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ABSTRACT

We study revenue maximization in multi-item multi-bidder auc-

tions under the natural item-independence assumption – a classical

problem in Multi-Dimensional Bayesian Mechanism Design. One of

the biggest challenges in this area is developing algorithms to com-

pute (approximately) optimal mechanisms that are not brute-force

in the size of the bidder type space, which is usually exponential in

the number of items in multi-item auctions. Unfortunately, such

algorithms were only known for basic settings of our problemwhen

bidders have unit-demand or additive valuations.

In this paper, we significantly improve the previous results and

design the first algorithm that runs in time polynomial in the number

of items and the number of bidders to compute mechanisms that are

𝑂 (1)-approximations to the optimal revenue when bidders have

XOS valuations, resolving an open problem raised by Chawla, Miller

and Cai, Zhao. Moreover, the computed mechanism has a simple

structure: It is either a posted price mechanism or a two-part tariff

mechanism. As a corollary of our result, we show how to compute

an approximately optimal and simple mechanism efficiently using

only sample access to the bidders’ value distributions. Our algorithm

builds on two innovations that allow us to search over the space of

mechanisms efficiently: (i) a new type of succinct representation of

mechanisms – the marginal reduced forms, and (ii) a novel Lift-and-

Round procedure that concavifies the problem.
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1 INTRODUCTION

Revenue-maximization in multi-item auctions has been recognized

as a central problem in Economics and more recently in Computer

Science. While Myerson’s celebrated work showed that a simple

mechanism is optimal in single-item settings [32], the optimal multi-

item mechanism is known to be prohibitively complex and noto-

riously difficult to characterize even in basic settings. Facing the

challenge, a major research effort has been dedicated to understand-

ing the computational complexity for finding an approximately

revenue-optimal mechanism in multi-item settings. Despite signifi-

cant progress, there is still a substantial gap in our understanding

of the problem, for example, in the natural and extensively studied

item-independent setting, first introduced in the influential paper

by Chawla, Hartline, and Kleinberg [19].

Formally, the item-independent setting is defined as follows: A

seller is selling𝑚 heterogeneous items to 𝑛 bidders, where the 𝑖-th

bidder’s type is drawn independently from an𝑚-dimensional prod-

uct distribution 𝐷𝑖 =
>

𝑗 ∈[𝑚] 𝐷𝑖 𝑗 .
1
We only understand the com-

putational complexity of finding the revenue-optimal mechanism

in the item-independent setting for the two most basic valuations:

unit-demand and additive valuations. First, we know that finding

an exactly optimal mechanism is computationally intractable even

for a single bidder with either unit-demand [23] or additive valu-

ation [24]. Second, there exists a polynomial time algorithm that

computes a mechanismwhose revenue is at least a constant fraction

of the optimal revenue when bidders have unit-demand [20, 21]

or additive valuations [35]. However, unit-demand and additive

valuations are only two extremes within a broader class of value

functions known as the constrained additive valuations, where the

bidder’s value is additive subject to a downward-closed feasibil-

ity constraint.
2
Furthermore, all constrained additive valuations

are contained in an even more general class known as the XOS

valuations. Beyond unit-demand and additive valuations, our un-

derstanding was limited, and we only knew how to compute an

1 [𝑚] denotes {1, 2, ...,𝑚}. 𝐷𝑖 𝑗 is the distribution of bidder 𝑖’s value for item 𝑗 . The

definition is extended to XOS in Section 2.

2
A bidder has constrained-additive valuation if the bidder’s value for a bundle 𝑆 is

defined as max
𝑉 ∈2𝑆∩I

∑
𝑗∈𝑉 𝑡 𝑗 , where 𝑡 𝑗 is the bidder’s value for item 𝑗 , and I is

a downward-closed set system over the items specifying the feasible bundles. Note

that constrained-additive valuations contain familiar valuations such as additive, unit-

demand, or matroid-rank valuations.
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approximately optimal mechanismwhen bidders are symmetric, i.e.,

all 𝐷𝑖 ’s are identical [17, 22]. Finding a polynomial time algorithm

for asymmetric bidders was thus raised as a major open problem in

both [17, 22]. In this paper, we resolve this open problem.

Result I: For the item-independent setting with (asymmetric)

XOS bidders, there exists an algorithm that computes a

Dominant Strategy Incentive Compatible (DSIC) and

Individually Rational (IR) mechanism whose revenue

is at least 𝑐 · OPT for some absolute constant 𝑐 > 0,

where OPT is the optimal revenue achievable by any

Bayesian Incentive Compatible (BIC) and IR mecha-

nism. Our algorithm has running time polynomial in∑
𝑖∈[𝑛], 𝑗 ∈[𝑚] |T𝑖 𝑗 |, where T𝑖 𝑗 is the support of 𝐷𝑖 𝑗 . See

Theorem 1 for the formal statement.

Computing Approximately Optimal Mechanisms under Structured

Distributions. When the bidders’ types are drawn from arbitrary

distributions, a line of works provide algorithms for finding almost

revenue-optimal mechanisms in multi-item settings in time polyno-

mial in the total number of types, i.e.,

∑
𝑖∈[𝑛] |Supp(𝐷𝑖 ) | (Supp(𝐷𝑖 )

denotes the support of 𝐷𝑖 ) [2, 8, 9, 11, 12, 16].

However, the total number of types could be exponential in

the number of items, e.g., there are

∑
𝑖∈[𝑛]

(∏
𝑗 ∈[𝑚] |T𝑖 𝑗 |

)
types

in the item-independent case, making these algorithms unsuit-

able. For unstructured type distributions, such dependence is

unavoidable as even describing the distributions requires time

Ω
(∑

𝑖∈[𝑛] |Supp(𝐷𝑖 ) |
)
. What if the type distributions are struc-

tured and permit a more succinct description, e.g., product measures?

Arguably, high-dimensional distributions that arise in practice (such

as bidders’ type distributions in multi-item auctions) are rarely ar-

bitrary, as arbitrary high-dimensional distributions cannot be rep-

resented or learned efficiently; see e.g. [25] for a discussion. Indeed,

one of the biggest challenges in Bayesian Algorithmic Mechanism

Design is designing algorithms to compute (approximately) optimal

mechanisms that are not brute-force in the size of the bidder type

space when the type distributions are structured. In this paper, we

develop computational tools to exploit the item-independence to

obtain an exponential speed-up in running time.

Simple vs. Optimal. An additional feature of our algorithm is

that the mechanisms computed have a simple structure. It is either

a posted price mechanism or a two-part tariff mechanism. Given the

description of the two mechanisms, it is clear that both of them

are DSIC and IR.

Rationed Posted Price Mechanism (RPP). There is a price 𝑝𝑖 𝑗 for

bidder 𝑖 to purchase item 𝑗 . The bidders arrive in some arbitrary

order, and each bidder can purchase at most one item among the

available ones at the given price.
3

Two-part Tariff Mechanism (TPT). All bidders face the same set of

prices {𝑝 𝑗 } 𝑗 ∈[𝑚] . Bidders arrive in some arbitrary order. For each

bidder, we show her the available items and the associated price

for each item, then ask her to pay an entry fee depending on the

bidder’s identity and the available items. If the bidder accepts the

3
Usually, posted price mechanisms do not restrict the maximum number of items a

bidder can buy. We consider a rationed version of posted price mechanism to make

the computational task easy.

entry fee, she proceeds to purchase any of the available items at

the given prices; if she rejects the entry fee, then she pays nothing

and receives nothing.

A recent line of works focus on designing simple and approxi-

mately optimal mechanisms [1, 3, 13, 14, 17, 19, 20, 22, 29, 30, 34, 35].

The main takeaway of these results is that in the item-independent

setting, there exists a simple mechanism that achieves a constant

fraction of the optimal revenue. The most general setting where

such a simple𝑂 (1)-approximation is known is exactly the setting in

Result I, where bidders have XOS valuations [17]. More specifically,

[17] show that there is a RPP or TPT that achieves a constant frac-

tion of the optimal revenue, however their result is purely existential

and does not suggest how to compute these simple mechanisms.

Our result makes their existential result constructive.

Finally, combining our result with the learnability result for

multi-item auctions in [6], we can extend our algorithm to the case

when we only have sample access to the distributions.

Result II: For constrained-additive bidders, there exists an algo-

rithm that computes a simple, DSIC, and IR mechanism

whose revenue is at least 𝑐 ·OPT−𝑂 (𝜀 · poly(𝑛,𝑚)) for
some absolute constant 𝑐 > 0 in time polynomial in 𝑛,

𝑚, and 1/𝜀, given sample access to bidders’ type distri-

butions, and assuming each bidder’s value for each item

lies in [0, 1]. See Theorem 4 for the formal statement.

Due to space limit, we only include the formal statements of

our results and proof sketches. All details can be found in the full

version of the paper on arXiv https://arxiv.org/abs/2111.03962.

1.1 Our Approach and Techniques

Our main technical contribution is a novel relaxation of the revenue

optimization problem that can be solved approximately in polynomial

time and an accompanying rounding scheme that converts the solution

to a simple and approximately optimal mechanism.
4
Our first step is

to replace the objective of revenue with a duality-based benchmark

of the revenue proposed in [17]. One can view the new objective

as maximizing the virtual welfare, similar to Myerson’s elegant

solution for the single-item case. The main difference is that, while

one can use a fixed set of virtual valuations for any allocation in the

single-item case, due to the multi-dimensionality of our problem,

the virtual valuations must depend on the allocation, causing the

virtual welfare to be a non-concave function in the allocation. In this

paper, we develop algorithmic tools to concavify and approximately

optimize the virtual welfare maximization problem. We believe our

techniques will be useful to address other similar challenges in

Multi-Dimensional Mechanism Design.

More specifically, for every BIC and IR mechanism M with

allocation rule 𝜎 and payment rule 𝑝 , one can choose a set of dual

parameters 𝜃 (𝜎) based on 𝜎 to construct an upper bound𝑈 (𝜎, 𝜃 (𝜎))
for the revenue ofM. We refer to 𝜃 as the dual parameters because

𝜃 corresponds to a set of “canonical” dual variables, which can be

used to derive the virtual valuations via the Cai-Devanur-Weinberg

duality framework [13]. The upper bound𝑈 (𝜎, 𝜃 (𝜎)) is then simply

the corresponding virtual welfare. The computational problem is

4
An influential framework known as the ex-ante relaxation has been widely used in

Mechanism Design, but is insufficient for our problem. See Appendix B.2 for a detailed

discussion.
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to find an allocation 𝜎 that (approximately) maximizes 𝑈 (𝜎, 𝜃 (𝜎)).
With such a 𝜎 , we could use the result in [17] to convert it to a

simple and approximately optimal mechanism. Unfortunately, the

function𝑈 (𝜎, 𝜃 (𝜎)) is highly non-concave in 𝜎 ,5 and thus hard to

maximize efficiently. See Section 3.1 for a detailed discussion.

LP Relaxation via Lifting. We further relax our objective, i.e.,

𝑈 (𝜎, 𝜃 (𝜎)), to obtain a computationally tractable problem. One

specific difficulty in optimizing𝑈 (𝜎, 𝜃 (𝜎)) comes from the fact that

𝜃 (𝜎) is highly non-linear in 𝜎 . We address this difficulty in two

steps. In the first step of our relaxation, we flip the dependence

of 𝜎 and 𝜃 by relaxing the problem to the following two-stage

optimization problem (Figure 1):

- Stage I: Maximize 𝐻 (𝜃 ) subject to some constraints. 𝐻 (𝜃 ) is
the optimal value of the Stage II problem.

- Stage II:Maximize an LP over 𝜎 with 𝜃 -dependent constraints.

This makes the problem much more structured and significantly

disentangles the complex dependence between 𝜎 and 𝜃 . Yet we

still do not know how to solve it efficiently. In the second step of

our relaxation, we merge the two-stage optimization into a sin-

gle LP. In particular, we lift the problem to a higher dimensional

space and optimize over joint distributions of the allocation 𝜎 and

the dual parameters 𝜃 via an LP (Figure 3). Since the number of

dual parameters is already exponential in the number of bidders

and the number of items, it is too expensive to represent such a

joint distribution explicitly. We show it is unnecessary to search

over all joint distributions. By leveraging the independence across

bidders and items, it suffices for us to consider a set of succinctly

representable distributions – the ones whose marginals over the

dual parameters are product measures. See Section 3.1 for a more

detailed discussion on the development of our relaxation.

“Rounding” any Feasible Solution to a Simple Mechanism. Can we

still approximate the optimal solution of the LP relaxation using a

simple mechanism? Unfortunately, the result from [17] no longer

applies. We provide a generalization of [17], that is, given any feasi-

ble solution of our LP relaxation, we can construct in polynomial

time a simple mechanism whose revenue is at least a constant frac-

tion of the objective value of the feasible solution (Theorem 3). Our

proof provides several novel ideas to handle the new challenges

due to the relaxation, which may be of independent interest.

