (p4) and the
mel-cepstral features (S,) using the WORLD vocoder [26].
The energy contour (e, ) is extracted directly from the spectral
features. We define latent variables called momenta (m,,, m.),
which serve as intermediaries between the two emotion classes
under consideration. The FO contour in target emotion (pg)
is a deterministic function of the momenta (m,) and source
FO contour, through a diffeomorphic warping process that we
describe in Section II-B. The estimated FO contour and the
source spectrum together generate the momenta (m,) for the
energy contour which is then further used to generate the cepstral
features (Sp). The estimated FO contour and cepstral features

Source Pitch@ @Target Pitch

Pitch Momenta

Source Spectrum| S

G\DEnergy Momenta

Source Energy@ @Target Energy

Fig. 1. Graphical representation of our emotion conversion strategy. mp
and me serve as an intermediaries for pitch and energy contours, respectively.

Target Spectrum

combine together to give the converted utterance in the target
emotion B.

We take an unsupervised approach to model training and
evaluation using a Cycle-GAN framework. This strategy al-
lows us to handle non-parallel and multi-speaker datasets. For
robustness, we introduce a novel KL-divergence loss to align
the distribution of the source and target emotional classes, as
described in Section II-A. The KL-divergence gives rise to a
new class of discriminators that operate on pairs of samples.

To summarize, our technical innovations are as follows:

® We propose a joint model for FO and energy modification
which uses latent variables called momenta as an interme-
diary between source and target emotion features.

e We highlight several shortcomings of cyclic consistency
loss which is the backbone of our baseline reference model
and analyze them theoretically.

® We propose a new KL-divergence penalty and minimize its
upper bound to address the limitations of cyclic loss. We
verify its advantages through multiple experiments.

e We evaluate our model on multiple experiment paradigms
i.e, single speaker, mixed speaker, leave-one-fold and
Wavenet to paint a complete picture of our model.

A. Variational Cycle-GAN

The cycle consistency loss of a traditional Cycle-GAN is given
by (5) and repeated below for convenience:

Lcycle = EmNP(X) [HJ? - G@(G’Y(Jj))ul] (6)

This formulation imposes just a point-wise regularization on the
input X and the cyclic converted sample G (G (z)).

It is easy to show that (6) is not a well-behaved loss function
(Propositions 1 and 2 in Appendix A). Specifically,

1) It only enforces a first-order moment matching between

the generated and target data distributions.

2) The expectation in (6) depends on the sampling variance,
which leads to a noisy gradient estimate when optimizing
the parameters of the generator.

The first point establishes a weak coupling between the two
generators. In addition, the discriminators Dy and D~ do not
have information about the complementary generators when
training a traditional Cycle-GAN. At a high level, the min-max
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game played by the generators and discriminators is operating
on incomplete information about the underlying data.

The second point often results in poor calibration of the
gradients under scenarios where the target distribution is per-
fectly learnable. Practically speaking, this sampling variance is
unknown, which can lead to instability during the optimization.
For example, it may prompt the generator to take a step that
does not reduce the cycle consistency loss (e.g., overshooting
the local optimum). Further, because this variance is inherently
tied to the parameters of the neural network, the generators can
potentially end up learning a null or an identity function in order
to minimize the expected cycle consistency loss (e.g., mode
collapse). Finally, due to the expected loss being a function of
the dimensionality of the data, it scales the gradients computed
during backpropagation making the impact of sampling variance
more pronounce.

We approach these problems by considering KL-divergence
based penalty on the input data distribution and the cyclic
transformation. Formally, let (Sa,p4) and (Sp,pp) be the
source and target cepstrum and FO contours of two non-parallel
utterances in emotion A and B, respectively. The generators are
denoted by G+ : (Sa,pa) = (Sg,pr) and Gy : (Sp,pPB) —
(Sa,pa). The corresponding distributions learned by the gen-
erator functions are given by P, (Sg, pp) and Py(Sa,pa). Our
new penalty for the generator G, is:

L, =KL (P(Sa,pa)|Ps(Sa,pa)) %)

Using the law of total probability, we can write:

Py(Sa,pa) = //PG(SA7PA|SBapB)
x P(Sp,pB) dSp dpp (8

Equation (8) is generally intractable, but we can derive an
upper bound on the loss in (7) that can be optimized easily (see
Appendix B). Effectively, we can minimize:

L, =Es,pa) [E(sp.ps)~p, l0g (Py(SB,PB|SA,PA)
XP(SAa PA))H (9)

Equation (9) highlights an important difference between tra-
ditional Cycle-GAN and our variational approach. Namely, our
min-max objective leverages higher-order relationships by com-
paring the joint density of source and target data factorized by
the two generators. This transparency is noticeably absent in the
traditional Cycle-GAN, in which the discriminator operates on
the marginal densities P(S 4, pa) and Py(S 4, pa) to determine
whether the sample is “real” or “fake”. Finally, we implement
the spectrum modification module solely by changing the energy
contour; this strategy avoids degradation in speech quality due to
errors in spectrum prediction. We have conducted an experiment
(see Appendix G), which demonstrates no difference in user
preference for speech generated with the original (mismatched)
spectrum and speech generated with a modified spectrum based
on the new FO contour.

