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ABSTRACT

We study revenue maximization in multi-item multi-bidder auc-
tions under the natural item-independence assumption — a classical
problem in Multi-Dimensional Bayesian Mechanism Design. One of
the biggest challenges in this area is developing algorithms to com-
pute (approximately) optimal mechanisms that are not brute-force
in the size of the bidder type space, which is usually exponential in
the number of items in multi-item auctions. Unfortunately, such
algorithms were only known for basic settings of our problem when
bidders have unit-demand or additive valuations.

In this paper, we significantly improve the previous results and
design the first algorithm that runs in time polynomial in the number
of items and the number of bidders to compute mechanisms that are
O(1)-approximations to the optimal revenue when bidders have
XOS valuations, resolving an open problem raised by Chawla, Miller
and Cai, Zhao. Moreover, the computed mechanism has a simple
structure: It is either a posted price mechanism or a two-part tariff
mechanism. As a corollary of our result, we show how to compute
an approximately optimal and simple mechanism efficiently using
only sample access to the bidders’ value distributions. Our algorithm
builds on two innovations that allow us to search over the space of
mechanisms efficiently: (i) a new type of succinct representation of
mechanisms - the marginal reduced forms, and (ii) a novel Lift-and-
Round procedure that concavifies the problem.
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1 INTRODUCTION

Revenue-maximization in multi-item auctions has been recognized
as a central problem in Economics and more recently in Computer
Science. While Myerson’s celebrated work showed that a simple
mechanism is optimal in single-item settings [32], the optimal multi-
item mechanism is known to be prohibitively complex and noto-
riously difficult to characterize even in basic settings. Facing the
challenge, a major research effort has been dedicated to understand-
ing the computational complexity for finding an approximately
revenue-optimal mechanism in multi-item settings. Despite signifi-
cant progress, there is still a substantial gap in our understanding
of the problem, for example, in the natural and extensively studied
item-independent setting, first introduced in the influential paper
by Chawla, Hartline, and Kleinberg [19].

Formally, the item-independent setting is defined as follows: A
seller is selling m heterogeneous items to n bidders, where the i-th
bidder’s type is drawn independently from an m-dimensional prod-
uct distribution D; = X je[m)] Di j.l We only understand the com-
putational complexity of finding the revenue-optimal mechanism
in the item-independent setting for the two most basic valuations:
unit-demand and additive valuations. First, we know that finding
an exactly optimal mechanism is computationally intractable even
for a single bidder with either unit-demand [23] or additive valu-
ation [24]. Second, there exists a polynomial time algorithm that
computes a mechanism whose revenue is at least a constant fraction
of the optimal revenue when bidders have unit-demand [20, 21]
or additive valuations [35]. However, unit-demand and additive
valuations are only two extremes within a broader class of value
functions known as the constrained additive valuations, where the
bidder’s value is additive subject to a downward-closed feasibil-
ity constraint.? Furthermore, all constrained additive valuations
are contained in an even more general class known as the XOS
valuations. Beyond unit-demand and additive valuations, our un-
derstanding was limited, and we only knew how to compute an

1[m] denotes {1,2,...,m}. Dj; is the distribution of bidder i’s value for item j. The
definition is extended to XOS in Section 2.

2 A bidder has constrained-additive valuation if the bidder’s value for a bundle S is
defined as maxy,,s~; 2 jev tj, Where t; is the bidder’s value for item j, and 7 is
a downward-closed set system over the items specifying the feasible bundles. Note
that constrained-additive valuations contain familiar valuations such as additive, unit-
demand, or matroid-rank valuations.
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approximately optimal mechanism when bidders are symmetric, i.e.,
all D;’s are identical [17, 22]. Finding a polynomial time algorithm
for asymmetric bidders was thus raised as a major open problem in
both [17, 22]. In this paper, we resolve this open problem.

Result I: For the item-independent setting with (asymmetric)
XOS bidders, there exists an algorithm that computes a
Dominant Strategy Incentive Compatible (DSIC) and
Individually Rational (IR) mechanism whose revenue
is at least ¢ - OPT for some absolute constant ¢ > 0,
where OPT is the optimal revenue achievable by any
Bayesian Incentive Compatible (BIC) and IR mecha-
nism. Our algorithm has running time polynomial in
Yie[n),je[m] |7ij|, where 7;j is the support of D;;. See
Theorem 1 for the formal statement.

Computing Approximately Optimal Mechanisms under Structured
Distributions. When the bidders’ types are drawn from arbitrary
distributions, a line of works provide algorithms for finding almost
revenue-optimal mechanisms in multi-item settings in time polyno-
mial in the total number of types, i.e., X;e[n] |SuPP(D;)| (SuPp(D;)
denotes the support of D;) [2, 8, 9, 11, 12, 16].

However, the total number of types could be exponential in

the number of items, e.g., there are };c[n) (Hje[m] |7{j|) types
in the item-independent case, making these algorithms unsuit-
able. For unstructured type distributions, such dependence is
unavoidable as even describing the distributions requires time

Q (Zie[n] |SUPP(D,~)|)A What if the type distributions are struc-

tured and permit a more succinct description, e.g., product measures?
Arguably, high-dimensional distributions that arise in practice (such
as bidders’ type distributions in multi-item auctions) are rarely ar-
bitrary, as arbitrary high-dimensional distributions cannot be rep-
resented or learned efficiently; see e.g. [25] for a discussion. Indeed,
one of the biggest challenges in Bayesian Algorithmic Mechanism
Design is designing algorithms to compute (approximately) optimal
mechanisms that are not brute-force in the size of the bidder type
space when the type distributions are structured. In this paper, we
develop computational tools to exploit the item-independence to
obtain an exponential speed-up in running time.

Simple vs. Optimal. An additional feature of our algorithm is
that the mechanisms computed have a simple structure. It is either
a posted price mechanism or a two-part tariff mechanism. Given the
description of the two mechanisms, it is clear that both of them
are DSIC and IR.

Rationed Posted Price Mechanism (RPP). There is a price p;; for
bidder i to purchase item j. The bidders arrive in some arbitrary
order, and each bidder can purchase at most one item among the
available ones at the given price.>

Two-part Tariff Mechanism (TPT). All bidders face the same set of
prices {pj} je[m]- Bidders arrive in some arbitrary order. For each
bidder, we show her the available items and the associated price
for each item, then ask her to pay an entry fee depending on the
bidder’s identity and the available items. If the bidder accepts the

3Usually, posted price mechanisms do not restrict the maximum number of items a
bidder can buy. We consider a rationed version of posted price mechanism to make
the computational task easy.
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entry fee, she proceeds to purchase any of the available items at
the given prices; if she rejects the entry fee, then she pays nothing
and receives nothing.

A recent line of works focus on designing simple and approxi-
mately optimal mechanisms [1, 3, 13, 14, 17, 19, 20, 22, 29, 30, 34, 35].
The main takeaway of these results is that in the item-independent
setting, there exists a simple mechanism that achieves a constant
fraction of the optimal revenue. The most general setting where
such a simple O(1)-approximation is known is exactly the setting in
Result I, where bidders have XOS valuations [17]. More specifically,
[17] show that there is a RPP or TPT that achieves a constant frac-
tion of the optimal revenue, however their result is purely existential
and does not suggest how to compute these simple mechanisms.
Our result makes their existential result constructive.

Finally, combining our result with the learnability result for
multi-item auctions in [6], we can extend our algorithm to the case
when we only have sample access to the distributions.

Result II: For constrained-additive bidders, there exists an algo-
rithm that computes a simple, DSIC, and IR mechanism
whose revenue is at least ¢ - OPT — O(e - poly(n, m)) for
some absolute constant ¢ > 0 in time polynomial in n,
m, and 1/¢, given sample access to bidders’ type distri-
butions, and assuming each bidder’s value for each item
lies in [0, 1]. See Theorem 4 for the formal statement.

Due to space limit, we only include the formal statements of
our results and proof sketches. All details can be found in the full
version of the paper on arXiv https://arxiv.org/abs/2111.03962.

1.1 Our Approach and Techniques

Our main technical contribution is a novel relaxation of the revenue
optimization problem that can be solved approximately in polynomial
time and an accompanying rounding scheme that converts the solution
to a simple and approximately optimal mechanism.* Our first step is
to replace the objective of revenue with a duality-based benchmark
of the revenue proposed in [17]. One can view the new objective
as maximizing the virtual welfare, similar to Myerson’s elegant
solution for the single-item case. The main difference is that, while
one can use a fixed set of virtual valuations for any allocation in the
single-item case, due to the multi-dimensionality of our problem,
the virtual valuations must depend on the allocation, causing the
virtual welfare to be a non-concave function in the allocation. In this
paper, we develop algorithmic tools to concavify and approximately
optimize the virtual welfare maximization problem. We believe our
techniques will be useful to address other similar challenges in
Multi-Dimensional Mechanism Design.

