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Machine learning has developed a variety of tools for learning and representing high-dimensional distributions
with structure. Recent years have also seen big advances in designing multi-item mechanisms. Akin to
overfitting, however, these mechanisms can be extremely sensitive to the Bayesian prior that they target,
which becomes problematic when that prior is only approximately known. At the same time, even if access
to the exact Bayesian prior is given, it is known that optimal or even approximately optimal multi-item
mechanisms run into sample, computational, representation and communication intractability barriers.

We consider a natural class of multi-item mechanism design problems with very large numbers of items,
but where the bidders’ value distributions can be well-approximated by a topic model akin to those used in
recommendation systems with very large numbers of possible recommendations. We propose a mechanism
design framework for this setting, building on a recent robustification framework by Brustle et al., which
disentangles the statistical challenge of estimating a multi-dimensional prior from the task of designing a good
mechanism for it, and robustifies the performance of the latter against the estimation error of the former. We
provide an extension of this framework appropriate for our setting, which allows us to exploit the expressive
power of topic models to reduce the effective dimensionality of the mechanism design problem and remove
the dependence of its computational, communication and representation complexity on the number of items.

CCS Concepts: « Theory of computation — Algorithmic mechanism design; Algorithmic game the-
ory; » Information systems — Recommender systems.
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1 INTRODUCTION

Mechanism Design has found important applications in the design of offline and online markets.
One of its main applications is the design of auctions, where a common goal is to maximize the
seller’s revenue from the sale of one or multiple items to one or multiple bidders. This is challenging
because bidders are strategic and interact with the auction in a way that benefits themselves rather
than the seller. It is well-understood that, without any information about the bidders’ willingness
to pay for different bundles of items, there is no meaningful way to optimize revenue. As such, a
classical approach in Economics is to assume that bidders’ types — which determine their values
for different bundles and thus their willingness to pay for different bundles — are not arbitrary but
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randomly drawn from a joint distribution D that is common knowledge, i.e. known to all bidders
and the auctioneer. With such a Bayesian prior, the revenue of different mechanisms is compared
on the basis of what revenue they achieve in expectation with respect to bidder type vectors drawn
from D, and assuming that bidders play according to some (Bayesian) Nash equilibrium strategies,
or some other type of (boundedly) rational behavior, e.g. no-regret learning.

Even with a Bayesian prior, however, revenue maximization is quite a challenging task. While
Myerson’s celebrated work showed that a relatively simple mechanism is optimal in single-item
settings [38], characterizing the structure of optimal multi-item mechanisms has been notoriously
difficult both analytically and computationally. Indeed, it is known that (even approximately)
optimal multi-item mechanisms may require description complexity that scales exponentially in the
number of items, even when there is a single buyer [3, 24, 27, 34], they might be computationally
intractable, even in simple settings [10, 20, 23], and they may exhibit several counter-intuitive
properties which do not arise in single-item settings; see survey [21]. Nevertheless, recent years
have seen substantial progress on various fronts: analytical characterizations of optimal multi-item
mechanisms [22, 24, 30, 35]; computational frameworks for computing near-optimal multi-item
mechanisms [2, 9-12]; approximate multi-item revenue optimization via simple mechanisms [1, 4,
13-15, 17-19, 25, 33, 36, 40, 46]; and (approximate) multi-item revenue optimization using sample
access to the type distribution [7, 8, 31, 32, 37, 44], including via the use of deep learning [28, 29, 42].

The afore-described progress on multi-item revenue optimization provides a diversity of tools that
can be combined to alleviate the analytical and computational intractability of optimal mechanisms.
Yet, there still remains an important challenge in applying those tools, which is that they typically
require that the type distribution D is either known or can be sampled. However, this is too strong
an assumption. It is common that D is estimated through market research or econometric analysis
in related settings, involving similar items or a subset of the items. In this case, we would only hope
to know some approximate distribution D that is close to D. In other settings, we may have sample
access to the true distribution D but there might be errors in measuring or recording those samples.
Again, we might hope to estimate an approximate distribution D that is close to D. Unfortunately,
it is well understood that designing a mechanism for D and using it for D might be a bad idea, as
optimal mechanisms tend to overfit the details of the type distribution. This has motivated a strand
of recent literature to study how to robustify mechanisms to errors in the distribution [5, 6, 8].

There is, in fact, another important reason why one might want to design mechanisms for
some approximate type distribution. Multi-dimensional data is complex and one would want to
leverage the extensive statistical and machine learning toolkit that allows approximating such high-
dimensional distributions with more structured models. Indeed, while the true type distribution D
might not conform to a simple model, it might be close to a distribution D that does. We would like
to leverage the simple structure in D to (i) alleviate the computational intractability of multi-item
mechanisms, and (ii) reduce the amount of communication that the bidders and the auctioneer
need to exchange. While the structured model D might allow (i) and (ii), we need the guarantee
that the revenue of our mechanism be robust when we apply it to the true distribution D.

Motivated by the discussion above, in this work we build a multi-item mechanism design frame-
work that combines matrix factorization models developed for recommendation systems with
mechanism design, targeting two issues: (1) the intractability of Mechanism Design with respect to
the number of items (arising from the exponential dependence of the number of types on the num-
ber of items if no further assumptions are placed); (2) the lack of exact access to the Bayesian priors.
In particular, we assume that each bidder draws their type - specifying their values for a very large
universe of N items (think all restaurants in a city or all items on Amazon) - from a distribution D;
that is close to a Matrix Factorized model D;, whose latent dimension is k << N. Targeting these
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approximate distributions D; allows us to reduce the effective dimensionality of bidder types to k,
which has huge advantages in terms of the computational/representation/communication/sample
complexity of mechanism design. We develop tools that allow us to (a) use the mechanism con-
structed for the approximate D;’s under the true D;’s without sacrificing much revenue; and (b)
interact with the bidders who are unaware of the latent codes (they only understand their values for
the N items and are oblivious to the matrix factorized model) yet exploit the factorized model for
efficiently communicating with them without the impractical burden of having them communicate
their N-dimensional type to the mechanism. In sum, our results are as follows:

e With a query protocol Q that learns an approximate latent representation of a bidder’s type,
Theorem 1 shows how to combine it with any mechanism M that is designed only for the
Matrix Factorization model to produce a mechanism that generates comparable revenue
but with respect to the true distribution. The result is obtained via a refinement of the
robustification result in [7], where the loss in revenue, as well as the violation in incentive
compatibility now only depend on the effective dimension of the Matrix Factorization model,
k, but not the total number of items, N (Lemma 2).

