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Managing Physical and Economic Risk for Systems with
Multidirectional Network Interdependencies
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Critical infrastructure networks, such as transportation and supply chains, are becoming in-
creasingly interdependent. As the operability of network nodes relies on the operability of
connected nodes, network disruptions have the potential to spread across entire networks,
having catastrophic consequences in the realms of physical network performance and also
economic performance. While risk-informed physical network models and economic models
have been well-studied in the literature, there is limited study of how physical features of net-
work performance interact with sector-specific economic performance, particularly as these
physical networks recover from disruptions of varying durations. In this article, we create a
generalizable framework for integrating Functional Dependency Network Analysis (FDNA)
and Dynamic Inoperability Input—-Output Models (DIIM), to assess the extent to which dis-
ruptions to critical infrastructure could degrade its functionality over a period of time. We
demonstrate the framework using disruptive scenarios for a critical transportation network in
Virginia, USA. We consider scenarios involving: (a) mild case that is relatively more frequent
such as recurring traffic conditions; (b) moderate case involving an incident with a multihour
delay, and (c) severe case that is relatively less frequent such as evacuation after a major hur-
ricane. The results will be useful for network managers, policymakers, and stakeholders who
are seeking to invest in risk mitigation for network functionality and economic activity.

KEY WORDS: Critical Infrastructure; disaster risk management; functional dependency network anal-
ysis; inoperability input—output model; transportation network

1. INTRODUCTION footprint on global activities, disruptions can have
disastrous consequences that encompass both phys-
ical and economic dimensions. For example, the re-
cent COVID-19/SARS-CoV-2 pandemic has caused
major adverse impacts on the movement of goods
and services (Ivanov, 2020), and has debilitated a
myriad of industry and government sectors in global

economies. Similarly, consider the February 2021

The functionality of critical infrastructures, such
as transportation, energy, and supply chains, is vi-
tal for health, safety, security, and economic activity.
Because these infrastructure systems have a massive
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winter storm in Texas, which resulted in over four
million customers without power, at least 57 deaths
that were primarily related to complications from
the energy loss (Sparber, 2021), and subsequent dis-
ruptions to dependent infrastructures. In addition
to the humanitarian crisis arising from the energy
failure combined with freezing temperatures, the
event leads to $80-$130 billion in direct and indirect
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economic losses (Golding, Kumar, & Martens, 2021).
As widespread disasters continue to occur, it is im-
perative for research to better understand the rela-
tionship between physical infrastructure systems and
broader economic behavior.

Critical infrastructure systems are increasingly
being modeled as networks, recognizing the interde-
pendencies among their nodes. Disruptions in single
nodes can potentially have widespread repercussions
throughout the network. While these repercussions
are typically studied by modeling degradation to net-
work performance and functionality, there remain
challenges for modeling and decision making when
considering how these disruptions can potentially
spread to other types of critical activities. More
specifically, there is an urgent need to understand
how disruptions to physical flows on these infras-
tructure networks impact sector-specific economic
activity. As an added challenge, the role of time
needs to be better understood, recognizing that the
duration of various disruptions to physical flows can
influence economic behavior. Finally, there is a need
to leverage insights from physical and economic
disaster models to understand the risk-based policy
implications for infrastructure safety, functionality,
and economic health.

To address the challenges described above, we
create a generalizable framework for integrating
Functional Dependency Network Analysis (FDNA)
and Dynamic Inoperability Input-Output Models
(DIIM) to assess the extent to which disruptions to
critical infrastructure could degrade its functionality
over a period of time. There are several contributions
of this work. This article is one of the few recent
works that explicitly address how physical network
models can be integrated with economic models, in
the context of disaster risk management. The novelty
of this article is the development of a framework for
utilizing network models to assess the extent to which
disruptions to critical infrastructure could degrade its
functionality over a period of time. Although the in-
tegrated model can be generalized for a variety of in-
frastructure systems, the focus of the application is
on highway transportation systems with scenarios de-
scribing: (i) a mild case but relatively more frequent
such as recurring traffic conditions; (ii) a moderate
case of infrequent, yet severe, traffic disruptions; and
(iii) a severe case but relatively less frequent such as
evacuation after a major hurricane.

The organization of this article is as follows: Sec-
tion 2 provides a background on risk principles, crit-
ical infrastructure, and case examples describing the
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use of FDNA and DIIM for infrastructure applica-
tions. Section 3 explains the framework of the arti-
cle, describing the integration of FDNA with DIIM.
Section 4 demonstrates the methods of the article on
a transportation network in Virginia, USA. Finally,
Section 5 provides conclusions and opportunities for
future work.

2. BACKGROUND

This section describes relevant research relating
to network modeling of disruptions. Section 2.1 de-
scribes general principles for risk-based analysis and
decision making. Section 2.2 describes the need for
greater understanding of risk for network-based in-
frastructure. Section 2.3 describes the role of FDNA
and DIIM for assessing risk for critical infrastructure
systems.

2.1. General Principles for Risk-Based
Infrastructure Protection

The Society for Risk Analysis (2015) glossary
refers to risk as in reference to:

“... a future activity [interpreted in a wide sense to also
cover, for example, natural phenomenal, for example
the operation of a system, and define risk in relation to
the consequences (effects, implications) of this activity
with respect to something that humans value. The con-
sequences are often seen in relation to some reference
values (planned values, objectives, etc.), and the focus is
often on negative, undesirable consequences. There is al-
ways at least one outcome that is considered as negative
or undesirable.”

The Society for Risk Analysis glossary describes
several qualitative definitions, including the ISO
31000 (International Organization for Standardiza-
tion, 2018) definition, which suggests that risk re-
lates to study of uncertainty on objectives. These def-
initions imply that analysts cannot anticipate every
possible scenario, but can instead prioritize based
on uncertainties. Decision making can instead study
the most influential assumptions and uncertainties
(Thekdi & Lambert, 2012).

There is also an emphasis on resilience for risk
applications. It is particularly relevant to describe
resilience in the context of this research since it
is one of the parameters used in the infrastructure
recovery model and case study explored in subse-
quent sections of this article. The Society for Risk
Analysis (2015) presents a definition of resilience
(among many) as: “Resilience is the ability of a
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system to reduce the initial adverse effects (ab-
sorptive capability) of a disruptive event (stressor)
and the time/speed and costs at which it is able
to return to an appropriate functionality/equilibrium
(adaptive and restorative capability).” Therefore,
risk-based investments must not only consider un-
certainties in decision making but also investigate
how to promote reduced losses and more effective
recovery.

