3 frontiers ‘ Frontiers in Marine Science

‘ @ Check for updates

OPEN ACCESS

EDITED BY

Jun Sun,

China University of Geosciences
Wuhan, China

REVIEWED BY

Matthew McGinness Mills,
Stanford University, United States
Irina N. Shilova,

Second Genome, United States

*CORRESPONDENCE
Corday R. Selden
crselden@marine.rutgers.edu

"PRESENT ADDRESSES

Corday R. Selden,

Department of Marine and Coastal
Sciences, Rutgers University, New
Brunswick, NJ, United States

Sveinn V. Einarsson,

Department of Microbiology and Cell
Science, University of Florida,
Gainesville, FL, United States

"These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Marine Biogeochemistry,

a section of the journal
Frontiers in Marine Science

RECEIVED 16 February 2022
ACCEPTED 29 July 2022
PUBLISHED 05 September 2022

CITATION

Selden CR, Einarsson SV, Lowry KE,
Crider KE, Pickart RS, Lin P, Ashjian CJ
and Chappell PD (2022) Coastal
upwelling enhances abundance of a
symbiotic diazotroph (UCYN-A) and its
haptophyte host in the Arctic Ocean.
Front. Mar. Sci. 9:877562.

doi: 10.3389/fmars.2022.877562

COPYRIGHT

© 2022 Selden, Einarsson, Lowry,
Crider, Pickart, Lin, Ashjian and
Chappell. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Marine Science

TYPE Brief Research Report
PUBLISHED 05 September 2022
p0110.3389/fmars.2022.877562

Coastal upwelling enhances
abundance of a symbiotic
diazotroph (UCYN-A) and
its haptophyte host in the
Arctic Ocean

Corday R. Selden™", Sveinn V. Einarsson'"*, Kate E. Lowry?*?,
Katherine E. Crider?, Robert S. Pickart®, Peigen Lin?,
Carin J. Ashjian® and P. Dreux Chappell*

‘Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States,
2Science Philanthropy Alliance, Palo Alto, CA, United States, *Woods Hole Oceanographic
Institution, Woods Hole, MA, United States

The apparently obligate symbiosis between the diazotroph Candidatus
Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host,
Braarudosphaera bigelowii, has recently been found to fix dinitrogen (N,) in polar
waters at rates (per cell comparable to those observed in the tropical/subtropical
oligotrophic ocean basins. This study presents the novel observation that this
symbiosis increased in abundance during a wind-driven upwelling event along the
Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B.
bigelowii among eukaryotic phytoplankton increased most significantly in waters
over the upper slope. As the host's nitrogen demands are believed to be supplied
primarily by UCYN-A, this response suggests that upwelling may enhance N fixation
as displaced coastal waters are advected offshore, potentially extending the duration
of upwelling-induced phytoplankton blooms. Given that such events are projected
to increase in intensity and number with ocean warming, upwelling-driven Ny
fixation as a feedback on climate merits investigation.
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N, fixation, diazotroph, UCYN-A, Braarudosphaera bigelowii, Arctic Ocean, upwelling,
shelfbreak, nitrogen

Introduction

Marine dinitrogen (N,) fixation, the conversion of N, gas to ammonia, has
historically been ascribed primarily to activity of the filamentous cyanobacterium
Trichodesmium in nitrogen (N)-deplete tropical and subtropical waters (e.g., Capone
and Carpenter, 1982). However, recent observation of N, fixation and N,-fixing microbes
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(diazotrophs) in non-paradigmatic systems has prompted
reappraisal of this model (Zehr and Capone, 2020). In
particular, the haptophyte-symbiont Candidatus
Atelocyanobacterium thalassa (UCYN-A) has received
significant attention due to its wide distribution (see Zehr and
Capone, 2020) and relatively high diazotrophic activity (e.g.,
Martinez-Perez et al., 2016). Unlike Trichodesmium, N, fixation
by UCYN-A appears either insensitive to or indirectly
stimulated by fixed inorganic N in the environment (e.g.,
nitrate; Mills et al., 2020), raising questions regarding the
responsiveness of this clade to changes in the ocean’s fixed N
inventory and obfuscating discussion of the feedback
mechanisms involved in N homeostasis. Here, we present data
suggesting that UCYN-A and its haptophyte host,
Braarudosphaera bigelowii, respond positively and immediately
to upwelling of deep, nutrient-rich waters at the shelfbreak of the
Beaufort Sea in the western Arctic Ocean, where active N,
fixation has been recently observed at significant rates
(Figure 1; Blais et al., 2012; Sipler et al., 2017; Harding
et al., 2018).