More specifically, for every BIC and IR mechanism M with
allocation rule o and payment rule p, one can choose a set of dual
parameters 0(o) based on o to construct an upper bound U (o, 6(0))
for the revenue of M. We refer to 6 as the dual parameters because
0 corresponds to a set of “canonical” dual variables, which can be
used to derive the virtual valuations via the Cai-Devanur-Weinberg
duality framework [13]. The upper bound U(o, (o)) is then simply
the corresponding virtual welfare. The computational problem is

4 An influential framework known as the ex-ante relaxation has been widely used in
Mechanism Design, but is insufficient for our problem. See Appendix B.2 for a detailed
discussion.
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to find an allocation o that (approximately) maximizes U (o, 8(0)).
With such a o, we could use the result in [17] to convert it to a
simple and approximately optimal mechanism. Unfortunately, the
function U(c, 6(o)) is highly non-concave in ¢,” and thus hard to
maximize efficiently. See Section 3.1 for a detailed discussion.

LP Relaxation via Lifting. We further relax our objective, i.e.,
U(o,0(0)), to obtain a computationally tractable problem. One
specific difficulty in optimizing U (o, 6(0)) comes from the fact that
0(o) is highly non-linear in 0. We address this difficulty in two
steps. In the first step of our relaxation, we flip the dependence
of ¢ and 0 by relaxing the problem to the following two-stage
optimization problem (Figure 1):

- Stage I: Maximize H(0) subject to some constraints. H(0) is
the optimal value of the Stage II problem.

- Stage II: Maximize an LP over o with 6-dependent constraints.

This makes the problem much more structured and significantly
disentangles the complex dependence between o and 6. Yet we
still do not know how to solve it efficiently. In the second step of
our relaxation, we merge the two-stage optimization into a sin-
gle LP. In particular, we lift the problem to a higher dimensional
space and optimize over joint distributions of the allocation o and
the dual parameters 6 via an LP (Figure 3). Since the number of
dual parameters is already exponential in the number of bidders
and the number of items, it is too expensive to represent such a
joint distribution explicitly. We show it is unnecessary to search
over all joint distributions. By leveraging the independence across
bidders and items, it suffices for us to consider a set of succinctly
representable distributions — the ones whose marginals over the
dual parameters are product measures. See Section 3.1 for a more
detailed discussion on the development of our relaxation.

“Rounding” any Feasible Solution to a Simple Mechanism. Can we
still approximate the optimal solution of the LP relaxation using a
simple mechanism? Unfortunately, the result from [17] no longer
applies. We provide a generalization of [17], that is, given any feasi-
ble solution of our LP relaxation, we can construct in polynomial
time a simple mechanism whose revenue is at least a constant frac-
tion of the objective value of the feasible solution (Theorem 3). Our
proof provides several novel ideas to handle the new challenges
due to the relaxation, which may be of independent interest.

Marginal Reduced Forms. We deliberately postpone the discus-
sion on how we represent the allocation of a mechanism un-
til now. A widely used succinct representation a mechanism M
is known as the reduced form or the interim allocation rule:
{rij(ti)}iE[n],jE[M],tiEng|m| 7;; Where rij(t;) is the probability for
bidder i to receive item j when her type is t; = (ti1,...,tim) [8].
Despite being more succinct than the ex-post allocation rule, the
reduced form is still too expensive to store in our setting, as its size
is exponential in m. A key innovation in our relaxation is the in-
troduction of an even more succinct representation — the marginal
reduced forms and a multiplicative approximation to the polytope
of all feasible marginal reduced forms. Although this is a natural
concept, to the best of our knowledge, we are the first to introduce
and make use of it. The marginal reduced form is represented as

5See Appendix B.1 for an example of the non-concavity of the function.
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: {Wij(tij)}ie[n],je[m],tije‘ﬁj’ where w;;(t;;) is the probability for
bidder i to receive item j in M and her value for item j is t,-j.é
Importantly, the size of a marginal reduced form is polynomial in
the input size of our problem. As our LP relaxation uses marginal
reduced forms as decision variables, it is crucial for us to be able
to optimize over the polytope P that contains all feasible marginal
reduced forms. To the best of our knowledge, P does not have a
succinct explicit description or an efficient separation oracle. To
overcome the obstacle, we provide an efficient separation oracle for
a different polytope Q that is a multiplicative approximation to P, i.e.,
c-P C Q C P for some absolute constant c € (0, 1) (Theorem 2). Us-
ing the separation oracle for Q, we can find a c-approximation to the
optimum of the LP relaxation efficiently. Note that a sampling tech-
nique was developed in [9] to approximate the polytope of feasible
reduced forms. However, their technique only provides an “addi-
tive approximation to the polytope”, which is insufficient for our
purpose. Indeed, our multiplicative approximation holds for a wide
class of polytopes that frequently appear in Mechanism Design. We
believe our technique has further applications, for example, to con-
vert the additive FPRAS of Cai-Daskalakis-Weinberg [8, 9, 11, 12]
to a multiplicative FPRAS.

1.2 Related Work

Simple vs. Optimal. We provide an algorithm for the most general
setting where an O(1)-approximation to the optimal revenue is
known using simple mechanisms. It is worth mentioning that a
recent result by Diitting et al. [27] shows that simple mechanisms
can be used to obtain a O(loglog m)-approximation to the optimal
revenue even when the bidders have subadditive valuations. We
leave it as an interesting open problem to extend our algorithm to
bidders with subadditive valuations.

(1 — ¢)-Approximation in Item-Independent Settings. We focus on
constant factor approximations for general valuations. For more
specialized valuations, e.g., unit-demand/additive, there are several
interesting results for finding (1 — ¢)-approximation to the “optimal
mechanism”. For example, PTASes are known if we restrict our at-
tention to finding the optimal simple mechanism for a single bidder,
e.g., item-pricing [5] or partition mechanisms [33]. For multiple
bidders, PTASes are known for bidders with additive valuations
under extra assumptions on distributions (such as i.i.d., MHR,’
etc.) [14, 26]. The only result that does not require simplicity of
the mechanism or extra assumptions on the distribution is [31],
but their algorithm is only a quasi-polynomial time approxima-
tion scheme (QPTAS) and computes a (1 — ¢)-approximation to the
optimal revenue for a single unit-demand bidder.

Structured Distributions beyond Item-Independence. When the
type distributions can be represented as other structured distribu-
tions such as Bayesian networks, Markov Random Fields, or Topic
Models, recent results show how to utilize the structure to improve
the learnability, approximability, and communication complexity

OWe refer to {w;; (t;;) }iel"J:jElmetij €73 2 the marginal reduced forms as they are
the marginals of the reduced forms multiplied by the probability that #;; is bidder i’s
. . wij(tij)
value for item j, i.e., Pip 1T Ey; —j~Xe¢zj Dip [Vij (ti,-,ti,_j)}

ij -y >
"That is, f;j(v) /1 — F;; (v) is monotone non-decreasing (MHR) for each i, j, where
fij is the pdf and F;; is the cdf.
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of multi-item auctions [4, 7, 15]. We believe that tools developed
in this work would be useful to obtain similar improvement in
terms of the computational complexity for computing approxi-
mately optimal mechanisms for structured distributions beyond
item-independence.

2 PRELIMINARIES

We focus on revenue maximization in the combinatorial auction
with n independent bidders and m heterogeneous items. We de-
note bidder i’s type t; as {tij} je[m], Where t;; is bidder i’s private
information about item j. For each i, j, we assume t; j is drawn
independently from the distribution D;;. Let D; = X}”lei j be the
distribution of bidder i’s type and D = X[_; D; be the distribution
of the type profile. We only consider discrete distributions in this
paper. We use 7;; (or 73, 7) and f;; (or f;, f) to denote the support
and the probability mass function of D;; (or D;, D). For notational
convenience, we let t_; to be the types of all bidders except i and ¢;
(or t<;) to be the types of the first i — 1 (or i) bidders. Similarly, we
define D_;, 7-; and f-; for the corresponding distribution, support
of the distribution, and probability mass function.

Valuation Functions. For every bidder i, denote her valuation
function as v;(+,*) : 7; X 2[ml 5 R, For every t; € 73,5 C 2lml,
v;(t;,S) is bidder i’s value for receiving a set S of items, when her
type is t;. In the paper, we are interested in constrained-additive
and XOS valuations. For every i € [n], bidder i’s valuation v; (-, -)
is constrained-additive if the bidder can receive a set of items sub-
ject to some downward-closed feasibility constraint #;. Formally,
0i(ti, §) = maxgeosng 2 jer tij for every type t; and set S. It con-
tains classic valuations such as additive (F; = 2[’”]) and unit-
demand (¥i = Ujc[m1{j})- For constrained-additive valuations,
we use f;; to denote bidder i’s value for item j. For every i € [n],
bidder i’s valuation v; (-, ) is XOS (or fractionally-subadditive) if each

tij represents a set of K non-negative numbers {al.(;() (i) Yeerxys

for some integer K, and v;(#;,S) = maxge|x] Xjes ai(}c) (tij), for
every type t; and set S. We denote by V;;(;) = v;(t;, {j}) the value
for a single item j. Since the value of the bidder for item j only
depends on t;;, we denote V;;(t;;) as the singleton value.