Managing risk associated with critical infrastruc-
ture is a major priority for nations and regions.
The United States National Infrastructure Protection
Plan includes initiatives for reduction of risk to na-
tional critical functions; and promoting security and
resilience (Department of Homeland Security, 2018).
Similarly, the European Programme for Critical In-
frastructure Protection emphasizes the importance of
protecting critical infrastructure, including the assess-
ment of interdependencies that may be geographic
or sectoral (European Union, 2020). In the United
States, the Department of Homeland Security (2020)
identifies 16 critical infrastructure sectors, including
commerecial facilities, communications, critical manu-
facturing, energy, water and wastewater systems, and
transportation systems. Many of these types of in-
frastructure sectors can be viewed as a network con-
sisting of nodes and edges. Flows on these networks
often include physical resources. For example, trans-
portation system network models may consider ve-
hicle movement as a flow through the network. As
a result of the network structure, interdependencies
become an important factor in the modeling of these
networks.

The current condition of these network-based
critical infrastructures has been widely studied. The
American Society of Civil Engineers (2016) esti-
mates that deficiencies in the current condition of
infrastructure have a major economic impact of
$3.9 trillion in losses to the U.S. GDP by 2025.
Thus, infrastructure that has not been adequately
maintained prompts even greater concern over the
vulnerability to disasters, and also the capability
of these systems to effectively recover following a
disaster.

This article focuses on critical transportation in-
frastructure that is essential for conveying resources
and sustaining the productivity of the economy. It
is central to providing mobility for people and com-
modities; and is arguably critical in implementing dis-
aster response logistics. A myriad of government pol-
icy directives has explicitly included transportation
as a critical lifeline infrastructure. Hence, a reduced

level in the capacity or functionality of the trans-
portation infrastructure can have profound impacts
not only on the mobility of the workforce but also in
the shipment of resources that are crucial in the op-
eration of practically all sectors of the economy. With
the vulnerability of the transportation infrastructure
to disruptions that recur on a regular basis (e.g., acci-
dents and peak congestions), as well as catastrophic
events (e.g., disasters such as hurricanes and earth-
quakes), government and private agencies need to
create contingency plans to minimize the impact of
such disruptions.

2.2. Interdependency Modeling for Network Risk

Critical infrastructure systems are ubiquitous,
and their interdependencies have vital importance
to the wellbeing of society. The interdependencies
among critical infrastructures, which can be ex-
pressed as a supplier—receiver relationship, require
close attention to understand the potential losses if
degradation of one or more of these critical infras-
tructures occurs. Operability loss of a supplier system
has the potential to cause cascading impacts over var-
ious critical infrastructure systems, including other
sectors.

FDNA, a graph-based methodology, is used to
assess the cascading effects of such interruptions by
modeling the impact propagation among supplier re-
ceiver relationships. In other words, FDNA focuses
on how the operability loss of a supplier causes cas-
cading effects on its receiver systems (Garvey &
Pinto, 2009). FDNA has been applied in various do-
mains including space infrastructure (Guariniello &
DeLaurentis, 2013), the security of Global Naviga-
tion Satellite Systems (Wang, Zhang, & Li, 2014),
data dependency modeling (Cole, 2017), cyberspace
(Servi & Garvey, 2017), power systems (Garvey,
Pinto, & Santos, 2014), and finance (e.g., interbank
lending) (Costa, McShane, & Pinto, 2015).

2.3. Economic Modeling for Network Risk

Several analytical models are available to assess
the ripple effects of infrastructure disruptions across
multiple interdependent sectors of the economy. One
notable example is Leontief’s economic input—output
(I0) model (Leontief, 1936), which will be used in
this article to assess the direct losses attributable to
the reduction in functionality of transportation, as
well as the indirect effects due to sector interdepen-
dencies. Miller and Blair (2009) is the primary book



that encompasses the theory behind the IO model,
and also provides extensions and applications mostly
in the domain of economics. Nonetheless, there has
been a recent surge in the use of IO model extensions
in other domains, such as in reliability and disaster
risk management. Examples of recent 10-based ar-
ticles on disaster risk management include COVID-
19 modeling (Santos, 2020; Yu, Aviso, Santos, & Tan,
2020), water service disruptions (Pagsuyoin & San-
tos, 2021), and electric power disruptions (Lee, Park,
Lee, & Ham, 2020), among others. Many nations in
the world publish IO data since they are invaluable
in understanding the key sectors in the economy. Key
sector evaluation could be based on the magnitude of
a sector’s contribution to the gross domestic product,
as well as the extent to which a sector is intertwined
with others in its role as a supplier or as a consumer.
Along with allied models like the computable general
equilibrium, the IO model has been used recently
in analyzing the impact of resilience in the context
of disaster risk management of interdependent eco-
nomic and infrastructure systems (see, for example,
Rose & Liao, 2005).

The following section will provide a framework
to integrate both physical and economic infrastruc-
ture risk models.

3. FRAMEWORK

3.1. Modeling Operability Loss Using FDNA

In this study, FDNA is employed to evaluate how
the cascading impact of disruption propagates within
the transportation network. The transportation net-
work is modeled as a directed graph to reveal possi-
ble cascading effects caused by degradation occurred
in one or multiple parts of a system. A dependency in
FDNA topology is represented as a directed, acyclic
graph, meaning that no cycles are allowed. Two func-
tional nodes do not depend on each other. If needed,
the only way of representing such dependency is
granulation, to decompose the nodes to more specific
functionalities so that the cycle between two nodes
is converted into two separate dependency relation-
ships among more specific dependency nodes. Gar-
vey and Pinto proposed the constituent node concept
to make the cyclic dependency decomposition pro-
cess analytical (Pinto & Garvey, 2012).

