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Machine learning has developed a variety of tools for learning and representing high-dimensional distributions

with structure. Recent years have also seen big advances in designing multi-item mechanisms. Akin to

overfitting, however, these mechanisms can be extremely sensitive to the Bayesian prior that they target,

which becomes problematic when that prior is only approximately known. At the same time, even if access

to the exact Bayesian prior is given, it is known that optimal or even approximately optimal multi-item

mechanisms run into sample, computational, representation and communication intractability barriers.

We consider a natural class of multi-item mechanism design problems with very large numbers of items,

but where the bidders’ value distributions can be well-approximated by a topic model akin to those used in

recommendation systems with very large numbers of possible recommendations. We propose a mechanism

design framework for this setting, building on a recent robustification framework by Brustle et al., which

disentangles the statistical challenge of estimating a multi-dimensional prior from the task of designing a good

mechanism for it, and robustifies the performance of the latter against the estimation error of the former. We

provide an extension of this framework appropriate for our setting, which allows us to exploit the expressive

power of topic models to reduce the effective dimensionality of the mechanism design problem and remove

the dependence of its computational, communication and representation complexity on the number of items.

CCS Concepts: • Theory of computation → Algorithmic mechanism design; Algorithmic game the-
ory; • Information systems → Recommender systems.
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1 INTRODUCTION
Mechanism Design has found important applications in the design of offline and online markets.

One of its main applications is the design of auctions, where a common goal is to maximize the

seller’s revenue from the sale of one or multiple items to one or multiple bidders. This is challenging

because bidders are strategic and interact with the auction in a way that benefits themselves rather

than the seller. It is well-understood that, without any information about the bidders’ willingness

to pay for different bundles of items, there is no meaningful way to optimize revenue. As such, a

classical approach in Economics is to assume that bidders’ types – which determine their values

for different bundles and thus their willingness to pay for different bundles – are not arbitrary but
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randomly drawn from a joint distribution D that is common knowledge, i.e. known to all bidders

and the auctioneer. With such a Bayesian prior, the revenue of different mechanisms is compared

on the basis of what revenue they achieve in expectation with respect to bidder type vectors drawn

from D, and assuming that bidders play according to some (Bayesian) Nash equilibrium strategies,

or some other type of (boundedly) rational behavior, e.g. no-regret learning.

Even with a Bayesian prior, however, revenue maximization is quite a challenging task. While

Myerson’s celebrated work showed that a relatively simple mechanism is optimal in single-item

settings [38], characterizing the structure of optimal multi-item mechanisms has been notoriously

difficult both analytically and computationally. Indeed, it is known that (even approximately)

optimal multi-item mechanisms may require description complexity that scales exponentially in the

number of items, even when there is a single buyer [3, 24, 27, 34], they might be computationally

intractable, even in simple settings [10, 20, 23], and they may exhibit several counter-intuitive

properties which do not arise in single-item settings; see survey [21]. Nevertheless, recent years

have seen substantial progress on various fronts: analytical characterizations of optimal multi-item

mechanisms [22, 24, 30, 35]; computational frameworks for computing near-optimal multi-item

mechanisms [2, 9–12]; approximate multi-item revenue optimization via simple mechanisms [1, 4,

13–15, 17–19, 25, 33, 36, 40, 46]; and (approximate) multi-item revenue optimization using sample

access to the type distribution [7, 8, 31, 32, 37, 44], including via the use of deep learning [28, 29, 42].

The afore-described progress onmulti-item revenue optimization provides a diversity of tools that

can be combined to alleviate the analytical and computational intractability of optimal mechanisms.

Yet, there still remains an important challenge in applying those tools, which is that they typically

require that the type distribution D is either known or can be sampled. However, this is too strong

an assumption. It is common that D is estimated through market research or econometric analysis

in related settings, involving similar items or a subset of the items. In this case, we would only hope

to know some approximate distribution D̂ that is close to D. In other settings, we may have sample

access to the true distribution D but there might be errors in measuring or recording those samples.

Again, we might hope to estimate an approximate distribution D̂ that is close to D. Unfortunately,
it is well understood that designing a mechanism for D̂ and using it for D might be a bad idea, as

optimal mechanisms tend to overfit the details of the type distribution. This has motivated a strand

of recent literature to study how to robustify mechanisms to errors in the distribution [5, 6, 8].

There is, in fact, another important reason why one might want to design mechanisms for

some approximate type distribution. Multi-dimensional data is complex and one would want to

leverage the extensive statistical and machine learning toolkit that allows approximating such high-

dimensional distributions with more structured models. Indeed, while the true type distribution D
might not conform to a simple model, it might be close to a distribution D̂ that does. We would like

to leverage the simple structure in D̂ to (i) alleviate the computational intractability of multi-item

mechanisms, and (ii) reduce the amount of communication that the bidders and the auctioneer

need to exchange. While the structured model D̂ might allow (i) and (ii), we need the guarantee

that the revenue of our mechanism be robust when we apply it to the true distribution D.
Motivated by the discussion above, in this work we build a multi-item mechanism design frame-

work that combines matrix factorization models developed for recommendation systems with

mechanism design, targeting two issues: (1) the intractability of Mechanism Design with respect to

the number of items (arising from the exponential dependence of the number of types on the num-

ber of items if no further assumptions are placed); (2) the lack of exact access to the Bayesian priors.

In particular, we assume that each bidder draws their type – specifying their values for a very large

universe of N items (think all restaurants in a city or all items on Amazon) – from a distribution Di
that is close to a Matrix Factorized model D̂i , whose latent dimension is k << N . Targeting these
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approximate distributions D̂i allows us to reduce the effective dimensionality of bidder types to k ,
which has huge advantages in terms of the computational/representation/communication/sample

complexity of mechanism design. We develop tools that allow us to (a) use the mechanism con-

structed for the approximate D̂i ’s under the true Di ’s without sacrificing much revenue; and (b)

interact with the bidders who are unaware of the latent codes (they only understand their values for

the N items and are oblivious to the matrix factorized model) yet exploit the factorized model for

efficiently communicating with them without the impractical burden of having them communicate

their N -dimensional type to the mechanism. In sum, our results are as follows:

• With a query protocol Q that learns an approximate latent representation of a bidder’s type,

Theorem 1 shows how to combine it with any mechanism M̂ that is designed only for the

Matrix Factorization model to produce a mechanism that generates comparable revenue

but with respect to the true distribution. The result is obtained via a refinement of the

robustification result in [7], where the loss in revenue, as well as the violation in incentive

compatibility now only depend on the effective dimension of the Matrix Factorization model,

k , but not the total number of items, N (Lemma 2).

• We show how to obtain communication-efficient query protocols in several natural settings

(Theorem 2) when the valuations are constrained-additive (Definition 5). The queries we

consider ask a bidder whether they are willing to purchase an item at a given price. In

the first setting, the design matrix of the Matrix Factorization model contains a diagonally

dominant matrix – a generalization of the well-known separability assumption by Donoho

and Stodden [26]. In two other settings, we assume that the design matrix is generated from

a probablistic model and show that a simple query protocol succeeds with high probability.