Mechanisms. A mechanism M can be described as a tuple (o, p),
where o is the interim allocation rule of M and p stands for the
payment rule. Formally, for every bidder i, type ¢; and set S, ojs(t;)
is the interim probability that bidder i with type t; receives ex-
act bundle S. We use standard concepts of BIC, DSIC and IR for
mechanisms. See Appendix A for the formal definitions. For any
BIC and IR mechanism M, denote REv(M) the revenue of M. De-
note OPT the optimal revenue among all BIC and IR mechanisms.
Throughout this paper, the two classes of simple mechanisms we
focus on are rationed posted price (RPP) mechanisms and two-part
tariff (TPT) mechanisms, which are both described in Section 1.
We denote PREV the optimum revenue achievable among all RPP
mechanisms.

Access to the Bidders’ Valuations. We define several ways to access
a bidder’s valuation.

DEFINITION 1 (VALUE AND DEMAND ORACLE). A value oracle for
a valuation v(-, -) takes a typet and a set of items S C [m] as input,
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and returns the bidder’s value v(t,S) for the bundle S. A demand
oracle for a valuation v(-,-) takes a typet and a collection of non-
negative prices {p;} jc[m) as input, and returns a utility-maximizing

bundle, i.e. S* € argmaxscm| (v(t, S) = Yjes pj). In this paper, we

use DEM; (-, -) to denote the demand oracle for bidder i’s valuation
0i (%)

For constrained-additive valuations, our result only requires
query access to a value oracle and a demand oracle for every bidder
i’s valuation v; (-, -). For XOS valuations, we need a stronger demand
oracle that allows “scaled types” as input. We refer to the stronger
oracle as the adjustable demand oracle.

DEFINITION 2 (ADJUSTABLE DEMAND ORACLE). An adjustable
demand oracle for bidder i’s XOS valuation v;(-,-) takes a type
t, a collection of non-negative coefficients {b;} jc(m), and a col-
lection of non-negative prices {Pj}je[m] as input. For every item
J» bj is a scaling factor for t;j, meaning that each of the K num-
(k)

bers {al.j

ditive function, is multiplied by b;. The oracle outputs a favorite
bundle S* with respect to the adjusted contributions and the prices

{Pj}jem)> as well as the additive function {ai(JI‘C*)(tij)}je[m] for

(tij)Yke[k)s i-e. the contribution of item j under each ad-

some k* € [K] that achieves the highest value on S*. Formally,

P k
(S N ) € argmaxsg[m]!ke[K] {ZjES bjal(] ) (tij) - Z]ESPJ} . We
use ADEM; (-, -, -) to denote the adjustable demand oracle for bidder
i’s XOS valuation v; (-, -).

The adjustable demand oracle can be viewed as a generalization
of the demand oracle for XOS valuations. In the above definition, if
every coefficient b; is 1, then the adjustable demand oracle outputs
the utility-maximizing bundle S* (as in the demand oracle) and the
additive function that achieves the value for this set. For general
bj’s, the adjustable demand oracle scales item j’s contribution to
bidder i’s value by a b; factor. The output bundle S* maximizes the
adjusted utility.®

DEFINITION 3 (BIT COMPLEXITY OF AN INSTANCE). Given any
instance of our problem represented as the tuple (7,D,v
{vi(+,")}ie[n])- Denote as by the bit complexity of elements in
{fij(tij) }ie [n].je[m].t;;e7;;- For constrained-additive valuations, de-
note as b, the bit complexity of elements in {tij}ie[n],je[m],tije’ﬁj-
For XOS wvaluations, denote as b, the bit complexity of ele-

. k
ments in {a,-(j)(tij)}ie[n],je[m],tl-je']}j,ke[K]- We define the value
max(by, br) to be the bit complexity of the instance.

3 LINEAR PROGRAM RELAXATION VIA
LIFTING

In this section, we present the linear program relaxation for com-

puting an approximately optimal simple mechanism. Due to the

space limit, all proofs can be found in the arXiv version of the paper.
The main result of our paper is as follows:

8Note that for every collection of scaling factors, the query to the adjusted demand
oracle is simply a demand query for a different XOS valuation. If all additive func-
tions of ¢; are explicitly given, then the adjusted demand oracle can be simulated
in time O(mK).
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Tueorem 1. LetT = }; ;|7;j| and b be the bit complexity of the
problem instance (Definition 3). For any § > 0, there exists an algo-
rithm that computes a RPP mechanism or a TPT mechanism, such that
the revenue of the mechanism is at least ¢ - OPT for some absolute con-
stant ¢ > 0 with probability 1-5— % For constrained-additive valu-
ations, our algorithm assumes query access to a value oracle and a de-
mand oracle of bidders’ valuations. For XOS valuations, our algorithm
assumes query access to a value oracle and an adjustable demand
oracle. The algorithm has running time poly(n,m, T, b,log(1/6)).

For any matroid-rank valuation, i.e., the downward-closed feasi-
bility constraint is a matroid, the value and demand oracle can be
simulated in polynomial time using greedy algorithms. For more
general constraints, it is standard to assume access to the value and
demand oracle. We also show that the adjustable demand oracle
(rather than a demand oracle) is necessary to obtain our XOS result.
In Theorem 6, we show that (even an approximation of) ADEM;
can not be implemented in polynomial time, given access to the
value oracle, demand oracle, and XOS oracle.

As most of the technical barriers already exist in the constrained-
additive case, for exposition purposes, we focus on constrained-
additive valuations in the main body (unless explicitly stated).”
Before stating our LP, we first provide a brief recap of the existential
result by Cai and Zhao [17] summarized in Lemma 1.1°

DEFINITION 4. For any i € [n],j € [m], and any feasible
interim allocation o,'' and non-negative numbers ﬁ = {ﬁ,-j €
Tijtieln),je[m]> € = {¢itie[n] and T = {rij}tic|n),je[m] € [0, 1]
(referred to as the dual parameters), let CORE(o, f}, c,r) be the welfare
under allocation o truncated at ﬁij +c; for every i, j. Formally,

Core(o, B, ¢, 1) = Z Zfi(ti) : Z 0is(ti)
ti

i Sc[m]

. Ztij . (ﬂ[tij < ﬁij +Ci] +rij - 1[tij =ﬁ~,’j +Ci]) .

jes

LEmMMA 1. [17] Given any BIC and IR mechanism M with interim
allocation o, where o;s(t;) is the interim probability for bidder i to
receive exactly bundle S when her type is t;, there exist non-negative

numbers p(%) = {/}i(f) € Tij}ien jeim]- ¢ = {Ci(a)}ie[n] and
r(9) € [0,1]"™ that satisfy'?

M

i€[n]

@5 > hw- Y o)

t;€T; S:jesS
< Prlty > BV ety = A7 Vi
ij j

(o) (o) _ plo) 1.
(gf[tij > pii 1+ 'fif[tij =By ]) < Vi

(3) > ¢ <8 PRev

i€[n]

9The linear program for XOS valuations can be found in Figure 5 in Appendix C.2.
19The statement is for constrained-additive bidders. The statement for XOS bidders
can be found in the arxiv version of the paper.

1For constrained-additive bidders, an interim allocation o is feasible if it can be imple-
mented by a mechanism whose allocation rule always respects all bidders’ feasibility
constraints. It is without loss of generality to consider feasible interim allocations.
12[17] provides an explicit way to calculate f}("), ¢(@),1(?) We only include the
crucial properties of these parameters here.
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and the corresponding CORE(o, ﬁ(a), c(9) 1(9)) satisfies the fol-
lowing inequalities:

(4) Rev(M) < 28 - PREV+ 4 - CORE(o, [}(U), c(9), r(9))y,

(5) CORE(a,ﬁ("),c(”),r(")) < 64-PREV+8-REV(M§U)), where

Mfa) is some TPT mechanism.

REMARK 1. For continuous type distributions, there exists Bl
that satisfy both Property 1 and 2 of Lemma 1 with ri(;’) =1,Vi, j for

every o. For discrete distributions, such a ﬁ(g) may not exist. This is

simply a tie-breaking issue, and the role ofr(”) is to fix it. Roughly
speaking, rl.(jo—)
is indifferent between purchasing or not. Readers can treat (%) as the

all-one vector to get the intuition behind our approach.

is the probability that bidder i wins item j, when she

By combining Property 4 and 5 of Lemma 1, Cai and Zhao [17]
proved that the revenue of any BIC, IR mechanism M is bounded
by a constant number of PREV and the revenue of some TPT mech-
anism. Recall that PREV is the optimal revenue achieved by an RPP
mechanism, which is exactly the Sequential Posted Price mecha-
nism if we restrict the bidders’ valuations to unit-demand. Thus
we can compute a set of posted prices that approximates PREv by
Chawla et al. [18].

3.1 Tour to Our Relaxation

To facilitate our discussion about the key components and the
intuition behind the relaxation, we present the development of
our relaxation and along the way examine several failed attempts.
In Theorem 3, we show that the optimal solution of the relaxed
problem can indeed be approximated by simple mechanisms. Due
to space limitations, we do not include details on the approximation
analysis in this section, but focus on our intuition behind each step
of our relaxation. We also assume r;; to be 1 for every i and j to
keep the notation light.