e We show how to obtain communication-efficient query protocols in several natural settings
(Theorem 2) when the valuations are constrained-additive (Definition 5). The queries we
consider ask a bidder whether they are willing to purchase an item at a given price. In
the first setting, the design matrix of the Matrix Factorization model contains a diagonally
dominant matrix — a generalization of the well-known separability assumption by Donoho
and Stodden [26]. In two other settings, we assume that the design matrix is generated from
a probablistic model and show that a simple query protocol succeeds with high probability.

Combining Theorems 1 and 2, we show that, given any mechanism M that is designed only for
the Matrix Factorization model, we can design a mechanism that achieves comparable revenue
and only requires the bidders to answer a small number of simple queries. In particular, for
several natural settings, we show that the number of queries scales quasi-linearly in the
effective dimension of the Matrix Factorization model and independent of the total number
of items (Proposition 1).

2 PRELIMINARIES
2.1 Brief Introduction to Mechanism Design

We provide a brief introduction to mechanism design. To avoid a very long introduction, we only
define the concepts in the context of multi-item auctions, which will be the focus of this paper. See
Chapter 9 of [39] and the references therein for a more detailed introduction to mechanism design.

Multi-item Auctions. The seller is selling N heterogenous items to m bidders. Each bidder i
is assumed to have a private type t; that encodes their preference over the items and bundles of
items. We assume that ¢; lives in the N-dimensional Euclidean space. For each bidder, there is a
publicly known valuation function v;(-, -), where v;(;, S) € R is bidder i’s value for bundle S C [N]
when i’s private type is ¢;. In this paper, we consider the Bayesian setting with private types, that is,
each bidder’s type t; is drawn privately and independently from a publicly known distribution D;.

Mechanism. The seller designs a mechanism to sell the items to bidders. A mechanism consists
of an allocation rule and a payment rule, where the allocation rule decides a way to allocate the
items to the bidders, and the payment rule decides how much to charge each bidder.
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Direct Mechanism: In a direct mechanism, the mechanism directly solicits types from the bidders
and apply the allocation and payment rules on the reported types. More specifically, for any re-
ported type profile b = (by,. .., by,), a direct mechanism M := (x(-), p(-)) selects x(b) € {0, 1}™N
as the allocation and charges each bidder i payment p;(b).! We slightly abuse notation to allow
the allocation rule to be randomized, so x(b) € A ({0,1}™N). We assume that bidders have
quasi-linear utilities. If bidder i’s private type is ¢;, her utility under reported bid profile b is
u; (t;, M(b)) = E [v; (1;, x(b)) — pi(b)], where the expectation is over the randomness of the alloca-
tion and payment rule.

Expected Revenue: In this paper, our goal is to design mechanisms with high expected revenue.
For a direct mechanism M, we use REV(M, D) to denote E;.p[X;¢[m) pi(t)], where t = (t1, ..., tm)
is the type profile and is drawn from D = X;¢[,;) Di-

Incentive Compatibility and Individual Rationality. Since the bidders’ types are private, unless
the mechanism incentivizes the bidders to report truthfully, there is no reason to expect that the
reported types correspond to the true types. The notion of incentive compatibility is defined to
capture this.

¢ ¢-Bayesian Incentive Compatible (¢-BIC): if bidders draw their types from some distri-
bution D = X2, D;, then a direct mechanism M is e-BIC with respect to D if for each bidder
i €[m]
Ee j~p [uits, M(ti,t-1))] 2 Er o op_, [ui(ti, M(t, t-1))] — &,
for all potential misreports ¢;, in expectation over all other bidders bid ¢_;. A mechanism is
BIC if it is 0-BIC.

o (¢,0)-Bayesian Incentive Compatible ((¢, §)-BIC): if bidders draw their types from some
distribution D = X2, D;, then a direct mechanism M is (¢, §)-BIC with respect to D if for
each bidder i € [m]:

Pf) [Et,i~D,,~[ui(ti,M(ti,l‘—i))] > B¢ ,~op_, [ui(t;, M(t], t-;))] - 5] >21-94.
ti~D;

o Individually Rational (IR): A direct mechanism M is IR if for all type profiles t = (1, .. ., t;s),
ui(ti, M(ti, t_i)) >0

for all bidders i € [m].

Indirect Mechanism: An indirect mechanism does not directly solicit the bidders’ types. After
interacting with the bidders, the mechanism selects an allocation and payments. The notions of ¢-
Bayesian Incentive Compatibility and Individual Rationality can be extended to indirect mechanisms
using the solution concept of e-Bayes Nash equilibrium. The notion of (¢, §)-Bayesian Incentive
Compatibility can be extended to indirect mechanisms using the new solution concept, which we
call (¢, 8)-weak approximate Bayes Nash equilibrium. In an incomplete information game, a strategy
profile is an (¢, §)-weak approximate Bayes Nash equilibrium if for every bidder, with probability
no more than § (over the randomness of their own type), unilateral deviation from the Bayesian
Nash strategy can increase the deviating bidder’s expected utility (with respect to the randomness
of the other bidders’ types and assuming those follow their Bayesian Nash equilibrium strategies)
by more than .

!Note that p(b) = (p1(b), . . ., pm(b)).
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REMARK 1. Fora (e, §)-weak approximate Bayes Nash equilibrium, its expected revenue computation
is made in this paper using the convention that all bidders follow their (e, §)-weak approximate Bayes
Nash equilibrium strategies. At a cost of an additive m*SH loss in revenue (where H is the highest
possible value of any bidder), we can assume that only the (1 — §)-fraction of types of each bidder
who have no more than ¢ incentive to deviate from the weak approximate Bayes Nash equilibrium
strategies follow these strategies while the remaining § fraction use arbitrary strategies. Similarly, we
can interpret the (¢, §)-weak approximate Bayes Nash equilibrium definition as requiring that at least
(1 — §)-fraction of the types of each bidder have at most O(e + mdH) incentive to deviate from the
Bayes Nash strategies assuming that for every other bidder at most § fraction of their types deviate
from their Bayes Nash strategies.