B. Prosodic Regularization via Momenta

As shown in the Fig. 1, we use two intermediate repre-
sentations (denoted by my and m¢) to model the transition
of prosodic features from the source to target emotion. This
technique can be viewed as an implicit regularization on the
conversion procedure. Practically, we model the target prosodic
contours as a smooth deformation of the source FO/energy
contours. This idea stems from the domain of image registration
where a moving image is iteratively deformed to align or match
with a fixed image [27]. We adapt this registration framework
from 2-dimensional image surfaces to 1-dimensional curves in
the Euclidean space.

While there are multiple ways to represent the deformation
process, one popular technique is known as the Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) [28], [29].
These functions are defined as a smooth and invertible mapping
between two topological manifolds. An important feature of this
LDDMM model is the ability to parameterize diffeomorphic
transformations by low-dimensional embeddings known as mo-
menta [30]. Effectively, the source prosodic contour specifies
the initial state, while the momenta (my,) specifies the initial
trajectory of the dynamical system. Thus, specifying the input
curve and momenta are sufficient to generate the final state of a
target curve. Fig. 2 shows an example of momenta acting on a
source FO contour to match it with a target FO contour via the
LDDMM registration process.

Mathematically, let p% and p; denote a pair of source and tar-
get FO contours, respectively. The variable t corresponds to the
location of the analysis window as it moves across a given speech
utterance. The goal of the deformation process is to estimate a
series of small vertical displacements v¢(x;s) over frequency
and time. The integral of these small displacements produces a
final large vector field denoted by ¢y = |, 01 vi(+; s)ds [28]. Rep-
resenting the momenta variable by m,,, the LDDMM objective
function can be written as:

T T
Dlmy) = 3 37 lmylilmg]; + 237 167 (04 1) — phl3
ij=1 t=1

(10)
The variable +;; is an exponential smoothing kernel evaluated on
pairs of time points of the source contour p*, whereas, A is the
trade-off between smoothness of momenta and the difference
between the source and target FO contours.

Rather than solving (10) explicitly to obtain the momenta,
we estimate it blindly via sampling from the generators. From
a practical standpoint, the continuous time process specified by
LDDMM can be easily discretized to run for a fixed number
of iterations. The main advantage of using a latent regularizer
is that it allows the FO and energy contours to be generated
in a dynamically controlled fashion. Adversarial training can
be susceptible to mode collapse due to imbalance between
generator-discriminator losses, learning rates, and the architec-
ture of the neural networks. Deformation based FO estimation
stabilizes the generative process and prevents it from swinging
wildly and leading to mode collapse. We will also demonstrate
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the FO contours at an intermediate time step. The rightmost figure is the final result of warping where modified FO contour matches with the target FO.
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Fig. 3.

Architecture of the neural network for FO and energy prediction. The output of FO prediction is fed as input for energy estimation. Each generator has

two blocks: a stochastic block for sampling momenta and a generative/deterministic block for curve warping (represented as an RNN).

that this latent regularization improves the generalization ca-
pabilities of our framework to unseen speakers. Algorithm 1
outlines the warping process given a momenta, an FO contour
and an exponential smoothing kernel having a scale o. This scale
parameter controls the smoothness of the velocity vector fields
and is fixed for all our experiments.

C. Hybrid Generative Architecture

Our FO/energy conversion is a two-step process: first, we
estimate the momenta, then, we modify the source prosodic
contours via a deterministic warping using momenta. Our gener-
ators mimic this process by integrating a stochastic component
with trainable parameters and a deterministic component with
fixed/static parameters. The stochastic component for FO mo-
menta prediction takes the spectrum and source FO as its inputs.
For energy momenta prediction, the stochastic component relies

on the source spectrum (which implicitly contains the energy
information) and converted FO. The dimensions of the momenta
are the same as FO and energy contour. We empirically fix the
smoothness parameter, o at 50 for FO and at 2 for energy contour
to span the appropriate ranges. We adapt the 1-D convolutional
architecture from [31] for the stochastic block of the generators
as shown in Fig. 3. It has been experimentally verified that fully
convolutional networks are more stable in a GAN framework
than including fully-connected layers [32]. The deterministic
LDDMM warping function can be represented as a recurrent
neural network (RNN) with a fixed set of parameters due to its
iterative nature.

We constrain the generators to sample smoothly varying
momenta by adding a Laplacian penalty £,,, = E[||Vm,||?] +
E[||[Vm,||?] to the overall generator loss. The gradient of this
term is approximated by the first-order difference of the mo-
menta along the time axis. The final objective to minimize for
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Algorithm 1: Warping to Generate the Target FO Contour
given the Momenta and Source FO Contour.