Marginal Reduced Forms. We deliberately postpone the discus-

sion on how we represent the allocation of a mechanism un-

til now. A widely used succinct representation a mechanism M
is known as the reduced form or the interim allocation rule:

{𝑟𝑖 𝑗 (𝑡𝑖 )}𝑖∈[𝑛], 𝑗 ∈[𝑚],𝑡𝑖 ∈
>

𝑗∈[𝑚] T𝑖 𝑗 where 𝑟𝑖 𝑗 (𝑡𝑖 ) is the probability for
bidder 𝑖 to receive item 𝑗 when her type is 𝑡𝑖 = (𝑡𝑖1, . . . , 𝑡𝑖𝑚) [8].
Despite being more succinct than the ex-post allocation rule, the

reduced form is still too expensive to store in our setting, as its size

is exponential in𝑚. A key innovation in our relaxation is the in-

troduction of an even more succinct representation – the marginal

reduced forms and a multiplicative approximation to the polytope

of all feasible marginal reduced forms. Although this is a natural

concept, to the best of our knowledge, we are the first to introduce

and make use of it. The marginal reduced form is represented as

5
See Appendix B.1 for an example of the non-concavity of the function.

:

{
𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )

}
𝑖∈[𝑛], 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 , where𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) is the probability for

bidder 𝑖 to receive item 𝑗 in M and her value for item 𝑗 is 𝑡𝑖 𝑗 .
6

Importantly, the size of a marginal reduced form is polynomial in

the input size of our problem. As our LP relaxation uses marginal

reduced forms as decision variables, it is crucial for us to be able

to optimize over the polytope 𝑃 that contains all feasible marginal

reduced forms. To the best of our knowledge, 𝑃 does not have a

succinct explicit description or an efficient separation oracle. To

overcome the obstacle, we provide an efficient separation oracle for

a different polytope𝑄 that is a multiplicative approximation to 𝑃 , i.e.,

𝑐 · 𝑃 ⊆ 𝑄 ⊆ 𝑃 for some absolute constant 𝑐 ∈ (0, 1) (Theorem 2). Us-

ing the separation oracle for𝑄 , we can find a 𝑐-approximation to the

optimum of the LP relaxation efficiently. Note that a sampling tech-

nique was developed in [9] to approximate the polytope of feasible

reduced forms. However, their technique only provides an “addi-

tive approximation to the polytope”, which is insufficient for our

purpose. Indeed, our multiplicative approximation holds for a wide

class of polytopes that frequently appear in Mechanism Design. We

believe our technique has further applications, for example, to con-

vert the additive FPRAS of Cai-Daskalakis-Weinberg [8, 9, 11, 12]

to a multiplicative FPRAS.

1.2 Related Work

Simple vs. Optimal. We provide an algorithm for themost general

setting where an 𝑂 (1)-approximation to the optimal revenue is

known using simple mechanisms. It is worth mentioning that a

recent result by Dütting et al. [27] shows that simple mechanisms

can be used to obtain a 𝑂 (log log𝑚)-approximation to the optimal

revenue even when the bidders have subadditive valuations. We

leave it as an interesting open problem to extend our algorithm to

bidders with subadditive valuations.

(1 − 𝜀)-Approximation in Item-Independent Settings. We focus on

constant factor approximations for general valuations. For more

specialized valuations, e.g., unit-demand/additive, there are several

interesting results for finding (1− 𝜀)-approximation to the “optimal

mechanism”. For example, PTASes are known if we restrict our at-

tention to finding the optimal simple mechanism for a single bidder,

e.g., item-pricing [5] or partition mechanisms [33]. For multiple

bidders, PTASes are known for bidders with additive valuations

under extra assumptions on distributions (such as i.i.d., MHR,
7

etc.) [14, 26]. The only result that does not require simplicity of

the mechanism or extra assumptions on the distribution is [31],

but their algorithm is only a quasi-polynomial time approxima-

tion scheme (QPTAS) and computes a (1 − 𝜀)-approximation to the

optimal revenue for a single unit-demand bidder.

Structured Distributions beyond Item-Independence. When the

type distributions can be represented as other structured distribu-

tions such as Bayesian networks, Markov Random Fields, or Topic

Models, recent results show how to utilize the structure to improve

the learnability, approximability, and communication complexity

6
We refer to {𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) }𝑖∈[𝑛], 𝑗∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 as the marginal reduced forms as they are

the marginals of the reduced forms multiplied by the probability that 𝑡𝑖 𝑗 is bidder 𝑖’s

value for item 𝑗 , i.e.,
𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )

Pr𝐷𝑖 𝑗
[𝑡𝑖 𝑗 ]

= E𝑡𝑖,−𝑗 ∼
>

ℓ≠𝑗 𝐷𝑖ℓ

[
𝑟𝑖 𝑗

(
𝑡𝑖 𝑗 , 𝑡𝑖,−𝑗

) ]
.

7
That is, 𝑓𝑖 𝑗 (𝑣)/1 − 𝐹𝑖 𝑗 (𝑣) is monotone non-decreasing (MHR) for each 𝑖, 𝑗 , where

𝑓𝑖 𝑗 is the pdf and 𝐹𝑖 𝑗 is the cdf.
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of multi-item auctions [4, 7, 15]. We believe that tools developed

in this work would be useful to obtain similar improvement in

terms of the computational complexity for computing approxi-

mately optimal mechanisms for structured distributions beyond

item-independence.

2 PRELIMINARIES

We focus on revenue maximization in the combinatorial auction

with 𝑛 independent bidders and 𝑚 heterogeneous items. We de-

note bidder 𝑖’s type 𝑡𝑖 as {𝑡𝑖 𝑗 } 𝑗 ∈[𝑚] , where 𝑡𝑖 𝑗 is bidder 𝑖’s private
information about item 𝑗 . For each 𝑖 , 𝑗 , we assume 𝑡𝑖 𝑗 is drawn

independently from the distribution 𝐷𝑖 𝑗 . Let 𝐷𝑖 = ×𝑚
𝑗=1
𝐷𝑖 𝑗 be the

distribution of bidder 𝑖’s type and 𝐷 = ×𝑛
𝑖=1
𝐷𝑖 be the distribution

of the type profile. We only consider discrete distributions in this

paper. We use T𝑖 𝑗 (or T𝑖 ,T ) and 𝑓𝑖 𝑗 (or 𝑓𝑖 , 𝑓 ) to denote the support

and the probability mass function of 𝐷𝑖 𝑗 (or 𝐷𝑖 , 𝐷). For notational

convenience, we let 𝑡−𝑖 to be the types of all bidders except 𝑖 and 𝑡<𝑖
(or 𝑡≤𝑖 ) to be the types of the first 𝑖 − 1 (or 𝑖) bidders. Similarly, we

define 𝐷−𝑖 , T−𝑖 and 𝑓−𝑖 for the corresponding distribution, support

of the distribution, and probability mass function.

Valuation Functions. For every bidder 𝑖 , denote her valuation

function as 𝑣𝑖 (·, ·) : T𝑖 × 2
[𝑚] → R+. For every 𝑡𝑖 ∈ T𝑖 , 𝑆 ⊆ 2

[𝑚]
,

𝑣𝑖 (𝑡𝑖 , 𝑆) is bidder 𝑖’s value for receiving a set 𝑆 of items, when her

type is 𝑡𝑖 . In the paper, we are interested in constrained-additive

and XOS valuations. For every 𝑖 ∈ [𝑛], bidder 𝑖’s valuation 𝑣𝑖 (·, ·)
is constrained-additive if the bidder can receive a set of items sub-

ject to some downward-closed feasibility constraint F𝑖 . Formally,

𝑣𝑖 (𝑡𝑖 , 𝑆) = max𝑅∈2𝑆∩F
∑
𝑗 ∈𝑅 𝑡𝑖 𝑗 for every type 𝑡𝑖 and set 𝑆 . It con-

tains classic valuations such as additive (F𝑖 = 2
[𝑚]

) and unit-

demand (F𝑖 = ∪𝑗 ∈[𝑚] { 𝑗}). For constrained-additive valuations,

we use 𝑡𝑖 𝑗 to denote bidder 𝑖’s value for item 𝑗 . For every 𝑖 ∈ [𝑛],
bidder 𝑖’s valuation 𝑣𝑖 (·, ·) isXOS (or fractionally-subadditive) if each
𝑡𝑖 𝑗 represents a set of 𝐾 non-negative numbers {𝛼 (𝑘)

𝑖 𝑗
(𝑡𝑖 𝑗 )}𝑘∈[𝐾 ] ,

for some integer 𝐾 , and 𝑣𝑖 (𝑡𝑖 , 𝑆) = max𝑘∈[𝐾 ]
∑
𝑗 ∈𝑆 𝛼

(𝑘)
𝑖 𝑗

(𝑡𝑖 𝑗 ), for
every type 𝑡𝑖 and set 𝑆 . We denote by 𝑉𝑖 𝑗 (𝑡𝑖 ) = 𝑣𝑖 (𝑡𝑖 , { 𝑗}) the value
for a single item 𝑗 . Since the value of the bidder for item 𝑗 only

depends on 𝑡𝑖 𝑗 , we denote 𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) as the singleton value.

Mechanisms. A mechanismM can be described as a tuple (𝜎, 𝑝),
where 𝜎 is the interim allocation rule of M and 𝑝 stands for the

payment rule. Formally, for every bidder 𝑖 , type 𝑡𝑖 and set 𝑆 , 𝜎𝑖𝑆 (𝑡𝑖 )
is the interim probability that bidder 𝑖 with type 𝑡𝑖 receives ex-

act bundle 𝑆 . We use standard concepts of BIC, DSIC and IR for

mechanisms. See Appendix A for the formal definitions. For any

BIC and IR mechanism M, denote Rev(M) the revenue of M. De-

note OPT the optimal revenue among all BIC and IR mechanisms.

Throughout this paper, the two classes of simple mechanisms we

focus on are rationed posted price (RPP) mechanisms and two-part

tariff (TPT) mechanisms, which are both described in Section 1.

We denote PRev the optimum revenue achievable among all RPP

mechanisms.

Access to the Bidders’ Valuations. Wedefine several ways to access

a bidder’s valuation.

Definition 1 (Value and Demand Oracle). A value oracle for

a valuation 𝑣 (·, ·) takes a type 𝑡 and a set of items 𝑆 ⊆ [𝑚] as input,

and returns the bidder’s value 𝑣 (𝑡, 𝑆) for the bundle 𝑆 . A demand

oracle for a valuation 𝑣 (·, ·) takes a type 𝑡 and a collection of non-

negative prices {𝑝 𝑗 } 𝑗 ∈[𝑚] as input, and returns a utility-maximizing

bundle, i.e. 𝑆∗ ∈ argmax𝑆⊆[𝑚]
(
𝑣 (𝑡, 𝑆) − ∑

𝑗 ∈𝑆 𝑝 𝑗
)
. In this paper, we

use Dem𝑖 (·, ·) to denote the demand oracle for bidder 𝑖’s valuation

𝑣𝑖 (·, ·).

For constrained-additive valuations, our result only requires

query access to a value oracle and a demand oracle for every bidder

𝑖’s valuation 𝑣𝑖 (·, ·). For XOS valuations, we need a stronger demand

oracle that allows “scaled types” as input. We refer to the stronger

oracle as the adjustable demand oracle.

Definition 2 (Adjustable Demand Oracle). An adjustable

demand oracle for bidder 𝑖’s XOS valuation 𝑣𝑖 (·, ·) takes a type

𝑡 , a collection of non-negative coefficients {𝑏 𝑗 } 𝑗 ∈[𝑚] , and a col-

lection of non-negative prices {𝑝 𝑗 } 𝑗 ∈[𝑚] as input. For every item

𝑗 , 𝑏 𝑗 is a scaling factor for 𝑡𝑖 𝑗 , meaning that each of the 𝐾 num-

bers {𝛼 (𝑘)
𝑖 𝑗

(𝑡𝑖 𝑗 )}𝑘∈[𝐾 ] , i.e. the contribution of item 𝑗 under each ad-

ditive function, is multiplied by 𝑏 𝑗 . The oracle outputs a favorite

bundle 𝑆∗ with respect to the adjusted contributions and the prices

{𝑝 𝑗 } 𝑗 ∈[𝑚] , as well as the additive function {𝛼 (𝑘∗)
𝑖 𝑗

(𝑡𝑖 𝑗 )} 𝑗 ∈[𝑚] for
some 𝑘∗ ∈ [𝐾] that achieves the highest value on 𝑆∗. Formally,

(𝑆∗, 𝑘∗) ∈ argmax𝑆⊆[𝑚],𝑘∈[𝐾 ]
{∑

𝑗 ∈𝑆 𝑏 𝑗𝛼
(𝑘)
𝑖 𝑗

(𝑡𝑖 𝑗 ) −
∑
𝑗 ∈𝑆 𝑝 𝑗

}
.We

use ADem𝑖 (·, ·, ·) to denote the adjustable demand oracle for bidder

𝑖’s XOS valuation 𝑣𝑖 (·, ·).