• Combining Theorems 1 and 2, we show that, given any mechanism M̂ that is designed only for

theMatrix Factorization model, we can design a mechanism that achieves comparable revenue

and only requires the bidders to answer a small number of simple queries. In particular, for

several natural settings, we show that the number of queries scales quasi-linearly in the

effective dimension of the Matrix Factorization model and independent of the total number

of items (Proposition 1).

2 PRELIMINARIES
2.1 Brief Introduction to Mechanism Design
We provide a brief introduction to mechanism design. To avoid a very long introduction, we only

define the concepts in the context of multi-item auctions, which will be the focus of this paper. See

Chapter 9 of [39] and the references therein for a more detailed introduction to mechanism design.

Multi-item Auctions. The seller is selling N heterogenous items tom bidders. Each bidder i
is assumed to have a private type ti that encodes their preference over the items and bundles of

items. We assume that ti lives in the N -dimensional Euclidean space. For each bidder, there is a

publicly known valuation function vi (·, ·), where vi (ti , S) ∈ R is bidder i’s value for bundle S ⊆ [N ]

when i’s private type is ti . In this paper, we consider the Bayesian setting with private types, that is,

each bidder’s type ti is drawn privately and independently from a publicly known distribution Di .

Mechanism. The seller designs a mechanism to sell the items to bidders. A mechanism consists

of an allocation rule and a payment rule, where the allocation rule decides a way to allocate the

items to the bidders, and the payment rule decides how much to charge each bidder.
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Direct Mechanism: In a direct mechanism, the mechanism directly solicits types from the bidders

and apply the allocation and payment rules on the reported types. More specifically, for any re-

ported type profile b = (b1, . . . ,bm), a direct mechanismM := (x(·),p(·)) selects x(b) ∈ {0, 1}m×N

as the allocation and charges each bidder i payment pi (b).
1
We slightly abuse notation to allow

the allocation rule to be randomized, so x(b) ∈ ∆
(
{0, 1}m×N )

. We assume that bidders have

quasi-linear utilities. If bidder i’s private type is ti , her utility under reported bid profile b is

ui (ti ,M(b)) = E [vi (ti ,x(b)) − pi (b)], where the expectation is over the randomness of the alloca-

tion and payment rule.

Expected Revenue: In this paper, our goal is to design mechanisms with high expected revenue.

For a direct mechanismM , we use Rev(M,D) to denote Et∼D [
∑

i ∈[m] pi (t)], where t = (t1, . . . , tm)
is the type profile and is drawn from D =

>
i ∈[m] Di .

Incentive Compatibility and Individual Rationality. Since the bidders’ types are private, unless

the mechanism incentivizes the bidders to report truthfully, there is no reason to expect that the

reported types correspond to the true types. The notion of incentive compatibility is defined to

capture this.

• ε-Bayesian Incentive Compatible (ε-BIC): if bidders draw their types from some distri-

bution D =
>m

i=1 Di , then a direct mechanismM is ε-BIC with respect to D if for each bidder

i ∈ [m]

Et−i∼D−i [ui (ti ,M(ti , t−i ))] ≥ Et−i∼D−i [ui (ti ,M(t ′i , t−i ))] − ε,

for all potential misreports t ′i , in expectation over all other bidders bid t−i . A mechanism is

BIC if it is 0-BIC.

• (ε,δ )-Bayesian Incentive Compatible ((ε,δ )-BIC): if bidders draw their types from some

distribution D =
>m

i=1 Di , then a direct mechanism M is (ε,δ )-BIC with respect to D if for

each bidder i ∈ [m]:

Pr

ti∼Di

[
Et−i∼D−i [ui (ti ,M(ti , t−i ))] ≥ Et−i∼D−i [ui (ti ,M(t ′i , t−i ))] − ε

]
≥ 1 − δ .

• IndividuallyRational (IR):AdirectmechanismM is IR if for all type profiles t = (t1, . . . , tm),

ui (ti ,M(ti , t−i )) ≥ 0

for all bidders i ∈ [m].

Indirect Mechanism: An indirect mechanism does not directly solicit the bidders’ types. After

interacting with the bidders, the mechanism selects an allocation and payments. The notions of ε-
Bayesian Incentive Compatibility and Individual Rationality can be extended to indirect mechanisms

using the solution concept of ε-Bayes Nash equilibrium. The notion of (ε,δ )-Bayesian Incentive

Compatibility can be extended to indirect mechanisms using the new solution concept, which we

call (ε,δ )-weak approximate Bayes Nash equilibrium. In an incomplete information game, a strategy

profile is an (ε,δ )-weak approximate Bayes Nash equilibrium if for every bidder, with probability

no more than δ (over the randomness of their own type), unilateral deviation from the Bayesian

Nash strategy can increase the deviating bidder’s expected utility (with respect to the randomness

of the other bidders’ types and assuming those follow their Bayesian Nash equilibrium strategies)

by more than ε .

1
Note that p(b) = (p1(b), . . . , pm (b)).
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Remark 1. For a (ε,δ )-weak approximate Bayes Nash equilibrium, its expected revenue computation

is made in this paper using the convention that all bidders follow their (ε,δ )-weak approximate Bayes

Nash equilibrium strategies. At a cost of an additivem2δH loss in revenue (where H is the highest

possible value of any bidder), we can assume that only the (1 − δ )-fraction of types of each bidder

who have no more than ε incentive to deviate from the weak approximate Bayes Nash equilibrium

strategies follow these strategies while the remaining δ fraction use arbitrary strategies. Similarly, we

can interpret the (ε,δ )-weak approximate Bayes Nash equilibrium definition as requiring that at least

(1 − δ )-fraction of the types of each bidder have at most O(ε +mδH ) incentive to deviate from the

Bayes Nash strategies assuming that for every other bidder at most δ fraction of their types deviate

from their Bayes Nash strategies.

2.2 Further Preliminaries
Definition 1. Let (U ,d) be a metric space and B be a σ -algebra onU . For all A ∈ B, let Aε = {x :

∃y ∈ A s .t d(x ,y) < ε}. Two probability measure P and Q on B have Prokhorov distance

inf {ε > 0 : P(A) ≤ Q(Aε ) + ε and Q(A) ≤ P(Aε ) + ε, ∀A ∈ B} .

We consider distributions supported on some Euclidean Space, and we choose d to be the ℓ∞-distance.

We denote the ℓ∞-Prokhorov distance between distributions F , F̂ by dP (F , F̂ ).

We will also make use of the following characterization of the Prokhorov metric by [43].

Lemma 1 (Characterization of the Prokhorov Metric [43]). Let F and F̂ be two distribu-

tions supported on Rn . dP (F , F̂ ) ≤ ε if and only if there exists a coupling γ of F and F̂ , such that

Pr(x,y)∼γ
[
∥x − y∥∞ > ε

]
≤ ε .