1 function GenerateFO (m,,, p4);
Input : momenta (m,) and source FO (p4)
Output: target FO (pp)

2 Set s =0, [pp]° = pa and [m,)" = m,;

3 if s < 5 then

4 | dij < [pali — [palj;

di;)?
5 K; eexp—%;

o

6 | [sli™ « [palf + 32 Kiy - [myl}:

7 [mp]f+1 — [my; +2- Zj :,—7[2{ dij - [my]; [my]5;
8 s+ s+1;

9 else

10 ‘ return [pg]®;

11 end

the loss of generator G, is as follows:
LGW =, Elllpa — pall] +AmE [vapng + ”Vme”g]
+ 1B [lea —eill] + e, Elllea — el

+ )"dE(Sf‘nPA) [E(SB;pB)NP'y [IOg (D’Y(SAa P4, SB, pB))]]
(1)

In the case of energy contour modification, we add an identity
loss to the generator, which keeps the modified contour “close”
to the original. The superscripts I and ¢ denote the identity and
cyclic components, respectively. Identity loss has been proposed
by [33] in Cycle-GANs to make the generators more robust and
allow them to reduce distortion when presented with a sample
from target density itself. We omit the identity loss for the FO
conversion, as this contour tends to vary widely across utterances
and emotional classes.

Finally, we update the parameters of the stochastic block of
the generators by back-propagating through the deterministic
LDDMM transformation, as implemented by an RNN.

D. Discriminator Loss and Architecture

‘We model the probability ratio term in (9) by a discriminator
denoted by D.. Conceptually, this discriminator distinguishes
between the joint distributions of (Ss,pa) and (Sp,pn)
learned by generators G, and Gy, respectively.

During training of the discriminator D, we minimize:

LDw = _E(SAPA) I:E(SvaB)NP’Y [IOg (D’Y(sAv P4,Sg, PB))H

— E(sp.pp) [E(sapa)~p 108(1 = Dy(Sa,pa, S5, pr))l]
(12)

A similar discriminator has been proposed to train autoencoders
in an adversarial setting [35], [36]. We use this discriminator
to establish a macro connection between the two generators by
providing them complete information about the generators. An-
other way to interpret (12) is that it classifies between different

factorizations of the complete data distribution by the two gener-
ators. In fact, the optimal discriminators train the corresponding
generators to minimize the Jensen-Shannon divergence between
P,Y(SA,pA, SB,pB) and PQ(SA,pA,SB,pB) (derived in Ap-
pendix B).

We split each discriminator in two partial discriminators
which separately provide the feedback for FO and energy con-
version task (see Appendix B). There are three advantages to
splitting up the discriminator’s loss into an FO and an energy
contribution. First, this strategy provides greater flexibility, as
the user can decide whether or not to perform energy con-
version without altering the FO transformation. This scenario
may be useful in cases of limited training data, as we empir-
ically observe greater variability in energy across utterances,
thus making it harder to learn a conversion model. Second,
as noted in this section, decoupling the FO and energy back-
propagation procedures prevents either variable from domi-
nating the joint distribution during training. Third, we found
empirically that training a unified discriminator results in an
unstable model (see Appendix C). This is because the gradient
information must backpropagate through the energy generator
to update the FO model parameters. Thus, the error signal
suffers from a vanishing gradient problem, which makes it
challenging to properly train the generative models. In contrast,
splitting the discriminator allows FO model to get a direct
feedback from its corresponding discriminator for improved
learning.

We refer to this combined framework for FO and energy
conversion as a Variational Cycle-GAN (VCGAN).

E. Modifying the Spectrum via Energy

The spectral envelope is highly sensitive to changes in the
location and filter response of the resonance frequencies. In fact,
even minor changes can substantially degrade the quality and
intelligibility of resynthesized speech. Our VCGAN framework
circumvents this problem by modifying just the energy profile
of the spectral envelope, i.e., the energy contour.

First, we extract the energy contour of the given speech signal
from its spectral representation using:

Fs
2

ey = Z[SA]?

f=0

13)

where, f corresponds to the frequency and ¢ is the time. Once the
energy contour has been modified through the VCGAN, denoted
as ep, then the converted spectrum S is given by:
Sp=84x-2
€A

(14)

This operation scales the frequency bins uniformly and simply
modifies the overall intensity profile of the speech utterance.
During training, we use 23-dimensional MFCC features for
spectrum representation over a context of 128 frames extracted
using a 5 ms windows. The dimensionality of FO/energy contour
is 128x1 while that of spectrum is 128x23. The smoothing kernel
for registration is chosen to be [6, 50] and [6, 2] for the FO and
energy contour, respectively. The generator and discriminator
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Algorithm 2: Training Procedure of VCGAN model.
Result: Parameters (0, 0p, v, and vp)

1 while not converged do

2 for i = I..n do

3 Draw (Si,, p%) and (S%, pi;) from emotion classes A and B;

4 Compute €, and e’; from Sy and S ;

5 Sample m;, , and mj, _ using FO momenta samplers ;

6 Generate FO contours p’ and p; ;

7 Sample m’e . and méyB , using energy momenta samplers ;

8 Generate energy contours &, and &, and corresponding Si; and SY;

9 Sample rh’;')y . and Iﬁ;, 54 Using the FO momenta samplers for cyclic conversion;

10 Generate cycle converted FO contours, p% and pi;

11 Sample ﬁlé’ .p and rhﬁ{vB ,, using the energy momenta samplers for cyclic conversion;
12 Generate cycle converted energy contours &) and &%;

13 Sample identity converted rhﬁ . and ﬁlj, 4 Using original spectrum and FO contours;
14 Generate identity converted energy contours &’y and &%;