In FDNA terminology, the operability of a node,
also known as its measure of effectiveness, stands for
the level of performance the node functions. Oper-
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ability! has a value in a range from 0 to 1 (or simi-
larly O to 100, when the operability level is expressed
as a percentage) according to the utility the node
yields. For example, the performance of a machine
can be measured based on the number of its outputs,
while its operability level concerns the performance.
However, it is not required to have a linear relation-
ship among the amount of the output and the op-
erability value. Operability is determined based on
the utility of the system; in other words, the total
worth it provides to the system. If a node in an FDNA
graph is fully operable (i.e., operability level is 100),
it means that the relevant system completely satisfies
the user’s expectations. Contrarily, if a node is wholly
inoperable (i.e., operability level is zero), it means
that the relevant system dissatisfies the expectations.

In the Garvey’s original FDNA, the operabil-
ity level of a receiver node only depends on the
operability level of its feeder nodes. However, this
representation is insufficient in addressing the cases
in which a receiver node degrades while all of its
supplier nodes are fully operable. Tatar (2019) intro-
duced the self-efficiency of an FDNA node, which
is a multiplier to its operability value that reflects
the operability degradation even if all of the feeder
nodes are fully operable. self-efficiency is defined in
the interval [0,1] and can have values lower than one
if the node has an inherent issue that causes its per-
formance to diminish. For operability calculations,
self-efficiency value is inserted as a multiplier to the
original FDNA equations.

The relationships among feeder and receiver
nodes are represented by Strength of Dependency
(SOD) and Criticality of Dependency (COD) rela-
tions. Baseline Operability Level (BOL) is defined
as the operability level that a node operates without
considering the contribution of its feeder nodes. The
SOD relationship indicates how much a feeder node
contributes a receiver node to increase the BOL of
the receiver node. On the other hand, the COD rela-
tionship suggests how much a receiver node degrades
from its BOL if its feeder node becomes inoperable
for an extended period. For the sample FDNA graph
in Fig. 1, the SOD relationship between a feeder
node N; and a receiver node N; is governed by SOD

IFor consistency with the supporting literature, we will use the
term operability in the discussions associated with the FDNA
model, and retain the term inoperability for the DIIM. Operabil-
ity is the complement of inoperability (i.e., operability loss). Al-
though they are both dimensionless numbers between 0 and 1,
they have opposite interpretations are (i.e., the ideal case for op-
erability is 1, while the ideal case for inoperability is 0).
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Fig 1. Sample FDNA graph with two nodes

fraction, «;; that can have values from zero to one.
On the other hand, the COD relationship is adjusted
using COD constraint, g;; that can have a range of
values from zero to 100.

Operability of the receiver node (P;) is deter-
mined based on the weakest link rule. According to
this rule, the minimum value that comes from SOD
and COD is used for calculating P;. Eqn (1) relates
the operability values of a feeder and receiver node.

P; = SE;xMin (a;;P; +100 (1 — o), B + i), (1)

0 <P, P; <100, 0 < SE; <100,
0<w; <1, 0=<p; <100,

where P, is the operability of the feeder node, P;
is the operability of the receiver node, SE; is the
self-efficiency of the receiver node, o;; is the SOD
fraction, g;; is the COD constraint, and 100(1 — «;;)
stands for the BOL.

In the case that there are more than one feeder
nodes of a receiver node, SOD relationships are ag-
gregated by taking the average of their alpha values;
however, COD relationships are taken into consider-
ation separately based on the weakest link rule. Op-
erability of N; with n feeder nodes is calculated using
Eqn (2).

P; = SE; % Min(Average(SODP;;,
SODP,;,...,SODPF,;), CODPy;,
CODP,j, ..., CODP,)) 2)

(1< 1N
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Operability values for each node of an FDNA
graph is calculated by starting from the feeder nodes
at the bottom of the hierarchy. The process ends on
the receiver nodes at the top of the hierarchy. The
cascading effects of the failure of a node are explored
using this modeling approach.

3.2. Modeling Sector Interdependencies Using 10
Models

This section will focus on the inoperability exten-
sion to the IO model. The term inoperability is akin
to the concept of “unreliability” and as such its value
ranges between 0 and 1 (Santos & Haimes, 2004).
Hence, a value of 0 is the ideal case corresponding
to a sector’s “business as usual” mode of operation.
Conversely, a value of 1 implies that the sector is
completely dysfunctional or inoperable. The dy-
namic inoperability IO model, or DIIM in short, has
been applied in diverse types of disaster scenarios,
such as terrorist attacks (Santos & Haimes, 2004),
hurricanes (Haggerty, Santos, & Haimes, 2008), elec-
tric power blackout (Anderson, Santos, & Haimes,
2007), droughts (Pagsuyoin, Santos, Salcedo, & Yip,
2020), COVID-19 pandemic (Santos, 2020), and sev-
eral others. The formulation of the DIIM is shown
below. The formulation comprises of the following
terms: q(¢+1) and q(¢) correspond to the inoperabil-
ity vector at time 41 and ¢, respectively; K is the
resilience matrix® that describes the rate with which
the sectors are expected to recover to the “business
as usual” levels; A" is the interdependency matrix
that describes the degree of interdependency across
the sectors; and ¢"(¢) is the demand perturbation at
time .

q(t+1)=q@) +K[Axq@) +ex () —q)]. (3)

The concept of infrastructure inoperability in
the context of IO modeling is not new. Nonetheless,

2The resilience matrix in the DIIM formulation is consistent with
the definition of resilience in the SRA glossary, which was pro-
vided in the introduction section of this article.



linking it with the FDNA model discussed in the pre-
vious section is one of the novelties of this article. In
addition, the “supply use tables” or SUT? that are
published as a component of IO data sets could fa-
cilitate the assessment of the extent to which each
sector is dependent upon a particular infrastructure,
such as transportation. The transportation sector is
comprised of various modes such as highway, rail, wa-
ter, and air. This article will model, in particular, the
impact of disruptive events on highway transporta-
tion. When the highway transportation is subjected
to a disruption that adversely affects its capacity or
operability for a certain period of time, sectors that
are dependent upon it will be directly affected due to
the delay of shipment of goods as well as degradation
in the mobility of the workforce. Given the total pro-
duction output of a sector (x;) and its dependence on
an infrastructure (w;), one can estimate a dimension-
less ratio w;/x; that essentially describes the weight
of an infrastructure’s contribution per unit output of
a sector.