Definition 2 (Influence Matrix and Weak Dependence). For any d-dimensional random

vector X = (X1, . . . ,Xd ), we define the influence of variable j on variable i as

αi, j := sup

x−i−j
x j,x ′

j

dTV
(
FXi |X j=x j ,X−i−j=x−i−j , FXi |X j=x ′

j ,X−i−j=x−i−j

)
,

where FXi |X−i=x−i denotes the conditional distribution of Xi given X−i = x−i , and dTV (D,D
′) denotes

the total variational distance between distribution D and D ′
. Also, let αi,i := 0 for each i , and we use

Inf(X ) to denote the d × d matrix (αi, j )i ∈[d ], j ∈[d ]. In this paper, we consider the coordinates of X to be

weakly dependent if ∥Inf(X )∥
2
< 1.

3 OUR MODEL AND MAIN RESULTS
Setting and Goal: We consider a classical mechanism design problem, wherein a seller is selling N

items tom buyers, where buyer i’s type ti is drawn from a distribution Di over R
N
independently.

The goal is to design a mechanism that maximizes the seller’s revenue. In this paper, we operate in

a setting where Di is unknown, but we are given access to the following components: (I) For each

bidder i , we are given a machine learning model D̂i — of the matrix factorization type as described

below, which approximates Di . (II) We are given a good mechanism M̂ for the approximate type

distributions; in its design this mechanism can exploit the low effective dimensionality, k , of types
in the approximate model. Our goal is (III) to use (I) and (II) to obtain a good mechanism for the

true type distributions.

(I) The Machine Learning Component: We assume that each bidder’s type distribution Di can be

well-approximated by a known Matrix Factorization (MF) model D̂i . In particular:
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• We use A ∈ RN×k
to denote the design matrix of the model, where each column can be

viewed as the type (over N items) of an “archetype.” As described in the following two bullets,

types are sampled by each D̂i as linear combinations over archetypes.

• We use D̂z,i to denote a distribution over [0, 1]k . The subscript z is not a parameter of the

distribution — it serves to remind us that this distribution samples in the latent space [0, 1]k

and distinguish it from the distribution D̂i defined next.

• If F is a distribution over Rk , we use A ◦ F to denote the distribution of the random variable

Az, where z ∼ F . With this notation, we use D̂i to denote A ◦ D̂z,i .

• We assume that, for each bidder, the matrix factorization model is not far away from the true

type distribution, that is, for some ε1 > 0 we have that dP (Di , D̂i ) ≤ ε1 for all i ∈ [m].

Remark 2. In the above description we assumed that all D̂i ’s share the same design matrix A. This

is done to avoid overloading notation but all our results would hold if each D̂i had its own design

matrix Ai .

(II) The Mechanism Design Component: We assume that we are given a direct mechanism M̂ for

types drawn from the Machine Learning model. In particular, we assume that this mechanism

makes use of the effective dimension k of the Machine Learning model, accepting “latent types” (of

dimension k) as input from the bidders. Specifically:

• Recall that, for each bidder i , their valuation function vi (·, ·) : R
N × 2

[N ] → R is common

knowledge. (Recall that vi takes as input the bidder’s type and a subset of items so how the

bidder values different subsets of items depends on their private type.)

• The designer is given A and D̂z,i for each bidder i , and treats bidder i’s type as drawn from

D̂z,i , i.e. in the latent space [0, 1]k . With respect to such “latent types,” there is an induced

valuation function. In particular, for each bidder i , we use vAi : Rk × 2
[N ] → R to denote the

valuation function defined as follows vAi (zi , S) := vi (Azi , S), where zi ∈ R
k
.

• With the above as setup, we assume that the designer designs a mechanism M̂ that is BIC

and IR w.r.t. D̂z =
>m

i=1 D̂z,i and valuation functions {vAi (·, ·)}i ∈[m].

(III) The New Component: We consider the regime where N ≫ k , and our goal is to combine the

Machine Learning component with the Mechanism Design component to produce a mechanism

which generates revenue comparable to Rev(M̂, D̂z ) when used for bidders whose types are drawn

from D =
>m

i=1 Di . There are two challenges: (i) M̂ takes as input the latent representation of a

bidder’s type under D̂z , however underD a bidder is simply ignorant about any latent representation

of their type so they cannot be asked about it; (ii) M̂ ’s revenue is evaluated with respect to D̂z and

valuation functions {vAi (·, ·)}i ∈[m] and our goal is to obtain a mechanism whose revenue is similar

under D and valuation functions {vi (·, ·)}i ∈[m]. We show how to use a communication efficient

query protocol together with a robustification procedure to combine the Machine Learning and

Mechanism Design components.

To state our results, we first need to formally define query protocols and some of their properties.

Definition 3 ((ε,δ )-qery protocol). Let Q be a query protocol, i.e., some communication

protocol that exchanges messages with a bidder over possibly several rounds and outputs a vector in
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Rk . We say that a bidder interacts with the query protocol truthfully, if whenever the protocol asks

the bidder to evaluate some function on their type the bidder evaluates the function and returns the

result truthfully. We use Q(t) ∈ Rk to denote the output of Q when interacting with a truthful bidder

whose type is t ∈ RN . Q is called a (ε,δ )-query protocol, if for any t ∈ RN and z ∈ Rk satisfying

∥t −Az∥∞ ≤ ε , we have that ∥z − Q(t)∥∞ ≤ δ .

We also need the notion of Lipschitz valuations to formally state our result.

Definition 4 (Lipschitz Valuations). v(·, ·) : RN × 2
[N ] → R is a L-Lipschitz valuation, if for

any two types t , t ′ ∈ RN and any bundle S ⊆ [N ], |v(t , S) −v(t ′, S)| ≤ L ∥t − t ′∥∞.

This includes familiar settings, for example if the bidder is c-demand, the Lipschitz constant L = c .2

We are now ready to state our first main result.

Theorem 1. Let D =
>m

i=1 Di be the bidders’ type distributions and vi : R
N × 2

[N ] → R be a

L-Lipschitz valuation for each bidder i ∈ [m]. Also, let A ∈ RN×k
be a design matrix and D̂z,i be a

distribution over Rk for each i ∈ [m].

Suppose we are given query access to a mechanism M̂ that is BIC and IR w.r.t. D̂z =
>m

i=1 D̂z,i and

valuations {vAi }i ∈[m] (as defined in the second bullet of the Mechanism Design component above), and

there exists ε1 > 0 such that dP (Di ,A ◦ D̂z,i ) ≤ ε1 for all i ∈ [m]. Given any (ε1, ε)-query protocol

with ε ≥ ε1, we can construct mechanismM using only query access to M̂ and obliviously with respect

to D, such that for any possible D that satisfies the above conditions of Prokhorov distance closeness

the following hold:

(1) M only interacts with every bidder using Q once;

(2) M is (κ, ε1)-BIC w.r.t. D and IR, where κ = O
(
Lε1 + ∥A∥∞ Lmε + ∥A∥∞ L

√
mε

)
;

(3) The expected revenue ofM is at least Rev(M̂, D̂z ) −O (mκ) .