15 end

16 | Vg, ¢ 2370 [NaViog(D4(SY,pY, Sk, D)) + Aey P4 — D ll1 + A (Vi |2 + [ Vi, 5|12
+ [V [I7) + Nillely — &4l + A, [l — &4l

17| Vg, < £ 30 MV iog(De(S%, pl, 8%, Bh)) + e [Pl — Disllt + A (| Vi 4|2 + | Va4 |12
+ [V 4[17) + Nillel — €51 + Acs lles — &5l 5

18 | Vp, « 230, [~ Viog(D, (S}, Py, Sk, b)) — Vleg(l — Dy(S%, by, S5, pi)):

1 | Vp, < =30, [-Vieg(Dy(S%, P, Sh, b)) — Vlog(1 — Do(S, by, Sy, p))J;

20 Y6 6 —ngVa,:
21 9(; “— 9(; — ’I]QVGQ;
22 YD < YD —MdVD,;

23 9D<—9D—’l7dVD9§

24 end

networks are optimized alternately in every mini-batch update.
We fix the mini-batch size to 2 and the learning rates are fixed at
le-5 and 1e-7 for the generators and discriminators, respectively.
We use Adam optimizer [37] with an exponential decay of
0.5 for the first moment. Sampling process in the generators
is implemented via dropout [38] rate of 0.3 during both training
and testing.

III. EXPERIMENTAL RESULTS: DEMONSTRATING MODEL
STABILITY

In this section, we demonstrate the desirable properties of our
variational formulation, as compared to the traditional Cycle-
GAN proposed in [23]. We also demonstrate the effectiveness
of momenta regularization over the standard discrete wavelet
transform representation. These experiments highlight the ben-
efits of our VCGAN for emotion conversion.

A. VESUS Dataset

We evaluate our algorithms on the VESUS dataset [21]
collected at Johns Hopkins University. VESUS contains 250
utterances/phrases spoken by 10 different actors (gender bal-
anced) in neutral, sad, angry and happy emotional classes.

Each spoken utterance has a crowd-sourced emotional saliency
rating collected from 10 workers on Amazon Mechanical Turk
(AMT) [39]. These ratings represent the ratio of workers who
correctly identify the intended emotion in a recorded utterance.
For robustness, we restrict our experiments in this section and
the next to utterances that were correctly and consistently rated
as emotional by at least 5 out of the 10 AMT workers. The total
number of utterances for each emotion class are:

¢ Neutral to Angry conversion: 1667 utterances.

e Neutral to Happy conversion: 876 utterances.

¢ Neutral to Sad conversion: 1587 utterances.

B. Stability of Training

We first evaluate model stability during training. Here, we
borrow from game theory to quantify performance. Namely,
the optimal outcome of an adversarial game occurs when both
participants achieve the Nash equilibrium [40]. Translating this
idea into generative adversarial training implies equality of
generator and discriminator losses. While a strict equality is
difficult to achieve in practice, similar losses typically indicate
better quality of the generated samples. Fig. 4 shows the dif-
ference between the generator and discriminator losses for the
Cycle-GAN (orange) and our proposed VCGAN (blue). We note
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Fig. 4. Comparing Cycle-GAN with its variational counterpart. On Y-axis, we denote the difference between the generator and discriminator loss. On X-axis,

we denote the number of epochs. The plots represent the mismatch between the adversarial losses which is an indicator of instability in training [34].
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Fig. 5. Visualizing t-SNE embeddings of source, converted and target FO
contours. The left column shows the embeddings generated using Cycle-GAN
and the right column shows the same for variational model.

that the VCGAN achieves better calibration of the generator and
discriminator objectives (i.e., near equality), whereas traditional
Cycle-GAN fails to do so. Thus, we conclude that our training
algorithm exhibits better stability in practice. Another important
aspect of our proposed strategy is that computed training loss
wiggles around the optimal point. It is crucial for adversarial
training as the absence of this variance can sometimes signal
mode collapse [41].

To illustrate the improved generator calibration, Fig. 5 shows
the tSNE plots [42] of the source, generated, and target emotion
FO values extracted over 640 ms long windows. This duration

typically encompasses multiple syllables in conversational En-
glish, often corresponding to words, and is therefore supra-
segmental in nature. Notice that the point cloud of generated
FO values by the Cycle-GAN shows poor overlap with the target
FO distribution. We hypothesize that, as the Cycle-GAN focuses
on just the first-order moments, the generators ultimately learn
a mapping function whose output lies on a completely different
manifold than the actual data distribution. This further indicates
that the Cycle-GAN acts as a poor estimator of the target data
density due to the weak constraint imposed by cycle-consistency
loss. The VCGAN, on the other hand, does a much better job
of approximating the target data density. This is because the
KL-divergence penalty between the given data distribution and
its cyclic counterpart enforces a stronger global dependency
between the two generators. This macro connection in the
form of feedback from the joint-density discriminator facilitates
learning a better mapping function, especially given the limited
data.