Step 0: Replace Revenue with the Duality-Based Benchmark. In-
stead of optimizing the revenue, we optimize the upper bound of
revenue. As guaranteed by Lemma 1, for any BIC and IR mech-
anism M = (o, p), its revenue is upper bounded by O(PREv +
Core(a, 6(0))), where we use 0(o) to denote the set of dual pa-
rameters (§(?), ¢(?)) guaranteed to exist by Lemma 1. Since we
can approximate PREv, it suffices to first approximately maximize
Corg(o, 0(0)) over all feasible interim allocations o, then compute
the TPT in Lemma 1 based on the computed 0. CORE(0, 0(0)) is the
truncated welfare, but the truncation depends on ¢ in a complex
way, causing the function to be highly non-concave in o (Exam-
ple 1).

Step 1: Two-Stage Optimization. To overcome the barrier men-
tioned above, we consider a two-stage optimization problem (Fig-
ure 1) by switching the order of dependence between the interim
allocation ¢ and dual parameters 8 = (f,c). In Stage I, we opti-
mize some function H over the dual parameters 6 = (f, ¢), where
H(p, c) is the optimum of the Stage II problem for every fixed set
of parameters (f, ¢). Constraint (1) and (2) in the Stage I problem
are due to Property 1 and 3 of Lemma 1 respectively. In Stage II,
for any fixed set of parameters 6 = (B, c), we optimize CORg(o, 6)
over all feasible o such that the tuple (o, B, ¢) satisfy Property 1,
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2, and 3 of Lemma 1. We choose the interim allocation o as the
variables, CORE(o, B, ¢) as the objective, and include Constraint (4),
which corresponds to Property 2 of Lemma 1. Why is the two-stage
optimization a relaxation? For any interim allocation o, (i) the cor-
responding set of dual parameters 0(o) is a feasible solution of the
first-stage optimization problem, and (ii) o is feasible in the second-
stage optimization w.r.t. 8(o), so (6(0o), o) is a feasible solution of
the two-stage optimization problem.

Stage I:
max H(,c)
1 .
st (1) Z Prlty 2 pyl <3 Vi
i€[n]
(2) Z c; <8-PREV
i€[n]
Stage II:
H(B.c)=max Y. > filt): > ois(t) ) 11ty < fijrei]
i€e[n] t;€T; Sc[m] J€S
s.t. (3) o isfeasible

CEEDWIONDY

ois(t) < Prltij > fij] - Vi j
ti€T; S:jes e

Figure 1: Two-stage Optimization over 6 = (f,c) and the al-
location o

We now focus on the Stage II problem and try to solve it ef-
ficiently for a fixed set of parameters 6. The objective is a lin-
ear function of the variables o, yet the set of variables o
{ois(ti)}Yie[n),sc[m],; e7; has exponential size. Luckily, the prob-
lem can be expressed more succinctly. For any interim allocation o
and dual parameters 6 = (B, c), the objective (CORE(c, 0)) can be
simplified as follows:

Core(o.0)= " fi(t) D ais(t) Y tij-Lltiy < fij +eil
i€[n] Sc[m] jes
tieT;

2

i€[n],je[m]
tij€7ij

)

wij(tij)tij - L[tij < Bij +cil,

where wi;(tij) = fij(tij) - Xy, fi-j(ti—j) - Lsijes ois(tij ti—j)
for every i € [n],j € [m]tij € 7. We refer to
{Wij(tij)}ielnj’jelmj’tijeﬂj as the marginal reduced form of the
interim allocation rule o. ;;(t;;) represents the probability that
bidder i’s value for item j is ¢;; and she receives item j, and the prob-
ability is taken over the randomness of the allocation, other bidders’
types, as well as her own values for all the other items. Now for ev-
ery fixed dual parameters 6, CORE is expressed as a linear function
of the much more succinct representation W = {wj;(ti;)};,j,¢;; that
has polynomial description size. We rewrite the Stage II problem
as an LP using the variables w. Denote CORE(W, 0) the last term of
Equation (1), which is the objective of the problem. By the definition
of w, Constraint (4) is equivalent to

709

Yang Cai, Argyris Oikonomou, and Mingfei Zhao

= Z wij(tij) < Prltij = Byl Vi j ()
tij€7ij Y
which is a linear constraint on w. Let $; be the convex polytope
that contains all marginal reduced forms W that can be implemented
by some feasible allocation o (corresponds to Constraint (3)) and
P, be the set of all w that satisfy all constraints in Equation (2). The
Stage IT problem is equivalent to the LP maxep, np, CORE(W, 0).
Unfortunately, since 1 does not have an explicit succinct descrip-
tion or an efficient separation oracle, it is unclear if the problem

can be solved efficiently.

Step 2: Marginal Reduced Form Relaxation. To overcome this
barrier, we consider a relaxation of $1, where the feasibility con-
straint is only enforced on each bidder separately. We refer to
this step as the marginal reduced form relaxation. We use w; =
{Vvij(tij)}je[m],tijeﬂj to denote a feasible single-bidder marginal
reduced form for bidder i. Formally, we define the feasible region
W; of w; in Definition 5.

DEFINITION 5 (CONSTRAINED-ADDITIVE VALUATIONS: SINGLE-BID-
DER MARGINAL REDUCED FORM POLYTOPE). For everyi € [n], sup-
pose bidder i has a constrained-additive valuation with feasibil-
ity constraint F;. Bidder i’s single-bidder marginal reduced form
polytope W; C [0, 1] Zsetm 171 s defined as follows: w; € W; if
and only if there exists an allocation rule {os(ti)};,e7, 5e7;> i-€s
os(t;) is the probability that i receives set S when her type is t;,
such that (i) 256‘77,- os(t;) < 1,V € T, and (ii) Wij(t[j) =
fij(tij) - 2, fij(ti-j) - Zs;jes os(ti), for all j € [m] and
tij € 7:]

Throughout this section, we assume access to a separation oracle
of W; for every bidder i. In Theorem 2, we present an efficient
separation oracle for another polytope W that is a multiplicative
approximation to Wj, ie., W is sandwiched between ¢ - W; and
W; for some absolute constant ¢ € (0, 1), using only queries to
bidder i’s demand oracle. We will argue later that we can efficiently
approximate our problem with the separation oracle for Wi

Here is our relaxation to the (rewritten) Stage II problem: Instead
of forcing w to be implementable jointly (w € P1), we consider the
relaxed region P’ 2 Py: w € P’ if and only if: (i) w; € W, for
all bidder i € [n], and (ii) }}; Zti,- wij(tij) < 1,Yj € [m]. In other
words, P’ guarantees that, for every bidder i, #; is a feasible single-
bidder marginal reduced form for i, and the supply constraint is met
in terms of marginal reduced forms (rather than ex-post allocations).

Relaxed Stage II:

H(B,c) =max Z Z wij(tij) - tij - L[tij < Bij +cil
i€[n] je[m] t;j€7i;
st. (3) wWeWw Vi
1 ~ ..
(4) o Z wij(tij) < gﬁ[tij > Bijl Vi, j
ij
wij(t5) =20 Vi, j, tij

Figure 2: The Relaxed Stage II Problem over the Marginal
Reduced Forms
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The main benefit of this relaxation is computational. Without the re-
laxation, we need a multiplicative approximation of #;. Theorem 2
provides such an approximation if we can exactly maximizes the
social welfare — a computational task that is substantially harder
than answering demand queries. Indeed, we are not aware of any
efficient algorithm that exactly maximizes the social welfare with
only access to demand oracles of every bidder. The relaxed problem
max eprnp, CORE(W, 0) is captured by the LP in Figure 2.13

Consider the two-stage optimization with the relaxed Stage II
problem. For every fixed parameters 0, the relaxed Stage II problem
can be solved efficiently (assuming a separation oracle of W; for
every i). Unfortunately, we do not know how to solve the two-stage
optimization problem efficiently, as the number of different dual
parameters is exponential in n and m, and enumerating through all
possible choices of dual parameters is not an option. To overcome
this obstacle, we need ideas explained in the following step.

Step 3: Lifting the problem to a higher dimensional space. In-
stead of enumerating all possible dual parameters 6, we optimize
over distributions of the parameters. To guarantee that the num-
ber of decision variables in our program is polynomial, we fo-
cus on product distributions over the parameters. Formally, for
every i, j, let C;;j be a distribution over V;; x A, where V;; and
A are the set of possible values of f5;; and c; accordingly, after dis-
cretization (See Footnote a in Figure 3 for a formal definition). All
Cij’s are independent. In our program, we use decision variables
{Aij (Bij, 5ij)}i€[n],je[m],/3ij Vi, €A to represent the distribution
Cij. ie, )A.,'j (a,b) = Pr(ﬂij,5ij)~cij [Bij = a A 6ij = b]. Notice that if
the parameters are drawn from a product distribution, the parame-
ter “c;” may be different for each item j. To distinguish them, we
use §;; to replace the original parameter c; in our program.