Materials and methods

Late in the summer of 2017 (August 30 - September 5), the
R/V Sikuliag surveyed waters along the Alaskan Beaufort
shelfbreak (Figure 1). The expedition captured different stages
of upwelling (see Results and Supplementary Figure 1). Samples
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FIGURE 1

Station locations (diamonds) and N, fixation rates (not associated
with upwelling) measured in August 2008-2009 (crosses; Blais
et al, 2012), August 2011 (circles; Sipler et al.,, 2017) and
September 2016 (triangles; Harding et al., 2018). The solid and
dashed lines indicate the 50 and 200 m isobaths, respectively
(NOAA National Geophysical Data Center 2009; Jakobsson et al.,
2012). The Beaufort Gyre is represented schematically by the
curved arrow, and the direction of wind that typically induces
upwelling is indicated by the straight arrow. Pt. Barrow is labeled
with a star.

Frontiers in Marine Science

02

10.3389/fmars.2022.877562

and hydrographic profiles were collected along a transect
spanning from the mid-shelf to the upper slope. The transect
sampled four different time periods: at the start of an upwelling
event (August 30-31), during the latter part of the event
(September 1-2), shortly after the event concluded (September
3-4), and at the onset of a second, weaker upwelling event
(September 5). Along with hydrographic data, we collected
surface seawater samples to assess community composition.
Upon observing the presence of UCYN-A’s haptophyte host,
B. bigelowii, we investigated its abundance and that of two
common UCYN-A sublineages, UCYN-A1 and UCYN-A2,
found previously in the region (Harding et al, 2018) via
targeted quantitative PCR (qQPCR).

Hydrographic data collection

Conductivity-temperature-depth (CTD) measurements
were made using a Sea-Bird Electronics 911-plus system
affixed to a sampling rosette. Nitrate profiles were collected at
7 to 10 stations per transect with an optical nitrate sensor
(SUNA V2, Sea-Bird Scientific). To create depth profiles, we
aligned the SUNA and CTD data by the recorded time. Water
samples from 4-6 depths at 12 representative stations were taken
for direct nitrate concentration measurements to calibrate the
nitrate sensor. Nitrate concentrations in water samples were
measured using an Alpkem RFA continuous flow analyzer
following standard colorimetric protocols (Gordon et al,
1993). SUNA nitrate profiles were calibrated by fitting a linear
regression to direct measurements from corresponding depths.

Atmospheric fields

To characterize the wind forcing during the expedition, we
use the ERA5 reanalysis product from the European Centre for
Medium Range Weather Forecasting (ECMWEF; Hersbach et al.,
2020). The horizontal resolution is 0.25°, and the temporal
resolution is 1 hr. The 10 m wind field was used.

DNA sample collection and extraction

Surface water was collected from Niskin bottles mounted to
the CTD rosette in dark, 4 L acid-washed (10% HCI) bottles
(Nalgene), and promptly filtered (0.22 pum Sterivex  filters,
MilliporeSigma) using a peristaltic pump. Filters were sealed,
flash-frozen in liquid N, and stored at -80°C until DNA
extraction. To prepare samples for extraction, the Sterivex
filters were first removed from their casing in a laminar flow
hood using a clean PVC pipe cutter (1% sodium hypochlorite
solution soak) to open the case and an autoclaved scalpel to
separate the filter. Filters were then transferred in their entirety
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to sterile microcentrifuge tubes containing AP1 buffer (Qiagen)
and beaten for 2 minutes with silica beads. The beads were
removed using a QIAshredder spin-column (Qiagen) and
DNA was immediately extracted using the DNeasy Plant
Mini Kit (Qiagen) following the manufacturer’s protocol.
DNA yields following extraction varied from 1267 to 4810 ng
per sample.