2.2 Further Preliminaries

DEerFINITION 1. Let (U, d) be a metric space and B be a o-algebra on U. For all A € B, let A* = {x :
Jy € A s.t d(x,y) < €}. Two probability measure P and Q on 8 have Prokhorov distance

inf{e¢ > 0:P(A) < Q(A®) + £ and Q(A) < P(A®) +¢, VA€ B}.

We consider distributions supported on some Euclidean Space, and we choose d to be the {,-distance.
We denote the {«-Prokhorov distance between distributions F, F by dp(F, F).

We will also make use of the following characterization of the Prokhorov metric by [43].

LEMMA 1 (CHARACTERIZATION OF THE PROKHOROV METRIC [43]). Let F and F be two distribu-
tions supported on R". dp(F,F) < ¢ if and only if there exists a coupling y of F and F, such that

Pr(x,y)~y [le =Yl > 8] < e

DEFINITION 2 (INFLUENCE MATRIX AND WEAK DEPENDENCE). For any d-dimensional random
vector X = (Xi, ..., Xg), we define the influence of variable j on variable i as

@;j = sup dry (in 1=, X_i_j=x_1_j> FX; |Xj:x]'.,x,,~,j:x,,-,j) )
X—i—j
Xj¢xjj/~
where Fx,|x_,=x_, denotes the conditional distribution of X; given X_; = x_;, and drv(D, D") denotes
the total variational distance between distribution D and D’. Also, let a; ; := 0 for each i, and we use
INF(X) to denote the d x d matrix (@; j)ie[d), je[d]- In this paper, we consider the coordinates of X to be
weakly dependent if || INF(X)||, < 1.

3 OUR MODEL AND MAIN RESULTS

Setting and Goal: We consider a classical mechanism design problem, wherein a seller is selling N
items to m buyers, where buyer i’s type t; is drawn from a distribution D; over RN independently.
The goal is to design a mechanism that maximizes the seller’s revenue. In this paper, we operate in
a setting where D; is unknown, but we are given access to the following components: (I) For each
bidder i, we are given a machine learning model D; — of the matrix factorization type as described
below, which approximates D;. (I) We are given a good mechanism M for the approximate type
distributions; in its design this mechanism can exploit the low effective dimensionality, k, of types
in the approximate model. Our goal is (III) to use (I) and (II) to obtain a good mechanism for the
true type distributions.

(I) The Machine Learning Component: We assume that each bidder’s type distribution D; can be
well-approximated by a known Matrix Factorization (MF) model D;. In particular:
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e We use A € RN*k {5 denote the design matrix of the model, where each column can be
viewed as the type (over N items) of an “archetype.” As described in the following two bullets,
types are sampled by each D; as linear combinations over archetypes.

o We use 52,1- to denote a distribution over [0, 1]%. The subscript z is not a parameter of the
distribution — it serves to remind us that this distribution samples in the latent space [0, 1]%
and distinguish it from the distribution D; defined next.

e If F is a distribution over R, we use A o F to denote the distribution of the random variable
Az, where z ~ F. With this notation, we use D; to denote Ao D, ;.

e We assume that, for each bidder, the matrix factorization model is not far away from the true
type distribution, that is, for some ¢; > 0 we have that dp(D;, D;) < ¢ for all i € [m].

REMARK 2. In the above description we assumed that all D;’s share the same design matrix A. This
is done to avoid overloading notation but all our results would hold if each D; had its own design
matrix A;.

(II) The Mechanism Design Component: We assume that we are given a direct mechanism M for
types drawn from the Machine Learning model. In particular, we assume that this mechanism
makes use of the effective dimension k of the Machine Learning model, accepting “latent types” (of
dimension k) as input from the bidders. Specifically:

e Recall that, for each bidder i, their valuation function v;(-, ) : RN x 2INl — R is common
knowledge. (Recall that v; takes as input the bidder’s type and a subset of items so how the
bidder values different subsets of items depends on their private type.)

e The designer is given A and 52,,- for each bidder i, and treats bidder i’s type as drawn from
5“, i.e. in the latent space [0, 1]¥. With respect to such “latent types,” there is an induced
valuation function. In particular, for each bidder i, we use v;“ : R* x 2INT — R to denote the
valuation function defined as follows U?(zi, S) := v;i(Az;, S), where z; € RF.

e With the above as setup, we assume that the designer designs a mechanism M that is BIC
and IR wrt. D, = X2, D, ; and valuation functions {v{‘(-, V}ie[m]-

(IlI) The New Component: We consider the regime where N > k, and our goal is to combine the
Machine Learning component with the Mechanism Design component to produce a mechanism
which generates revenue comparable to Rev(M, D,) when used for bidders whose types are drawn
from D = X2, D;. There are two challenges: (i) M takes as input the latent representation of a
bidder’s type under D, however under D a bidder is simply ignorant about any latent representation
of their type so they cannot be asked about it; (i) M’s revenue is evaluated with respect to D, and
valuation functions {v?(~, *)}ie[m] and our goal is to obtain a mechanism whose revenue is similar
under D and valuation functions {v;(:,-)}ie[m]- We show how to use a communication efficient
query protocol together with a robustification procedure to combine the Machine Learning and
Mechanism Design components.

To state our results, we first need to formally define query protocols and some of their properties.

DEFINITION 3 ((¢, §)-QUERY PROTOCOL). Let Q be a query protocol, i.e., some communication
protocol that exchanges messages with a bidder over possibly several rounds and outputs a vector in
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RX. We say that a bidder interacts with the query protocol truthfully, if whenever the protocol asks
the bidder to evaluate some function on their type the bidder evaluates the function and returns the
result truthfully. We use Q(t) € R to denote the output of Q when interacting with a truthful bidder
whose type ist € RN. Q is called a (e, §)-query protocol, if for any t € RN and z € R¥ satisfying
||t — Az||, < &, we have that ||z — Q(t)]| < 6.