Now we maximize the expected value of the Core function over
all product distributions X; ;jC;; (represented by decision variables
/i) and the allocations (represented by the marginal reduced form ).
If the parameters 6 and allocation w are generated independently,
the expected CoRE is not a linear objective, since the contributed
truncated welfare in CORE is Wij(tij) . /iij(ﬂiﬁ 5ij) i 1 [tij <
Bij + 6ij] for every tj, fij, 6ij. To linearize the objective, we lift
the problem to a higher dimensional space and consider joint dis-
tributions over the parameters and allocations. We do not con-
sider arbitrary joint distributions, and only focus on the ones
that correspond to the following generative process: first draw
(B, ) from a product distribution (according to i), then choose
a feasible allocation w(#9) = {Vvl(]ﬁ :9) (tij)}ijt,; conditioned on
(B, 5). Since there are too many parameters (f, §), we certainly
cannot afford to store all w(F9)’s explicitly. Instead, for each
bidder i and item j we introduce a new set of decision variables
{/11] (tl_h ﬂl]’ 51])}1‘,]6‘7{],,6,] €Vij.ijeN> where Aij(tij’ ,Bij, 5ij) is the
marginal probability for the following three events to happen simul-
taneously in our generative process: (a) (f;j, d;;) are the parameters
for i and j. (b) Bidder i receives item j. (c) Bidder i’s value for item

13We omit the supply constraint }; Z’U W;j(tij) < 1 as it is implied by Con-
straint (1) in the Stage I problem and Constraint (4).
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J is tij. Formally,
Aij(tij, Bijs 8i7) =Aij (Bij, 8if)
(w5 i fis i)
{(Bijr.61 ) Y j)#(ij)
]_[ Avj (Birjr, 8
(#,j)#(i.J)

With the new variables A;;(tij, fij, 0ij)’s, we can express the objec-
tive as an linear function:

Z Z Z fij(tij) - tij

ie[n] je[m] tij€T;;

by

PijeVij.bijel

®)

Aij(tij, Bij, 8ij) - Ltij < Bij + 6ij].

Our program can be viewed as an “expected version” of the the
two-stage optimization, when the parameters 6 = (,5) ~ X ; Cij.
In other words, we only require the constraints to be satisfied in
expectation. We discuss our relaxation in more details in Section 3.2.

3.2 Our LP and a Sketch of the Proof
of Theorem 1

We present a sketch of the proof of Theorem 1 for constrained-
additive bidders and our main linear program (Figure 3). Although
the LP has many constraints and may seem intimidating at first, all
constraints follow quite naturally from our derivation in Section 3.1.
See Section 3.3 for more details.

The first step of our proof is to estimate PREV using Lemma 2
from [18].

LEMMA 2 (THEOREM 14 AND APPENDIX F IN [18]). There exists
an algorithm that with probability at least 1 — %, computes a Ra-
tioned Posted Price mechanism M such that # (1- ﬁ) - PREV. The

algorithm runs in time poly(n,m, 3; ; |7ij|).

Denote & the event that an RPP in Lemma 2 is computed suc-
cessfully. For simplicity, we will condition on the event & for the
rest of this section. Let PREV be the revenue of the RPP mechanism
found in Lemma 2.

Next, we argue that the LP in Figure 3 (or Figure 5 when the
valuations are XOS) can be solved efficiently. Note that there are
poly(n,m, %; ; |7ij|) constraints except for Constraint (1), where
we need to enforce the feasibility of single-bidder marginal reduced
forms. It suffices to construct an efficient separation oracle for W;
for every i. However, to the best of our knowledge, W; does not
have a succinct explicit description or an efficient separation oracle.
For constrained-additive valuations, we construct another polytope
W; such that: (i) W is a multiplicative approximation of Wj, i.e.,
c-W; C Wl C W; for some absolute constant ¢ € (0, 1), and (ii)
There exists an efficient separation oracle for W given access to
the demand oracle.

TueOREM 2. Let T = }; ; |75j| and b be the bit complexity of the
problem instance (Definition 3). For anyi € [n] and § € (0, 1), there is
an algorithm that constructs a convex polytope Wi € [o, l]ZfE[m] 1731
using poly(n,m, T,log(1/6)) samples from D;, such that with proba-
bility at least 1 — 6,
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(1) ﬁ -W; € Wi C W, and the vertex-complexity (Definition 11)
of Wi is poly(n, m, T, b,log(1/5)).
(2) There exists a separation oracle SO for Wi, given ac-
cess to the demand oracle for bidder i’s valuation.
The running time of SO on any input with bit com-
plexity b’ is poly(n,m,T,b,b",log(1/8)) and makes
poly(n,m, T, b,b’,1og(1/5)) queries to the demand oracle.
The algorithm constructs the polytope and the separation oracle SO
in time poly(n,m, T, b,log(1/9)).

Indeed, we prove a more general result regarding polytopes that can
be expressed as a “mixture of polytopes”, which can be viewed as a
generalization of the technique developed in [10] for approximating
the polytope of all feasible reduced forms.

To solve the LP relaxation, we replace W; by W in the LP in Fig-
ure 3 for every i € [n], and solve the LP in polynomial time using
the ellipsoid method. Clearly, this solution is also feasible for the
original LP in Figure 3. Moreover, since Wi contains ¢ - Wj, we can
show that the objective value of the solution we computed is
at least ¢ - OPTyp, where OPTrp the optimum of the LP in Fig-
ure 3. Our proof of Theorem 2 heavily relies on the fact that W; is a
down-monotone polytope,'* which does not hold in the XOS case.
For XOS valuations, we construct the polytope W; with a weaker
guarantee: For every vector x in Wj, there exists another vector
x’ in W; such that for every coordinate j, xj/x]’. € [a, b] for some
absolute constant 0 < a < b, and vice versa.

Next, we argue that the LP optimum can be approximated by
simple mechanisms. [17] shows that for any BIC and IR mechanism
M, Core(o, ﬁ("), ¢(9), r(9)) (as stated in Lemma 1) can be bounded
by a constant number of PREV and the revenue of a TPT (see Prop-
erty 5 of Lemma 1). We generalize their result by proving that for
any feasible solution of the LP, its objective can be bounded by (a
constant times) the revenue of a RPP or TPT mechanism, and the
mechanism can be computed efficiently given the feasible solution.

DEFINITION 6. Let (w, A, Ad = (di)ie[n]) be any feasible so-
lution of the LP in Figure 3. For every j € [m], define Q; = % -
Lieln] 2ty ey, Jij (tif) tij- 2 g, evi0, e Aij(tijs Bijs 0ij) L [tij <
Bij + 8ijl.7°

Clearly, for any feasible solution of the LP, the objective function
is 2+ X je[m] Qj- We prove in Theorem 3 that 2 - 3’ [, Qj can be
bounded by the revenue of MTpT (Mechanism 1) and the RPP Mpp
(Lemma 2). As we can efficiently compute a feasible solution whose
objective is Q(OPTrp), Theorem 3 implies that we can compute

in polynomial time a simple mechanism whose revenue is at least
Q(OPTrp + PREV).

THEOREM 3. Let (w, A, A, d) be any feasible solution of the LP in
Figure 3. Let Mpp be the rationed posted price mechanism computed
in Lemma 2. Let M1pT be the two-part tariff mechanism shown in
Mechanism 1 with prices {Q;} je[m]- Then the objective function
of the solution 2 - 3¢ Q; is bounded by c1 - REv(Mpp) + ¢z -
Rev(Mpr), for some absolute constant c1,co > 0. Moreover, both

14 A polytope P < [0, 1]¢ is down-monotone if and only if for every x € P and
0 < x’ < x, we have x’ € P.

5Recall that Aij(tij, Bij, 6ij) is introduced in Step 3 of Section 3.1. See Figure 3 for
the formal definition.
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Mpp and Mpr can be computed in time poly(n, m, 3.; ; |i;|) with
access to the demand oracle for the bidders’ valuations.