The adjustable demand oracle can be viewed as a generalization

of the demand oracle for XOS valuations. In the above definition, if

every coefficient 𝑏 𝑗 is 1, then the adjustable demand oracle outputs

the utility-maximizing bundle 𝑆∗ (as in the demand oracle) and the

additive function that achieves the value for this set. For general

𝑏 𝑗 ’s, the adjustable demand oracle scales item 𝑗 ’s contribution to

bidder 𝑖’s value by a 𝑏 𝑗 factor. The output bundle 𝑆
∗
maximizes the

adjusted utility.
8

Definition 3 (Bit Complexity of an Instance). Given any

instance of our problem represented as the tuple (T , 𝐷, 𝑣 =

{𝑣𝑖 (·, ·)}𝑖∈[𝑛] ). Denote as 𝑏 𝑓 the bit complexity of elements in

{𝑓𝑖 𝑗 (𝑡𝑖 𝑗 )}𝑖∈[𝑛], 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 . For constrained-additive valuations, de-
note as 𝑏𝑣 the bit complexity of elements in {𝑡𝑖 𝑗 }𝑖∈[𝑛], 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 .
For XOS valuations, denote as 𝑏𝑣 the bit complexity of ele-

ments in {𝛼 (𝑘)
𝑖 𝑗

(𝑡𝑖 𝑗 )}𝑖∈[𝑛], 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 ,𝑘∈[𝐾 ] . We define the value

max(𝑏𝑣, 𝑏 𝑓 ) to be the bit complexity of the instance.

3 LINEAR PROGRAM RELAXATION VIA

LIFTING

In this section, we present the linear program relaxation for com-

puting an approximately optimal simple mechanism. Due to the

space limit, all proofs can be found in the arXiv version of the paper.

The main result of our paper is as follows:

8
Note that for every collection of scaling factors, the query to the adjusted demand

oracle is simply a demand query for a different XOS valuation. If all additive func-

tions of 𝑡𝑖 are explicitly given, then the adjusted demand oracle can be simulated

in time𝑂 (𝑚𝐾) .
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Theorem 1. Let 𝑇 =
∑
𝑖, 𝑗 |T𝑖 𝑗 | and 𝑏 be the bit complexity of the

problem instance (Definition 3). For any 𝛿 > 0, there exists an algo-

rithm that computes a RPP mechanism or a TPT mechanism, such that

the revenue of the mechanism is at least 𝑐 ·OPT for some absolute con-

stant 𝑐 > 0 with probability 1−𝛿− 2

𝑛𝑚 . For constrained-additive valu-

ations, our algorithm assumes query access to a value oracle and a de-

mand oracle of bidders’ valuations. For XOS valuations, our algorithm

assumes query access to a value oracle and an adjustable demand

oracle. The algorithm has running time poly(𝑛,𝑚,𝑇 , 𝑏, log(1/𝛿)).
For any matroid-rank valuation, i.e., the downward-closed feasi-

bility constraint is a matroid, the value and demand oracle can be

simulated in polynomial time using greedy algorithms. For more

general constraints, it is standard to assume access to the value and

demand oracle. We also show that the adjustable demand oracle

(rather than a demand oracle) is necessary to obtain our XOS result.

In Theorem 6, we show that (even an approximation of) ADem𝑖

can not be implemented in polynomial time, given access to the

value oracle, demand oracle, and XOS oracle.

As most of the technical barriers already exist in the constrained-

additive case, for exposition purposes, we focus on constrained-

additive valuations in the main body (unless explicitly stated).
9

Before stating our LP, we first provide a brief recap of the existential

result by Cai and Zhao [17] summarized in Lemma 1.
10

Definition 4. For any 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], and any feasible

interim allocation 𝜎 ,11 and non-negative numbers
˜𝜷 = { ˜𝛽𝑖 𝑗 ∈

T𝑖 𝑗 }𝑖∈[𝑛], 𝑗 ∈[𝑚] , c = {𝑐𝑖 }𝑖∈[𝑛] and r = {𝑟𝑖 𝑗 }𝑖∈[𝑛], 𝑗 ∈[𝑚] ∈ [0, 1]𝑛𝑚

(referred to as the dual parameters), let Core(𝜎, ˜𝜷, c, r) be the welfare
under allocation 𝜎 truncated at

˜𝛽𝑖 𝑗 + 𝑐𝑖 for every 𝑖, 𝑗 . Formally,

Core(𝜎, ˜𝜷, c, r) =
∑
𝑖

∑
𝑡𝑖

𝑓𝑖 (𝑡𝑖 ) ·
∑

𝑆⊆[𝑚]
𝜎𝑖𝑆 (𝑡𝑖 )

·
∑
𝑗 ∈𝑆

𝑡𝑖 𝑗 ·
(
1[𝑡𝑖 𝑗 < ˜𝛽𝑖 𝑗 + 𝑐𝑖 ] + 𝑟𝑖 𝑗 · 1[𝑡𝑖 𝑗 = ˜𝛽𝑖 𝑗 + 𝑐𝑖 ]

)
.

Lemma 1. [17] Given any BIC and IR mechanism M with interim

allocation 𝜎 , where 𝜎𝑖𝑆 (𝑡𝑖 ) is the interim probability for bidder 𝑖 to

receive exactly bundle 𝑆 when her type is 𝑡𝑖 , there exist non-negative

numbers
˜𝜷 (𝜎) = { ˜𝛽 (𝜎)

𝑖 𝑗
∈ T𝑖 𝑗 }𝑖∈[𝑛], 𝑗 ∈[𝑚] , c(𝜎) = {𝑐 (𝜎)

𝑖
}𝑖∈[𝑛] and

r(𝜎) ∈ [0, 1]𝑛𝑚 that satisfy
12

(1)

∑
𝑖∈[𝑛]

(
Pr

𝑡𝑖 𝑗
[𝑡𝑖 𝑗 > ˜𝛽

(𝜎)
𝑖 𝑗

] + 𝑟 (𝜎)
𝑖 𝑗

· Pr
𝑡𝑖 𝑗
[𝑡𝑖 𝑗 = ˜𝛽

(𝜎)
𝑖 𝑗

]
)
≤ 1

2

,∀𝑗

(2)

1

2

·
∑
𝑡𝑖 ∈T𝑖

𝑓𝑖 (𝑡𝑖 ) ·
∑
𝑆 :𝑗 ∈𝑆

𝜎𝑖𝑆 (𝑡𝑖 )

≤ Pr

𝑡𝑖 𝑗
[𝑡𝑖 𝑗 > ˜𝛽

(𝜎)
𝑖 𝑗

] + 𝑟 (𝜎)
𝑖 𝑗

· Pr
𝑡𝑖 𝑗
[𝑡𝑖 𝑗 = ˜𝛽

(𝜎)
𝑖 𝑗

],∀𝑖, 𝑗

(3)

∑
𝑖∈[𝑛]

𝑐
(𝜎)
𝑖

≤ 8 · PRev

9
The linear program for XOS valuations can be found in Figure 5 in Appendix C.2.

10
The statement is for constrained-additive bidders. The statement for XOS bidders

can be found in the arxiv version of the paper.

11
For constrained-additive bidders, an interim allocation 𝜎 is feasible if it can be imple-

mented by a mechanism whose allocation rule always respects all bidders’ feasibility

constraints. It is without loss of generality to consider feasible interim allocations.

12
[17] provides an explicit way to calculate

˜𝜷 (𝜎 ) , c(𝜎 ) , r(𝜎 )
. We only include the

crucial properties of these parameters here.

and the corresponding Core(𝜎, ˜𝜷 (𝜎) , c(𝜎) , r(𝜎) ) satisfies the fol-
lowing inequalities:

(4) Rev(M) ≤ 28 · PRev + 4 · Core(𝜎, ˜𝜷 (𝜎) , c(𝜎) , r(𝜎) ),
(5) Core(𝜎, ˜𝜷 (𝜎) , c(𝜎) , r(𝜎) ) ≤ 64 · PRev+ 8 ·Rev(M (𝜎)

1
), where

M (𝜎)
1

is some TPT mechanism.

Remark 1. For continuous type distributions, there exists
˜𝜷 (𝜎)

that satisfy both Property 1 and 2 of Lemma 1 with 𝑟
(𝜎)
𝑖 𝑗

= 1,∀𝑖, 𝑗 for
every 𝜎 . For discrete distributions, such a

˜𝜷 (𝜎)
may not exist. This is

simply a tie-breaking issue, and the role of r(𝜎) is to fix it. Roughly
speaking, 𝑟

(𝜎)
𝑖 𝑗

is the probability that bidder 𝑖 wins item 𝑗 , when she

is indifferent between purchasing or not. Readers can treat r(𝜎) as the
all-one vector to get the intuition behind our approach.

By combining Property 4 and 5 of Lemma 1, Cai and Zhao [17]

proved that the revenue of any BIC, IR mechanismM is bounded

by a constant number of PRev and the revenue of some TPT mech-

anism. Recall that PRev is the optimal revenue achieved by an RPP

mechanism, which is exactly the Sequential Posted Price mecha-

nism if we restrict the bidders’ valuations to unit-demand. Thus

we can compute a set of posted prices that approximates PRev by

Chawla et al. [18].

3.1 Tour to Our Relaxation

To facilitate our discussion about the key components and the

intuition behind the relaxation, we present the development of

our relaxation and along the way examine several failed attempts.

In Theorem 3, we show that the optimal solution of the relaxed

problem can indeed be approximated by simple mechanisms. Due

to space limitations, we do not include details on the approximation

analysis in this section, but focus on our intuition behind each step

of our relaxation. We also assume 𝑟𝑖 𝑗 to be 1 for every 𝑖 and 𝑗 to

keep the notation light.

Step 0: Replace Revenue with the Duality-Based Benchmark. In-

stead of optimizing the revenue, we optimize the upper bound of

revenue. As guaranteed by Lemma 1, for any BIC and IR mech-

anism M = (𝜎, 𝑝), its revenue is upper bounded by 𝑂 (PRev +
Core(𝜎, 𝜃 (𝜎))), where we use 𝜃 (𝜎) to denote the set of dual pa-

rameters ( ˜𝜷 (𝜎) , c(𝜎) ) guaranteed to exist by Lemma 1. Since we

can approximate PRev, it suffices to first approximately maximize

Core(𝜎, 𝜃 (𝜎)) over all feasible interim allocations 𝜎 , then compute

the TPT in Lemma 1 based on the computed 𝜎 . Core(𝜎, 𝜃 (𝜎)) is the
truncated welfare, but the truncation depends on 𝜎 in a complex

way, causing the function to be highly non-concave in 𝜎 (Exam-

ple 1).

Step 1: Two-Stage Optimization. To overcome the barrier men-

tioned above, we consider a two-stage optimization problem (Fig-

ure 1) by switching the order of dependence between the interim

allocation 𝜎 and dual parameters 𝜃 = (𝜷, c). In Stage I, we opti-

mize some function 𝐻 over the dual parameters 𝜃 = (𝜷, c), where
𝐻 (𝜷, c) is the optimum of the Stage II problem for every fixed set

of parameters (𝜷, c). Constraint (1) and (2) in the Stage I problem

are due to Property 1 and 3 of Lemma 1 respectively. In Stage II,

for any fixed set of parameters 𝜃 = (𝜷, c), we optimize Core(𝜎, 𝜃 )
over all feasible 𝜎 such that the tuple (𝜎, 𝜷, c) satisfy Property 1,
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2, and 3 of Lemma 1. We choose the interim allocation 𝜎 as the

variables, Core(𝜎, 𝜷, c) as the objective, and include Constraint (4),
which corresponds to Property 2 of Lemma 1. Why is the two-stage

optimization a relaxation? For any interim allocation 𝜎 , (i) the cor-

responding set of dual parameters 𝜃 (𝜎) is a feasible solution of the

first-stage optimization problem, and (ii) 𝜎 is feasible in the second-

stage optimization w.r.t. 𝜃 (𝜎), so (𝜃 (𝜎), 𝜎) is a feasible solution of

the two-stage optimization problem.