Community analysis

To investigate eukaryote community diversity, we
performed 18S rRNA amplicon sequencing. First, primers
derived from the 18S rRNA Illumina Earth Microbiome
Project were used to amplify the SSU rRNA 18S V9 marker
gene (Stoeck et al., 2010) via polymerase chain reaction
(PCR). The products were then gel-purified (GeneJET Gel
Extraction Kit, ThermoFisher), subject to a further round of
PCR to attach Illumina indices, Mag-Bead purified using
AMPure XP beads (Beckman Coulter), and sequenced on
Illumina MiSeq Desktop Sequencer at Old Dominion
University using a 2x300 bp kit. The DNA sequences were
analyzed using the DADA2 pipeline (Callahan et al., 2016);
the average number of reads per sample was 66,000. Quality
control steps roughly followed defaults of the DADA2
pipeline with a few minor exceptions. Reads without intact
primer sequences were discarded from analysis; intact primer
sequences were removed from reads using cutadapt (Martin,
2011). Following primer removal, reads were filtered and
trimmed. Amplicon sequence variants were identified via
BLASTn comparison (Altschul et al.,, 1990) to an in-house
collection of eukaryote 18S rRNA sequences from the
National Center for Biotechnology and Information (USA)
and SILVA (German Network for Bioinformatics
Infrastructure) databases. Only the subset of 18S rRNA
reads that were classified as one of the major phytoplankton
lineages (dinoflagellates, diatoms, or haptophytes) are
presented here. Only B. bigelowii reads were enumerated to
the species level.

Diazotroph and host quantification

The abundances of UCYN-AI, UCYN-A2 and B. bigelowii
were determined in triplicate via qPCR. Samples were first
diluted 1:10 with nuclease-free qPCR-tested ultrapure water
(Millipore). Reactions were then prepared by combining 10 ul
2x TaqgMan Fast Advanced Master Mix (Applied Biosystems), 4
ul nuclease-free water, 1.6 ul 5 uM custom forward and reverse
primers, 0.8 pl 5 uM custom probe, and 2 pl diluted DNA extract
(2.5 - 10 ng DNA) for a total reaction volume of 20 pl. These
assays targeted nifH sequences (a structural gene associated with
the N, fixation enzyme) specific to two UCYN-A sublineages,
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UCYN-A1 (Church et al, 2005) and UCYN-A2 (Thompson
et al, 2014), and an 18S rRNA sequence associated with a B.
bigelowii identified in association with UCYN-A2 (Thompson
et al, 2014). Reactions were carried out using a StepOnePlus
Real-Time PCR system (Applied Biosystems) following
manufacturer’s guidance. Assay efficiencies for this study
ranged from 92.4 to 100.4%. Samples, serially-diluted (5 x 10°
>-10° ng DNA ul'") synthetic plasmids (GeneWiz), and no-
template controls were all run in triplicate; mean values are
presented here. The gene concentration range for synthetic
plasmid dilution curves ranged from 9.98 x 10'-10® gene
copies L' for B. bigelowii 185 rRNA, and 3.56 x 10'-10° gene
copies L' for UCYN-A1 and UCYN-A2. Effective limits of
detection and quantification were calculated as described in
Selden et al. (2021) by assuming that the minimum detectable
and quantifiable concentrations are 3 and 10 copies reaction™,
respectively (Bustin et al., 2020). These limits varied due to slight
differences in sample filtration volume, ranging from 170-220
gene copies L and 575-735 gene copies L', respectively.

Statistics

One-way analysis of variance (ANOVA) tests were performed
to assess differences among transect occupations in diazotroph
and host mean absolute abundances and host relative abundance
amonyg all phytoplankton sequences. Calculated test statistics were
compared to those computed from 10,000 random permutations
of the data to assess significance (Manly 2007), using an alpha
criterion of 0.05. This approach does not require the assumption
that the residuals are normally distributed.

Results and discussion
Pre-upwelling conditions

As the upwelling event commenced, the water column in the
vicinity of the Beaufort shelfbreak was weakly stratified. Nitrate
concentrations in the upper water column were low or
undetectable (Figure 2A), and haptophytes represented only a
small fraction of the eukaryotic phytoplankton present (<1%;
Supplementary Table 1) on the shelf and slope. The absolute
abundance of B. bigelowii was low across the shelf and shelfbreak
(mean = 1.44 x 104 gene copies L‘l, n = 4 stations;
Supplementary Table 1; Figure 2A), but increased at the most
seaward station (2.6 x 10° gene copies L'). UCYN-AI and
UCYN-A2 mirrored this pattern (Supplementary Table 1;
Figure 2A). As the abundance of sublineage-specific nifH
genes is low compared to the 18S rRNA sequences used to
quantify B. bigelowii, UCYN-A1 was only detected at the most
offshore station and UCYN-A2 could not be detected at one of

the mid-shelf stations (Supplementary Table 1).
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FIGURE 2