The proof of Theorem 3 combines the “shifted Core” technique
by Cai and Zhao [17] with several novel ideas to handle the new
challenges due to the relaxation.

max >, D, ) fislti)

i€[n] je[m] t;j€Ti;
“tij - Aij(tij, Bij» 6ij) - Ltij < PBij + bij]
PBijeVij.0ijeA
s.t.
Allocation Feasibility Constraints:
(1) w; e W;,Vi
(2) Z Z wij(tij) <1,V
i tjjeTij
Natural Feasibility Constraints:
3 fij ) - Z Z Aij (tij, Bij, 015) = wij (ti5),
BijeVij Sijeh
Vi, j, tij € Tij
(4) Ay (tij, i, 81j) < Aij(Bijs 817, Vi ji tigs By € Vij, S
) D Au(Bi.diy) = 1Vi
Bij€Vij.S1j€A
Problem Specific Constraints:

(6) Z Z Ziij(ﬁij»éij)'

ie[n] BijeVij SijeA

(7) % Z fij(tij) (Aij(tij’ﬁij,aij)+/1ij(tij:/3;rj’6ij)) <

1
Pr [t =2 Bijl £ =, Vj
tij"’Dij[ ij ﬁz]] 2 J

tij€Tij
Aij(Bij, 8ij) '}’{[h‘j > Bijl +iij(ﬂ:-rj,5ij) '?t[tij > fi;l
ij Ly
Vi,j,ﬁij € (Vi(}’aij eA

(8) 8ij - Aij(Bijs 8i) < di, Vi, j

Bij€Vij.SijeA
) Z d; < 111 - PRev

i€[n]

Aij(tij, Bij, 6ij) = O,iij(ﬁij,éij) >0,
wij(tij) 2 0,d; 20 Vi, j tij, Bij € Vij, 6ij

Figure 3: LP Relaxation for Constrained-Additive Bidders

REMARK 2. Theorem 3 indeed holds even if the bidders arrive in
an arbitrary order in Mpr. We choose the lexicographical order only
to keep the notation light.

We complete the last step of our proof by showing OPT =
O(OPTyp + PREV) in Lemma 3. More specifically, we show that for
any mechanism M = (o, p), the tuple (o, ﬁ("), ¢, r(”)) stated
in Lemma 1 corresponds to a feasible solution of the LP in Fig-
ure 3 whose objective is at least CORE(o, ﬁ(”), c(”), r(”)). Hence,
the revenue of M is upper bounded by PREv and OPTyp.
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Variables: ¢

- Aij(tij,ﬁij, 51'1'), for all i, j and lij € Tii, ,Bij E (Vijs 51']' e A.
See Step 3 of Section 3.1 for an explanation of this variable.

- iij(ﬂij, 5ij), for all i, j, ﬂij € (Vij, 5ij € A, denoting the
distribution C;; over V;; x A.

- wij(tij), for all i € [n],j € [m],tij € 7ij, denoting
the expected marginal reduced form. We denote w; =
{wij(tij)} jelml.t;e7;,; the vector of all variables associated
with bidder i.

- d;, for all i € [n], denoting an upper bound of the expecta-
tion of ;; over distribution Cj; for all j.

“For every i, j, let ‘Vi(} = 7ij be the set of all possible values of #;;. To
address the tie-breaking issue in Remark 1, let &, > 0 be an arbitrarily small
number,and define (V:; = {tij+&  tij € Tj}and V5 = ’Vg U (sz Let A
be a geometric discretization of range [PREV/n, 55 - PREv]. Formally, § € A

if and only if § = 2X . PREV for some integer x such that

0 < x < [log(55n)]. Finally, for each 8 € ’Vg let f* = f+ep € V5.
Note that the LP (or the LP in Figure 5) do not depend on the choice of &,, so
we can choose &, to be sufficiently small. In fact, let b be an upper bound of

the bit complexity of the problem instance, and the bit complexity of any
feasible solution of our LP. Our proof works as long as

B 1 PREV
<M\ ——F, v —1— f-
& (o 5 1)

Figure 4: Interpretation of the variables of the LP in Figure 3.

Mechanism 1  Two-part Tariff Mechanism Mrpr

0: Before the mechanism starts, the seller computes the price Q;
(Definition 6) for every item j.

1: Bidders arrive sequentially in the lexicographical order.

2: When bidder i arrive, the seller shows her the set of available
items S;(t<;) C [m], as well as their prices. Note that S; (¢<;) is
the set of items that are not purchased by the first i — 1 bidders,
which depends on t<;. We use Sy (t<1) to denote [m].

3. Bidder i is asked to pay an entry fee. The seller samples a
type t{ ~ Dj, and sets the entry fee as: &(Si(t<;),t]) =
maxg cs, (1.;) (vi(ti’,S’) - Yjes Qj). The entry fee is bidder
i’s utility for her favorite set under prices Q;’s if her type is ¢;.

4: If bidder i (with type t;) agrees to pay the entry fee
&i(Si(t<i), t]), then she can enter the mechanism and take her
favorite set $* € argmaxg cg, (;_,) (v,-(ti, §') = Zjes QJ-), by
paying  jes- Q. Otherwise, the bidder gets nothing and pays
0.

Indeed, for both Theorem 3 and Lemma 3, we prove a general
statement that applies to XOS valuations, which requires a general-
ized LP and definitions. See the arXiv version for details.

LeEMMA 3. For any BIC and IR mechanism M, REv(M) < 28 -
PREV+4 - OPTyp.
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3.3 Interpretation of Our LP in Figure 3.

We explain our LP in this section. The objective is the expected
CORE, as explained in Step 3 in Section 3.1. According to our defi-
nition of A;;(t;j, fij, 8ij) and Constraint (3), {wij(tij)}i,j,tl.j corre-
sponds to the expected marginal reduced form, that is, w;;(t;;) is
the expected probability for bidder i to receive item j and her value
for item j is #;;. Constraints (1) and (2) simply sets the feasible re-
gion of the expected marginal reduced form w. They follow directly
from the fact that every realized w(#9) is feasible (see Step 3 in
Section 3.1). Constraint (4) follows from Equation (3) and the fact
that every Wi(f’(s) (tij)/fij(ti;) is in [0, 1]. Constraint (5) implies
that {iij (Bij, 5ij)}ﬂij,5ij correspond to a distribution Cj;.

Constraints (6) - (9) are specialized for our problem, which guar-
antees that the LP optimum can be bounded by simple mecha-
nisms. Constraint (6) follows from taking expectation on both sides
of Constraint (1) in Figure 1, over the randomness of f;;. Con-
straints (8) and (9) correspond to Constraint (2) in Figure 1. Here we
bound the expectation of §;; by a unified upper bound d; for every
.10 It is worth emphasizing Constraint (7), which corresponds to
Constraint (4) in Figure 1 (and Figure 2). Instead of taking expecta-
tions over the dual parameters, we force the constraint to hold for
every fi; and &;;. This is an important property that is crucial in
our analysis. Readers may notice that Constraint (2) is implied by
Constraints (3), (6) and (7). We keep Constraint (2) so that it is clear
that the supply constraint is enforced over the (expected) marginal
reduced form. The Problem Specific Constraints (6)-(9) in the LP in
Figure 3 are expected versions of the constraints in the two-stage
optimization problem in Figure 1, which are directly inspired by
the Properties 1, 2, and 3 in Lemma 1. They are crucial to guarantee
that optimal value of the LP in Figure 3 is still approximable by
simple mechanisms.

4 SAMPLE ACCESS TO THE DISTRIBUTION

In this section, we focus on the case where we have only access
to the bidders’ distribution. Our goal is again to compute an ap-
proximately optimal mechanism. Our plan is as follows: (i) for each
i € [n] and j € [m], take O(log(1/8)/&?) samples from D;;, and
let D be the uniform distribution over the samples. By the DKW in-
equality [28], D; 7 and D;; have Kolmogorov distance (Definition 7)
no more than ¢ with probability at least 1 — §. (ii) We then apply
our algorithm in Theorem 1 to compute an RPP or TPT that is ap-
proximately optimal w.r.t. distributions {ﬁi jtie[n),je[m]- We show
that the computed simple mechanism is approximately optimal for
the true distributions as well.

DEFINITION 7. The Kolmogorov distance between two distributions
D and D supported on R is defined as

dx (D, D) = sup| Pr [t <z] - Pr [t<z]
zeR |t~D D
THEOREM 4. Suppose all bidders’ valuations are constrained ad-
ditive. If for each i € [n] and j € [m], D;j is supported on num-
bers in [0,1] with bit complexity no more than b, then for any
e > 0 and d > 0, with probability 1 — §, we can compute in time

16This corresponds to the fact that in Lemma 1 (and Figure 1), there is a single c¢; that
represents &; ;.
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poly(n,m, 1/¢e,1og(1/6),b) a rationed posted price mechanism or a
two-part tariff mechanism, whose revenue is at least c- OPT—O(nm?e)

log(nm/d)
P

for some absolute constant c. The algorithm takes O ( ) sam-

ples from each D;j and assumes query access to a demand oracle for
each bidder.

A ADDITIONAL PRELIMINARIES

DEFINITION 8. [34] Let D; be the type distribution of bidder i and
denote by V; her distribution over valuations v;(t;, -) where t; ~ Dj.
We say that V; is subadditiver over independent items if

® 0;(-,-) has no externalities, that is for any S C [m], t;,t] € T;
such that t;j = tl.’j for j €S, thenv;(t;,S) = v;(t],S).

e 0;(+,-) is monotone, that is for each t; € 77 and S C T C [m],
0i(t;,S) < 0i(t:, T)

® 0;(-,-) is subadditive function, that is for all t; € T; and
S1,S2 € [m], vi(ti, S1 U S2) < v;(ti, S1) +0i(ti, S2)

Mechanisms: A mechanism M in multi-item auctions can be
described as a tuple (x, p). For every type profile ¢, buyer i and
bundle S C [m], x;5(¢) is the probability of buyer i receiving the
exact bundle S at profile ¢, p;(¢) is the payment for buyer i at the
same type profile. To ease notations, for every buyer i and types
ti, we use p;(t;) = E¢,[pi(ti,t-;)] as the interim price paid by
buyer i and oj5(t;) = Ez_, [x;s(ti, t—;)] as the interim probability of
receiving the exact bundle S.