Stage I:

max 𝐻 (𝜷, c)

s.t. (1)
∑
𝑖∈[𝑛]

Pr

𝑡𝑖 𝑗
[𝑡𝑖 𝑗 ≥ 𝛽𝑖 𝑗 ] ≤ 1

2

∀𝑗

(2)
∑
𝑖∈[𝑛]

𝑐𝑖 ≤ 8 · PRev

Stage II:

𝐻 (𝜷, c) =max

∑
𝑖∈[𝑛]

∑
𝑡𝑖 ∈T𝑖

𝑓𝑖 (𝑡𝑖 ) ·
∑

𝑆⊆[𝑚]
𝜎𝑖𝑆 (𝑡𝑖 )

∑
𝑗∈𝑆

𝑡𝑖 𝑗 ·1[𝑡𝑖 𝑗 ≤ 𝛽𝑖 𝑗+𝑐𝑖 ]

s.t. (3) 𝜎 is feasible

(4) 1

2

∑
𝑡𝑖 ∈T𝑖

𝑓𝑖 (𝑡𝑖 ) ·
∑
𝑆 :𝑗∈𝑆

𝜎𝑖𝑆 (𝑡𝑖 ) ≤ Pr

𝑡𝑖 𝑗
[𝑡𝑖 𝑗 ≥ 𝛽𝑖 𝑗 ] ∀𝑖, 𝑗

Figure 1: Two-stage Optimization over 𝜃 = (𝜷, c) and the al-

location 𝜎

We now focus on the Stage II problem and try to solve it ef-

ficiently for a fixed set of parameters 𝜃 . The objective is a lin-

ear function of the variables 𝜎 , yet the set of variables 𝜎 =

{𝜎𝑖𝑆 (𝑡𝑖 )}𝑖∈[𝑛],𝑆⊆[𝑚],𝑡𝑖 ∈T𝑖 has exponential size. Luckily, the prob-
lem can be expressed more succinctly. For any interim allocation 𝜎

and dual parameters 𝜃 = (𝜷, c), the objective (Core(𝜎, 𝜃 )) can be

simplified as follows:

Core(𝜎, 𝜃 ) =
∑
𝑖∈[𝑛]
𝑡𝑖 ∈T𝑖

𝑓𝑖 (𝑡𝑖 )
∑

𝑆⊆[𝑚]
𝜎𝑖𝑆 (𝑡𝑖 )

∑
𝑗 ∈𝑆

𝑡𝑖 𝑗 · 1[𝑡𝑖 𝑗 ≤ 𝛽𝑖 𝑗 + 𝑐𝑖 ]

=
∑

𝑖∈[𝑛], 𝑗 ∈[𝑚]
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )𝑡𝑖 𝑗 · 1[𝑡𝑖 𝑗 ≤ 𝛽𝑖 𝑗 + 𝑐𝑖 ], (1)

where 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) = 𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) ·
∑
𝑡𝑖,−𝑗 𝑓𝑖,−𝑗 (𝑡𝑖,−𝑗 ) ·

∑
𝑆 :𝑗 ∈𝑆 𝜎𝑖𝑆 (𝑡𝑖 𝑗 , 𝑡𝑖,−𝑗 )

for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 . We refer to

{𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )}𝑖∈[𝑛], 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 as themarginal reduced form of the

interim allocation rule 𝜎 . 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) represents the probability that

bidder 𝑖’s value for item 𝑗 is 𝑡𝑖 𝑗 and she receives item 𝑗 , and the prob-

ability is taken over the randomness of the allocation, other bidders’

types, as well as her own values for all the other items. Now for ev-

ery fixed dual parameters 𝜃 , Core is expressed as a linear function

of the much more succinct representation𝑤 = {𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )}𝑖, 𝑗,𝑡𝑖 𝑗 that
has polynomial description size. We rewrite the Stage II problem

as an LP using the variables𝑤 . Denote Core(𝑤̂, 𝜃 ) the last term of

Equation (1), which is the objective of the problem. By the definition

of𝑤 , Constraint (4) is equivalent to

1

2

·
∑

𝑡𝑖 𝑗 ∈T𝑖 𝑗
𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ Pr

𝑡𝑖 𝑗
[𝑡𝑖 𝑗 ≥ 𝛽𝑖 𝑗 ], ∀𝑖, 𝑗 (2)

which is a linear constraint on 𝑤 . Let P1 be the convex polytope

that contains all marginal reduced forms𝑤 that can be implemented

by some feasible allocation 𝜎 (corresponds to Constraint (3)) and

P2 be the set of all𝑤 that satisfy all constraints in Equation (2). The

Stage II problem is equivalent to the LP max𝑤∈P1∩P2

Core(𝑤, 𝜃 ).
Unfortunately, since P1 does not have an explicit succinct descrip-

tion or an efficient separation oracle, it is unclear if the problem

can be solved efficiently.

Step 2: Marginal Reduced Form Relaxation. To overcome this

barrier, we consider a relaxation of P1, where the feasibility con-

straint is only enforced on each bidder separately. We refer to

this step as the marginal reduced form relaxation. We use 𝑤𝑖 =

{𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )} 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 to denote a feasible single-bidder marginal

reduced form for bidder 𝑖 . Formally, we define the feasible region

𝑊𝑖 of𝑤𝑖 in Definition 5.

Definition 5 (Constrained-additive valuations: single-bid-

der marginal reduced form polytope). For every 𝑖 ∈ [𝑛], sup-
pose bidder 𝑖 has a constrained-additive valuation with feasibil-

ity constraint F𝑖 . Bidder 𝑖’s single-bidder marginal reduced form

polytope𝑊𝑖 ⊆ [0, 1]
∑

𝑗∈[𝑚] |T𝑖 𝑗 | is defined as follows: 𝑤𝑖 ∈ 𝑊𝑖 if

and only if there exists an allocation rule {𝜎𝑆 (𝑡𝑖 )}𝑡𝑖 ∈T𝑖 ,𝑆 ∈F𝑖 , i.e.,
𝜎𝑆 (𝑡𝑖 ) is the probability that 𝑖 receives set 𝑆 when her type is 𝑡𝑖 ,

such that (i)

∑
𝑆 ∈F𝑖 𝜎𝑆 (𝑡𝑖 ) ≤ 1, ∀𝑡𝑖 ∈ T𝑖 , and (ii) 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) =

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) · ∑
𝑡𝑖,−𝑗 𝑓𝑖,−𝑗 (𝑡𝑖,−𝑗 ) · ∑

𝑆 :𝑗 ∈𝑆 𝜎𝑆 (𝑡𝑖 ), for all 𝑗 ∈ [𝑚] and

𝑡𝑖 𝑗 ∈ T𝑖 𝑗 .

Throughout this section, we assume access to a separation oracle

of 𝑊𝑖 for every bidder 𝑖 . In Theorem 2, we present an efficient

separation oracle for another polytope𝑊𝑖 that is a multiplicative

approximation to𝑊𝑖 , i.e.,𝑊𝑖 is sandwiched between 𝑐 ·𝑊𝑖 and
𝑊𝑖 for some absolute constant 𝑐 ∈ (0, 1), using only queries to

bidder 𝑖’s demand oracle. We will argue later that we can efficiently

approximate our problem with the separation oracle for𝑊𝑖 .

Here is our relaxation to the (rewritten) Stage II problem: Instead

of forcing𝑤 to be implementable jointly (𝑤 ∈ P1), we consider the

relaxed region P ′ ⊇ P1: 𝑤 ∈ P ′
if and only if: (i) 𝑤𝑖 ∈ 𝑊𝑖 , for

all bidder 𝑖 ∈ [𝑛], and (ii)

∑
𝑖

∑
𝑡𝑖 𝑗 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ 1,∀𝑗 ∈ [𝑚]. In other

words, P ′
guarantees that, for every bidder 𝑖 ,𝑤𝑖 is a feasible single-

bidder marginal reduced form for 𝑖 , and the supply constraint is met

in terms of marginal reduced forms (rather than ex-post allocations).

Relaxed Stage II:

𝐻 (𝜷, c) =max

∑
𝑖∈[𝑛]

∑
𝑗∈[𝑚]

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) · 𝑡𝑖 𝑗 · 1[𝑡𝑖 𝑗 ≤ 𝛽𝑖 𝑗 + 𝑐𝑖 ]

s.t. (3) 𝑤𝑖 ∈𝑊𝑖 ∀𝑖

(4) 1

2

∑
𝑡𝑖 𝑗

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ Pr

𝑡𝑖 𝑗
[𝑡𝑖 𝑗 ≥ 𝛽𝑖 𝑗 ] ∀𝑖, 𝑗

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 0 ∀𝑖, 𝑗, 𝑡𝑖 𝑗

Figure 2: The Relaxed Stage II Problem over the Marginal

Reduced Forms
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The main benefit of this relaxation is computational. Without the re-

laxation, we need a multiplicative approximation of P1. Theorem 2

provides such an approximation if we can exactly maximizes the

social welfare – a computational task that is substantially harder

than answering demand queries. Indeed, we are not aware of any

efficient algorithm that exactly maximizes the social welfare with

only access to demand oracles of every bidder. The relaxed problem

max𝑤∈P′∩P2

Core(𝑤, 𝜃 ) is captured by the LP in Figure 2.
13

Consider the two-stage optimization with the relaxed Stage II

problem. For every fixed parameters 𝜃 , the relaxed Stage II problem

can be solved efficiently (assuming a separation oracle of𝑊𝑖 for

every 𝑖). Unfortunately, we do not know how to solve the two-stage

optimization problem efficiently, as the number of different dual

parameters is exponential in 𝑛 and𝑚, and enumerating through all

possible choices of dual parameters is not an option. To overcome

this obstacle, we need ideas explained in the following step.

Step 3: Lifting the problem to a higher dimensional space. In-

stead of enumerating all possible dual parameters 𝜃 , we optimize

over distributions of the parameters. To guarantee that the num-

ber of decision variables in our program is polynomial, we fo-

cus on product distributions over the parameters. Formally, for

every 𝑖, 𝑗 , let C𝑖 𝑗 be a distribution over V𝑖 𝑗 × Δ, where V𝑖 𝑗 and
Δ are the set of possible values of 𝛽𝑖 𝑗 and 𝑐𝑖 accordingly, after dis-

cretization (See Footnote a in Figure 3 for a formal definition). All

C𝑖 𝑗 ’s are independent. In our program, we use decision variables

{ ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 )}𝑖∈[𝑛], 𝑗 ∈[𝑚],𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ to represent the distribution

C𝑖 𝑗 , i.e., ˆ𝜆𝑖 𝑗 (𝑎, 𝑏) = Pr(𝛽𝑖 𝑗 ,𝛿𝑖 𝑗 )∼C𝑖 𝑗 [𝛽𝑖 𝑗 = 𝑎 ∧ 𝛿𝑖 𝑗 = 𝑏]. Notice that if
the parameters are drawn from a product distribution, the parame-

ter “𝑐𝑖” may be different for each item 𝑗 . To distinguish them, we

use 𝛿𝑖 𝑗 to replace the original parameter 𝑐𝑖 in our program.

Now we maximize the expected value of the Core function over

all product distributions ×𝑖, 𝑗C𝑖 𝑗 (represented by decision variables

ˆ𝜆) and the allocations (represented by the marginal reduced form𝑤 ).

If the parameters 𝜃 and allocation𝑤 are generated independently,

the expected Core is not a linear objective, since the contributed

truncated welfare in Core is 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) · ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · 𝑡𝑖 𝑗 · 1[𝑡𝑖 𝑗 ≤
𝛽𝑖 𝑗 + 𝛿𝑖 𝑗 ] for every 𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 . To linearize the objective, we lift

the problem to a higher dimensional space and consider joint dis-

tributions over the parameters and allocations. We do not con-

sider arbitrary joint distributions, and only focus on the ones

that correspond to the following generative process: first draw

(𝛽, 𝛿) from a product distribution (according to
ˆ𝜆), then choose

a feasible allocation 𝑤 (𝛽,𝛿) = {𝑤 (𝛽,𝛿)
𝑖 𝑗

(𝑡𝑖 𝑗 )}𝑖, 𝑗,𝑡𝑖 𝑗 conditioned on

(𝛽, 𝛿). Since there are too many parameters (𝛽, 𝛿), we certainly

cannot afford to store all 𝑤 (𝛽,𝛿)
’s explicitly. Instead, for each

bidder 𝑖 and item 𝑗 we introduce a new set of decision variables

{𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 )}𝑡𝑖 𝑗 ∈T𝑖 𝑗 ,𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ, where 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) is the
marginal probability for the following three events to happen simul-

taneously in our generative process: (a) (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) are the parameters

for 𝑖 and 𝑗 . (b) Bidder 𝑖 receives item 𝑗 . (c) Bidder 𝑖’s value for item

13
We omit the supply constraint

∑
𝑖

∑
𝑡𝑖 𝑗
𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ 1 as it is implied by Con-

straint (1) in the Stage I problem and Constraint (4).

𝑗 is 𝑡𝑖 𝑗 . Formally,

𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) = ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 )

·
∑

{(𝛽𝑖′ 𝑗′ ,𝛿𝑖′ 𝑗′ ) } (𝑖′, 𝑗′)≠(𝑖,𝑗 )

(
𝑤

(𝛽,𝛿)
𝑖 𝑗

(𝑡𝑖 𝑗 )/𝑓𝑖 𝑗 (𝑡𝑖 𝑗 )
)

·
∏

(𝑖′, 𝑗 ′)≠(𝑖, 𝑗)

ˆ𝜆𝑖′ 𝑗 ′ (𝛽𝑖′ 𝑗 ′, 𝛿𝑖′ 𝑗 ′) (3)

With the new variables 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 )’s, we can express the objec-

tive as an linear function:∑
𝑖∈[𝑛]

∑
𝑗 ∈[𝑚]

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) · 𝑡𝑖 𝑗

·
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ
𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · 1[𝑡𝑖 𝑗 ≤ 𝛽𝑖 𝑗 + 𝛿𝑖 𝑗 ] .