Remark 3. The mechanism M will be an indirect mechanism. We are slightly imprecise here to

call the mechanism (κ, ε1)-BIC. Formally what we mean is that interacting with Q truthfully is a

(κ, ε1)-weak approximate Bayes Nash equilibrium. We compute the expected revenue assuming all

bidders interacting with Q truthfully. As we discussed in Remark 1, with an additional additive

∥A∥∞ Lm2ε1 loss in revenue, we can assume that only the (1 − δ )-fraction of types of each bidder who

have no more than ε incentive to deviate from the Bayes Nash strategies interact with Q truthfully

while the remaining δ fraction uses arbitrary strategies.

Why isn’t [7] sufficient? One may be tempted to prove Theorem 1 using [7]. However, there

are two subtle issues with this approach: (i) The violation of the incentive compatibility constraints

and the revenue loss of the robustification process in [7] depend linearly in N , rather than in ∥A∥∞
as in Theorem 1. Note that ∥A∥∞ = maxi ∈[N ]

∑k
j=1 |Ai j |, which only depends on k and the largest

value an archetype can have for a single item and thus could be significantly smaller than N . (ii)

The robustification process involves sampling from the conditional distribution of A ◦ D̂z,i on an

N -dimensional cube, which is equivalent to sampling from the conditional distribution of D̂z,i on a

set S whose image after the linear transformation A is the N -dimensional cube. However, S may be

difficult to sample from if A is not a well-conditioned.

2
A bidder is c-demand if for any set S of items, the bidder picks their favorite bundle with size no more than c in S
evaluating the value of each such bundle additively, with values as determined by the bidder’s type t . Formally, v(t, S ) =
maxB⊆S, |B |≤c

∑
j∈B tj .
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In the following lemma, we refine the robustification result in [7] (Theorem 3 in that paper) and

show that given an approximate distribution F̂ in the latent space and a BIC and IR mechanism

M̂ w.r.t. F̂ , we can robustify M̂ with negligible revenue loss so that it is an approximately BIC and

exactly IR mechanism w.r.t. F for any distribution F that is within the ε-Prokhorov ball around F̂ .
Importantly, we exploit the effective dimension of the matrix factorization model to replace the

dependence on N with ∥A∥∞ in both the violation of the incentive compatibility constraints and

the revenue loss. Additionally, we only need to be able to sample from the conditional distribution

of D̂z,i on a k-dimensional cube. We postpone the proof of Lemma 2 to the Appendix A.

Lemma 2. Let A ∈ RN×k
be the design matrix. Suppose we are given a collection of distributions

over latent types {F̂z,i }i ∈[m], where the support of each F̂z,i lies in [0, 1]
k
, and a BIC and IR mechanism

M̂ w.r.t. F̂ =
>m

i=1 F̂z,i and valuations {vAi }i ∈[m], where each vi is an L-Lipschitz valuation. Let

F =
>m

i=1 Fz,i be any distribution such that dP (Fz,i , F̂z,i ) ≤ ε for all i ∈ [m]. Given access to a

sampling algorithm Si for each i ∈ [m], where Si (x ,δ ) draws a sample from the conditional

distribution of F̂z,i on the k-dimensional cube

>
j ∈[k ][x j ,x j + δ ), we can construct a randomized

mechanism M̃ using only query access to M̂ and obliviously with respect to F , such that for any F
satisfying the above conditions of Prokhorov distance closeness the following hold:

(1) M isκ-BIC and IRw.r.t. F and valuations {vAi }i ∈[m], whereκ = O
(
∥A∥∞ Lmε + ∥A∥∞ L

(
δ + mε

δ

) )
;

(2) The expected revenue of M̃ is Rev

(
M̃, F

)
≥ Rev(M̂, F̂ ) −O (mκ) .

Equipped with Lemma 2, we proceed to prove Theorem 1.

Proof of Theorem 1: Consider the following mechanism:

ALGORITHM 1: Query-based Indirect MechanismM

1: Construct mechanism M̃ using Lemma 2 by choosing F̂z,i to be D̂z,i for each i ∈ [m] and δ to be

√
mε .

2: Query each agent i using Q. Let Q(bi ) be the output after interacting with bidder i . (For any possible

output produced by Q, there exists a type b ∈ RN , so this is w.l.o.g..)

3: Execute mechanism M̃ on bid profile (Q(b1), . . . ,Q(bm )).

Let ti be bidder i’s type and zi be a random variable distributed according to D̂z,i . Since

dP (Di , D̂i ) ≤ ε1, Lemma 1 guarantees a coupling between ti and Azi such that their ℓ∞ distance

is more than ε1 with probability no more than ε1. As Q is a (ε1, ε)-query protocol, when ti and
Azi are not ε1 away, we have ∥Q(ti ) − zi ∥∞ ≤ ε . Hence, there exists a coupling between Q(ti ) and
zi so that their ℓ∞ distance is more than ε with probability no more than ε (recall ε1 ≤ ε). If we

choose Fz,i to be the distribution of Q(ti ), F̂z,i to be D̂z,i , and δ to be

√
mε , Lemma 2 states that M̃

is a O
(
∥A∥∞ Lmε + ∥A∥∞ L

√
mε

)
-BIC mechanism if bidder i has valuation vAi (·) and type Q(ti ).

Consider two cases: (a) When ∥ti −Azi ∥∞ ≤ ε1, then ∥ti −AQ(ti )∥∞ ≤ ε1 + ∥A∥∞ ε . Since vi (·) is
L-Lipschitz, deviating from interacting with Q truthfully can increase the expected utility by at

most O
(
Lε1 + ∥A∥∞ Lmε + ∥A∥∞ L

√
mε

)
. (b) When ∥ti −Azi ∥∞ > ε1, the bidder may substan-

tially improve their expected utility by deviating. Luckily, such case happens with probability no

more than ε1. ✷

In Theorem 2, we show how to obtain (ε,δ )-queries under various settings. We further assume

that the bidders’ valuations are all constrained-additive.
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Definition 5 (Constrained-Additive valuation). A valuation function v : RN × 2
[N ] → R is

constrained additive if v(t , S) = maxT ∈I∩2S
∑

j ∈T (µ j + tj ), where I is a downward-closed set system,

and µ = (µ1, . . . , µN ) is a fixed vector.
3
For example, unit-demand valuation is when I includes all

subsets with size no more than 1. If all elements of I have size no more than L, thenv is a L-Lipschitz

valuation.

Theorem 2. Let all bidders’ valuations be constrained-additive. We consider queries of the form:

eTj t
?

≥ p, where ej is the j-th standard unit vector in RN . The query simply asks whether the bidder

is willing to pay at least p + µ j for winning item j. The bidder provides a Yes/No answer. We obtain

communicationally efficient protocols in the following settings:

• Deterministic Structure: If AT can be expressed as [CTHT ]ΠN , where ΠN ∈ RN is a permu-

tation matrix, H is an arbitrary (N − k) × k matrix, andC ∈ Rk×k is diagonally dominant both

by rows and by columns. This is a relaxation of the well-known separability assumption by

Donoho and Stodden [26], that is,AT can be expressed as [IkH
T ]ΠN , where Ik is thek-dimensional

identity matrix. Let α = mini ∈[k]
(
|Cii | −

∑
j,i |Ci j |

)
and β = minj ∈[k ]

(
|Cj j | −

∑
i,j |Ci j |

)
. We

have a

(
ε,

4·maxj∈[k ]Cj j
α β · ε

)
-query protocol using O

(
k · log

(
∥A∥∞
ε

))
queries for any ε > 0.