C. Effect of Momenta Regularization

The second critical component of our proposed VCGAN
framework is the momenta based regularization for modeling the
target prosodic contours. As discussed, the momenta specify an
iterative warping process. In contrast, the works of [16], [24] use
acontinuous wavelet transform to parameterize the FO contour to
stabilize its generative process. Empirically, we observe that our
proposed momenta-based warping allows more flexible transfor-
mations and better scale matching between the generated and
target contours. Fig. 6 shows example pitch contours generated
during testing. As seen, the momenta-based VCGAN is less
sensitive to extreme local fluctuations in the generated contours
due to the iterative warping process. Moreover, our warping
approach takes the source FO contour as a baseline curve and
estimates a perturbation on top of it. This results in a better
alignment of the scale of FO values in going from one emotion
to the other (see Fig. 6).

To establish our claim objectively, we use paired samples from
the VESUS dataset to compute root mean square error (RMSE)
between the generated and target frames of the FO (Fig. 7) and
energy (Fig. 8) contours. As seen, our momenta-based warping
is significantly better than wavelet based regularization used
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Fig. 6. Comparing the FO contours generated by Cycle-GAN and our momenta regularized variational model. Using diffeomorphic warping as a regularizer leads

to more stable FO contour generation in comparison to wavelet based regularization.
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in [16], [23] for all three emotion conversion tasks. The overall
FO loss is slightly higher for neutral-angry and neutral-sad
conversion in comparison to the neutral-happy conversion. This
is because the sad and angry emotions are portrayed in a more
diverse manner in the VESUS dataset.

IV. EXPERIMENTAL RESULTS: EMOTION CONVERSION

In this section we evaluate the emotion conversion perfor-
mance against several supervised and unsupervised baseline
algorithms. We train a separate model for each pair of emotions.
However, the model architecture remains fixed in each case. Our
subjective evaluation includes both an emotion perception query
and a quality assessment test carried out on Amazon Mechanical
Turk (AMT). Specifically, each pair of speech utterances (neutral
and converted) is rated by 5 workers on AMT. The perception
test asks the raters to identify the emotion in the converted speech
sample after listening the corresponding neutral utterance. The
quality assessment test asks them to rate the quality of the speech
sample on a 1-5 scale, also called as mean opinion score or MOS.
The reason we include both the neutral and converted utterances
is to account for the speaker bias. Given the known variability
in emotional perception across people, we collect 5 ratings for
each converted sample and report the average. Finally, some
samples were randomly and intentionally corrupted to mitigate
the effects of non-diligent raters and to identify/flag bots.

We conduct four evaluations of increasing level of difficulty.
The simplest scenario is single-speaker emotion conversion, in
which we train and evaluate the model on utterances from the
same speaker. Next is a mixed-speaker evaluation, in which we
pool the utterances across speakers for each emotion class and
randomly divide them into training, validation, and testing. The
third assessment is out-of-speaker evaluation; here the models
are trained and tested on different speakers. Finally, our Wavenet
evaluation is the most difficult and queries how well the models
generalize to synthetic speech.

A. Baseline Models

We compare our proposed VCGAN with several state-of-
the-art algorithms from supervised and unsupervised learning
domains. The first baseline is the global variance constrained
GMM used for voice conversion, which learns the join density
of source and target emotion features [11]. The second baseline
uses a Bi-LSTM model [16] to learn the conditional density of
the target emotion features namely, the FO and energy contours.
This method uses the wavelet decomposition of the prosodic
features to control the segmental and supra-segmental nature of
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Fig. 9.

Single-Speaker Evaluation: we create the training, validation and testing sets for each emotion pair based on the speaker from VESUS with the highest

number of emotionally salient utterances. The asterisk (*) denotes statistical significance for the test (VCGAN-II (FO+Energy) > Method) at p < 0.05.

prosody. The third technique is a recently proposed Cycle-GAN
framework [24] to modify the FO contour using its wavelet
parameterization. Further, the authors learn a secondary set of
Cycle-GANs to modify the mel-cepstral features for every pair
of source-target emotions. Our fourth baseline is a simplified
version of the proposed VCGAN model [25] (referred in exper-
iments as VCGAN-I). It is a mixed approach in the sense that
it learns a variational Cycle-GAN for the FO conversion and a
traditional Cycle-GAN for converting the Mel-cepstral features.
In essence, all of the baseline techniques in this work modify
the FO and energy contour (as extracted from the spectrum or
MECC features). Finally, we compare our complete FO+energy
modification framework with just FO modification to understand
the role of energy contour. We refer the reader to the Appendix C
for detail descriptions of each baseline architecture, including
size and number of parameters.

B. Single Speaker Evaluation

We first evaluate how well our VCGAN framework can
convert emotions for a single speaker. Note that, this is the
simplest setting in which our goal is to show generalization on
a single speaker. To maximize the amount of data, we select the
VESUS speaker with the highest number of consistently rated
utterances (see Section III-A) for each emotion pair. This yields
the following sample sizes:

* Neutral to Angry Conversion: 200 utterances for training,

25 for validation and, 10 for testing.

e Neutral to Happy Conversion: 100 utterances for train-

ing, 5 for validation and, 10 for testing.

e Neutral to Sad Conversion: 200 utterances for training,

25 for validation and, 10 for testing.