Our program can be viewed as an “expected version” of the the

two-stage optimization, when the parameters 𝜃 = (𝛽, 𝛿) ∼ >
𝑖, 𝑗 C𝑖 𝑗 .

In other words, we only require the constraints to be satisfied in

expectation. We discuss our relaxation in more details in Section 3.2.

3.2 Our LP and a Sketch of the Proof

of Theorem 1

We present a sketch of the proof of Theorem 1 for constrained-

additive bidders and our main linear program (Figure 3). Although

the LP has many constraints and may seem intimidating at first, all

constraints follow quite naturally from our derivation in Section 3.1.

See Section 3.3 for more details.

The first step of our proof is to estimate PRev using Lemma 2

from [18].

Lemma 2 (Theorem 14 and Appendix F in [18]). There exists

an algorithm that with probability at least 1 − 2

𝑛𝑚 , computes a Ra-

tioned Posted Price mechanismM such that
1

6.75 (1−
1

𝑛𝑚 ) ·PRev. The
algorithm runs in time 𝑝𝑜𝑙𝑦 (𝑛,𝑚,∑𝑖, 𝑗 |T𝑖 𝑗 |).

Denote E the event that an RPP in Lemma 2 is computed suc-

cessfully. For simplicity, we will condition on the event E for the

rest of this section. Let �PRev be the revenue of the RPP mechanism

found in Lemma 2.

Next, we argue that the LP in Figure 3 (or Figure 5 when the

valuations are XOS) can be solved efficiently. Note that there are

poly(𝑛,𝑚,∑𝑖, 𝑗 |T𝑖 𝑗 |) constraints except for Constraint (1), where
we need to enforce the feasibility of single-bidder marginal reduced

forms. It suffices to construct an efficient separation oracle for𝑊𝑖
for every 𝑖 . However, to the best of our knowledge,𝑊𝑖 does not

have a succinct explicit description or an efficient separation oracle.

For constrained-additive valuations, we construct another polytope

𝑊𝑖 such that: (i)𝑊𝑖 is a multiplicative approximation of𝑊𝑖 , i.e.,

𝑐 ·𝑊𝑖 ⊆ 𝑊𝑖 ⊆ 𝑊𝑖 for some absolute constant 𝑐 ∈ (0, 1), and (ii)

There exists an efficient separation oracle for𝑊𝑖 given access to

the demand oracle.

Theorem 2. Let 𝑇 =
∑
𝑖, 𝑗 |T𝑖 𝑗 | and 𝑏 be the bit complexity of the

problem instance (Definition 3). For any 𝑖 ∈ [𝑛] and 𝛿 ∈ (0, 1), there is
an algorithm that constructs a convex polytope𝑊𝑖 ∈ [0, 1]

∑
𝑗∈[𝑚] |T𝑖 𝑗 |

using poly(𝑛,𝑚,𝑇 , log(1/𝛿)) samples from 𝐷𝑖 , such that with proba-

bility at least 1 − 𝛿 ,
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(1)
1

12
·𝑊𝑖 ⊆𝑊𝑖 ⊆𝑊𝑖 , and the vertex-complexity (Definition 11)

of𝑊𝑖 is poly(𝑛,𝑚,𝑇 , 𝑏, log(1/𝛿)).
(2) There exists a separation oracle 𝑆𝑂 for 𝑊𝑖 , given ac-

cess to the demand oracle for bidder 𝑖’s valuation.

The running time of 𝑆𝑂 on any input with bit com-

plexity 𝑏 ′ is poly(𝑛,𝑚,𝑇 , 𝑏, 𝑏 ′, log(1/𝛿)) and makes

poly(𝑛,𝑚,𝑇 , 𝑏, 𝑏 ′, log(1/𝛿)) queries to the demand oracle.

The algorithm constructs the polytope and the separation oracle 𝑆𝑂

in time poly(𝑛,𝑚,𝑇 , 𝑏, log(1/𝛿)).

Indeed, we prove a more general result regarding polytopes that can

be expressed as a “mixture of polytopes”, which can be viewed as a

generalization of the technique developed in [10] for approximating

the polytope of all feasible reduced forms.

To solve the LP relaxation, we replace𝑊𝑖 by𝑊𝑖 in the LP in Fig-

ure 3 for every 𝑖 ∈ [𝑛], and solve the LP in polynomial time using

the ellipsoid method. Clearly, this solution is also feasible for the

original LP in Figure 3. Moreover, since𝑊𝑖 contains 𝑐 ·𝑊𝑖 , we can
show that the objective value of the solution we computed is

at least 𝑐 · OPTLP, where OPTLP the optimum of the LP in Fig-

ure 3. Our proof of Theorem 2 heavily relies on the fact that𝑊𝑖 is a

down-monotone polytope,
14

which does not hold in the XOS case.

For XOS valuations, we construct the polytope𝑊𝑖 with a weaker

guarantee: For every vector 𝑥 in𝑊𝑖 , there exists another vector

𝑥 ′ in𝑊𝑖 such that for every coordinate 𝑗 , 𝑥 𝑗/𝑥 ′𝑗 ∈ [𝑎, 𝑏] for some

absolute constant 0 < 𝑎 < 𝑏, and vice versa.

Next, we argue that the LP optimum can be approximated by

simple mechanisms. [17] shows that for any BIC and IR mechanism

M,Core(𝜎, ˜𝜷 (𝜎) , c(𝜎) , r(𝜎) ) (as stated in Lemma 1) can be bounded

by a constant number of PRev and the revenue of a TPT (see Prop-

erty 5 of Lemma 1). We generalize their result by proving that for

any feasible solution of the LP, its objective can be bounded by (a

constant times) the revenue of a RPP or TPT mechanism, and the

mechanism can be computed efficiently given the feasible solution.

Definition 6. Let (𝑤, 𝜆, ˆ𝜆, 𝒅 = (𝑑𝑖 )𝑖∈[𝑛] ) be any feasible so-

lution of the LP in Figure 3. For every 𝑗 ∈ [𝑚], define 𝑄 𝑗 = 1

2
·∑

𝑖∈[𝑛]
∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗 𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) ·𝑡𝑖 𝑗 ·

∑
𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ·1[𝑡𝑖 𝑗 ≤

𝛽𝑖 𝑗 + 𝛿𝑖 𝑗 ] .15

Clearly, for any feasible solution of the LP, the objective function

is 2 ·∑𝑗 ∈[𝑚] 𝑄 𝑗 . We prove in Theorem 3 that 2 ·∑𝑗 ∈[𝑚] 𝑄 𝑗 can be

bounded by the revenue ofMTPT (Mechanism 1) and the RPPMPP

(Lemma 2). As we can efficiently compute a feasible solution whose

objective is Ω(OPTLP), Theorem 3 implies that we can compute

in polynomial time a simple mechanism whose revenue is at least

Ω(OPTLP + PRev).

Theorem 3. Let (𝑤, 𝜆, ˆ𝜆, 𝒅) be any feasible solution of the LP in

Figure 3. Let MPP be the rationed posted price mechanism computed

in Lemma 2. Let MTPT be the two-part tariff mechanism shown in

Mechanism 1 with prices {𝑄 𝑗 } 𝑗 ∈[𝑚] . Then the objective function

of the solution 2 · ∑𝑗 ∈[𝑚] 𝑄 𝑗 is bounded by 𝑐1 · Rev(MPP) + 𝑐2 ·
Rev(MTPT), for some absolute constant 𝑐1, 𝑐2 > 0. Moreover, both

14
A polytope P ⊆ [0, 1]𝑑 is down-monotone if and only if for every 𝒙 ∈ P and

0 ≤ 𝒙′ ≤ 𝒙 , we have 𝒙′ ∈ P.

15
Recall that 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) is introduced in Step 3 of Section 3.1. See Figure 3 for

the formal definition.

MPP andMTPT can be computed in time poly(𝑛,𝑚,∑𝑖, 𝑗 |T𝑖 𝑗 |) with
access to the demand oracle for the bidders’ valuations.

The proof of Theorem 3 combines the “shifted Core” technique

by Cai and Zhao [17] with several novel ideas to handle the new

challenges due to the relaxation.

max

∑
𝑖∈[𝑛]

∑
𝑗∈[𝑚]

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 )

· 𝑡𝑖 𝑗 ·
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ
𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · 1[𝑡𝑖 𝑗 ≤ 𝛽𝑖 𝑗 + 𝛿𝑖 𝑗 ]

s.t.

Allocation Feasibility Constraints:

(1) 𝑤𝑖 ∈𝑊𝑖 , ∀𝑖

(2)
∑
𝑖

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ 1, ∀𝑗

Natural Feasibility Constraints:

(3) 𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) ·
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗

∑
𝛿𝑖 𝑗 ∈Δ

𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) = 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ),

∀𝑖, 𝑗, 𝑡𝑖 𝑗 ∈ T𝑖 𝑗
(4) 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≤ ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ), ∀𝑖, 𝑗, 𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 ∈ V𝑖 𝑗 , 𝛿𝑖 𝑗

(5)
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ

ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) = 1, ∀𝑖, 𝑗

Problem Specific Constraints:

(6)
∑
𝑖∈[𝑛]

∑
𝛽𝑖 𝑗 ∈V𝑖 𝑗

∑
𝛿𝑖 𝑗 ∈Δ

ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · Pr

𝑡𝑖 𝑗∼𝐷𝑖 𝑗

[𝑡𝑖 𝑗 ≥ 𝛽𝑖 𝑗 ] ≤ 1

2

, ∀𝑗

(7) 1

2

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 )
(
𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) + 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽+𝑖 𝑗 , 𝛿𝑖 𝑗 )

)
≤

ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · Pr
𝑡𝑖 𝑗

[𝑡𝑖 𝑗 ≥ 𝛽𝑖 𝑗 ] + ˆ𝜆𝑖 𝑗 (𝛽+𝑖 𝑗 , 𝛿𝑖 𝑗 ) · Pr𝑡𝑖 𝑗
[𝑡𝑖 𝑗 ≥ 𝛽+𝑖 𝑗 ],

∀𝑖, 𝑗, 𝛽𝑖 𝑗 ∈ V0

𝑖 𝑗 , 𝛿𝑖 𝑗 ∈ Δ

(8)
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗 ,𝛿𝑖 𝑗 ∈Δ
𝛿𝑖 𝑗 · ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≤ 𝑑𝑖 , ∀𝑖, 𝑗

(9)
∑
𝑖∈[𝑛]

𝑑𝑖 ≤ 111 · �PRev
𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≥ 0, ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≥ 0,

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 0, 𝑑𝑖 ≥ 0 ∀𝑖, 𝑗, 𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 ∈ V𝑖 𝑗 , 𝛿𝑖 𝑗

Figure 3: LP Relaxation for Constrained-Additive Bidders

Remark 2. Theorem 3 indeed holds even if the bidders arrive in

an arbitrary order inMTPT. We choose the lexicographical order only

to keep the notation light.

We complete the last step of our proof by showing OPT =

𝑂 (OPTLP + PRev) in Lemma 3. More specifically, we show that for

any mechanism M = (𝜎, 𝑝), the tuple (𝜎, ˜𝜷 (𝜎) , c(𝜎) , 𝑟 (𝜎) ) stated
in Lemma 1 corresponds to a feasible solution of the LP in Fig-

ure 3 whose objective is at least Core(𝜎, ˜𝜷 (𝜎) , c(𝜎) , 𝑟 (𝜎) ). Hence,
the revenue of M is upper bounded by PRev and OPTLP.
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Variables:
a

- 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ), for all 𝑖, 𝑗 and 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 , 𝛽𝑖 𝑗 ∈ V𝑖 𝑗 , 𝛿𝑖 𝑗 ∈ Δ.
See Step 3 of Section 3.1 for an explanation of this variable.

-
ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ), for all 𝑖 , 𝑗 , 𝛽𝑖 𝑗 ∈ V𝑖 𝑗 , 𝛿𝑖 𝑗 ∈ Δ, denoting the

distribution C𝑖 𝑗 over V𝑖 𝑗 × Δ.

- 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ), for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 , denoting
the expected marginal reduced form. We denote 𝑤𝑖 =

{𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )} 𝑗 ∈[𝑚],𝑡𝑖 𝑗 ∈T𝑖 𝑗 the vector of all variables associated
with bidder 𝑖 .