The SUT data described above could be lever-
aged to generate the “infrastructure-use” data to
eventually calculate the ratio of an infrastructure’s
contribution to a particular sector (which we denote
by w;/x;). In addition, suppose that we use the nota-
tion d(t) to assess the percentage disruption to an in-
frastructure at time ¢ (e.g., if the highway transporta-
tion were only operating at 80% capacity at time ¢,
then d (1) = 0.2). Hence, the ideal case would corre-
spond to a disruption of 0, and oppositely, a value of
1 would imply the infrastructure is in a complete fail-
ure state. We assume that the ratio w;/x; is constant,
but when multiplied with d(¢) will generate the time-
varying sector inoperability that is needed in Eqn (1).
Hence, the inoperability of sector i at time ¢ can be
computed as shown below:

qi (t) = (wi/x;) d (1), 4)

Using matrix notation, we can write the above
equation into the following equivalent formulation,
where: d(¢) is the infrastructure disruption at time
t; diag(x) is the diagonalized form of the vector of
production output x for the economic sectors; and fi-

3Many national statistical agencies across the globe publish their
IO data on a regular basis. In the United States, the Bureau of
Economic Analysis publishes annual 1O data in multiple formats.
For example, the supply use tables are referred to as make table
(row industries that produce the column commodities), as well
as use table (row commodities that are consumed by the column
industries).
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nally w is the vector form of the numerator in the
infrastructure-use balance ratio w;/x;.

q (1) = d (1) (diag (x))"'w ©)

Substituting the sector inoperability derived
from Eqn (5) to (3) generates the updated inoper-
ability of each sector at the subsequent time step t+1
taking into account the interdependencies amongst
the sectors. After the determination of the updated
inoperability, the corresponding economic losses can
be computed via multiplication with the production
output. Given a particular scenario, the aim of the
study is to apply the FDNA to simulate the disruption
to the transportation network and compute a system-
wide inoperability and associated duration. FDNA
results are then used to generate the disruption factor
d(t) for the DIIM to compute the value of inoperabil-
ity at various increments of ¢ until the sectors achieve
recovery.

3.3. Integrated Framework for using Network
Analysis to Assess System Recovery

This section will illustrate the integrated frame-
work for assessing system recovery, as shown in
Fig. 2. The methods first characterize the system,
defining the relevant geographic area, nodes, edges,
and metrics to model. Then, disruptive scenarios are
developed to test various levels of system disruptions.
FDNA is then applied to simulate the set of disrup-
tive scenarios, resulting in a system-wide inoperabil-
ity value, referred to as a disruption factor d(t). Op-
erability is determined based on the utility of the sys-
tem; in other words, the total worth it provides to the
system. The operability level of a node, which is in
the interval [0,100], is used to measure how much the
node meets its performance requirements. Then, the
DIIM model uses the operability values computed
from FDNA to compute the value of inoperability at
various increments of ¢ until the sectors achieve re-
covery. Finally, the results of the DIIM are used to
evaluate implications for risk-based planning and in-
vestment.

The next section will describe the application of
the integrated FDNA and DIIM framework for a
critical infrastructure system.

4. APPLICATION AND RESULTS

This section provides a demonstration of the
methods described above for a critical transportation
network in Virginia, USA. Section 4.1 will describe



Managing Physical and Economic Risk for Systems with Multidirectional Network Interdependencies 7

System characterization

metrics of interest)

(What are the relevant network nodes, edges, and

Disruptive scenarios
(What is the assumed operability of feeder nodes
for each scenario)

v

k.

Functional Dependency Network Analysis (FDNA)
(For each disruptive scenario, what is the effect on overall system operability)

4

Dynamic Inoperability Input-Output Model (DIIM)
(What are the trajectories of inoperability and economic loss for each disruptive scenario)

|

Decision-making
(What are the implications for risk-based planning and investment)

Fig 2. Overview of the integrated framework for modeling disruptions to infrastructure systems

the scope of the analysis. Section 4.2 will describe the
application of FDNA for the case study. Section 4.3
will provide the application of DIIM for the case
study. Section 4.4 will discuss the main findings and
implications for decision-making.

4.1. Scope for Demonstration of Methods: Critical
Transportation Network in Virginia, USA

The methods of this article will be demonstrated
on a critical transportation infrastructure network
in the Hampton Roads region of Virginia, USA.
This region includes 16 cities and counties, includ-
ing Virginia Beach, Norfolk, and Newport News. The
Virginia Beach-Norfolk-Newport News Metropoli-
tan Statistical Area accounted for over $100 billion
GDP in 2018 (Bureau of Economic Analysis, 2020),
which largely resulted from economic activity related
to defense, port operations, and tourism. The Port of
Hampton Roads is the third largest port in the coun-
try when measured by 20-foot equivalent units (Port
of Virginia, 2020). The region also hosts military ac-
tivities, including a strong naval presence (US Navy,
2020) and related private industries. The area is also
known for tourism, hosting 19 million visitors annu-
ally (City of Virginia Beach, 2020).

The Hampton Roads region includes critical
transportation connections for the state, includ-
ing the Hampton Roads Bridges and Tunnels. The

Hampton Roads Bridge-Tunnel (Interstate 64) con-
necting Hampton and Newport News to Norfolk and
Virginia Beach, is particularly of high importance as
it is used by over 100,000 vehicles per day during
high-tourist seasons. The Monitor-Merrimac Memo-
rial Bridge-Tunnel (Interstate 664) has a lower capac-
ity but also serves critical importance for the region
as it connects Newport News and Hampton to Suf-
folk and Chesapeake. The Berkley Bridge (Interstate
264) allows traffic from 1-464 in Chesapeake to merge
with I-264 traffic in Norfolk (Virginia Department of
Transportation, 2020a).

Disruptions to the critical transportation net-
work of the Hampton Roads region can potentially
greatly reduce the mobility within the region and
throughout the state. Minor disruptions can severely
limit daily economic activity. Major disruptions, such
as natural disasters, can potentially cause severe
physical and economic consequences. Fig. 3 shows
that the region contains critical hurricane evacuation
routes, denoted by arrows. The shading of the figure
also shows hurricane evacuation zones, with darker
colors denoting types of evacuation zones. Evacu-
ation patterns are particularly complicated for the
region due to the reliance on tunnels and bridges
that are vulnerable to weather conditions. For exam-
ple, during Hurricane Dorian in 2019, it was warned
that the Hampton Roads Bridge-Tunnel may close
temporarily, halting evacuation efforts. Additionally,
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Fig 3. Evacuation zones in the Hamp-
ton Roads region of Virginia, USA.
The arrows denote critical hurricane
evacuation routes. Source: Virginia De-
partment of Emergency Management
(2020)

BEACH

routes operated at wind restrictions and reduced
speed limits (Pilot, 2019). These types of changes can
be particularly concerning for residents with delayed
evacuation (Florido, 2018).