Cross-shelf nitrate concentrations, UCYN-AL and UCYN-A2 nifH gene abundance, and B. bigelowii 185 rRNA abundance (log;o(gene copies L™))
at the onset of the upwelling event [August 30-31, (A)], during the event [September 1-2, (B)], after the event [September 3-4, (C)], and at the
onset of a second, weaker upwelling event [September 5, (D)]. The isopycnals are contoured in black (kg m™). The contours of 6 and 10 uM
nitrate are highlighted in red. The grey triangles are CTD-only stations, the blue triangles are the stations where both CTD and nitrate data were
measured, and the stations with gene and rRNA abundance measurements are circled. The bathymetry is from the International Bathymetric

Chart of the Arctic Ocean version 3.0 (Jakobsson et al., 2012).
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Evidence for upwelling

Upwelling along the Alaskan Beaufort Sea shelf typically
occurs when easterly winds exceed 4 m s (Lin et al., 2019). This
reverses the normally eastward-flowing shelfbreak jet, and brings
water at depth from the basin onto the shelf (Pickart et al., 2011;

Frontiers in Marine Science

Schulze and Pickart, 2012). A sub-surface mooring situated just
seaward of the shelfbreak, approximately 35 km to the west of
the R/V Sikuliaq repeat transect, provided context for the
shipboard measurements (Supplementary Figure 1). The
along-coast winds became upwelling favorable just as the first
transect was occupied (August 30-September 1). Following this,
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the near-bottom salinity increased and the shelfbreak jet
reversed to the west. The second transect (September 1-2) was
occupied just past the peak of the event, while the third transect
(September 3-4) was carried out after the upwelling had
subsided. The final transect (September 5) was done at the
start of another event that was considerably weaker.

The first upwelling event caused isopycnal shoaling and
drove nitrate-rich waters onto the shelf in a thin stratified
layer roughly 20 m above the bottom (Figure 2B). Nitrate
concentrations on the shelf decreased as upwelling subsided
(Figure 2C), likely due in part to uptake by growing
phytoplankton communities (Figure 3) as well as deepening of
isopycnals. On the final transect occupation (September 5;
Figure 2D), nitrate was again drawn onto the shelf despite the
weaker wind event. This is likely because the water column had
not fully relaxed from the earlier event, and therefore the
previously upwelled water was still located somewhere close to
the shelf edge.

Response of UCYN-A and its
haptophyte host

Following the onset of upwelling (September 1), chlorophyll-
a fluorescence increased (Figure 3) and peaks broadened,
suggesting enhanced phytoplankton biomass in the well-lit
mixed layer. Concomitantly, we observed a marked increase

g
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B. bigelowii (%)

Relative abundance of
Fluoresence

Depth (m)

0 10
Distance along transect (km)