• Ex-ante Analysis: IfA is generated from a distribution, where each archetype is an independent

copy of a N -dimensional random vector θ .
– Multivariate Gaussian Distributions: θ is distributed according to a multivariate Gauss-

ian distribution N(0, Σ). If there exists a subset S ⊆ [N ] such that
Tr(ΣS )
ρ(ΣS )

> 64k , where

ΣS = E[θSθ
T
S ] is the covariance matrix for items in S and ρ(ΣS ) is the largest eigenvalue

of ΣS ,
4
then with probability at least 1 − 2 exp

(
−

Tr(ΣS )
16·ρ(ΣS )

)
, we have a

(
ε,

64

√
|S |k

√
Tr(ΣS )

· ε

)
-query

protocol using O
(
|S | · log

(
∥A ∥∞
ε

))
queries for any ε > 0. Note that when the entries of θ are

i.i.d., any S with size at least 64k satisfies the condition.

– Bounded Distributions with Weak Dependence: Let θi be supported on [−c, c] and has

mean 0 for each i ∈ [N ]. If there exists a subset S ⊆ [N ] such that ∥Inf(θS )∥2 < 1, and∑
i ∈S v

2

i >
16c2k

√
|S |

1−∥Inf(θS ) ∥2
, where v2

i := Var[θi ], then with probability at least

1 − 2 exp

(
−

(1−∥Inf(θS ) ∥2)·(
∑
i∈S v2

i )
2

64c4k |S |

)
, we have a

(
ε,

64

√
|S |k

√∑
i∈S v2

i

· ε

)
-query protocol using

O
(
|S | · log

(
∥A∥∞
ε

))
queries for any ε > 0. Note that when the entries of θ are independent,

∥Inf(θS )∥2 = 0 for any set S . If each θi has variance Ω(c
2), then any set with size at least αk2

suffices for some absolute constant α .

Remark 4. In the ex-ante analysis, the success probabilities depend on the parameters of the

distributions, but note that they are both at least 1 − 2 exp(−4k).

Before we prove Theorem 2, we combine it with Theorem 1 to derive results for a few concrete

settings.

Proposition 1. Under the same setting as in Theorem 1 with the extra assumption that every

valuation vi is constrained-additive, we can construct mechanismM using only query access to the

3
One can interpret µ as the common based values for the items that are shared among all types.

4θS is the |S |-dimensional vector that contains all θi with i ∈ S .
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given mechanism M̂ and oblivious to the true type distribution D, such that for any possible D,M is

(η, ε1)-BIC and IR, where η = O
(
Lε1 + ∥A∥∞ Lmf (ε1) + ∥A∥∞ L

√
mf (ε1)

)
, and has revenue at least

Rev(M̂, D̂z )−O
(
∥A∥∞ Lm2 f (ε1) + ∥A∥∞ Lm3/2 f (ε1)

1/2
)
. Recall that ε1 satisfiesdP (Di ,A◦D̂z,i ) ≤ ε1

for all i ∈ [m]. We compute the function f (·) and the number of queries for the following three concrete

settings (one for each of the three assumptions in Theorem 2).

(1) Deterministic Structure: Separability. If the design matrix A satisfies the separability
assumption by Donoho and Stodden [26], that is, AT can be expressed as [IkH

T ]ΠN , where

ΠN ∈ RN is a permutation matrix, f (ε1) = 4ε1 for all ε > 0. The number of queries each bidder

needs to answer is O
(
k · log

(
∥A∥∞
ε1

))
.

(2) Multivariate Gaussian Distributions: Well-Conditioned Covariance Matrix. Let A be

generated from a distribution, where each archetype is an independent draw from aN -dimensional

normal distribution N(0, Σ). Let κ(Σ) be the condition number of Σ.5 For any set S with size

64κ(Σ)k , if we query each bidder about items in S , with probability at least 1 − 2 exp(−4k),

f (ε1) = O

(
k
√
κ(Σ)

√
Tr(ΣS )

· ε1

)
, and each bidder needs to answer O

(
κ(Σ)k · log

(
∥A∥∞
ε1

))
queries.

(3) Weak Dependence: Sufficient Variance per Item. Let A be generated from a distribution,

where each archetype is an independent copy of an N -dimensional random vector θ . As-
suming (i) ∥Inf(θ )∥

2
< 1, (ii) θi lies in [−c, c], and (iii) Var[θi ] ≥ a2 for each i ∈ [N ],

then for any set S with size
256c4k2

a4(1−∥I N F (θ )∥
2
)2
, if we query each bidder about items in S , with

probability at least 1 − 2 exp(−4k), f (ε1) = O
(√

k
a · ε1

)
and each bidder needs to answer

O
(

c4k2

a4(1−∥I N F (θ ) ∥
2
)2
· log

(
∥A ∥∞
ε1

))
queries.

6

Proof. The results in the first and last setting follows directly from Theorem 2. For the second

setting, notice that by the eigenvalue interlacing theorem, κ(ΣS ) ≤ κ(Σ), as ΣS is a principal

submatrix of Σ. Therefore, Tr(ΣS )
ρ(ΣS )

≥
|S |

κ(ΣS )
≥ 64k . Now, the result follows from Theorem 2. □

Proof of Theorem 2: Instead of directly studying the query complexity under our query model. We

first consider the query complexity under a seemingly stronger query model, where we directly

query the bidder about their value of eTj t , and their answer will be within eTj t ± η for some η > 0.

We refer to this type of queries as noisy value queries. Since for each item j, |eTj Az | ≤ ∥A∥∞ for

all z ∈ [0, 1]k and we only care about types in RN that are close to some Az, we can use our

queries to perform binary search on p to simulate noisy value queries. In particular, we only need

log ∥A∥∞ + log 1/η + log 1/ε many queries to simulate one noisy value queries. From now on, the

plan is to first investigate the query complexity for noisy value queries, then convert the result to

query complexity in the original model.

We first fix the notation. Let ℓ be the number of noisy value queries, and Q ∈ Rℓ×N be the

query matrix, where, each row of Q is a standard unit vector. We use ŷ ∈ Rℓ to denote the bidder’s

answers to the queries and y ∈ Rℓ to true answers to the queries. Note that ∥ŷ − y∥∞ ≤ η. Given ŷ,
we solve the following least squares problem: minz∈Rk ∥QAz − ŷ∥2

2
.

5Σ is well-conditioned if κ(Σ) is small. When Σ = IN , κ(Σ) = 1.