IC and IR constraints: A mechanism M = (x, p) is BIC if:
Z ois(ti)-vi(ti, S) — pi(ti)

SC[m]
> > ois(t]) - 0i(ti,S) = pi(t)), Vistit] € T
Sc[m]
The mechanism is DSIC if Vi, t;, ] € Tj,t—; € T;:
Z xis (ti, t-i) - 0i(ti, S) — pi(ti, t-;)
SC[m]

>

> Z xis(t], t-i) - 0i (1, S) — pi (¢, 1=;).

SC[m]

The mechanism is (interim) IR if:

Z ois(ti) - 0i(t, S) — pi(ti) 2 0,Vi, t; € 7.
Sc[m]

The mechanism is ex-post IR if:

Z xis(ti, ti) - 0i (8, S) — piti, t-;) > O, Vi t; € Tt € T-j.
SC[m]

DEFINITION 9 (SEPARATION ORACLE FOR CONVEX POLYTOPE P).
A Separation Oracle SO for a convex polytope P C RY, takes as input
a point x € R? and ifx € P, then the oracle says that the point is in
the polytope. If x ¢ P, then the oracle output a separating hyperplane,
that is it outputs a vector 'y € R? and ¢ € R such that ylx <c but
forze P, y'z>c.

DEFINITION 10 (PoLyTOPES AND FACET-COMPLEXTY). We say P
has facet-complexity at most b if it can be written as P := {X |
F-wd <¢ Vie I}, where each wD and ¢; has bit complexity
at most b for all i € I. We use the term convex polytope to refer
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to a set of points that is closed, convex, bounded,)” and has finite
facet-complexity.

DEFINITION 11 (VERTEX-COMPLEXITY). We use the term corner to
refer to non-degenerate extreme points of a convex polytope. In other
words,  is a corner of the d-dimensional convex polytope P if j € P
and there exist d linearly independent directions ﬁ'/(l), e w(D such
that%-w® < §-w® forallX € P,1 < i < d. We use CORNER(P) to
denote the set of corners of a convex polytope P. We say P has vertex-
complexity at most b if all vectors in CORNER(P) have bit complexity
no more than b.

B SOME EXAMPLES
B.1 Non-Concavity of CORE

In this section, we show that the Core(o, 8(o)) function is non-
concave in the interim allocation rule o. We first provide the formal
definition of 8(o) for a single-bidder two-item instance, and we use
Core“? (5) to denote Core(a, 0(0)).

DEFINITION 12 (CORE FOR A SINGLE ADDITIVE BIDDER OVER TWO
ITEMS WITH CONTINUOUS DISTRIBUTIONS - [17]). Consider a sin-
gle bidder interested in two items, whose value is sampled from
continuous distribution D with support T = Supp(D) and den-
sity function f(t) fort € T. Consider a feasible interim allocation
o = {01(t), 02(t) }resurr(D)- that is 01(t) (02(t) resp.) is the proba-
bility that the allocation rule awards item 1 (item 2 resp.) to a bidder
with type t. Define

pi1(o) =ar%;;in R:Y [n=p]=E [Gl(t)]] ,
p2(o) magmin| Py lr22 8] = E [Gz(t)]]

and

¢(0) = argmin
ax0

{Ef) [t1 < pi(o) +a] +t13) [tz < pa(o) +a] > %}

The term CorReCZ for interim allocation o is defined as follows:

Cor™(0) = E [o1()tr - 111 < f1(0) +e(o)]]

+ E [o2(t)tz - L[t2 < a(0) +c(0)]]
t~D

In Example 1 we show that Core®? (o) is a non-concave func-
tion even in the setting with a single bidder and two items. The
reason for the CoRECZ being non-concave lies in the fact that the
interval which we truncate depends on the interim allocation o.
Computing the concave hull of Core€? (o) in the worst case re-
quires exponential time in the dimension of the space, which is m
is our case.

ExAMPLE 1. Consider a single additive bidder interested in two
items whose values are both drawn from the uniform distribution
U|0, 1]. Consider two interim allocation rules ¢ and o’:

o o: Award the first item to the buyer if her value for it lies in
the interval [0, 1/2] and never award the second item to the
buyer.

17p ¢ R is bounded if it is contained in [-x, x]¢ for some x € R.
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e o’: Always award the first item to the buyer and never award
the second item to the buyer.

According to Definition 13, for allocation rule o, the dual param-
eters are f1(0) = 1/2, f2(0) = 1 and c(o) = 0, which implies
Core“? (0) = 1/8. Similarly for allocation rule o’ we have 1 (c”) =
0, f2(c”) = 1 and c(c’) = 0, which implies that CoreC? (¢”) = 0.
Consider the interim allocation o'’ that uses allocation rule o

with probability 50% and ¢’ with 50%. Note that ¢’’ is in the convex
o+d’

combination of o and o’ and more specifically "’ = Z5%-. For interim
allocation '’ we have that 1 (c"") = 1/4, f2(¢”") = 1 andc(c”’) = 0,
which implies that Core“Z (¢”") = 31—2 We notice that the second
item contributes nothing to the CoRECZ | but it ensures that ¢ = 0
regardless of the allocation of the first item. Thus Core“Z (0”) <
%(CORECZ(O') + COreCZ (0”)), which implies that CORECZ (-) is not
a concave function.

B.2 Why can’t we use the Ex-Ante Relaxation?

An influential framework known as the ex-ante relaxation has
been widely used in Mechanism Design, but is insufficient for our
problem. Informally speaking, ex-ante relaxation reduces a multi-
bidder objective to the sum of single-bidder objectives subject to
some global supply constraints over ex-ante allocation probabilities.
To solve the ex-ante relaxation program efficiently, the single-bidder
objective has to be concave and efficiently computable given the
ex-ante probabilities [1].

In revenue maximization, the single-bidder objective — the opti-
mal revenue subject to ex-ante probabilities — is indeed a concave
function. However, we do not have a polynomial time algorithm
to even compute the single-bidder objective given a set of fixed ex-
ante probabilities. '® To fix this issue, one can try to find a concave
function that is always a good approximation to the single-bidder
objective for any ex-ante probabilities. To the best of our knowledge,
such a concave function only exists for unit-demand bidders via
the copies setting technique [20]. Alternatively, one can replace the
global objective — optimal revenue by the upper bound of revenue
proposed in [17]. Yet the corresponding single-bidder objective for
one term CORE in the upper bound is highly non-concave, which
makes the ex-ante relaxation not applicable.

Although the term CORE was originally defined for interim alloca-
tion rules (as in Definition 12), it can also be defined for ex-ante prob-
abilities. We only define it for the single-bidder two-item case. Let
q = {q1.¢q2} € [0,1]?, and Max-CoRE = maXges(q) Core®? (o),
where X(q) is the set of feasible interim allocations that awards
the first item with probability at most q; and the second item with
probability at most q2. Example 2 also shows that Max-CoRrg(-) is a
non-concave function by observing that o € 3(1/2,0),6" € 3(1,0)
and ¢’/ € 2(3/4,0).

DEFINITION 13 (CORE FOR A SINGLE ADDITIVE BIDDER OVER TWO
ITEMS - [17]). Consider a single bidder interested in two items, whose
value is sampled from D1 X Dy. Consider a supply constraints q1,q2 €
[0, 1]. Note that q1 (or q2) is the probability that a mechanism awards

8The closest thing we know is a QPTAS for a unit-demand bidder. See Section 1.2.
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the first item (or the second item) to the bidder. Define

i :argmin[ Pr [t1 > ﬂ] = ql],
g0 |t~D
B :argmin[ Pr [tz > ﬂ] = qz]
pz0 |t2~D2
and
1
= i P h < P I < > =
c ar%;&m{tlw}‘)l [ 1< h +a] +t2~rD2 [ 2 _ﬁ2+a] > 2}

The term MAax-CORE is defined as follows:

Max-CorE (q) = r}na)[(o 1] Z fi(tr) - 11 - x1(8)
x1: 71— [0,
Zt1671 filt)xi (t)=q1 t1t1§:€6?ic
+ max 2(t2) - 12 x2(t2)
x2:7—[0,1] fzgg !

the'fz fo(t)xz(t2)=q2 ty<Patc

In Example 2 we show that Max-CoRrE(q) is a non-concave func-
tion even in the setting with a single bidder and two items. The
reason for the Max-CoRE being non-concave lies in the fact that
the interval which we truncate depends on the supply constraints
q. Computing the concave hull of MAx-CoRE(q) in the worst case
requires exponential time in the dimension of the space, which is
m is our case. These facts make the ex-ante relaxation approach
not applicable to solve our problem.