We also need the notion of Lipschitz valuations to formally state our result.

DEFINITION 4 (LIPSCHITZ VALUATIONS). o(-,-) : RN x 2INl — R is a £-Lipschitz valuation, if for
any two types t,t’ € RN and any bundle S C [N], |v(t,S) — v(t',S)| < L[|t = t'|| -

This includes familiar settings, for example if the bidder is c-demand, the Lipschitz constant £ = c.?
We are now ready to state our first main result.

THEOREM 1. Let D = X, D; be the bidders’ type distributions and v; : RN x 2Nl 5 R pea
L-Lipschitz valuation for each bidderi € [m]. Also, let A € RN*K be a design matrix and Bz,i be a
distribution over RF for each i € [m].

Suppose we are given query access to a mechanism M that is BIC and IR wrt. D, = X, Bz,i and
valuations {v};¢[m| (as defined in the second bullet of the Mechanism Design component above), and
there exists €, > 0 such that dp(D;, A o Bz,,-) < ¢ foralli € [m]. Given any (e, €)-query protocol
with ¢ > &1, we can construct mechanism M using only query access to M and obliviously with respect
to D, such that for any possible D that satisfies the above conditions of Prokhorov distance closeness
the following hold:

(1) M only interacts with every bidder using Q once;
(2) M is (x, &)-BIC w.r.t. D and IR, where k = O (Le; + ||All oo Lme + ||All oo LVme);

(3) The expected revenue of M is at least REV(]VI, 52) -0 (mk).

REMARK 3. The mechanism M will be an indirect mechanism. We are slightly imprecise here to
call the mechanism (k, 1)-BIC. Formally what we mean is that interacting with Q truthfully is a
(x, €1)-weak approximate Bayes Nash equilibrium. We compute the expected revenue assuming all
bidders interacting with Q truthfully. As we discussed in Remark 1, with an additional additive
|Alleo Lm?e; loss in revenue, we can assume that only the (1 — &)-fraction of types of each bidder who
have no more than ¢ incentive to deviate from the Bayes Nash strategies interact with Q truthfully
while the remaining § fraction uses arbitrary strategies.

Why isn’t [7] sufficient? One may be tempted to prove Theorem 1 using [7]. However, there
are two subtle issues with this approach: (i) The violation of the incentive compatibility constraints
and the revenue loss of the robustification process in [7] depend linearly in N, rather than in ||A||
as in Theorem 1. Note that [|Al|, = max;¢[n 25:1 |A;;|, which only depends on k and the largest
value an archetype can have for a single item and thus could be significantly smaller than N. (ii)
The robustification process involves sampling from the conditional distribution of A o ﬁz,i on an
N-dimensional cube, which is equivalent to sampling from the conditional distribution of 527 jona
set S whose image after the linear transformation A is the N-dimensional cube. However, S may be
difficult to sample from if A is not a well-conditioned.

A bidder is c-demand if for any set S of items, the bidder picks their favorite bundle with size no more than ¢ in S
evaluating the value of each such bundle additively, with values as determined by the bidder’s type ¢. Formally, v(¢, S) =

mMaxpcs,|Blsc XjeB Lj-
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In the following lemma, we refine the robustification result in [7] (Theorem 3 in that paper) and
show that given an approximate distribution F in the latent space and a BIC and IR mechanism
M wert. F, we can robustify M with negligible revenue loss so that it is an approximately BIC and
exactly IR mechanism w.r.t. F for any distribution F that is within the e-Prokhorov ball around F.
Importantly, we exploit the effective dimension of the matrix factorization model to replace the
dependence on N with ||A]|., in both the violation of the incentive compatibility constraints and
the revenue loss. Additionally, we only need to be able to sample from the conditional distribution
of D, ; on a k-dimensional cube. We postpone the proof of Lemma 2 to the Appendix A.

LEMMA 2. Let A € RN*¥ be the design matrix. Suppose we are gwen a collection of distributions
over latent types {FZ ,}1.E [m]> where the support of each Fz ; lies in [0, 1]%, and a BIC and IR mechanism
Mwrt F = X lF ;i and valuations {v }Yie[m], Where each v; is an L-Lipschitz valuation. Let

= X, F,; be any distribution such that dp(FZ’l,Fz,l) < ¢ foralli € [m]. Given access to a
sampling algorithm S; for each i € [m], where Si(x,5) draws a sample from the conditional
distribution ofF i on the k-dimensional cube X ;¢(x[xj, x; + &), we can construct a randomized
mechanism M using only query access to M and oblwzously with respect to F, such that for any F
satisfying the above conditions of Prokhorov distance closeness the following hold:

(1) M isk-BIC and IR w.r.t. F andvaluations{v?}ie[m], wherex = O (||All Lme + ||All £ (5 + %)),

(2) The expected revenue of]\71 is REV (]\71, F) > REV(M, 1’5) -0 (mk).

Equipped with Lemma 2, we proceed to prove Theorem 1.
Proof of Theorem 1: Consider the following mechanism:

ALGORITHM 1: Query-based Indirect Mechanism M

1: Construct mechanism M using Lemma 2 by choosing I?Z,i to be ﬁz,i for each i € [m] and & to be \/me.

2: Query each agent i using Q. Let Q(b;) be the output after interacting with bidder i. (For any possible
output produced by Q, there exists a type b € RN, so this is w.L.o.g..)

3: Execute mechanism M on bid profile (Q(b1), . .., Q(by)).