6
Clearly, we can weaken condition (i),(ii) and (iii). The result still holds if we can find a set S , so that for vector θS , condition
(i), (ii), and (iii) hold, and |S | is at least 256c4k2

a4(1−∥I N F (θS )∥2)
2
.
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The problem has a closed form solution: ẑ =
(
ATQTQA

)−1
ATQT ŷ. Let B := QA, and z(t) ∈ Rk

be a vector that satisfies ∥t −Az(t)∥∞ ≤ ε . We are interested in upper bounding ∥ẑ − z(t)∥∞. Note
that

ẑ − z(t) =(BTB)−1BT (ŷ − Bz(t))

=(BTB)−1BT ((ŷ − y) + (y − Bz(t)))

=(BTB)−1BT (ŷ − y) + (BTB)−1BTQ(t −Az(t))

Since the rows of Q are all standard unit vectors, ∥Q ∥∞ = 1.

∥ẑ − z(t)∥∞ ≤


(BTB)−1BT (ŷ − y)




∞
+



(BTB)−1BTQ(t −Az(t))



∞

≤


(BTB)−1



∞



BT 


∞

(
η + ∥Q(t −Az(t))∥∞

)
≤



(BTB)−1


∞



BT 


∞
(η + ε).

Next, we bound



(BTB)−1


∞



BT 


∞
under the different assumptions.

Deterministic Structure: We choose ℓ = k and Q so that QA = B = C . Since C is diagonally

dominant, C is non-singular, and (CTC)−1 = C−1(CT )−1.

Lemma 3 (Adapted from Theorem 1 and Corollary 1 of [45]). If a matrix U ∈ Rn×n is

diagonally dominant both by rows and by columns, and α = mini ∈[n]
(
|Uii | −

∑
j,i |Ui j |

)
and β =

minj ∈[n]
(
|Uj j | −

∑
i,j |Ui j |

)
, then



U −1



∞
≤ 1/α and



(UT )−1



∞
≤ 1/β .

By Lemma 3,



(CTC)−1



∞



CT



∞
≤

∥CT ∥∞
α β . Note that



CT



∞
= maxj ∈[k ]

∑
i ∈[k ] |Ci j | ≤ 2maxj ∈[k ]Cj j .

The last inequality is because C is diagonally dominant by columns. To sum up, if we choose Q so

that QA = C ,

∥ẑ − z(t)∥∞ ≤
(ε + η) ·



CT



∞

αβ
≤

2(ε + η) ·maxj ∈[k ]Cj j

αβ
.

Ex-ante Analysis: Since



(BTB)−1


∞
≤
√
k


(BTB)−1



2
and



BT 


∞
≤
√
ℓ ∥B∥

2
,

∥ẑ − z(t)∥∞ ≤

√
ℓk · σmax (B)

σmin(B)2
· (η + ε),

where σmax (B) (or σmin(B)) is B’s largest (or smallest) singular value.

Multivariate Gaussian distribution: When θ is distributed according to a multivariate Gaussian

distribution, we choose ℓ = |S | and Q so that each row corresponding to an ej with j ∈ S . Now, B is

a ℓ ×k random matrix where each column is an independent copy of θS . We use Lemma 4 to bound

B’s largest singular value σmax (B) and smallest singular value σmin(B). The proof of Lemma 4 is

postponed to Section 4.1.

Lemma 4. [Concentration of Singular Values under multivariate Gaussian distributions]

Let U = [X (1), . . . ,X (n)] be a m × n random matrix, where each column of U is an independent

copy of a m-dimensional random vector X distributed according to a multivariate Gaussian dis-

tribution N(0,ΛTDΛ). In particular, Λ ∈ Rm×m
is an orthonormal matrix, and D ∈ Rm×m

is a

diagonal matrix. We have σmax (U ) ≤ 2

√
Tr(D) and σmin(U ) ≥

√
Tr(D)

4
, with probability at least

1 − 2 exp

(
−

Tr(D)

8·dmax
+ 4n

)
, where dmax is the largest entry in D.
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Since
Tr(ΣS )
ρ(ΣS )

> 64k , by Lemma 4, σmax (B) ≤ 2

√
Tr(ΣS ) and σmin(B) ≥

√
Tr(ΣS )/4with probability

at least 1−2 exp

(
−

Tr(ΣS )
16·ρ(ΣS )

)
≥ 1−2 exp(−4k). Hence, ∥ẑ − z(t)∥∞ ≤

32

√
|S |k

√
Tr(ΣS )

· (η+ε)with probability

at least 1 − 2 exp

(
−

Tr(ΣS )
16·ρ(ΣS )

)
.

Weakly Dependent Distributions: When the coordinates ofθS areweakly dependent, i.e., ∥Inf(θS )∥2 <
1, we choose ℓ = |S | and Q so that each row corresponding to an ej with j ∈ S . Now, B is a ℓ × k
random matrix where each column is an independent copy of θS . We use Lemma 5 to bound

B’s largest singular value σmax (B) and smallest singular value σmin(B). The proof of Lemma 5 is

postponed to Section 4.2.

Lemma 5. [Concentration of Singular Values under Weak Dependence]

Let U = [X (1), . . . ,X (n)] be a m × n random matrix, where each column of U is an independent

copy of a m-dimensional random vector X . We assume that the coordinates of X are weakly de-

pendent, i.e., ∥Inf(X )∥
2
< 1, and each coordinate of X lies in [−c, c] and has mean 0 and vari-

ance v2

i . Let v =
√∑

i ∈[m]v
2

i . We have σmax (U ) ≤ 2v and σmin(U ) ≥ v
4
, with probability at least

1 − 2 exp

(
−

(1−∥Inf(X ) ∥
2
)v4

32c4nm + 4n
)
.

Since

∑
i ∈S v

2

i >
16c2k

√
|S |

1−∥Inf(θS ) ∥2
, by Lemma 5, we have σmax (B) ≤ 2

√∑
i ∈S v

2

i and σmin(B) ≥√∑
i ∈S v

2

i /4with probability at least 1−2 exp

(
−

(1−∥Inf(θS )∥2)·(
∑
i∈S v2

i )
2

64c4k |S |

)
≥ 1−2 exp(−4k). Therefore,

∥ẑ − z(t)∥∞ ≤
32

√
|S |k

√∑
i∈S v2

i

· (η + ε) with probability at least 1 − 2 exp

(
−

(1−∥Inf(θS )∥2)·(
∑
i∈S v2

i )
2

64c4k |S |

)
.

Query Complexity in Different Models: We set η to be ε .

• Deterministic structure: we have a
(
ε,

4·maxj∈[k ]Cj j
α β · ε

)
-query protocol using k(log ∥A∥∞ +

2 log(1/ε)) queries.

• Multivariate Gaussian distributions: with probability at least 1 − 2 exp

(
−

Tr(ΣS )
16·ρ(ΣS )

)
(no

less than 1 − 2 exp(−4k) by our choice of S), we have a

(
ε,

64

√
|S |k

√
Tr(ΣS )

· ε

)
-query protocol using

|S |(log ∥A∥∞ + 2 log(1/ε)) queries.