- 𝑑𝑖 , for all 𝑖 ∈ [𝑛], denoting an upper bound of the expecta-

tion of 𝛿𝑖 𝑗 over distribution C𝑖 𝑗 for all 𝑗 .
a
For every 𝑖, 𝑗 , let V0

𝑖 𝑗
= T𝑖 𝑗 be the set of all possible values of 𝑡𝑖 𝑗 . To

address the tie-breaking issue in Remark 1, let 𝜀𝑟 > 0 be an arbitrarily small

number,and define V+
𝑖 𝑗 = {𝑡𝑖 𝑗 + 𝜀𝑟 : 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 } and V𝑖 𝑗 = V0

𝑖 𝑗
∪ V+

𝑖 𝑗 . Let Δ

be a geometric discretization of range [�PRev/𝑛, 55 · �PRev]. Formally, 𝛿 ∈ Δ

if and only if 𝛿 = 2
𝑥

𝑛
· �PRev for some integer 𝑥 such that

0 ≤ 𝑥 ≤ ⌈log(55𝑛) ⌉. Finally, for each 𝛽 ∈ V0

𝑖 𝑗
, let 𝛽+ = 𝛽 + 𝜀𝑟 ∈ V+

𝑖 𝑗 .

Note that the LP (or the LP in Figure 5) do not depend on the choice of 𝜀𝑟 , so

we can choose 𝜀𝑟 to be sufficiently small. In fact, let 𝑏 be an upper bound of

the bit complexity of the problem instance, and the bit complexity of any

feasible solution of our LP. Our proof works as long as

𝜀𝑟 < min{ 1

2
poly(𝑏) ,

PRev∑
𝑖,𝑗 |T𝑖 𝑗 |

}.

Figure 4: Interpretation of the variables of the LP in Figure 3.

Mechanism 1 Two-part Tariff Mechanism MTPT

0: Before the mechanism starts, the seller computes the price 𝑄 𝑗
(Definition 6) for every item 𝑗 .

1: Bidders arrive sequentially in the lexicographical order.

2: When bidder 𝑖 arrive, the seller shows her the set of available

items 𝑆𝑖 (𝑡<𝑖 ) ⊆ [𝑚], as well as their prices. Note that 𝑆𝑖 (𝑡<𝑖 ) is
the set of items that are not purchased by the first 𝑖 − 1 bidders,

which depends on 𝑡<𝑖 . We use 𝑆1 (𝑡<1) to denote [𝑚].
3: Bidder 𝑖 is asked to pay an entry fee. The seller samples a

type 𝑡 ′
𝑖

∼ 𝐷𝑖 , and sets the entry fee as: 𝜉𝑖 (𝑆𝑖 (𝑡<𝑖 ), 𝑡 ′𝑖 ) =

max𝑆′⊆𝑆𝑖 (𝑡<𝑖 )
(
𝑣𝑖 (𝑡 ′𝑖 , 𝑆

′) − ∑
𝑗 ∈𝑆′ 𝑄 𝑗

)
. The entry fee is bidder

𝑖’s utility for her favorite set under prices 𝑄 𝑗 ’s if her type is 𝑡
′
𝑖
.

4: If bidder 𝑖 (with type 𝑡𝑖 ) agrees to pay the entry fee

𝜉𝑖 (𝑆𝑖 (𝑡<𝑖 ), 𝑡 ′𝑖 ), then she can enter the mechanism and take her

favorite set 𝑆∗ ∈ argmax𝑆′⊆𝑆𝑖 (𝑡<𝑖 )
(
𝑣𝑖 (𝑡𝑖 , 𝑆 ′) −

∑
𝑗 ∈𝑆′ 𝑄 𝑗

)
, by

paying

∑
𝑗 ∈𝑆∗ 𝑄 𝑗 . Otherwise, the bidder gets nothing and pays

0.

Indeed, for both Theorem 3 and Lemma 3, we prove a general

statement that applies to XOS valuations, which requires a general-

ized LP and definitions. See the arXiv version for details.

Lemma 3. For any BIC and IR mechanism M, Rev(M) ≤ 28 ·
PRev + 4 · OPTLP.

3.3 Interpretation of Our LP in Figure 3.

We explain our LP in this section. The objective is the expected

Core, as explained in Step 3 in Section 3.1. According to our defi-

nition of 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) and Constraint (3), {𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )}𝑖, 𝑗,𝑡𝑖 𝑗 corre-
sponds to the expected marginal reduced form, that is,𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) is
the expected probability for bidder 𝑖 to receive item 𝑗 and her value

for item 𝑗 is 𝑡𝑖 𝑗 . Constraints (1) and (2) simply sets the feasible re-

gion of the expected marginal reduced form𝑤 . They follow directly

from the fact that every realized 𝑤 (𝛽,𝛿)
is feasible (see Step 3 in

Section 3.1). Constraint (4) follows from Equation (3) and the fact

that every 𝑤
(𝛽,𝛿)
𝑖 𝑗

(𝑡𝑖 𝑗 )/𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) is in [0, 1]. Constraint (5) implies

that { ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 )}𝛽𝑖 𝑗 ,𝛿𝑖 𝑗 correspond to a distribution C𝑖 𝑗 .
Constraints (6) - (9) are specialized for our problem, which guar-

antees that the LP optimum can be bounded by simple mecha-

nisms. Constraint (6) follows from taking expectation on both sides

of Constraint (1) in Figure 1, over the randomness of 𝛽𝑖 𝑗 . Con-

straints (8) and (9) correspond to Constraint (2) in Figure 1. Here we

bound the expectation of 𝛿𝑖 𝑗 by a unified upper bound 𝑑𝑖 for every

𝑗 .16 It is worth emphasizing Constraint (7), which corresponds to

Constraint (4) in Figure 1 (and Figure 2). Instead of taking expecta-

tions over the dual parameters, we force the constraint to hold for

every 𝛽𝑖 𝑗 and 𝛿𝑖 𝑗 . This is an important property that is crucial in

our analysis. Readers may notice that Constraint (2) is implied by

Constraints (3), (6) and (7). We keep Constraint (2) so that it is clear

that the supply constraint is enforced over the (expected) marginal

reduced form. The Problem Specific Constraints (6)-(9) in the LP in

Figure 3 are expected versions of the constraints in the two-stage

optimization problem in Figure 1, which are directly inspired by

the Properties 1, 2, and 3 in Lemma 1. They are crucial to guarantee

that optimal value of the LP in Figure 3 is still approximable by

simple mechanisms.

4 SAMPLE ACCESS TO THE DISTRIBUTION

In this section, we focus on the case where we have only access

to the bidders’ distribution. Our goal is again to compute an ap-

proximately optimal mechanism. Our plan is as follows: (i) for each

𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], take 𝑂 (log(1/𝛿)/𝜀2) samples from 𝐷𝑖 𝑗 , and

let 𝐷 be the uniform distribution over the samples. By the DKW in-

equality [28], 𝐷𝑖 𝑗 and 𝐷𝑖 𝑗 have Kolmogorov distance (Definition 7)

no more than 𝜀 with probability at least 1 − 𝛿 . (ii) We then apply

our algorithm in Theorem 1 to compute an RPP or TPT that is ap-

proximately optimal w.r.t. distributions {𝐷𝑖 𝑗 }𝑖∈[𝑛], 𝑗 ∈[𝑚] . We show

that the computed simple mechanism is approximately optimal for

the true distributions as well.

Definition 7. The Kolmogorov distance between two distributions

D and D̂ supported on R is defined as

𝑑𝐾 (D, D̂) = sup

𝑧∈R

����� Pr𝑡∼D
[𝑡 ≤ 𝑧] − Pr

𝑡̂∼D̂
[̂𝑡 ≤ 𝑧]

�����
Theorem 4. Suppose all bidders’ valuations are constrained ad-

ditive. If for each 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], 𝐷𝑖 𝑗 is supported on num-

bers in [0, 1] with bit complexity no more than 𝑏, then for any

𝜀 > 0 and 𝛿 > 0, with probability 1 − 𝛿 , we can compute in time

16
This corresponds to the fact that in Lemma 1 (and Figure 1), there is a single 𝑐𝑖 that

represents 𝛿𝑖 𝑗 .
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poly(𝑛,𝑚, 1/𝜀, log(1/𝛿), 𝑏) a rationed posted price mechanism or a

two-part tariff mechanism, whose revenue is at least 𝑐 ·OPT−𝑂 (𝑛𝑚2𝜀)
for some absolute constant 𝑐 . The algorithm takes𝑂

(
log(𝑛𝑚/𝛿)

𝜀2

)
sam-

ples from each 𝐷𝑖 𝑗 and assumes query access to a demand oracle for

each bidder.

A ADDITIONAL PRELIMINARIES

Definition 8. [34] LetD𝑖 be the type distribution of bidder 𝑖 and

denote by V𝑖 her distribution over valuations 𝑣𝑖 (𝑡𝑖 , ·) where 𝑡𝑖 ∼ D𝑖 .

We say that V𝑖 is subadditiver over independent items if

• 𝑣𝑖 (·, ·) has no externalities, that is for any 𝑆 ⊆ [𝑚], 𝑡𝑖 , 𝑡 ′𝑖 ∈ T𝑖
such that 𝑡𝑖 𝑗 = 𝑡

′
𝑖 𝑗
for 𝑗 ∈ 𝑆 , then 𝑣𝑖 (𝑡𝑖 , 𝑆) = 𝑣𝑖 (𝑡 ′𝑖 , 𝑆).

• 𝑣𝑖 (·, ·) is monotone, that is for each 𝑡𝑖 ∈ T𝑖 and 𝑆 ⊆ 𝑇 ⊆ [𝑚],
𝑣𝑖 (𝑡𝑖 , 𝑆) ≤ 𝑣𝑖 (𝑡𝑖 ,𝑇 )

• 𝑣𝑖 (·, ·) is subadditive function, that is for all 𝑡𝑖 ∈ T𝑖 and
𝑆1, 𝑆2 ⊆ [𝑚], 𝑣𝑖 (𝑡𝑖 , 𝑆1 ∪ 𝑆2) ≤ 𝑣𝑖 (𝑡𝑖 , 𝑆1) + 𝑣𝑖 (𝑡𝑖 , 𝑆2)

Mechanisms: A mechanism 𝑀 in multi-item auctions can be

described as a tuple (𝑥, 𝑝). For every type profile 𝑡 , buyer 𝑖 and

bundle 𝑆 ⊆ [𝑚], 𝑥𝑖𝑆 (𝑡) is the probability of buyer 𝑖 receiving the

exact bundle 𝑆 at profile 𝑡 , 𝑝𝑖 (𝑡) is the payment for buyer 𝑖 at the

same type profile. To ease notations, for every buyer 𝑖 and types

𝑡𝑖 , we use 𝑝𝑖 (𝑡𝑖 ) = E𝑡−𝑖 [𝑝𝑖 (𝑡𝑖 , 𝑡−𝑖 )] as the interim price paid by

buyer 𝑖 and 𝜎𝑖𝑆 (𝑡𝑖 ) = E𝑡−𝑖 [𝑥𝑖𝑆 (𝑡𝑖 , 𝑡−𝑖 )] as the interim probability of

receiving the exact bundle 𝑆 .

IC and IR constraints: A mechanism𝑀 = (𝑥, 𝑝) is BIC if:∑
𝑆⊆[𝑚]

𝜎𝑖𝑆 (𝑡𝑖 )·𝑣𝑖 (𝑡𝑖 , 𝑆) − 𝑝𝑖 (𝑡𝑖 )

≥
∑

𝑆⊆[𝑚]
𝜎𝑖𝑆 (𝑡 ′𝑖 ) · 𝑣𝑖 (𝑡𝑖 , 𝑆) − 𝑝𝑖 (𝑡

′
𝑖 ),∀𝑖, 𝑡𝑖 , 𝑡

′
𝑖 ∈ T𝑖 .

The mechanism is DSIC if ∀𝑖, 𝑡𝑖 , 𝑡 ′𝑖 ∈ T𝑖 , 𝑡−𝑖 ∈ T−𝑖 :∑
𝑆⊆[𝑚]

𝑥𝑖𝑆 (𝑡𝑖 , 𝑡−𝑖 ) · 𝑣𝑖 (𝑡𝑖 , 𝑆) − 𝑝𝑖 (𝑡𝑖 , 𝑡−𝑖 )

≥
∑

𝑆⊆[𝑚]
𝑥𝑖𝑆 (𝑡 ′𝑖 , 𝑡−𝑖 ) · 𝑣𝑖 (𝑡𝑖 , 𝑆) − 𝑝𝑖 (𝑡

′
𝑖 , 𝑡−𝑖 ) .

The mechanism is (interim) IR if:∑
𝑆⊆[𝑚]

𝜎𝑖𝑆 (𝑡𝑖 ) · 𝑣𝑖 (𝑡𝑖 , 𝑆) − 𝑝𝑖 (𝑡𝑖 ) ≥ 0,∀𝑖, 𝑡𝑖 ∈ T𝑖 .

The mechanism is ex-post IR if:∑
𝑆⊆[𝑚]

𝑥𝑖𝑆 (𝑡𝑖 , 𝑡−𝑖 ) · 𝑣𝑖 (𝑡𝑖 , 𝑆) − 𝑝𝑖 (𝑡𝑖 , 𝑡−𝑖 ) ≥ 0,∀𝑖, 𝑡𝑖 ∈ T𝑖 , 𝑡−𝑖 ∈ T−𝑖 .