Mobility for this region is also important be-
cause of the large propensity for hurricane and trop-
ical storm activity. For example, the 1999 Hurri-
cane Floyd resulted in one of the largest United
States peacetime evacuations (National Weather Ser-
vice, 2020). The region is also vulnerable to other
types of natural and human-induced disasters. For
example, the region is associated with a relatively
high sea-level rise (Bekaert, Hamlington, Buzzanga,
& Jones, 2017). Additionally, there is concern over
local traffic and congestion impacting the mission
and performance of military installations (Hamp-
ton Roads Transportation Planning Organization,
2011).

The demonstration of methods studies four
scenarios. Scenario 1 involves a mild incident involv-
ing disabled vehicles or accidents on 1-264 toward
Virginia Beach, which would lead to a backup on
eastbound I-264 and connected roadways (duration
of 3 hours). Scenario 2 involves a moderate inci-
dent with a bridge tunnel closure that causes a major
backup in both directions along I-64 Hampton Roads
Bridge Tunnel and connected roadways (duration of
six hours). Scenario 3a involves a major hurricane
incident with evacuation, that assumes hurricane
evacuation routes are operating at capacity with

designated lane reversals in place. This scenario
assumes a relatively extended evacuation process
with a duration of two days, which is consistent
with patterns suggesting evacuations begin two days
prior to landfall (Dow & Cutter, 2002). Scenario
3b studies a major incident with evacuation due to
a hurricane, which focuses on the post-evacuation,
representing the time between the evacuation and
when residents are permitted to return. This scenario
models the underutilization of the roads, assuming
that the bridge tunnels are operating at a reduced
capacity due to reduced speed limits and demand,
with a duration of one day. Traffic is assumed to
primarily include emergency personnel and late
evacuees.

4.2. Application of the FDNA on Transportation
Infrastructure of Hampton Roads

The transportation infrastructure of Hampton
Roads is analyzed by converting the interstate road
network into a functional dependency graph and em-
ploying FDNA algebra. Interstate road network is di-
vided into road segments, as shown in Fig. 4(a). Both
directions for these road segments are converted into
the nodes of the FDNA graph, as shown in Fig. 4(b).
In this Fig., the edges represent the traffic flow direc-
tions at each ramp of all intersections among these
road segments.
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Fig 4. (a) Interstate road network of Hampton Roads area (b) FDNA nodes and traffic flow

4.2.1. Operability of Road Segments and
Transportation

The average daily traffic (ADT) data for each
road segment (Virginia Department of Transporta-
tion, 2020) indicates that the regular number of ve-
hicles for the relevant road segment is expected
to handle. For this simulation, it is assumed that
if this amount is met, it means the operability for
the road segment is 100. The operability value of
a road segment is calculated by the dividing num-
ber of daily vehicles by average daily number of
vehicles. If the total number is less than the av-
erage daily number of vehicles for a given day, it
means that the road segment has not met the ex-
pectation, hence the operability is less than 100. On
the other hand, if more vehicles than average travel
within a day, the road can supply this demand un-
til it reaches its capacity. Within this range, oper-
ability is considered 100, even if it is numerically
higher.

The overall operability level of transportation
is a measure that indicates the performance of
the whole interstate road network of the Hamp-
ton Roads area. It is equal to the weighted
sums of all road segments in the network where
weights are calculated based on each road seg-
ment’s ADT value. This value is the main out-
put of the FDNA model for each scenario that
is eventually used as an input for the DIIM
model.

4.2.2. Capacity

In order to conduct evacuation scenarios, the
capacity of multilane interstate roads should be
calculated. Base Capacity equation (Margiotta &
Wasburn, 2017) is as follows:

Base Capacity = 100 + 20 % Speed (mph) for Speed
< 60; 2,200 otherwise

In order to use in the simulation scenarios, aver-
age capacity is approximated as 50,400 vehicles per
lane per day by taking the average of base capacity
values for speed values of 45, 50, 55, 60, 65, and 70,
using the base capacity equation.

4.2.3. SOD for Transportation

Since the interstate roads are limited-access
roads, each road segment is mostly fed by the preced-
ing road segments. The SOD relationship among the
road segments depends on the ADT travel through
the ramps connecting each pair of road segments. The
relevant alpha values are determined by approxima-
tion of the actual ADT values provided by VDOT.
The direction of the SOD relationship is the inverse
of the traffic flow direction since a traffic jam in the
following road segments causes lines at the preced-
ing road segments. Since each scenario has a differ-
ent traffic jam location, the specific road segments
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Fig 5. Dependency structure for sce-
nario 1
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and dependency relationships under focus change for
each scenario.

Since the COD relationship is not relevant for
the transportation case, it is not included in the anal-
yses.

4.2.4. Simulation Scenarios

In this section, the loss of operability is in Hamp-
ton Roads transportation network is analyzed based
on four scenarios. Each scenario is taken into con-
sideration from the functional dependency perspec-
tive, and the operability values of dependent nodes
are calculated using FDNA algebra. At the end of
the process of calculating individual operability val-
ues for each road segment, the operability of trans-
portation is calculated as a weighted sum.