Let t; be bidder i’s type and z; be a random variable distributed according to 52, ;. Since
dp(D;, 51) < ¢, Lemma 1 guarantees a coupling between t; and Az; such that their £, distance
is more than & with probability no more than €. As Q is a (¢1, €)-query protocol, when t; and
Az; are not ¢; away, we have |Q(t;) — zi|| < €. Hence, there exists a coupling between Q(t;) and
z; so that their €, distance is more than ¢ with probability no more than ¢ (recall &; < ¢). If we
choose F, ; to be the distribution of Q(%;), 1:";’,- to be 52,1-, and § to be y/me, Lemma 2 states that M
isa O (||Allo Lme + ||Allo LV/me)-BIC mechanism if bidder i has valuation v;“(-) and type Q(t;).
Consider two cases: (a) When ||t; — Az;||., < €1, then ||t; — AQ(;)]|o < €1 + ||Allo €. Since v;(+) is
L-Lipschitz, deviating from interacting with Q truthfully can increase the expected utility by at
most O (Le; + ||Allo Lme + ||Allo Lyme). (b) When |[|t; — Az;|l, > ¢, the bidder may substan-
tially improve their expected utility by deviating. Luckily, such case happens with probability no
more than ¢. O

In Theorem 2, we show how to obtain (¢, §)-queries under various settings. We further assume
that the bidders’ valuations are all constrained-additive.
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DEFINITION 5 (CONSTRAINED-ADDITIVE VALUATION). A valuation functionv : RN x 2INT — R is
constrained additive if v(t,S) = maxrerngs 2jer(fj + tj), where I is a downward-closed set system,
and pp = (1, . .., pN) is a fixed vector For example, unit-demand valuation is when I includes all
subsets with size no more than 1. If all elements of I have size no more than L, then v is a L-Lipschitz
valuation.

THEOREM 2. Let all bidders’ valuations be constrained-additive. We consider queries of the form:

?
ejTt > p, where e; is the j-th standard unit vector in RN. The query simply asks whether the bidder
is willing to pay at least p + y; for winning item j. The bidder provides a Yes/No answer. We obtain
communicationally efficient protocols in the following settings:

e Deterministic Structure: If AT can be expressed as [CTHT Iy, where ITy € RN is a permu-
tation matrix, H is an arbitrary (N — k) X k matrix, and C € R**k is diagonally dominant both
by rows and by columns. This is a relaxation of the well-known separability assumption by
Donoho and Stodden [26], that is, AT can be expressed as I, HT |Tly, where Iy, is the k-dimensional
identity matrix. Let & = min;e(x (|Ciil = X2 1Cijl) and f = minjeqr) (ICj5] = X1 1Cijl). We

4maxje(k) Cjj

have a (e, ) -query protocol using O (k log ( 1A ]l )) queries for any € > 0.

e Ex-ante Analysis: If A is generated from a distribution, where each archetype is an independent
copy of a N-dimensional random vector 0.

— Multivariate Gaussian Distributions: 0 is distributed according to a multivariate Gauss-

ian distribution N(0,%). If there exists a subset S C [N] such that Trg‘)) > 64k, where

s = E[GSGST] is the covariance matrix for items in S and p(Zs) is the largest eigenvalue

of %s,* then with probability at least 1 — 2 exp (— 1?;?5;), we have a (g, ij% . g) -query

protocol using O (|S| log ( 14 e )) queries for any ¢ > 0. Note that when the entries of 0 are
i.i.d., any S with size at least 64k satisfies the condition.

— Bounded Distributions with Weak Dependence: Let 0; be supported on [—c, c] and has
mean 0 for each i € [N]. If there exists a subset S C [N] such that ||INF(0s)||, < 1, and

Dies V2 > %, where v? := Var[0;], then with probability at least

A= INHOS) ) (Bies 02 VIS
1-2exp (— 64Tk [S| ) we have a (5, o .

IA] ) queries for any € > 0. Note that when the entries of 0 are independent,

s) -query protocol using

0 (1s! - log (141
lIINF(05)||, = 0 for any set S. If each 0; has variance Q(c?), then any set with size at least ak?
suffices for some absolute constant a.

REMARK 4. In the ex-ante analysis, the success probabilities depend on the parameters of the
distributions, but note that they are both at least 1 — 2 exp(—4k).

Before we prove Theorem 2, we combine it with Theorem 1 to derive results for a few concrete
settings.

ProrosITION 1. Under the same setting as in Theorem 1 with the extra assumption that every
valuation v; is constrained-additive, we can construct mechanism M using only query access to the

30ne can interpret y as the common based values for the items that are shared among all types.
40s is the |S|-dimensional vector that contains all 8; with i € S.
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given mechanism M and oblivious to the true type distribution D, such that for any possible D, M is
(n, £1)-BIC and IR, wheren = O (le + |Alleo Lmf(e1) + 1Al oo L\/mf(el)), and has revenue at least

REV(M, D,)=O (||Alle Lm?f(e1) + ||All o Lm*/2 f(e1)!/?). Recall that e, satisfies dp(D;, AoD, ;) < &
foralli € [m]. We compute the function f(-) and the number of queries for the following three concrete
settings (one for each of the three assumptions in Theorem 2).

(1) Deterministic Structure: Separability. If the design matrix A satisfies the separability
assumption by Donoho and Stodden [26], that is, AT can be expressed as [ItH [Ty, where

Iy € RN is a permutation matrix, f(e;) = 4¢; for all ¢ > 0. The number of queries each bidder

needs to answer is O (k -log (%)) .

&

(2) Multivariate Gaussian Distributions: Well-Conditioned Covariance Matrix. Let A be
generated from a distribution, where each archetype is an independent draw from a N -dimensional
normal distribution N(0, ). Let k() be the condition number of 3.5 For any set S with size
64k (2)k, if we query each bidder about items in S, with probability at least 1 — 2 exp(—4k),

f(e1) =0 (f/T':_;Z)) . 81), and each bidder needs to answer O (K(Z)k -log (%)) queries.
s 1

(3) Weak Dependence: Sufficient Variance per Item. Let A be generated from a distribution,
where each archetype is an independent copy of an N-dimensional random vector 0. As-
suming (i) ||INFO)||, < 1, (ii) 0; lies in [—c,c], and (iii) Var[0;] > a? for each i € [N],
256¢*k?

at(1-[INF(9)I)*

probability at least 1 — 2 exp(—4k), f(e1) = O (%E ~51) and each bidder needs to answer

c'k” : 1Al 6
O(WF(G)HZ)2 log( o )) queries.