Definition 9 (Separation Oracle for Convex Polytope P).

A Separation Oracle 𝑆𝑂 for a convex polytope P ⊆ R𝑑 , takes as input
a point 𝒙 ∈ R𝑑 and if 𝒙 ∈ P, then the oracle says that the point is in

the polytope. If 𝒙 ∉ P, then the oracle output a separating hyperplane,

that is it outputs a vector y ∈ R𝑑 and 𝑐 ∈ R such that y
𝑇 𝑥 ≤ 𝑐 , but

for z ∈ P, y
𝑇
z > 𝑐 .

Definition 10 (Polytopes and Facet-Complexiy). We say 𝑃

has facet-complexity at most 𝑏 if it can be written as 𝑃 := {®𝑥 |
®𝑥 · ®𝑤 (𝑖) ≤ 𝑐𝑖 , ∀𝑖 ∈ I}, where each ®𝑤 (𝑖)

and 𝑐𝑖 has bit complexity

at most 𝑏 for all 𝑖 ∈ I. We use the term convex polytope to refer

to a set of points that is closed, convex, bounded,
17

and has finite

facet-complexity.

Definition 11 (Vertex-Complexity). We use the term corner to

refer to non-degenerate extreme points of a convex polytope. In other

words, ®𝑦 is a corner of the 𝑑-dimensional convex polytope 𝑃 if ®𝑦 ∈ 𝑃
and there exist 𝑑 linearly independent directions ®𝑤 (1) , . . . , ®𝑤 (𝑑)

such

that ®𝑥 · ®𝑤 (𝑖) ≤ ®𝑦 · ®𝑤 (𝑖)
for all ®𝑥 ∈ 𝑃, 1 ≤ 𝑖 ≤ 𝑑 . We useCorner(𝑃) to

denote the set of corners of a convex polytope 𝑃 . We say 𝑃 has vertex-

complexity at most 𝑏 if all vectors in Corner(𝑃) have bit complexity

no more than 𝑏.

B SOME EXAMPLES

B.1 Non-Concavity of Core

In this section, we show that the Core(𝜎, 𝜃 (𝜎)) function is non-

concave in the interim allocation rule 𝜎 . We first provide the formal

definition of 𝜃 (𝜎) for a single-bidder two-item instance, and we use

Core
𝐶𝑍 (𝜎) to denote Core(𝜎, 𝜃 (𝜎)).

Definition 12 (Core for a single additive bidder over two

items with continuous distributions - [17]). Consider a sin-

gle bidder interested in two items, whose value is sampled from

continuous distribution 𝐷 with support 𝑇 = Supp(𝐷) and den-

sity function 𝑓 (𝑡) for 𝑡 ∈ 𝑇 . Consider a feasible interim allocation

𝜎 = {𝜎1 (𝑡), 𝜎2 (𝑡)}𝑡 ∈Supp(𝐷) , that is 𝜎1 (𝑡) (𝜎2 (𝑡) resp.) is the proba-
bility that the allocation rule awards item 1 (item 2 resp.) to a bidder

with type 𝑡 . Define

𝛽1 (𝜎) = argmin

𝛽≥0

[
Pr

𝑡1∼𝐷1

[
𝑡1 ≥ 𝛽

]
= E
𝑡∼𝐷

[
𝜎1 (𝑡)

] ]
,

𝛽2 (𝜎) = argmin

𝛽≥0

[
Pr

𝑡2∼𝐷2

[
𝑡2 ≥ 𝛽

]
= E
𝑡∼𝐷

[
𝜎2 (𝑡)

] ]
and

𝑐 (𝜎) = argmin

𝑎≥0

{
Pr

𝑡∼𝐷

[
𝑡1 ≤ 𝛽1 (𝜎) + 𝑎

]
+ Pr

𝑡∼𝐷

[
𝑡2 ≤ 𝛽2 (𝜎) + 𝑎

]
≥ 1

2

}
The term Core

𝐶𝑍
for interim allocation 𝜎 is defined as follows:

Core
𝐶𝑍 (𝜎) = E

𝑡∼𝐷

[
𝜎1 (𝑡)𝑡1 · 1[𝑡1 ≤ 𝛽1 (𝜎) + 𝑐 (𝜎)]

]
+ E
𝑡∼𝐷

[
𝜎2 (𝑡)𝑡2 · 1[𝑡2 ≤ 𝛽2 (𝜎) + 𝑐 (𝜎)]

]
In Example 1 we show that Core

𝐶𝑍 (𝜎) is a non-concave func-
tion even in the setting with a single bidder and two items. The

reason for the Core
𝐶𝑍

being non-concave lies in the fact that the

interval which we truncate depends on the interim allocation 𝜎 .

Computing the concave hull of Core
𝐶𝑍 (𝜎) in the worst case re-

quires exponential time in the dimension of the space, which is𝑚

is our case.

Example 1. Consider a single additive bidder interested in two

items whose values are both drawn from the uniform distribution

𝑈 [0, 1]. Consider two interim allocation rules 𝜎 and 𝜎 ′:

• 𝜎 : Award the first item to the buyer if her value for it lies in

the interval [0, 1/2] and never award the second item to the

buyer.

17𝑃 ⊆ R𝑑 is bounded if it is contained in [−𝑥, 𝑥 ]𝑑 for some 𝑥 ∈ R.
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• 𝜎 ′: Always award the first item to the buyer and never award

the second item to the buyer.

According to Definition 13, for allocation rule 𝜎 , the dual param-

eters are 𝛽1 (𝜎) = 1/2, 𝛽2 (𝜎) = 1 and 𝑐 (𝜎) = 0, which implies

Core
𝐶𝑍 (𝜎) = 1/8. Similarly for allocation rule 𝜎 ′ we have 𝛽1 (𝜎 ′) =

0, 𝛽2 (𝜎 ′) = 1 and 𝑐 (𝜎 ′) = 0, which implies that Core
𝐶𝑍 (𝜎 ′) = 0.

Consider the interim allocation 𝜎 ′′ that uses allocation rule 𝜎

with probability 50% and 𝜎 ′ with 50%. Note that 𝜎 ′′ is in the convex

combination of 𝜎 and 𝜎 ′ and more specifically 𝜎 ′′ = 𝜎+𝜎′
2

. For interim

allocation𝜎 ′′ we have that 𝛽1 (𝜎 ′′) = 1/4, 𝛽2 (𝜎 ′′) = 1 and 𝑐 (𝜎 ′′) = 0,

which implies that Core
𝐶𝑍 (𝜎 ′′) = 1

32
. We notice that the second

item contributes nothing to the Core
𝐶𝑍

, but it ensures that 𝑐 = 0

regardless of the allocation of the first item. Thus Core
𝐶𝑍

(
𝜎 ′′

)
<

1

2
(Core𝐶𝑍 (𝜎) + Core

𝐶𝑍 (𝜎 ′)), which implies that Core
𝐶𝑍 (·) is not

a concave function.

B.2 Why can’t we use the Ex-Ante Relaxation?

An influential framework known as the ex-ante relaxation has

been widely used in Mechanism Design, but is insufficient for our

problem. Informally speaking, ex-ante relaxation reduces a multi-

bidder objective to the sum of single-bidder objectives subject to

some global supply constraints over ex-ante allocation probabilities.

To solve the ex-ante relaxation program efficiently, the single-bidder

objective has to be concave and efficiently computable given the

ex-ante probabilities [1].

In revenue maximization, the single-bidder objective – the opti-

mal revenue subject to ex-ante probabilities – is indeed a concave

function. However, we do not have a polynomial time algorithm

to even compute the single-bidder objective given a set of fixed ex-

ante probabilities.
18

To fix this issue, one can try to find a concave

function that is always a good approximation to the single-bidder

objective for any ex-ante probabilities. To the best of our knowledge,

such a concave function only exists for unit-demand bidders via

the copies setting technique [20]. Alternatively, one can replace the

global objective – optimal revenue by the upper bound of revenue

proposed in [17]. Yet the corresponding single-bidder objective for

one term Core in the upper bound is highly non-concave, which

makes the ex-ante relaxation not applicable.

Although the termCorewas originally defined for interim alloca-

tion rules (as in Definition 12), it can also be defined for ex-ante prob-

abilities. We only define it for the single-bidder two-item case. Let

𝑞 = {𝑞1, 𝑞2} ∈ [0, 1]2, and Max-Core = max𝜎 ∈Σ(𝑞) Core
𝐶𝑍 (𝜎),

where Σ(𝑞) is the set of feasible interim allocations that awards

the first item with probability at most 𝑞1 and the second item with

probability at most 𝑞2. Example 2 also shows thatMax-Core(·) is a
non-concave function by observing that 𝜎 ∈ Σ(1/2, 0),𝜎 ′ ∈ Σ(1, 0)
and 𝜎 ′′ ∈ Σ(3/4, 0).

Definition 13 (Core for a single additive bidder over two

items - [17]). Consider a single bidder interested in two items, whose

value is sampled from 𝐷1×𝐷2. Consider a supply constraints 𝑞1, 𝑞2 ∈
[0, 1]. Note that 𝑞1 (or 𝑞2) is the probability that a mechanism awards

18
The closest thing we know is a QPTAS for a unit-demand bidder. See Section 1.2.

the first item (or the second item) to the bidder. Define

𝛽1 = argmin

𝛽≥0

[
Pr

𝑡1∼𝐷1

[
𝑡1 ≥ 𝛽

]
= 𝑞1

]
,

𝛽2 = argmin

𝛽≥0

[
Pr

𝑡2∼𝐷2

[
𝑡2 ≥ 𝛽

]
= 𝑞2

]
and

𝑐 = argmin

𝑎≥0

{
Pr

𝑡1∼𝐷1

[
𝑡1 ≤ 𝛽1 + 𝑎

]
+ Pr

𝑡2∼𝐷2

[
𝑡2 ≤ 𝛽2 + 𝑎

]
≥ 1

2

}
The term Max-Core is defined as follows:

Max-Core

(
𝑞
)
= max

𝑥1:T1→[0,1]∑
𝑡
1
∈T

1
𝑓1 (𝑡1)𝑥1 (𝑡1)=𝑞1

∑
𝑡1∈T1
𝑡1≤𝛽1+𝑐

𝑓1 (𝑡1) · 𝑡1 · 𝑥1 (𝑡1)

+ max

𝑥2:T2→[0,1]∑
𝑡
2
∈T

2
𝑓2 (𝑡2)𝑥2 (𝑡2)=𝑞2

∑
𝑡2∈T2
𝑡2≤𝛽2+𝑐

𝑓2 (𝑡2) · 𝑡2 · 𝑥2 (𝑡2)

In Example 2 we show thatMax-Core(𝑞) is a non-concave func-
tion even in the setting with a single bidder and two items. The

reason for the Max-Core being non-concave lies in the fact that

the interval which we truncate depends on the supply constraints

𝑞. Computing the concave hull ofMax-Core(𝑞) in the worst case

requires exponential time in the dimension of the space, which is

𝑚 is our case. These facts make the ex-ante relaxation approach

not applicable to solve our problem.

Example 2. Consider a single additive bidder interested in two

items whose values are both drawn from the uniform distribution

𝑈 [0, 1]. Consider the values 𝑞 = (1/2, 0) and 𝑞′ = (1, 0). According
to Definition 13, for 𝑞 we have that 𝛽

(𝑞)
1

= 1/2, 𝛽 (𝑞)
2

= 1 and 𝑐 (𝑞) = 0

and for 𝑞′ we have 𝛽 (𝑞
′)

1
= 0, 𝛽

(𝑞′)
2

= 1 and 𝑐 (𝑞
′) = 0. We notice

that the second item contributes nothing to the Max-Core, but it

ensures that 𝑐 = 0 regardless of the supply demand for the first item.

Observe that Max-Core(𝑞) = 1/8 and Max-Core(𝑞′) = 0. Let 𝑞′′ =

(𝑞+𝑞′)/2 = (3/4, 0). For 𝑞′′, observe that 𝛽 (𝑞
′′)

1
= 1/4, 𝛽 (𝑞

′′)
2

= 1 and

𝑐 (𝑞
′′) = 0. We have Max-Core(𝑞′′) = 1/32. Thus Max-Core

(
𝑞′′

)
<

1

2
(Max-Core(𝑞) +Max-Core(𝑞′)), which implies thatMax-Core(·)

is not a concave function.

C XOS VALUATIONS

We show a generalization of Theorem 3 that works for XOS buyers

(Theorem 5), with the generalized of the single-bidder marginal

reduced form polytope Definition 14 and a generalized LP (Figure 5).

Theorem 5. Let (𝑤, 𝜆, ˆ𝜆, 𝒅) (or (𝜋,𝑤, 𝜆, ˆ𝜆, 𝒅)) be any feasible so-

lution of the LP in Figure 3 (or Figure 5). Let MPP be the rationed

posted price mechanism computed in Lemma 2.