Figs. 5, 6, 7, and 8 present the dependency struc-
ture for each simulation scenario. Red nodes are the
road segments that initial traffic jam occurs. Orange
nodes are affected by the operability loss of these
road segments. Yellow nodes represent the road seg-
ments that operate at full capacity. Red arrows show
the dependency direction during a traffic jam (i.e.,
operability loss) while yellow arrows depict the de-
pendency direction at full capacity (i.e., overloaded
traffic). Thin blue lines show the traffic flow direc-
tion. Alpha values (i.e., the strength of dependency
fraction) are shown for the relevant dependency re-
lationships.
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Fig 6. Dependency structure for scenario 2

Scenario 1: Mild incident. Disabled vehicles
cause a major backup in eastbound Interstate (I) 264
toward the beach (node [-264 E H) with a flow rate
decrease from ADT to 0.3*ADT for 3 hours. This
causes a backup on 1-64 eastbound (and westbound
after [-264 junction) and I-264 eastbound (See Fig. 5).
Although this is a minor incident, it is interesting that
only one initially blocked segment can cause seven
other road segments to get jammed.
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Scenario 2: Moderate incident. Major backup in
both directions along I-64 Hampton Roads Bridge-
Tunnel (I-64 E B & 1I-64 W B) with a flow rate de-
creases from ADT to 0.1*ADT for 6 hours, caus-
ing jam on I-64 E A and 1-64 W C and redirect-
ing traffic to the other bridge-tunnel (I-664 N & I-
664 S) and eventually to I-264 (nodes G and F),
I-64 (nodes D and E) is simulated. Here, I-64 E
C is not affected much since this road segment is

east of the tunnel (See Fig. 6). Therefore, its lower
operability value is not because of congestion, but
merely because of less traffic. Similarly, I-64 W A is
also located east of the tunnel. The impact on this
road segment is much lower since the traffic redi-
rected to the other tunnel would eventually feed it
up to a normal level. This scenario shows the im-
portance of the existence of a redundant bridge-
tunnel.
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Fig 9. Inoperability versus time and economic loss versus time for scenario 1

Scenario 3a: Major incident (during evacuation).
A major incident is simulated for two days when the
Governor orders lane reversal on I-64 (E A and E B),
evacuation routes operate at full capacity, and other
nodes are at low numbers. This scenario provides a
representation of a rare evacuation case, serving as a
simulation that would not be possible to test on real
roads (See Fig. 7).

Scenario 3b: Major incident (after the evacuation,
before evacuees are permitted to return). Rather
than a wide impact traffic jam, the traffic is signifi-
cantly lower than the usual due to reduced demand.
This scenario only considers the demand by emer-
gency personnel and late evacuees. Since there is no
jam, no road segments cause a jam on another seg-
ment; hence, there is no dependency relationship in
this scenario. Therefore, there are no red or yellow
arrows, which are used to show dependency direc-
tions, in Fig. 8, but blue arrows to show the traffic
direction. The simulation is conducted for one day.
The utility of all road segments is very low because of
the ongoing hurricane threat. This is the scenario that
has the lowest overall operability value since the de-
mand is low. It is inevitable to observe the economic
consequences of this situation when it is integrated
into DIIM.

The final output of FDNA analyses, the operabil-
ity values of transportation for the scenarios 1,2,3a,
and 3b are 84.68, 86.10, 95.15, and 15.22, respectively.

4.3. Application of the Dynamic Inoperability 10
Model

In this section, results from the DIIM model are
presented. The approach is to extract the outputs

from the FDNA simulation, notably the highway net-
work inoperability and recovery duration for the sce-
narios considered in this study. The trajectories of in-
operability and economic loss are presented for each
of the scenarios as depicted in subsequent discus-
sions.

Scenario 1: Mild incident

In the mild incident scenario, we considered a
15.32% inoperability to the transportation network
with a duration of 3 hours. In terms of inoperability,
Fig. 9 shows the ten most affected economic sec-
tors as follows: (1) Computer systems design and
related services; (2) management of companies and
enterprises; (3) federal government enterprises; (4)
administrative and support services; (5) warehousing
and storage; (6) miscellaneous professional, scientific,
and technical services; (7) forestry, fishing, and related
activities; (8) state and local general government; (9)
other transportation and support activities; and (10)
legal services.

In contrast, the top 10 sectors in terms of eco-
nomic losses are: (1) State and local general govern-
ment; (2) miscellaneous professional, scientific, and
technical services; (3) administrative and support ser-
vices; (4) federal general government (nondefense);
(5) management of companies and enterprises; (6)
wholesale trade; (7) computer systems design and re-
lated services; (8) other real estate; (9) insurance carri-
ers and related activities; and (10) construction.

Clearly, the rankings generated using the inop-
erability measure are different from those generated
using the economic loss measure. Sectors that suf-
fer significant economic losses are typically those
that contribute more to the regional GDP (e.g., state



Managing Physical and Economic Risk for Systems with Multidirectional Network Interdependencies 13

Inoperability (%) vs. Time (in hrs)

Economic Loss ($M) vs. Time (in hrs)

Fig 10. Inoperability versus time and economic loss versus time for scenario 1

and local government sector, which is highly visible
and active in the region). Conversely, sectors such as
warehousing and storage, as well as forestry, fishing,
and related activities have been included in the in-
operability ranking despite their absence in the eco-
nomic loss top ten ranking. Policymakers need to rec-
ognize both inoperability (i.e., the extent to which a
sector is “damaged”) and economic loss (i.e., mon-
etary value associated with the loss of operability)
when making resource optimization decisions asso-
ciated with disaster risk management.

Scenario 2: Moderate incident

In the moderate incident scenario, we considered
a 13.90% inoperability to the transportation network
with a duration of 6 hours. In terms of inoperability,
Fig. 10 shows the 10 most affected economic sectors
as follows: (1) Computer systems design and related
services; (2) management of companies and enter-
prises; (3) federal government enterprises; (4) state
and local general government; (5) administrative and
support services; (6) warehousing and storage; (7)
forestry, fishing, and related activities; (8) miscella-
neous professional, scientific, and technical services;
(9) educational services; and (10) social Assistance.

In contrast, the top 10 sectors in terms of
economic losses are: (1) State and local general
government; (2) miscellaneous professional, scien-
tific, and technical services; (3) administrative and
support services; (4) federal general government
(nondefense); (5) management of companies and en-
terprises; (6) wholesale trade; (7) computer systems
design and related services; (8) federal general gov-
ernment (nondefense); (9) ambulatory healthcare
services; and (10) construction.

As with the previous scenario, the rankings for
inoperability and economic loss are different. Also
unique in this scenario are sectors that were not
previously included within the inoperability top 10
ranking, such as educational services and social assis-
tance. Furthermore, the ambulatory health care ser-
vices sector is now included within the economic loss
top 10 ranking, which is intuitive given the existence
of major hospitals in the region (e.g., Sentara).