Proor. The results in the first and last setting follows directly from Theorem 2. For the second
setting, notice that by the eigenvalue interlacing theorem, x(Zs) < x(X), as Xs is a principal

submatrix of 2. Therefore, Tpr((sz)) > % > 64k. Now, the result follows from Theorem 2. O

then for any set S with size if we query each bidder about items in S, with

Proof of Theorem 2: Instead of directly studying the query complexity under our query model. We
first consider the query complexity under a seemingly stronger query model, where we directly
query the bidder about their value of ejTt, and their answer will be within ejTt + 1 for some n > 0.
We refer to this type of queries as noisy value queries. Since for each item j, IeJ.TAzl < ||A||o for

all z € [0,1]* and we only care about types in RN that are close to some Az, we can use our
queries to perform binary search on p to simulate noisy value queries. In particular, we only need
log ||Alle + log 1/5 + log 1/¢ many queries to simulate one noisy value queries. From now on, the
plan is to first investigate the query complexity for noisy value queries, then convert the result to
query complexity in the original model.

We first fix the notation. Let £ be the number of noisy value queries, and Q € RN be the
query matrix, where, each row of Q is a standard unit vector. We use § € R’ to denote the bidder’s
answers to the queries and y € R’ to true answers to the queries. Note that || — y||., < 7. Given 7,
we solve the following least squares problem: min, .z« |QAz — /2.

5% is well-conditioned if (%) is small. When = = In;, k(Z) = 1.
%Clearly, we can weaken condition (i),(ii) and (iii). The result still holds if we can find a set S, so that for vector 85, condition

i), (i), and (iii) hold, and |S| is at least %.
(@), (id) (iif) S| A IINFOT,)?
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The problem has a closed form solution: Z = (ATQTQA)_1 ATQT{. Let B := QA, and z(t) € R¥
be a vector that satisfies ||t — Az(t)||, < &. We are interested in upper bounding ||Z — z(t)||.,- Note
that

£ —z(t) =(B"B)"'B' (§ - Bz(1))
=(B"B)"'B" ((§ - y) + (y — Bz(t)))
=(B"B)™'BT(§ —y) + (B B) ' BT Q(t — Az(1))
Since the rows of Q are all standard unit vectors, ||Q||, = 1.
12 = 2(t)lleo < [|(B"B)'B" (5 - )|, + (B B)'BT Q(t — Az(1))||,
<||B"B), [IB" |, (7 +11Q(t ~ Az(1))])
<[|B"B) |, [1B" |, (n + e).
Next, we bound ||(BTB)~||_, ||B7||., under the different assumptions.

Deterministic Structure: We choose ¢ = k and Q so that QA = B = C. Since C is diagonally
dominant, C is non-singular, and (CTC)™! = c~}(CT)~..

LEMMA 3 (ADAPTED FROM THEOREM 1 AND COROLLARY 1 OF [45]). If a matrix U € R™™" is
diagonally dominant both by rows and by columns, and a = min;e) (|Usi| — Xz |Ujl) and p =
min;epn (|Uj;] - 2izj |Uij1), then HU‘IHOQ <1l/a and”(UT)_l”‘><J <1/p.

cT

By Lemma3, €701 |7 .. < 1< )=, Note that [Ic7], = maxjeg) S 11 < 2 maxjeqe) G
The last inequality is because C is diagonally dominant by columns. To sum up, if we choose Q so
that QA = C,

(e+m- |7l _ 2(e+m) - max;epp Gy
ap - ap '
Ex-ante Analysis: Since ||(BTB)_1||(>o < \/E||(BTB)_1||2 and ||BTHoo <V |B|l,,

12 -zl <

\/f_k * Omax(B)

e = 20l <~

! (’7+£)’

where 07,4x(B) (01 0min(B)) is B’s largest (or smallest) singular value.

Multivariate Gaussian distribution: When 6 is distributed according to a multivariate Gaussian
distribution, we choose ¢ = |S| and Q so that each row corresponding to an e; with j € S. Now, B is
a ¢ X k random matrix where each column is an independent copy of 5. We use Lemma 4 to bound
B’s largest singular value 0y,4x(B) and smallest singular value ¢,i,(B). The proof of Lemma 4 is
postponed to Section 4.1.

LEmMA 4. [Concentration of Singular Values under multivariate Gaussian distributions]
LetU = [X(l), .. ,X(”)] be a m X n random matrix, where each column of U is an independent
copy of a m-dimensional random vector X distributed according to a multivariate Gaussian dis-
tribution N(0, ATDA). In particular, A € R™™ js an orthonormal matrix, and D € R™™ js a

diagonal matrix. We have 0pqx(U) < 24/Tr(D) and pin(U) > Tr(D), with probability at least

4
1-2exp (— ST;(D)

+ 4n), where dpqx is the largest entry in D.
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Since 1:((22 f)) > 64k, by Lemma 4, 01,4x(B) < 24/Tr(Zs) and 01pin(B) = +/Tr(Zs)/4 with probability

atleast 1-2exp (— 1?{%5;)) > 1-2exp(—4k). Hence, ||Z — z(t)||c < iZ/T_ Vrglj -(n+¢) with probability

Tr(Zs) )

atleast 1 — 2exp (_ 16-p(Zs)

Weakly Dependent Distributions: When the coordinates of s are weakly dependent, i.e., || INF(0s)||, <
1, we choose £ = |S| and Q so that each row corresponding to an e; with j € S. Now, Bisa { X k
random matrix where each column is an independent copy of 8s. We use Lemma 5 to bound
B’s largest singular value 0y,,x(B) and smallest singular value 6,,;,(B). The proof of Lemma 5 is
postponed to Section 4.2.

LEMMA 5. [Concentration of Singular Values under Weak Dependence]
LetU = [X(l), . ,X(")] be a m X n random matrix, where each column of U is an independent
copy of a m-dimensional random vector X. We assume that the coordinates of X are weakly de-
pendent, i.e., |INF(X)||, < 1, and each coordinate of X lies in [—c,c] and has mean 0 and vari-

ance vl.z, Letv = \[Yie[m] vl.z. We have 0max(U) < 2v and opmin(U) > %, with probability at least
1-2exp (_M + 4n).