ExAMPLE 2. Consider a single additive bidder interested in two
items whose values are both drawn from the uniform distribution
U[0,1]. Consider the values q = (1/2,0) and ¢’ = (1,0). According
to Definition 13, for q we/have thatﬁiq) =1/2, ﬁéq) =1landc@ =0
and for q¢' we have ﬁl(q) = O,ﬁz(q,) =1 and c¢\9) = 0. We notice
that the second item contributes nothing to the Max-CoORE, but it
ensures that ¢ = 0 regardless of the supply demand for the first item.
Observe that Max-Core(q) = 1/8 and Max-Core(q’) = 0. Let q”
(g+q’)/2 = (3/4,0). Forq"’, observe thatﬂfqﬂ) =1/4, ﬂz(qﬂ) =1and
(@) = 0. We have Max-Core(q"’) = 1/32. Thus Max-Core (q"') <
% (Max-Core(q) + Max-Core(q")), which implies that Max-CORE(-)
is not a concave function.

C XOS VALUATIONS

We show a generalization of Theorem 3 that works for XOS buyers
(Theorem 5), with the generalized of the single-bidder marginal
reduced form polytope Definition 14 and a generalized LP (Figure 5).

THEOREM 5. Let (w, A, /i d) (or (m,w, A, /i d)) be any feasible so-
lution of the LP in Figure 3 (or Figure 5). Let Mpp be the rationed
posted price mechanism computed in Lemma 2.

Let

1
Q=5 Z Z fij(tij) - Vij(tij)- Z Aij(tij, Bij» 6ij)
i€[n] ti;€Ti; PijeVij
51’] eA
S L[Vij(tij) < Bij + 6ijl,

and M pr be the two-part tariff mechanism shown in Mechanism 1

with prices {Qj} je[m]-Then the objective function of the solution
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2-Yjem) Qj is bounded by c1 - Rev(Mpp) + c2 - REV(M1pr), for
some constant c1,c3 > 0. Moreover, both Mpp and Mtpr can be
computed in time poly(n, m, 3; ; |7i;]), with access to the demand
oracle for the buyers’ valuations.

C.1 Single-Bidder Marginal Reduced Form
Polytope for XOS Valuations

In Definition 14 we define the single-bidder marginal reduced form
polytope W; for XOS buyers, which differs from the single-bidder
marginal reduced form polytope for constrained-additive valuation
is several ways. In Definition 14, we define a distribution a§ over all
possible subset of items S C [m] and over the finite number k € [K]
over additive functions that can be chosen when we evaluate the
value that the buyer has for a set of items. In Definition 5, the
distribution og was only over sets in the set of feasible allocations.

Similar to Definition 5, 7;;(t;j) is equal to f;j(t;j) times the
probability that the i-th buyer receives the j-th item. In contrast to
fij (tiy)
Viji(ti5)
the expected value that the buyer has for the item when we are
allowed to choose which additive functions in k € [K]| we count
the value of the buyer, or we are even allowed to allocate an item
to the buyer but count zero value for it (that is equivalent to just
throwing away the item).

times

Definition 5, in Definition 14, the value of w;;(t;;) is

DEFINITION 14 (XOS VALUATIONS: SINGLE-BIDDER MARGINAL RE-
DUCED FORM POLYTOPE). For everyi € [n], the single-bidder mar-
ginal reduced form polytope W; C [0, 1]2'21' 171 i defined as fol-
lows. Let m; = (”ij(tij))j,t,-,-eTj and w; = (Wij(tij))j’tije‘];].. Then

(i, wi) € W; if and only if there exist a number aék)(ti) € [0,1] for
everyt; € 7;,S C [m], k € [K], such that
(1) Ssrog” (t) < 1,V1 € T,
(2) mij(ti) =fij(tij) 2t fimi(ti=j)
k ..
25:jes 2ke[K] Ué )(tij> ti—j), for alli, j, tij € Tij.
(3) wij(tij) <fij(tij) 2t fimi(ti-j)
a® (1)
ij \tij

V) , foralli, j, tij € Tij.

2.5:jes Zke[K] o'ék)(tij, ti—j) -
C.2 The Linear Program for XOS valuations
The LP for XOS valuations can be found in Figure 5. Here Vl(;
(Vij(tij) = tij € Tk Vi = {Vij(tij) + & ¢ tij € Tij} and
Vij = (Vl(; U (V;; We notice that this is consistent with our LP
for constrained-additive buyers (Figure 3), as V;j(tij) = t;; for
constrained-additive buyers.

Denote OPTrp the optimum objective of the LP in Figure 5. Sim-
ilar to the constrained-additive case, we have the following lemma.

LEmMMA 4. When buyers have XOS valuations, for any BIC and IR
mechanism M, REv(M) < 28 - PREV+4 - OPTyp.

D COUNTEREXAMPLE FOR ADJUSTABLE
DEMAND ORACLE

For XOS valuations, our algorithm for constructing the simple
mechanism requires access to a special adjustable demand oracle
ADEM; (4, -, -). Readers may wonder if this enhanced oracle (rather
than a demand oracle) is necessary to prove our result. In this
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max

Z fij(tij) - Vij(tif)
i€[n] je[m] ti;€Tij;
Z Aij(tij, Bij, 6ij) - L[Vij(ti) < Pij+ 6ijl
BijeVij
Sij€EA
s.t.
Allocation Feasibility Constraints:
(1) (mi, wi) € Wy, Vi
@ > > myty) <1Vj
i tj;eTi;
Natural Feasibility Constraints:
3)  fij(tj) - Z Z Aij(tij, Bij, 6ij) =
BijeVij SijeA
wij(tij, Vi, j, tij € Tij
(4)  Aij(tij, Bij, 6ij) < iij(ﬁij:éij): Vi, j, tij, Bij € Vij, 6ij
(5) Z A (Bij 8ij) = 1, Vi, j
Bij€Vij
SijeN

Problem Specific Constraints:

© D, AuyBupbi) -, e [Viy(ty) = Byl <
ic[n] BijeVy; Sij€h ij~Dij
1 .
2"
1
D 5 D Fit) (At By 841) + Aaj 23, By 839)) <
tij€Tij
Aij (Bij» 81)) “Pr(Vij(tiy) = Bijl
ij
+4ij (B 81) - PriViy (1)) = 7y,
1y
Vi, j, Bij € (Vl-(}-,é,-j €A
® Z bij '/iij (Bij. 6ij) < di, Vi, j
BijeVij
SijeA
) Z d; <111 - PRev
i€[n]

Aij(tij, Bij, 6ij) 2 O,iij(ﬁijﬁij) > 0, 7 (tij) 20,
wij(tij) 2 0,d; > 0,Vi, j, tij, Pij € Vij, 8ij

Figure 5: LP for XOS Valuations

section we show that (even an approximation of) ADEM; can not be
implemented using polynomial number of queries from the value
oracle, demand oracle and a classic XOS oracle. All the oracles
are defined as follows. Throughout this section, we only consider
a single buyer and thus drop the subscript i. Recall that the XOS

valuation o(-) satisfies that v(S) = maxy¢ (k] {Zjes (x](.k) } for every
set S, where {aJ(.k) }je[m) is the k-th additive function.

e Demand Oracle (DEMm): takes a price vector p € R™ as input,
and outputs

§* € arg maxgc [ (0(5) - 2jes Pj)~
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e XOS Oracle (Xos): takes a set S C
outputs the k*-th additive function {aj(.k )} je[m]> Where

[m] as input, and

k* e arg maxp[g| {Zjes a](.k)}.

e Value Oracle: takes a set S € [m] as input, and outputs v(S).
We notice that a value oracle can be easily simulated with
an XOS oracle. Thus we focus on XOS oracles for the rest of
this section.

e Adjustable Demand Oracle (ADEMm): takes a coefficient
vector b € R™ and a price vector p € R™ as in-

puts, and outputs (S%, {aj(.k*)}je[m]) where (S*,k*) €
k
arg Maxsc [m| ke[K| {Z;es bja,(- ' Yjes Pj}‘

An (approximate) implementation of ADEM is an algorithm that
takes inputs b, p € R™, and outputs a set S C [m] and k € [K].
The algorithm has access to the demand oracle and XOS oracle of .
We denote ALG(u, b, p) the output of the algorithm. For any a > 1,
ALG is an a-approximation to ADEM if for every XOS valuation v
and every b, p € R™, the algorithm outputs (S, k’) that satisfies:

SclmlkelK] J-beaf('k)_zpf <a | Db = 3 )

€S JjeS Jj€S jes’

In Theorem 6 we show that we cannot approximate the output
of an Adjustable Demand Oracle within any finite factor, if we are
permitted to query polynomial many times the XOS, Value and
Demand Oracle.

THEOREM 6. Given any a > 1, there does not exist an implemen-
tation of ADEM (denoted as ALG) that satisfies both of the following
properties:

(1) For any XOS valuation v over m items, ALG makes poly(m)
queries to the value oracle, the demand oracle and XOS oracle
of v, and runs in time poly(m, b). Here b is the bit complexity
of the problem instance (See Definition 3).

(2) ALG is an a-approximation to ADEM.
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