Fig. 9 illustrates the performance across all models in this

single speaker setting. We notice that the Bi-LSTM suffers due

to the limited training utterances, which suggests that the model
cannot learn an appropriate mapping with this amount of data.
GMM model fares better because it has the least amount of
parameters among all the competing methods. It is capable of
learning some aspects of the transfer function in a data-starved
scenario. The Cycle-GAN achieves comparable performance to
VCGAN-II (FO+Energy) on emotional saliency and outperforms
our method on the MOS score. This behavior is unsurprising,
as the Cycle-GAN architecture was designed for and evaluated
on single speaker conversion tasks. VCGAN-II(FO+Energy)
achieves the most robust performance across the three VCGAN
models. We posit that this may be due to its reduced parameter-
ization and focus on both FO and energy.

C. Mixed Speaker Evaluation

To evaluate the performance of our model in a mixed speaker
setting, we split the VESUS corpus as follows:

e Neutral to Angry Conversion: 1534 utterances for train-

ing, 72 for validation and, 61 for testing.

® Neutral to Happy Conversion: 790 utterances for train-

ing, 43 for validation and, 43 for testing.

* Neutral to Sad Conversion: 1449 utterances for training,

75 for validation and, 63 for testing.

We use the training and validation set to learn the parameters
of the models and then evaluate using the test set. Empirically,
we observe that the GMM does not produce intelligible speech
in this setting due to the wide variation of speakers. Therefore,
we have removed from the analysis. Fig. 10 shows the results
of the crowd-sourcing experiment on test dataset. The mixed
speaker setting is more challenging than the single speaker case
because of variability across speakers in terms of estimating the
dynamic range of the prosodic features. There is a high chance
of learning an average mapping by the model.
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Fig. 10.

Mixed Speaker Evaluation: we create the training, validation and testing sets by randomly sampling utterances from VESUS across all speakers. The

asterisk (*) denotes statistical significance for the one-tailed t-test (VCGAN (FO+Energy) > Method) at p < 0.05.

We note that the Bi-LSTM has the worst emotion conversion
accuracy (below 50%) for all three pairs of emotions. However,
it also generates reasonably good audio quality. Empirically,
we observe that the Bi-LSTM learns an near-identity map-
ping, meaning it does not perform any emotion conversion, but
simply reconstructs the (already high quality) input utterance.
The Cycle-GAN [23] model fairs reasonably well in terms of
emotional saliency; however, the speech reconstruction quality
is significantly lower than all three of our proposed models.
VCGAN-II (FO and FO+energy), in comparison, shows a uni-
formly consistent performance across the three emotion classes
and does an extremely good job of retaining the speech natural-
ness post-conversion. We attribute this all-round performance
to the momenta based regularization and to the variational
formulation. The VCGAN-I model comes close to our proposed
FO+energy framework for angry and sad emotions, but its con-
version accuracy falls below 50% for the happy emotion, making
it the least consistent.

D. Out-of-Speaker Evaluation

We now tackle the more challenging task of out-of-speaker
generalization. Here, we create five folds from VESUS, each
one consisting of a single male and a single female speaker. We
then train five separate models for each neutral <= emotional
pair corresponding using four of these folds and then test on the
fifth remaining fold. Note that, this task tests the model’s ability
to generalize and learn transformation for speakers which are
not part of the training set. Since each speaker has a different
number of consistently rated emotional utterances, the data splits
are fold-dependent, as shown in Table I.

We sample 10 utterances for each fold and each emotion pair
to collect the final ratings. Fig. 11 shows the average perfor-
mance across the folds for all methods. Once again, we evaluate

TABLE I
DATA SPLITS USED FOR THE OUT-OF-SPEAKER EVALUATION
Emotion Pair | Fold | Train | Validation | Test
1 1347 320 123
2 1212 455 125
Neutral-Angry 3 1610 57 122
4 1310 357 125
5 1189 478 107
1 710 166 285
2 581 295 289
Neutral-Happy 3 779 97 278
4 833 43 284
5 601 275 220
1 1357 230 169
2 1340 247 174
Neutral-Sad 3 1154 433 172
4 1329 258 173
5 1167 420 153

two variants of our proposed framework: VCGAN-II(FO) and
VCGAN-II(FO+Energy). Once again, the GMM fails to produce
intelligible speech for the out-of-speaker experiment. Therefore,
we have trained it for each speaker individually rather than
fold-wise. Ultimately, the GMM model is not suitable for a
real-world application, where the speakers may be unknown or
vary between training and deployment.

At a first glance, we can see that the unsupervised mod-
els (GANs) generally outperforms the supervised method (Bi-
LSTM). In fact, the Bi-LSTM model has the worst emotion
conversion accuracy (below 50%) for all three pairs of emotions.
However, it also generates the best audio quality among all
the competing models, likely due to the minimal conversion.
This result suggests a trade-off, which requires balancing the
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Fig. 11.

Out-of-Speaker Evaluation: we create 5 folds from VESUS, each comprising of a male and a female speaker. We train the VCGAN model on four

folds and evaluate its performance on the fifth. The asterisk (*) denotes statistical significance for the test (VCGAN-II (FO+Energy) > Method) at p < 0.05.

“strength” of the emotion conversion but not distorting the
spectrum and FO contour by too much modification.