32ctnm

. 16c2kA/|S|
Since Y;esv? > o050, by Lemma 5, we have opax(B) < 24/X;cs 07 and opmin(B) >

_ (= [INE(05) 1) (B res v)*
64ck|S|

Yics U2 /4 with probability at least 1—2 exp ( ) > 1—2 exp(—4k). Therefore,

_ (= [IINE(05) 1) (B res v)*
64ck|S| :

324/|S|k

Yies U?

12— 2z(t)]| < - (n + ¢) with probability at least 1 — 2 exp (

Query Complexity in Different Models: We set 1 to be ¢.

L 4-max;ex) Cjj .
e Deterministic structure: we have a (5, % . g) -query protocol using k(log ||A|| +

2log(1/¢)) queries.

e Multivariate Gaussian distributions: with probability at least 1 — 2 exp ( Tr(Zs) ) (no

T 16-p(s)
644/|S|k
VIr(Es)

less than 1 — 2 exp(—4k) by our choice of S), we have a (e, . s)—query protocol using

|S|(log ||Alle + 2log(1/¢)) queries.

_ (- lINF(0) 1) (Bies ©3)° )

e Weakly dependent distributions: with probability at least 1-2 exp ( 64 ETS|

64v/]S |k

VZieS v?

(no less than 1 — 2 exp(—4k) by our choice of S), we have a (E, . 5) -query protocol

using |S|(log ||All + 21og(1/¢)) queries.
O

4 BOUNDING THE LARGEST AND SMALLEST SINGULAR VALUES

We prove both Lemma 4 and 5 using an e-net argument. We first state a lemma that says that for
any matrix M, if we can bound the maximum value of ||Mx||, over all points x in the ¢-net, then
we also bound the largest and smallest singular values of M.
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LEMMA 6 (ADAPTED FROM [41]). Foranye < 1, there exists an e-net K C S"" L, ie,Vx € S* 1 Jy €
K llx —yll, < & such that |K| < (3/¢e)". For any matrix M € R™", let a = maxyeq ||Mx||, and
b = minycgc || Mx||5, then omax(M) < 1% and opmin(M) 2 b - % - a.

Proof of Lemma 6: Let x* € S"~! be a vector that satisfies ||Mx*||, = omax(M). Let x be a vector in
K such that ||x — x*||, < €. Then opax(M) = [|[Mx*||, < ||Mx||, + [|[M(x — x)||, < a+ eomax(M),
which implies that opex(M) < 1%. On the other hand, for any y € $"7!, let y’ € K satisfies

ly —y'll, < & then [|Myll, > [IMy’ll, - [IM(y =yl 2 b — ¢ omax(M) 2 b - 15 - a. O

4.1 Multivariate Gaussian Distributions

In this section, we prove the case where the columns of the random matrix are drawn from a
multivariate Gaussian distribution. The key is again to prove that for every unit-vector, |Ux]||, lies
between [c; - E[||Ux||,], c2 - E[||Ux||,]] with high probability for some absolute constant ¢; and c;
(Lemma 7). Lemma 4 follows from the combination of Lemma 7, 6, and the union bound.
Proof of Lemma 4: Let YO, .., Y™ be niid samples from the distribution N(0, I;;), and V :=
DY2[y™ Y.

ProrosITION 2. N(0,3) AT N(0,D) and U d ATy,
Proor. E[ATDV2YW(YNTDI/2A] = ATDV2E[YD(YO)T|DY2A = ATDA = 5. O

Since A is an orthonormal matrix, omaex(U) = 0max (V) and 6,,in(U) = 01min(V). We will proceed
to show that both 6,,,45(V) and 0,4 (V) concentrate around their means. We do so via an ¢-net
argument.

LEMMA 7. For any fix x € S"\, E[||Vx||3] = Tr(D). Moreover,

Pr [||Vx||§ < @] < exp (—%),

and

Pr [||Vx|2 > 2Tr(D)] < exp (_4Tr(D) )

. dmax
Proof of Lemma 7: Let g4, ...,gn to be n iid. samples from N(0,1). It is not hard to see that

vx 2 (Vd191, ..., Vdngn)T, so we need to prove that 2ien] dig? concentrates around its mean
Tr(D).

Pr| >’ dig? < Tr(D) -t

_ie[n]

=Pr|exp|4- (Tr(D) - Z dig?) | > exp(At) (A > 0 and will be specified later)
i i€[n]

- exp(ATr(D))E [exp (—/1 . Zie[n] digl.z)] B exp(ATr(D)) Hie[n] E [exp (—/1 . digl?)]

- exp(At) B exp(At)

Since g? distributes according to a chi-square distribution, its moment generating function
1

E [exp (=2 - dig7)]| = T
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If we choose A to be no more than 1/2d,, 4y, since for any a € [0,1], 1 + 2a > €%, we have that

1
———— < exp(—Ad;/2).
V1 +2Ad; p( /3

Putting everything together, we have that

Pr Z dig> < Tr(D) —t| < exp (=1 - (t —= Tr(D)/2)).
i€[n]

When we choose A = 1/2dpmqx and t = 3/4-Tr(D), the RHS of the inequality becomes exp ( Tr(D) )

max

Next, we upper bound Pr [Zie[n] dig? > Tr(D) + t] via a similar approach.

Pr Z dig? > Tr(D) +t

_iE[n]

=Pr |exp|4- (Z dig? — Tr(D)) | > exp(At) (A > 0 and will be specified later)
i€[n]

Ticin B [exp (2 dig? = )|

exp(At)
_ exp(=Adi)
Note that E [exp (4 - (dig? — dy)) ]| = “?_W.
PROPOSITION 3. For any x € [0,1/4], e\’;p(ix) V1 + 2x.