Let

𝑄 𝑗 =
1

2

·
∑
𝑖∈[𝑛]

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) ·𝑉𝑖 𝑗 (𝑡𝑖 𝑗 )·
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗

𝛿𝑖 𝑗 ∈Δ

𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 )

· 1[𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ 𝛽𝑖 𝑗 + 𝛿𝑖 𝑗 ],
andMTPT be the two-part tariff mechanism shown inMechanism 1

with prices {𝑄 𝑗 } 𝑗 ∈[𝑚] .Then the objective function of the solution
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2 · ∑𝑗 ∈[𝑚] 𝑄 𝑗 is bounded by 𝑐1 · Rev(MPP) + 𝑐2 · Rev(MTPT), for
some constant 𝑐1, 𝑐2 > 0. Moreover, both MPP and MTPT can be

computed in time poly(𝑛,𝑚,∑𝑖, 𝑗 |T𝑖 𝑗 |), with access to the demand

oracle for the buyers’ valuations.

C.1 Single-Bidder Marginal Reduced Form

Polytope for XOS Valuations

In Definition 14 we define the single-bidder marginal reduced form

polytope𝑊𝑖 for XOS buyers, which differs from the single-bidder

marginal reduced form polytope for constrained-additive valuation

is several ways. In Definition 14, we define a distribution 𝜎𝑘
𝑆
over all

possible subset of items 𝑆 ⊆ [𝑚] and over the finite number 𝑘 ∈ [𝐾]
over additive functions that can be chosen when we evaluate the

value that the buyer has for a set of items. In Definition 5, the

distribution 𝜎𝑆 was only over sets in the set of feasible allocations.

Similar to Definition 5, 𝜋𝑖 𝑗 (𝑡𝑖 𝑗 ) is equal to 𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) times the

probability that the 𝑖-th buyer receives the 𝑗-th item. In contrast to

Definition 5, in Definition 14, the value of𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) is
𝑓𝑖 𝑗 (𝑡𝑖 𝑗 )
𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) times

the expected value that the buyer has for the item when we are

allowed to choose which additive functions in 𝑘 ∈ [𝐾] we count
the value of the buyer, or we are even allowed to allocate an item

to the buyer but count zero value for it (that is equivalent to just

throwing away the item).

Definition 14 (XOS valuations: single-bidder marginal re-

duced form polytope). For every 𝑖 ∈ [𝑛], the single-bidder mar-

ginal reduced form polytope𝑊𝑖 ⊆ [0, 1]2·
∑

𝑗 |T𝑖 𝑗 | is defined as fol-

lows. Let 𝜋𝑖 = (𝜋𝑖 𝑗 (𝑡𝑖 𝑗 )) 𝑗,𝑡𝑖 𝑗 ∈T𝑖 𝑗 and 𝑤𝑖 = (𝑤𝑖 𝑗 (𝑡𝑖 𝑗 )) 𝑗,𝑡𝑖 𝑗 ∈T𝑖 𝑗 . Then
(𝜋𝑖 ,𝑤𝑖 ) ∈𝑊𝑖 if and only if there exist a number 𝜎

(𝑘)
𝑆

(𝑡𝑖 ) ∈ [0, 1] for
every 𝑡𝑖 ∈ T𝑖 , 𝑆 ⊆ [𝑚], 𝑘 ∈ [𝐾], such that

(1)

∑
𝑆,𝑘 𝜎

(𝑘)
𝑆

(𝑡𝑖 ) ≤ 1, ∀𝑡𝑖 ∈ T𝑖 .
(2) 𝜋𝑖 𝑗 (𝑡𝑖 𝑗 ) =𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) · ∑

𝑡𝑖,−𝑗 𝑓𝑖,−𝑗 (𝑡𝑖,−𝑗 ) ·∑
𝑆 :𝑗 ∈𝑆

∑
𝑘∈[𝐾 ] 𝜎

(𝑘)
𝑆

(𝑡𝑖 𝑗 , 𝑡𝑖,−𝑗 ), for all 𝑖, 𝑗, 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 .
(3) 𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) · ∑

𝑡𝑖,−𝑗 𝑓𝑖,−𝑗 (𝑡𝑖,−𝑗 ) ·∑
𝑆 :𝑗 ∈𝑆

∑
𝑘∈[𝐾 ] 𝜎

(𝑘)
𝑆

(𝑡𝑖 𝑗 , 𝑡𝑖,−𝑗 ) ·
𝛼
(𝑘 )
𝑖 𝑗

(𝑡𝑖 𝑗 )
𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) , for all 𝑖, 𝑗, 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 .

C.2 The Linear Program for XOS valuations

The LP for XOS valuations can be found in Figure 5. Here 𝑉 0

𝑖 𝑗
=

{𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) : 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 }, V+
𝑖 𝑗

= {𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) + 𝜀𝑟 : 𝑡𝑖 𝑗 ∈ T𝑖 𝑗 } and

V𝑖 𝑗 = V0

𝑖 𝑗
∪ V+

𝑖 𝑗
. We notice that this is consistent with our LP

for constrained-additive buyers (Figure 3), as 𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) = 𝑡𝑖 𝑗 for

constrained-additive buyers.

Denote OPTLP the optimum objective of the LP in Figure 5. Sim-

ilar to the constrained-additive case, we have the following lemma.

Lemma 4. When buyers have XOS valuations, for any BIC and IR

mechanism M, Rev(M) ≤ 28 · PRev + 4 · OPTLP.

D COUNTEREXAMPLE FOR ADJUSTABLE

DEMAND ORACLE

For XOS valuations, our algorithm for constructing the simple

mechanism requires access to a special adjustable demand oracle

ADem𝑖 (·, ·, ·). Readers may wonder if this enhanced oracle (rather

than a demand oracle) is necessary to prove our result. In this

max

∑
𝑖∈[𝑛]

∑
𝑗∈[𝑚]

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) ·𝑉𝑖 𝑗 (𝑡𝑖 𝑗 )

·
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗

𝛿𝑖 𝑗 ∈Δ

𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · 1[𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ 𝛽𝑖 𝑗 + 𝛿𝑖 𝑗 ]

s.t.

Allocation Feasibility Constraints:

(1) (𝜋𝑖 , 𝑤𝑖 ) ∈𝑊𝑖 , ∀𝑖

(2)
∑
𝑖

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝜋𝑖 𝑗 (𝑡𝑖 𝑗 ) ≤ 1, ∀𝑗

Natural Feasibility Constraints:

(3) 𝑓𝑖 𝑗 (𝑡𝑖 𝑗 ) ·
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗

∑
𝛿𝑖 𝑗 ∈Δ

𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) =

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 , ∀𝑖, 𝑗, 𝑡𝑖 𝑗 ∈ T𝑖 𝑗
(4) 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≤ ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ), ∀𝑖, 𝑗, 𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 ∈ V𝑖 𝑗 , 𝛿𝑖 𝑗

(5)
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗

𝛿𝑖 𝑗 ∈Δ

ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) = 1, ∀𝑖, 𝑗

Problem Specific Constraints:

(6)
∑
𝑖∈[𝑛]

∑
𝛽𝑖 𝑗 ∈V𝑖 𝑗

∑
𝛿𝑖 𝑗 ∈Δ

ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · Pr

𝑡𝑖 𝑗∼𝐷𝑖 𝑗

[𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 𝛽𝑖 𝑗 ] ≤

1

2

, ∀𝑗

(7) 1

2

∑
𝑡𝑖 𝑗 ∈T𝑖 𝑗

𝑓𝑖 𝑗 (𝑡𝑖 𝑗 )
(
𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) + 𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽+𝑖 𝑗 , 𝛿𝑖 𝑗 )

)
≤

ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) · Pr
𝑡𝑖 𝑗

[𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 𝛽𝑖 𝑗 ]

+ ˆ𝜆𝑖 𝑗 (𝛽+𝑖 𝑗 , 𝛿𝑖 𝑗 ) · Pr𝑡𝑖 𝑗
[𝑉𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 𝛽+𝑖 𝑗 ],

∀𝑖, 𝑗, 𝛽𝑖 𝑗 ∈ V0

𝑖 𝑗 , 𝛿𝑖 𝑗 ∈ Δ

(8)
∑

𝛽𝑖 𝑗 ∈V𝑖 𝑗

𝛿𝑖 𝑗 ∈Δ

𝛿𝑖 𝑗 · ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≤ 𝑑𝑖 , ∀𝑖, 𝑗

(9)
∑
𝑖∈[𝑛]

𝑑𝑖 ≤ 111 · �PRev
𝜆𝑖 𝑗 (𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≥ 0, ˆ𝜆𝑖 𝑗 (𝛽𝑖 𝑗 , 𝛿𝑖 𝑗 ) ≥ 0, 𝜋𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 0,

𝑤𝑖 𝑗 (𝑡𝑖 𝑗 ) ≥ 0, 𝑑𝑖 ≥ 0, ∀𝑖, 𝑗, 𝑡𝑖 𝑗 , 𝛽𝑖 𝑗 ∈ V𝑖 𝑗 , 𝛿𝑖 𝑗

Figure 5: LP for XOS Valuations

section we show that (even an approximation of) ADem𝑖 can not be

implemented using polynomial number of queries from the value

oracle, demand oracle and a classic XOS oracle. All the oracles

are defined as follows. Throughout this section, we only consider

a single buyer and thus drop the subscript 𝑖 . Recall that the XOS

valuation 𝑣 (·) satisfies that 𝑣 (𝑆) = max𝑘∈[𝐾 ]
{∑

𝑗 ∈𝑆 𝛼
(𝑘)
𝑗

}
for every

set 𝑆 , where {𝛼 (𝑘)
𝑗

} 𝑗 ∈[𝑚] is the 𝑘-th additive function.

• Demand Oracle (Dem): takes a price vector 𝑝 ∈ R𝑚 as input,

and outputs

𝑆∗ ∈ argmax𝑆⊆[𝑚]
(
𝑣 (𝑆) − ∑

𝑗 ∈𝑆 𝑝 𝑗
)
.
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• XOS Oracle (Xos): takes a set 𝑆 ⊆ [𝑚] as input, and

outputs the 𝑘∗-th additive function {𝛼 (𝑘∗)
𝑗

} 𝑗 ∈[𝑚] , where

𝑘∗ ∈ argmax𝑘∈[𝐾 ]
{∑

𝑗 ∈𝑆 𝛼
(𝑘)
𝑗

}
.

• Value Oracle: takes a set 𝑆 ⊆ [𝑚] as input, and outputs 𝑣 (𝑆).
We notice that a value oracle can be easily simulated with

an XOS oracle. Thus we focus on XOS oracles for the rest of

this section.

• Adjustable Demand Oracle (ADem): takes a coefficient

vector 𝑏 ∈ R𝑚 and a price vector 𝑝 ∈ R𝑚 as in-

puts, and outputs (𝑆∗, {𝛼 (𝑘∗)
𝑗

} 𝑗 ∈[𝑚] ) where (𝑆∗, 𝑘∗) ∈

argmax𝑆⊆[𝑚],𝑘∈[𝐾 ]
{∑

𝑗 ∈𝑆 𝑏 𝑗𝛼
(𝑘)
𝑗

− ∑
𝑗 ∈𝑆 𝑝 𝑗

}
.

An (approximate) implementation of ADem is an algorithm that

takes inputs 𝑏, 𝑝 ∈ R𝑚 , and outputs a set 𝑆 ⊆ [𝑚] and 𝑘 ∈ [𝐾].
The algorithm has access to the demand oracle and XOS oracle of 𝑣 .

We denote ALG(𝑣, 𝑏, 𝑝) the output of the algorithm. For any 𝛼 > 1,

ALG is an 𝛼-approximation to ADem if for every XOS valuation 𝑣

and every 𝑏, 𝑝 ∈ R𝑚 , the algorithm outputs (𝑆 ′, 𝑘 ′) that satisfies:

max

𝑆⊆[𝑚],𝑘∈[𝐾 ]


∑
𝑗 ∈𝑆

𝑏 𝑗𝛼
(𝑘)
𝑗

−
∑
𝑗 ∈𝑆

𝑝 𝑗

 ≤ 𝛼 · ©­«
∑
𝑗 ∈𝑆

𝑏 𝑗𝛼
(𝑘′)
𝑗

−
∑
𝑗 ∈𝑆′

𝑝 𝑗
ª®¬

In Theorem 6 we show that we cannot approximate the output

of an Adjustable Demand Oracle within any finite factor, if we are

permitted to query polynomial many times the XOS, Value and

Demand Oracle.

Theorem 6. Given any 𝛼 > 1, there does not exist an implemen-

tation of ADem (denoted as ALG) that satisfies both of the following

properties:

(1) For any XOS valuation 𝑣 over𝑚 items, ALG makes poly(𝑚)
queries to the value oracle, the demand oracle and XOS oracle

of 𝑣 , and runs in time poly(𝑚,𝑏). Here 𝑏 is the bit complexity

of the problem instance (See Definition 3).

(2) ALG is an 𝛼-approximation to ADem.
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