• Weakly dependent distributions:with probability at least 1−2 exp
(
−

(1−∥Inf(θS ) ∥2)·(
∑
i∈S v2

i )
2

64c4k |S |

)
(no less than 1 − 2 exp(−4k) by our choice of S), we have a

(
ε,

64

√
|S |k

√∑
i∈S v2

i

· ε

)
-query protocol

using |S |(log ∥A∥∞ + 2 log(1/ε)) queries.

✷

4 BOUNDING THE LARGEST AND SMALLEST SINGULAR VALUES
We prove both Lemma 4 and 5 using an ε-net argument. We first state a lemma that says that for

any matrixM , if we can bound the maximum value of ∥Mx ∥
2
over all points x in the ε-net, then

we also bound the largest and smallest singular values ofM .
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Lemma 6 (Adapted from [41]). For any ε < 1, there exists an ε-netK ⊆ Sn−1, i.e., ∀x ∈ Sn−1 ∃y ∈

K ∥x − y∥
2
< ε , such that |K | ≤ (3/ε)n . For any matrix M ∈ Rm×n

, let a = maxx ∈K ∥Mx ∥
2
and

b =minx ∈K ∥Mx ∥
2
, then σmax (M) ≤ a

1−ε and σmin(M) ≥ b − ε
1−ε · a.

Proof of Lemma 6: Let x∗ ∈ Sn−1 be a vector that satisfies ∥Mx∗∥
2
= σmax (M). Let x be a vector in

K such that ∥x − x∗∥
2
≤ ε . Then σmax (M) = ∥Mx∗∥

2
≤ ∥Mx ∥

2
+ ∥M(x − x∗)∥

2
≤ a + εσmax (M),

which implies that σmax (M) ≤ a
1−ε . On the other hand, for any y ∈ Sn−1, let y ′ ∈ K satisfies

∥y − y ′∥
2
≤ ε , then ∥My∥

2
≥ ∥My ′∥

2
− ∥M(y − y ′)∥

2
≥ b − ε · σmax (M) ≥ b − ε

1−ε · a. ✷

4.1 Multivariate Gaussian Distributions
In this section, we prove the case where the columns of the random matrix are drawn from a

multivariate Gaussian distribution. The key is again to prove that for every unit-vector, ∥Ux ∥
2
lies

between [c1 · E[∥Ux ∥
2
], c2 · E[∥Ux ∥

2
]] with high probability for some absolute constant c1 and c2

(Lemma 7). Lemma 4 follows from the combination of Lemma 7, 6, and the union bound.

Proof of Lemma 4: Let Y (1), . . . ,Y (n)
be n i.i.d. samples from the distribution N(0, Im), and V :=

D1/2[Y (1), . . . ,Y (s)].

Proposition 2. N(0, Σ)
d
= ΛT ◦ N(0,D) andU

d
= ΛTV .

Proof. E[ΛTD1/2Y (i)(Y (i))TD1/2Λ] = ΛTD1/2E[Y (i)(Y (i))T ]D1/2Λ = ΛTDΛ = Σ. □

Since Λ is an orthonormal matrix, σmax (U ) = σmax (V ) and σmin(U ) = σmin(V ). We will proceed

to show that both σmax (V ) and σmax (V ) concentrate around their means. We do so via an ε-net
argument.

Lemma 7. For any fix x ∈ Sn−1, E[∥Vx ∥2
2
] = Tr(D). Moreover,

Pr

[
∥Vx ∥2

2
≤

Tr(D)

4

]
≤ exp

(
−

Tr(D)

8 · dmax

)
,

and

Pr

[
∥Vx ∥2

2
≥ 2Tr(D)

]
≤ exp

(
−

Tr(D)

4 · dmax

)
.

Proof of Lemma 7: Let д1, . . . ,дn to be n i.i.d. samples from N(0, 1). It is not hard to see that

Vx
d
= (

√
d1д1, . . . ,

√
dnдn)

T
, so we need to prove that

∑
i ∈[n] diд

2

i concentrates around its mean

Tr(D).

Pr


∑
i ∈[n]

diд
2

i ≤ Tr(D) − t


= Pr

exp ©­«λ · (Tr(D) −
∑
i ∈[n]

diд
2

i )
ª®¬ ≥ exp(λt)

 (λ > 0 and will be specified later)

≤
exp(λTr(D))E

[
exp

(
−λ ·

∑
i ∈[n] diд

2

i
) ]

exp(λt)
=

exp(λTr(D))
∏

i ∈[n] E
[
exp

(
−λ · diд

2

i
) ]

exp(λt)

Since д2i distributes according to a chi-square distribution, its moment generating function

E
[
exp

(
−λ · diд

2

i
) ]
=

1

√
1 + 2λdi

.
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If we choose λ to be no more than 1/2dmax , since for any a ∈ [0, 1], 1 + 2a ≥ ea , we have that

1

√
1 + 2λdi

≤ exp(−λdi/2).

Putting everything together, we have that

Pr


∑
i ∈[n]

diд
2

i ≤ Tr(D) − t

 ≤ exp (−λ · (t − Tr(D)/2)) .

When we choose λ = 1/2dmax and t = 3/4 ·Tr(D), the RHS of the inequality becomes exp

(
−

Tr(D)

8·dmax

)
.

Next, we upper bound Pr

[∑
i ∈[n] diд

2

i ≥ Tr(D) + t
]
via a similar approach.

Pr


∑
i ∈[n]

diд
2

i ≥ Tr(D) + t


= Pr

exp ©­«λ · (
∑
i ∈[n]

diд
2

i − Tr(D))
ª®¬ ≥ exp(λt)

 (λ > 0 and will be specified later)

≤

∏
i ∈[n] E

[
exp

(
λ · (diд

2

i − di )
) ]

exp(λt)

Note that E
[
exp

(
λ · (diд

2

i − di )
) ]
=

exp(−λdi )√
1−2λdi

.

Proposition 3. For any x ∈ [0, 1/4],
exp(−x )
√
1−2x

≤
√
1 + 2x .

Proof of Proposition 3: We first state a few inequalities that are not hard to verify. First, for all x > 0,

e−x ≤ 1−x +x2. Second,
√
1 − 4x2 ≥ 1− 2x2 − 8x4 if x ∈ [0, 1/2). Finally, 1− 2x2 − 8x4 ≥ 1−x +x2

if x ∈ [0, 1/4]. Combining all three inequalities, we have that

e−x ≤
√
1 − 4x2 =

√
1 − 2x

√
1 + 2x , for all x ∈ [0, 1/4].

✷

If we choose λ to be no more than 1/4dmax , then by Proposition 3,
exp(−λdi )√
1−2λdi

≤
√
1 + 2λdi , which

is upper bounded by exp(λdi ). Putting everything together, we have that

Pr


∑
i ∈[n]

diд
2

i ≥ Tr(D) + t

 ≤ exp (−λ(t − Tr(D))) .

When we choose λ = 1/4dmax and t = 2Tr(D), the RHS of the inequality becomes exp

(
−

Tr(D)

4·dmax

)
.