Among the unsupervised models, Cycle-GAN has uniformly
poor conversion accuracy across all emotion pairs. It fails
to generalize to unseen speakers due to its weak generator-
discriminator coupling and the variation between training and
testing speakers. The generated speech quality is however
higher, which is consistent with the behavior of the Bi-LSTM
model. VCGAN models (VCGAN-I and VCGAN-II) outper-
form the remaining models in the fold-wise evaluation in emo-
tion conversion task. They also achieve a good trade-off be-
tween emotion conversion and maintaining the naturalness of
speech. The VCGAN-II(FO+Energy) model has the best bal-
ance among the three and is consistent on 2 out of 3 emotion
conversion tasks. The difference between VCGAN-II(FO) and
VCGAN-II(FO+Energy) demonstrates how variation in energy
plays an important role in the perception of emotion. Angry and
sad emotions seem to be affected the most by this variation.
Angry emotion is often characterized by a significant rise in
the loudness, whereas sad emotion is exactly the opposite. Our
VCGAN-II(FO+Energy) model is able to capture and encapsu-
late this information to some extent.

E. Wavenet Evaluation

Our final evaluation is on synthetic speech. In this case, we use
the models trained in the mixed speaker evaluation (Section V-
C) without any fine tuning. This paradigm is more challenging
because the test speaker characteristics are completely different
from the training set. We generate “neutral” utterances using
the Wavenet API provided by Google [43]. The utterances are

based on randomly sampled phrases from the VESUS dataset to
preserve syntactic similarity between training and testing. The
number of testing utterances is the same as in Section IV-C: 61
for neutral — angry, 43 for neutral — happy, and 63 for neutral —
sad. Since, the Wavenet model generates audio in time domain
directly, we use the WORLD vocoder to extract acoustic and
prosodic features.

Fig. 12 shows that our VCGAN-II models are extremely
good at converting the emotions in synthesized speech. While
VCGAN-I matches the proposed model in terms of emotional
saliency, the quality of generated audio trends significantly
lower in comparison. This is likely due to the secondary spec-
trum modification, which is not harmonically matched with the
modified FO contours. This experiment further demonstrates
our VCGAN-II framework is robust even when the unseen
speaker has completely different characteristics than the dataset
on which the model has been trained. This is a first model in
our knowledge that generalizes so well to a synthetic speaker
(simulated by Wavenet).

F. Summary of Results

Table II summarizes the crowd sourcing results across the dif-
ferent evaluation paradigms, i.e., single speaker, mixed speaker,
out-of-speaker, and Wavenet. Right away, we observe an incon-
sistency in performance as we progress from one experiment set-
ting to another. This variation is expected, due to the increasing
levels of difficulty of each evaluation. Specifically, our single
speaker evaluation queries the performance of each model on
utterances from the same speaker. In the mixed-speaker case,
we train and test the models on the same collection of speakers,
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TABLE I

PERFORMANCE ACROSS THE FOUR EVALUATION PARADIGMS: SINGLE-SPEAKER, MIXED-SPEAKER, OUT-OF-SPEAKER, AND WAVENET

Evaluation Algorithm Neutral-angry Neutral-happy Neutral-sad
Acc. MOS Acc. MOS Acc. MOS