Proof of Proposition 3: We first state a few inequalities that are not hard to verify. First, for all x > 0,
e <1-x+x% Second, V1 —4x2 > 1—2x? —8x*if x € [0,1/2). Finally, 1 — 2x? — 8x* > 1 —x + x?
if x € [0, 1/4]. Combining all three inequalities, we have that

e < V1 —4x? = V1 -2xV1 + 2x, forall x € [0,1/4].
O

If we choose A to be no more than 1/4d,,,y, then by Proposition 3, % < /1 + 2Ad;, which

is upper bounded by exp(Ad;). Putting everything together, we have that

Pr Z dig? > Tr(D) + t| < exp (=A(t — Tr(D))) .
i€[n]

When we choose A = 1/4dp4x and t = 2Tr(D), the RHS of the inequality becomes exp ( Tr(D) )
O

Next, we only consider when the good event happens, that is, for all points x in the e-net,

lVx|l, € [ ‘T;(D), vV 2Tr(D)]. Combining Lemma 7 and the union bound, we know that the good

event happens with probability at least 1 — 2 exp (— S_T;(D) +1In(3/¢) - n) According to Lemma 6,

7

Tr(D

max(V) < L 4nd g, (V) >

1-

— 1= - {2Tr(D). If we choose £ = 1/7, then opax(V) <
2y/Tr(D) and opmin(V) = Y22
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4.2 Bounded Distributions with Weak Dependence

In this section, we prove the case where the columns of the random matrix are drawn from a
m-dimensional distribution that satisfies weak dependence. The overall plan is similar to the one
for multivariate Gaussian distributions. The key is again to prove that for every unit-vector, ||Ux]||,
lies between [c; - E[||Ux||,], cz - B[||Ux]||,]] with high probability for some absolute constant ¢; and
¢o (Lemma 8). Lemma 5 then follows from the combination of Lemma 8, 6, and the union bound.
Proof of Lemma 5:

We first show that for each fix x € S*71, ||Ux||, is concentrates around its mean. Then, we apply
Lemma 6 to bound ,,4(U) and o, (U).

LEMMA 8. Let U = [X(l), . ,X(")] be a m X n random matrix, where each column of U is an
independent copy of a m-dimensional random vector X. We assume that the coordinates of X are
weakly dependent, i.e., ||INF(X)||, < 1, and each coordinate of X lies in [—c, c] and has mean 0 and

variance v?. Let v = |3 c[p) 2. For any fixx € S""', E[||Ux||}] = v and

(1= vy tZ)

16¢*nm

Pr [} 1UxllZ - %] > 1] < zexp(

Proof of Lemma 8: We first expand ||Ux||3.
2

2 2.2
[Ux||5 = Z Z ujxj| = Z Z uj;x; +22uiju,~kxjxk .

ie[m] \je[n] ie[m] \je[n] k#j

Therefore, E [||Ux||§] = Dielm] v? = v% To prove that |Ux||% concentrates, we first need a result
by Chatterjee [16].

LEMMA 9 (ADAPTED FROM THEOREM 4.3 IN [16]). Let X be a d-dimensional random vector. Suppose
function f satisfies the following generalized Lipschitz condition:

F6) = F@l < ) eillxi #yil,
ield]
for any x and y in the support of X. If INF(X) < 1, we have

- ||INF<X)||2>t2) ‘

Pr|f(X) -E[f(Oll = t] < Zexp( S &

The function we care about is |Ux]||5, where the variables are {uij}ieim),je[n)- U and U’ only
differs at the (i, j) entry, then

2 2
U=z = 1U"x|z |
=|u?jx12- +2 Z Uy Ui XjX) — (ulfj)2x]2 -2 Z U Uik XXk
k#j k#j
Sczx]2 + 4c%|xj|[xx| < 4c®|x;] Z x| | < 4c*Vnlx;]
ke[n]

We denote 4c?v/n|x;| by c;;. Clearly, for any U and U’ | ||Ux||§ —lU'x|5] < i jela CijLluij # ulfj].
Also, notice that INF(U) = I,, ® INF(X), and therefore ||INF(U)||, = ||INF(X)||,. 7 We apply Lemma 9

’® denotes the Kronecker product of the two matrices.
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to ||Ux||% and derive the following inequality:

Ol ) (_(1 ~ IIECO ;) rZ) |

Pr [| ||Ux||§ —UZ| > t] < 2exp
Zie[ml,jeln] C,?j 16¢*nm

d

Next, we only consider when the good event happens, that is, for all points x in the e-net,
lUx]|, € [%, \/Ev] Combining Lemma 8 (setting ¢t = 3/4v?) and the union bound, we know that

S 11:0.9) YL In(3/¢) - n) According

256ctnm

the good event happens with probability at least 1-2 exp (

to Lemma 6, 0,4 (U) < % and 0in(U) 2 5 - 75 -V2v.If we choose ¢ = 1/7, then o pax(U) < 20
and oyin(U) 2 7.0
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MISSING PROOF OF LEMMA 2

Proof of Lemma 2: The proof essentially follows from the same analysis as Theorem 3 in [7]. We only
provide a sketch here. Since we are working with the matrix factorization model and can directly
exploit the low dimensionality of the latent representation, we manage to replace the dependence
on N with ||Al|, in both the revenue loss and violation of the truthfulness constraints. Our proof
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relies on the idea of “simultaneously coupling” by Brustle et al. [7]. More specifically, it couples
1::2,,- with every distribution F, ; in the e-Prokhorov-ball around I?z,,-. If we round both I?Z,,- and any
F, i to a random grid G with size §, we can argue that the expected total variation distance (over
the randomness of the grid) between the two rounded distributions is O(¢ + %) (using Theorem
2 in [7]). Now consider the following mechanism: choose a random grid G, round the bids to the
random grid, apply the mechanism Mg that we designed for the rounded distribution of X; I::z i
More specifically, Mg is the following mechanism: for each bid b, use S;(b;, §) to sample a bid
b; and run M on the bid profile (b7, ..., b;,). Since the expected total variation distance (over the
randomness of the grid) between the two rounded distributions is O(e + §), we only need to argue
that when the given distribution and the true distribution are close in total variation distance, we
can robustify the mechanism designed for one distribution for the other distribution. This is a much
easier task, and we again use a similar argument in [7] to prove it. Combining everything, we can
show that the randomized mechanism we constructed is approximately-truthful and only loses
a negligible revenue compared to M under any distribution that is within the e-Prokhorov-ball
around the given distribution. O
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