20 30 40

FIGURE 3

Chlorophyll a relative fluorescence (lines) and relative abundance
of B. bigelowii 18s rRNA sequence reads (diamonds) among all
eukaryotic phytoplankton (haptophytes, dinoflagellates, diatoms)
at the onset of the upwelling event (August 30-31, A), during the
event (September 1-2, B), after the event (September 3-4, C),
and at the onset of a second, weaker upwelling event
(September 5, D; top panel), aligned with bathymetry from the
International Bathymetric Chart of the Arctic Ocean version 3.0
(bottom panel; Jakobsson et al., 2012). Blue coloration (bottom
panel) indicates water column depth.
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in the abundance of haptophyte 18S rRNA sequences relative
to the sum identified as eukaryotic phytoplankton (diatoms,
dinoflagellates, haptophytes) across the transect from a mean of
1.1% to 3.0% (one-way ANOVA, nyyg 30 = 5, Ngep, 1 = 5, F = 9.34,
p = 0.019), though haptophytes never made up more than 4% of
the community at any given station (Supplementary Table 1).
The largest sub-group among haptophyte reads were most
closely aligned to sequences from B. bigelowii (>99% identity
with coverage of 161/163; Hagino et al., 2013). Prior to
upwelling, reads identified as B. bigelowii were only detected in
the low-salinity waters (<28 psu) of the offshore end-member
(Figure 3; Supplementary Table 1), consistent with prior reports
from the region (Shiozaki et al., 2018). The mean relative
abundance of B. bigelowii sequences among those of
haptophytes, and among those of eukaryotic phytoplankton
broadly, increased at all stations during upwelling except at
the most coastal station where it remained too low to be
observed among 18S rRNA reads (Supplementary Table 1;
Figure 3). The highest relative abundances of B. bigelowii were
observed at slope stations as upwelling subsided and at the start
of the second weaker event, where it represented >1% of
eukaryotic phytoplankton (Figure 3) and >40% of haptophyte
18S rRNA reads. While the increase in B. bigelowii as a
proportion of the haptophyte population at stations during the
onset of upwelling and during peak upwelling were not
statistically significant using a standard alpha criterion of
0.050 (one-way ANOVA, npyug 30 = 5 Ngep. 1 = 5, F = 3.92, p
=0.054), likely due to our small sample size, the final occupation
(at the beginning of a second, weaker event) bore significantly
higher values than the occupation during the onset of upwelling
(one-way ANOVA, npyg 30 = 5 Ngep, 5 = 5, F = 6.58, p = 0.041).
The absolute abundance of B. bigelowii 18S rRNA reads
correlated with its relative abundance among eukaryotic
phytoplankton (Supplementary Figure 2). During upwelling,
the absolute abundance of B. bigelowii and both UCYN-A
sublineages increased at all stations except the shallowest,
where abundance of B. bigelowii and UCYN-A2 decreased
(Figure 2; Supplementary Table 1). Nitrate was undetectable in
the water column at this station (Figure 2B). B. bigelowii absolute
abundance across the entire transect was greater during upwelling
than pre-upwelling (one-way ANOVA, nayg 30 = 5 Nsep. 1 = 5,
F =9.16, p = 0.046). Significant differences between pre-upwelling
and upwelling conditions were not observed for UCYN-A1 (one-
way ANOVA, npug 30 = 5 Ngep. 2 = 5, F = 4.51, p = 0.094) or
UCYN-A2 abundance (one-way ANOVA, nyyg 30 = 5, sep. 1 = 5,
F =5.03, p = 0.086). As upwelling began to relax, a clear gradient
in the abundance of the three organisms appeared with the
highest abundances observed at the most offshore station
(Figure 2C). By the fourth occupation (at the onset of a weaker
upwelling event), abundances of UCYN-A1 (one-way ANOVA,
Naug. 30 = 5 Ngep. 5 = 5, F = 4.00, p = 0.049) and UCYN-A2 (one-
way ANOVA, nyyg 30 = 5 Ngep, 5 = 5, F = 3.90, p = 0.009) had
significantly increased relative to pre-upwelling conditions.
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Given the Eulerian nature of this study, and the physical
dynamics of the region, some of the observed enhancement in B.
bigelowii and UCYN-A abundances may be attributable to
biological patchiness in shelf-waters. However, it is highly
unlikely that the observed enhancement resulted solely from
alongshore transport of shelf waters because B. bigelowii reads
were too rare to be detected among 18S rRNA amplicon
sequences collected on the shelf to the east of the study site at
the onset of upwelling (Einarsson, 2021). Indeed, they were only
detected to the east in waters seaward of the shelf-break, as was
the case for the transect described in this study.

As a thought experiment, we calculated doubling times for
sequence abundance at each station (Supplementary Table 1).
These values were largely reasonable when compared to
doubling times for cells (1+ days)—a comparison which
assumes that the rate of DNA replication is equal to the rate
of cell division. However, B. bigelowii 185 rRNA doubling times
at the three intermediate shelf stations during the second
occupation (upwelling; September 1-2), and the most coastal
station at third occupation (relaxation; September 3-4), showed
extreme rates of increase which were unrealistic when compared
to doubling times for cells. This trend can be explained by
changes in ploidy. Many eukaryotes undergo cyclic changes in
ploidy related to their growth cycles and cell size (Parfrey et al.,
2008). High levels of DNA are observed in large vegetative cells
(Kondorosi et al., 2000). Increases in haptophyte ploidy are thus
consistent with the hypothesis that upwelling relieved growth
limitation of the diazotroph-haptophyte symbiosis. We note that
UCYN-A also displayed rapid DNA doubling times at certain
stations; recent work indicates that some cyanobacteria do
contain multiple copies of their genome and that this number
can greatly vary at different growth stages (Griese et al., 2011;
Oliverio and Katz, 2014). As discussed above, community
patchiness, too, represents a confounding variable in
these calculations.