GMM [11] 0.6+0.1 | 2.5+0.6 | 0.2+0.1 | 2.3£0.2 | 0.53+0.2 | 2.5+0.4
Bi-LSTM [16] 0.2+£0.2 | 14£03 | 0.1£0.1 | 234£0.7 | 0.2+0.2 | 1.9£0.3
Single Cycle-GAN [23] 0.84+0.1 | 2.9£0.6 | 0.6£0.2 | 3.1£0.5 | 0.58£0.2 | 2.8£0.5
Speaker VCGAN-I [25] 0.86+0.1 | 2.4£04 | 0.6£0.2 | 2.8£04 | 0.5+0.2 | 2.8+£0.4
VCGAN-II(FO) 0.44+0.1 | 3.0£0.5 | 0.58+0.2 | 3.0+£0.4 | 0.64+0.2 | 2.9+0.6
VCGAN-II(FO+Energy) | 0.8+0.2 | 2.9+0.6 | 0.68+0.2 | 2.8+0.4 | 0.66£0.2 | 2.6:£0.5
Bi-LSTM [16] 0.25+£0.1 | 2.6+0.3 | 0.254+0.1 | 2.5£0.3 | 0.57+0.1 | 2.4+0.2
Mixed Cycle-GAN [23] 0.76+0.3 | 2.1£0.7 | 0.7£03 | 2.3£0.5 | 0.67£0.3 | 2.2+0.6
Speaker VCGAN-I [25] 0.85+0.2 | 2.7+0.5 | 0.5+£0.2 | 34+0.5 | 0.8£0.2 | 2.940.5
VCGAN-II(FO0) 0.7+£0.2 | 2.6+£04 | 0.6+£0.3 | 3.0£04 | 0.7£0.3 | 3.24+0.4
VCGAN-II(FO+Energy) | 0.84+0.2 | 2.7£0.5 | 0.82+0.2 | 2.840.6 | 0.74£0.3 | 3.0£0.6
GMM [11] 0.6+£0.2 | 2.4+£04 | 02402 | 24404 | 0.6+0.2 | 2.5£04
Bi-LSTM [16] 0.2+0.2 | 3.7£0.6 | 03+0.2 | 3.840.6 | 0.45+0.3 | 3.5+0.4
Out-of- Cycle-GAN [23] 0.6+£04 | 3.0+£0.6 | 0.4+0.3 | 3.3+£0.6 | 0.48+0.3 | 3.2+0.7
Speaker VCGAN-I [25] 0.7+0.3 | 2.8+0.5 | 0.75£0.2 | 2.7+£04 | 0.66+0.2 | 3.1£0.5
VCGAN-II(F0) 0.64+0.2 | 2.7£0.5 | 0.86+0.2 | 2.7+0.5 | 0.67£0.3 | 3.3£0.5
VCGAN-II(FO+Energy) | 0.73+0.3 | 2.8+£0.7 | 0.82+0.2 | 2.8£0.6 | 0.74£0.3 | 2.9+0.6
Bi-LSTM [16] 041£0.2 | 3.0+0.5 | 0.254+0.2 | 2.98%+0.5 | 0.41£0.2 | 2.8%0.6
Cycle-GAN [23] 0.77+0.2 | 2.46+0.5 | 0.53£0.3 | 2.66£0.5 | 0.73£0.2 | 2.3£0.5
Wavenet VCGAN-I [25] 0.9+0.2 | 2.56+0.4 | 0.71£0.2 | 3.0£04 | 0.9+0.1 | 2.7+04
VCGAN-II(FO) 0.7+£0.24 | 2.7£0.6 | 0.86+0.3 | 2.98+0.7 | 0.93+0.2 | 2.5+0.6
VCGAN-II(FO+Energy) | 0.83+0.2 | 3.3+0.5 | 0.93+0.2 | 3.6£0.5 | 0.9+0.2 | 3.1+0.4
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but randomly split the utterances between the two sets. This
evaluation is more challenging because the models must learn
characteristics of multiple speakers. In the out-of-speaker eval-
uation, we train the models on a set of four male/female speaker
pairs and test on the remaining pair. Thus, the models never
see utterances from the test speakers during training, which is a
more difficult task. Finally, the Wavenet evaluation queries how
well the models generalize to synthetic speech, which by default
is produced under different environmental (and physiological)
conditions.

The asterisks (*) in Figs. 9—12 denote significantly improved
performance between the VCGAN-II (FO+Energy) and the al-
ternate methods. This analysis was conducted via a one-sided
t-test for each emotion pair at significance level p < 0.05. We
observe that while the three VCGAN models perform similarly,
VCGANC-II tends to have more robust performance across eval-
uation settings. The traditional Cycle-GAN does well on the
single-speaker evaluation, likely because this architecture was
developed for voice conversion and can capitalize on individual
speaker characteristics. However, it achieves significantly lower
emotional saliency as the evaluation becomes more difficult (i.e.,
multi-speaker, out-of-speaker, Wavenet). The GMM has variable
emotion conversion performance in the single-speaker setting,
but fails to generate intelligible speech in the multi-speaker
paradigms, and performs poorly in the other two evaluations.
Finally, the Bi-LSTM achieve low emotional saliency but con-
sistently high MOS score. This is due to the fact that it collapses
into an identity transformation and fails to modify the utterance
at all. From Table II, we conclude that our VCGAN-II models
achieve the best trade off between emotional saliency and speech
reconstruction quality. Thus, combining FO contour and spec-
trum modification (via energy) into a single unified framework
can achieve much better performance on emotion conversion
and reconstruction quality assessment tasks than modeling them
separately.

By using diffeomorphic registration for the FO and energy con-
tour, our novel framework offers some key advantages over the
standard wavelet parameterization. Furthermore, our momenta-
based approach does not require any speaker/cohort specific
normalization to match the range of loudness and fundamental
frequency. The deformation process takes care of the individual
ranges, thereby, allowing the VCGAN to automatically adapt
to the test speaker. Additionally, the KL divergence penalty
between the target data density and the generator estimated
density constrains the model to behave in a predictable manner.
The conditional independence of the target spectrum and target
FO contour (Fig. 1) is another notable aspect of our approach;
empirically, it helps preserve the naturalness of the modified
speech.

V. CONCLUSION

In this paper, we have proposed a novel method for robust
emotion conversion. Our technique uses a modified version of
Cycle-GAN called variational Cycle-GAN (VCGAN). VCGAN
was derived as an upper bound on the KL-divergence penalty
between the target data distribution and the generator estimated
distribution. We showed that this led to a new joint density

discriminator which constrained the forward-backward gener-
ators at the distribution level. Empirically, we demonstrated that
this distributional matching was better at learning the target
densities for emotion conversion. In addition, we modeled the
features in the target utterance as a smooth warped version of
the source. This allowed the algorithm to adaptively adjust the
FO and loudness range of a test speaker without any feature
normalization. We showed that our approach led to a consistent
performance across four emotion conversion tasks. Further,
our framework achieved a good balance between the emotion
conversion accuracy and the naturalness of synthesized speech,
as demonstrated by real-world crowd sourcing experiments. We
also compared our proposed framework against state-of-the-art
emotion conversion baselines from supervised and unsupervised
learning domain. Our method universally outperformed these
techniques.
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