Scenario 3a: Major incident (during evacuation)

In this scenario, we consider the evacuation due
to a hurricane incident, particularly during the evacu-
ation timeline itself. This scenario is designed to be an
extreme but plausible case in which a massive evacu-
ation takes place over multiple days. We considered
a 4.85% inoperability to the transportation network
with a duration of 2 days. In terms of inoperability,
Fig. 11 shows the ten most affected economic sec-
tors as follows: (1) Computer systems design and re-
lated services; (2) Federal government enterprises; (3)
Management of companies and enterprises; (4) State
and local general government; (5) Social assistance;
(6) Educational services; (7) Nursing and residential
care facilities; (8) Ambulatory health care services; (9)
Forestry, fishing, and related activities; and (10) Ad-
ministrative and support services.

In contrast, the top 10 sectors in terms of
economic losses are: (1) State and local general
government; (2) Miscellaneous professional, sci-
entific, and technical services; (3) Administrative
and support services; (4) Federal general govern-
ment (nondefense); (5) Management of companies
and enterprises; (6) Computer systems design and
related services; (7) Wholesale trade; (8) Federal
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Fig 11. Inoperability versus time and economic loss versus time for scenario 1

Inoperability (%) vs. Time (in hrs)

Economic Loss ($M) vs. Time (in hrs)

Fig 12. Inoperability versus time and economic loss versus time for scenario 1

general government (nondefense); (9) Ambulatory
healthcare services; and (10) Construction.

Relative to the previous scenario, the economic
loss ranking is practically the same with a few shuf-
fling. The major change was in the inoperability rank-
ing where we now see the prevalence of sectors that
are actively engaged in disaster risk management
such as: social assistance; nursing and residential care
facilities; and ambulatory health care services.

Scenario 3b: Major incident (after the evacuation,
before evacuees are permitted to return)

In this scenario, we consider a hurricane incident,
but the focus is on the time period directly after the
evacuation but prior to the return of the evacuees to
the region. We considered an 84.78% inoperability to
the transportation network with a duration of 1 day.
In terms of inoperability, Fig. 12 shows the 10 most
affected economic sectors as follows: (1) Computer

systems design and related services; (2) Federal gov-
ernment enterprises; (3) Management of companies
and enterprises; (4) State and local general govern-
ment; (5) Social assistance; (6) Educational services;
(7) Nursing and residential care facilities; (8) Ambu-
latory health care services; (9) Forestry, fishing, and
related activities; and (10) Administrative and sup-
port services.

In contrast, the top 10 sectors in terms of eco-
nomic losses are: (1) State and local general gov-
ernment; (2) Miscellaneous professional, scientific,
and technical services; (3) Administrative and sup-
port services; (4) Federal general government (non-
defense); (5) Management of companies and enter-
prises; (6) Computer systems design and related ser-
vices; (7) Wholesale trade; (8) Federal general gov-
ernment (nondefense); (9) Ambulatory healthcare
services; and (10) Construction.

Comparing scenarios 3a and 3b, the rankings are
identical since these scenarios have relatively longer
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Table I. Summary of DIIM Results for Different Case Study Scenarios

Operability Level

Inoperability Level

Scenario # Scenario Title (%) (%) Duration Loss ($M)

1 Scenario 1: Mild incident 84.68 15.32 3 hours(0.125 days) 8.07

2 Scenario 2: Moderate incident 86.10 13.90 6 hours(0.25 days) 12.49

3a Scenario 3a: Major incident (during 95.15 4.85 2 days 29.25
evacuation)

3b Scenario 3b: Major incident (after) 15.22 84.78 1 day 256.42

durations and are more severe than those of the first
two scenarios. Nonetheless, the overall loss for Sce-
nario 3b is much higher than that of Scenario 3a. This
is because the inoperability level for the transporta-
tion network is much higher for Scenario 3b com-
pared to that of Scenario 3a.

The results for the four scenarios are summa-
rized in Table I. The table shows the inoperability and
duration parameters for each scenario, which were
used as the inputs for the DIIM. The last column of
the table shows the economic loss for each scenario,
which was aggregated for all the economic sectors in
the affected region. The dynamic trajectories of the
economic loss for each of the top 10 most affected
sectors are shown in Figs. 9-12. From Table I, we can
draw the following conclusions. The economic loss
for the mild scenario (Scenario 1) has been found to
be $8.07 million, in contrast to the $12.49 million loss
incurred in the moderate scenario (Scenario 2). Con-
sidering that both the foregoing scenarios only lasted
for fractions of a day, these losses are deemed to be
quite significant.

For relatively longer durations of inoperability,
the losses are expected to be higher. For example, in
Scenario 3a, the economic loss has been found to be
$29.25 million. In contrast, the loss incurred in Sce-
nario 3b is much higher at $256.42 million since the
prespecified inoperability disruption is also markedly
higher compared to Scenario 3a (i.e., 84.78% versus
4.85%, respectively). Note that Scenario 3b does not
at all correspond to the evacuation return. It is the
period after evacuation and prior to the evacuation
return. During this period, the roads are assumed to
be significantly underutilized, and the losses can be
assessed based on the reduced levels of economic ac-
tivities relative to the “normal” use of the roads by
the workforce, business sectors, and more notably,
trade and tourism. Furthermore, inoperability is in-
terpreted either as exceeding the capacity due to the
incident (Scenario 3a) or underutilized capacity due
to aberrant low road activity (Scenario 3b). Note that

Scenarios 3a and Scenario 3b are not mutually exclu-
sive. As a matter of fact, the losses for Scenarios 3a
and 3b of $29.25 and 256.42 million, respectively, can
be combined to get an overall loss for a major hur-
ricane incident. In summary, the magnitude of losses
for each of the four scenarios can be used to inform
and justify the need for preparedness investments.

4.4. Findings and Implications for Decisionmakers

Evaluating risk for this case study involves ex-
ploring the impact of uncertainties on objectives, as
framed by the International Organization for Stan-
dardization (2018) and others (Thekdi & Lambert,
2015). Here, the uncertainties can be understood us-
ing the studied scenarios, assumptions, and resulting
model outputs. We pose several questions that can
guide decision making:

Which uncertainties matter the most? Some sce-
narios result in higher levels of severity. In the case
study, Scenario 3b, evacuation due to a hurricane
incident, particularly after the evacuation but prior
to the return of the evacuees to the region, resulted
in the highest loss. From a decision-making per-
spective, there may be a need to further study this
scenario using additional iterations of the model.
Additional iterations could involve using more spe-
cific scenario designs that are able to capture a wider
variety of storm conditions, evacuation policies, and
assumptions about human behavior models during
evacuation.