Throughout the study, the abundances of B. bigelowii 18S
rRNA and UCYN-A2 nifH sequences remained tightly
correlated at a ratio of ~5 18S rRNA:1 nifH gene copy (linear
regression, R* = 0.966, p < 10™""). In conjunction with recent
work from Mills et al. (2020), who found that B. bigelowii relies
on diazotroph-derived N to meet its N demand even when other
forms of N are available, this finding suggests that UCYN-A was
continuously fixing N for its host. It is thus reasonable to expect
that volumetric N, fixation rates increase with abundance of
the symbiosis.

Taken together, the results presented here indicate that
upwelling favored growth of UCYN-A and its host, B. bigelowii,
in surface waters across the Beaufort shelfbreak. In so doing, the
upwelling event likely drove increased N, fixation as well. We
propose two potential explanatory mechanisms: (1) the growth of
UCYN-A and its symbiont were indirectly stimulated by nitrate
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(e.g., by increased availability of plankton exudates) as reported
from the California Current System by Mills et al. (2020), and/or
(2) the UCYN-A/haptophyte symbiosis proliferated because non-
diazotrophic phytoplankton drew down nitrate in advance of
other upwelled nutrients and the community became N-limited
while phosphate and iron remained available, creating a niche for
the diazotrophic symbiosis. As samples for DNA analysis were
only collected from surface waters, where nitrate concentrations
were always low due to rapid biological utilization, and because
samples for phosphate determination were not collected, we
unfortunately cannot speculate as to mechanism at this time.

Regardless of the exact mechanism, the response of the
UCYN-A/haptophyte symbiosis to upwelling observed here
may be occurring in upwelling systems globally. Subramaniam
et al. (2013) observed enhanced N, fixation rates following
upwelling in the equatorial Atlantic where UCYN-A is known
to be highly active (Martinez-Perez et al., 2016). Additionally,
Sohm et al. (2011) observed high N, fixation rates in the
Benguela upwelling system. Though they assessed the
abundance of a range of diazotrophs, these authors were
unable to identify the diazotroph responsible. However, the
primers now commonly used for UCYN-A2 and its host had
not yet been developed at the time of their study.

Finally, these results suggest that Arctic Ocean N, fixation
may be highly variable as local diazotrophs respond to dynamic
physical conditions. This variability is likely not reflected in the
only published estimate of N, fixation on the Arctic shelf (3.5 Tg
Ny or ~2.7% of global N, fixation; Sipler et al., 2017), which is
based on relatively few data points with low spatial and temporal
coverage. Considering upwelling-driven N, fixation could thus
significantly augment basin-wide fixed-N input estimates in the
Arctic, as well as in other upwelling systems.

Conclusions

This study presents the novel observation that the
abundance of the diazotroph UCYN-A and its haptophyte
host increases during and after upwelling at the Beaufort Sea
shelfbreak. As UCYN-A appears to be the primary N source for
its host (Mills et al., 2020), it is reasonable to infer that N,
fixation rates would be similarly enhanced, though this
inference requires further investigation. In polar regions
(Harding et al., 2018; Shiozaki et al., 2020), UCYN-A fixes
N, at per-cell rates comparable to those observed in the (sub)
tropical North Atlantic (Krupke et al.,, 2015; Martinez-Perez
et al., 2016), where it is responsible for ~20% of N, fixation
(Martinez-Perez et al., 2016). Even a moderate enhancement in
rates associated with upwelling may be meaningful for the N
budget at local to regional scales. As N, fixation rates are
difficult to quantify, direct measurements typically exhibit poor
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coverage through space and time and thus rarely resolve short-
lived physical features adequately. Our findings suggest that N,
fixation may be underestimated not only in the Arctic, but in
other upwelling coastal systems where UCYN-A thrives. More
widespread application of high-resolution approaches to
studying diazotrophy (Benavides and Robidart, 2020) are
necessary to discern the impact of ocean physics on N,
fixation. Doing so may be particularly important in the
Arctic Ocean, where the number and intensity of upwelling
events is increasing (Pickart et al., 2013)—a trend that may be
exacerbated by warming-induced ice retreat. Previous work
from the region (Shiozaki et al., 2018) has found that, where
UCYN-A2 is present, ~2% of new production (i.e., that driven
by upwelled nitrate or N, fixation) derives N from N, fixation.
If diazotroph-derived N augments upwelling-driven primary
productivity, then it may represent a negative climate feedback
by enhancing the biological drawdown of atmospheric carbon
dioxide. The extent to which upwelling-driven N, fixation
facilitates exhaustion of upwelled phosphorus, and whether
the carbon fixed as a result is effectively sequestered, thus
merit inquiry.
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