✷

Next, we only consider when the good event happens, that is, for all points x in the ε-net,

∥Vx ∥
2
∈

[√
Tr(D)

2
,
√
2Tr(D)

]
. Combining Lemma 7 and the union bound, we know that the good

event happens with probability at least 1 − 2 exp

(
−

Tr(D)

8·dmax
+ ln(3/ε) · n

)
. According to Lemma 6,

σmax (V ) ≤

√
2Tr(D)

1−ε and σmin(V ) ≥

√
Tr(D)

2
− ε

1−ε ·
√
2Tr(D). If we choose ε = 1/7, then σmax (V ) ≤

2

√
Tr(D) and σmin(V ) ≥

√
Tr(D)

4
. ✷
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4.2 Bounded Distributions with Weak Dependence
In this section, we prove the case where the columns of the random matrix are drawn from a

m-dimensional distribution that satisfies weak dependence. The overall plan is similar to the one

for multivariate Gaussian distributions. The key is again to prove that for every unit-vector, ∥Ux ∥
2

lies between [c1 · E[∥Ux ∥
2
], c2 · E[∥Ux ∥

2
]] with high probability for some absolute constant c1 and

c2 (Lemma 8). Lemma 5 then follows from the combination of Lemma 8, 6, and the union bound.

Proof of Lemma 5:

We first show that for each fix x ∈ Sn−1, ∥Ux ∥
2
is concentrates around its mean. Then, we apply

Lemma 6 to bound σmax (U ) and σmin(U ).

Lemma 8. Let U = [X (1), . . . ,X (n)] be a m × n random matrix, where each column of U is an

independent copy of a m-dimensional random vector X . We assume that the coordinates of X are

weakly dependent, i.e., ∥Inf(X )∥
2
< 1, and each coordinate of X lies in [−c, c] and has mean 0 and

variance v2

i . Let v =
√∑

i ∈[m]v
2

i . For any fix x ∈ Sn−1, E[∥Ux ∥2
2
] = v2

and

Pr

[
| ∥Ux ∥2

2
−v2 | > t

]
≤ 2 exp

(
−
(1 − ∥Inf(X )∥

2
) t2

16c4nm

)
Proof of Lemma 8:We first expand ∥Ux ∥2

2
.

∥Ux ∥2
2
=

∑
i ∈[m]

©­«
∑
j ∈[n]

ui jx j
ª®¬
2

=
∑
i ∈[m]

©­«
∑
j ∈[n]

u2i jx
2

j + 2
∑
k,j

ui juikx jxk
ª®¬ .

Therefore, E
[
∥Ux ∥2

2

]
=

∑
i ∈[m]v

2

i = v
2
. To prove that ∥Ux ∥2

2
concentrates, we first need a result

by Chatterjee [16].

Lemma 9 (Adapted from Theorem 4.3 in [16]). Let X be a d-dimensional random vector. Suppose

function f satisfies the following generalized Lipschitz condition:

| f (x) − f (y)| ≤
∑
i ∈[d ]

ci1[xi , yi ],

for any x and y in the support of X . If Inf(X ) < 1, we have

Pr [| f (X ) − E[f (X )]| ≥ t] ≤ 2 exp

(
−
(1 − ∥Inf(X )∥

2
) t2∑

i ∈[d ] c
2

i

)
.

The function we care about is ∥Ux ∥2
2
, where the variables are {ui j }i ∈[m], j ∈[n]. IfU andU ′

only

differs at the (i, j) entry, then

| ∥Ux ∥2
2
− ∥U ′x ∥2

2
|

=|u2i jx
2

j + 2
∑
k,j

ui juikx jxk − (u ′
i j )

2x2j − 2

∑
k,j

u ′
i juikx jxk |

≤c2x2j + 4c
2 |x j | |xk | ≤ 4c2 |x j |

©­«
∑
k ∈[n]

|xk |
ª®¬ ≤ 4c2

√
n |x j |

We denote 4c2
√
n |x j | by ci j . Clearly, for anyU andU ′

, | ∥Ux ∥2
2
− ∥U ′x ∥2

2
| ≤

∑
i, j ∈[d ] ci j1[ui j , u

′
i j ].

Also, notice that Inf(U ) = In ⊗ Inf(X ), and therefore ∥Inf(U )∥
2
= ∥Inf(X )∥

2
.
7
We apply Lemma 9

7⊗ denotes the Kronecker product of the two matrices.

 
Session 7B: Multi-Dimensional Mechanism Design ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

911



to ∥Ux ∥2
2
and derive the following inequality:

Pr

[
| ∥Ux ∥2

2
−v2 | > t

]
≤ 2 exp

(
−
(1 − ∥Inf(X )∥

2
) t2∑

i ∈[m], j ∈[n] c
2

i j

)
= 2 exp

(
−
(1 − ∥Inf(X )∥

2
) t2

16c4nm

)
.

✷

Next, we only consider when the good event happens, that is, for all points x in the ε-net,

∥Ux ∥
2
∈

[v
2
,
√
2v

]
. Combining Lemma 8 (setting t = 3/4v2

) and the union bound, we know that

the good event happens with probability at least 1−2 exp

(
−

(1−∥Inf(X )∥
2
)9v4

256c4nm + ln(3/ε) · n
)
. According

to Lemma 6, σmax (U ) ≤
√
2v

1−ε and σmin(U ) ≥ v
2
− ε

1−ε ·
√
2v . If we choose ε = 1/7, then σmax (U ) ≤ 2v

and σmin(U ) ≥ v
4
. ✷
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A MISSING PROOF OF LEMMA 2
Proof of Lemma 2: The proof essentially follows from the same analysis as Theorem 3 in [7]. We only

provide a sketch here. Since we are working with the matrix factorization model and can directly

exploit the low dimensionality of the latent representation, we manage to replace the dependence

on N with ∥A∥∞ in both the revenue loss and violation of the truthfulness constraints. Our proof
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relies on the idea of “simultaneously coupling” by Brustle et al. [7]. More specifically, it couples

F̂z,i with every distribution Fz,i in the ε-Prokhorov-ball around F̂z,i . If we round both F̂z,i and any

Fz,i to a random grid G with size δ , we can argue that the expected total variation distance (over

the randomness of the grid) between the two rounded distributions is O(ε + ε
δ ) (using Theorem

2 in [7]). Now consider the following mechanism: choose a random gridG, round the bids to the

random grid, apply the mechanismMG that we designed for the rounded distribution of

>
i F̂z,i .

More specifically, MG is the following mechanism: for each bid b, use Si (bi ,δ ) to sample a bid

b ′i and run M̂ on the bid profile (b ′
1
, . . . ,b ′m). Since the expected total variation distance (over the

randomness of the grid) between the two rounded distributions is O(ε + ε
δ ), we only need to argue

that when the given distribution and the true distribution are close in total variation distance, we

can robustify the mechanism designed for one distribution for the other distribution. This is a much

easier task, and we again use a similar argument in [7] to prove it. Combining everything, we can

show that the randomized mechanism we constructed is approximately-truthful and only loses

a negligible revenue compared to M̂ under any distribution that is within the ε-Prokhorov-ball
around the given distribution. ✷
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