Which sectors matter the most? Some sectors
were highly impacted across all studied scenarios. For
example, in all four of the studied scenarios, the top-
most affected sector for inoperability was the Com-
puter systems design and related services sector. Addi-
tionally, sectors including Management of companies
and enterprises; Federal government enterprises; and
State and local general government were found in the
top 10 affected sectors for inoperability. Similarly,
in all four studied scenarios, the topmost affected
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sector for economic losses was State and local gen-
eral government. Additionally, sectors including
Miscellaneous professional, scientific, and technical
services; Administrative and support services; and
Federal general government (nondefense) were found
in the top 10 affected sectors for economic losses.
This multidimensional information provided by
the inoperability and economic loss measures can
guide policymaking by directing mitigation activities
toward these particular sectors.

What is the knowledge basis for assumptions?
Some assumptions may require further study in later
iterations of the model. For example, assumptions
about ADT and the most appropriate multiplication
factors were used. While ADT was based on known
and publicly available data, there may be issues with
spatiotemporal accuracy, future projections, and rel-
evance. However, these types of assumption issues
would be consistent across the studied scenarios,
therefore, would not favor or disfavor any particular
scenario. In stages of planning for system investment
and further study, it may be necessary to further ad-
dress issues of assumptions.

What types of uncertainties matter the most? We
pose the question: From a policymaking and in-
vestment perspective, should minor and recurring
scenarios be prioritized above extreme event or dis-
aster scenarios? This is a policy question that involves
decisionmakers and public health values that would
require extensive further study.

How should the reiteration of the model be con-
ducted? It may be necessary to reiterate the methods
of the article to address a wider variety of influential
scenarios to perform a more granular analysis. For
example, analysts may choose to model additional
hurricane types and additional evacuation assump-
tions concurrently in a more refined analysis. Addi-
tionally, decisionmakers may choose to concurrently
study only those scenarios that share a similar sever-
ity profile. For example, they may choose to only
evaluate hurricane-related scenarios concurrently.
There may also be a need to perform weighting on
particular model outputs in order to capture the
relative importance of scenarios that can be due to:
(i) likelihood of scenarios, (ii) relevance for decision
making, or (iii) varying amounts of uncertainty.
Finally, the integrated FDNA-DIIM framework—
which in this article was applied to a highway
transportation network—can be used for modeling
disruptions in maritime networks and other modes
of transportation. For example, opportunities exist
to apply the FDNA-DIIM framework to model the

Tatar, Santos, and Thekdi

ripple effects of the six-day closure of the Suez Canal
due to a large container vessel that blocked this vital
commerce channel on March 23, 2021. Nonetheless,
as with any case studies, constraints in data availabil-
ity may pose as a challenge with the formulation and
application of the FDNA-DIIM framework. It highly
hinges on the availability and accuracy of traffic and
other relevant volume occupancy data, as well as
economic 1O data. For a transportation network that
is situated near the boundaries of several nations
(such as the Suez Canal), a multicountry model is
warranted, which in turn requires temporally and
spatially accurate 1O data for the affected countries.

5. CONCLUSIONS

This article has presented an integrated frame-
work for modeling the relationship between disrup-
tions to infrastructure networks and economic ac-
tivity. This work is one of the few recent attempts
to study the relationship between physical network
models and economic assessment of network recov-
ery that considers time as a factor in the degradation
of functionality. In particular, this article is the first
to operationalize the integration of the FDNA and
DIIM to form a cohesive risk-based model of criti-
cal infrastructure that can be used to guide risk-based
decision-making and investment®.

The methods of the article were demonstrated
using disruptive scenarios for a critical transporta-
tion network in the Hampton Roads region of
Virginia, USA. We studied scenarios involving a
mild incident, moderate incident, and two scenarios
involving a severe incident. The results found several
policy-related implications, including both sectors
and uncertainties that were particularly influential in
decision making for various infrastructure interven-
tions. The results will be useful for critical infrastruc-
ture managers who seek to prioritize investments
in network reinforcements, with a broader goal of
promoting and security infrastructure functionality
and economic activity. Moreover, calculating the
economic impact of disruptive scenarios will im-
prove risk communication for the public. While the
methods were applied to a transportation network,
they are generalizable for a variety of networked

4The conceptual model developed by Garvey, Pinto, and Santos
(2014) is limited only to the FDNA and the static version of the
inoperability model. Furthermore, the case study presented in the
current paper utilizes actual traffic data (e.g., ADT) and region-
specific IO data; hence achieving a more seamless integration be-
tween FDNA and DIIM.
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infrastructure systems. Significant opportunities re-
main in specializing the integrated FDNA-DIIM
framework for other networked systems (e.g., air and
water transportation modes, electric power grids, oil
and gas pipelines, and supply chains).

There are several opportunities for additional
study. First, there is an opportunity to further un-
derstand how specific investments can be prioritized
across competing nodes. For example, a logical next
step would be to understand the impact of reinforc-
ing specific nodes on economic loss and recovery
duration. Second, there is an opportunity for further
study on how to approach a sensitivity analysis of
the model results, taking into consideration the com-
plex mathematical relationships represented in the
FDNA and DIIM. Sensitivity analysis, for example,
can be performed to assess the volatility of the model
results due to single and simultaneous changes in
variables (e.g., infrastructure demand, available
capacity, severity of scenario, and time), as well as
parameters that were assumed to be fixed due to lim-
itations in data resolution (e.g., average daily traffic,
vehicle type and occupancy, and annualized produc-
tion output data for various economic sectors, among
others). While the authors believe that the integra-
tion of the physical and economic models is in itself
is a novel contribution of this article, opportunities
exist to integrate social and human decision-making
models to more accurately simulate evacuation
choices and behaviors. Finally, opportunities exist to
use the work of this article for modeling and decision
making for resilient architecture design that applies
to a variety of networked infrastructure types.
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