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We study the problem of selling information to a data-buyer who faces a decision problem under uncertainty.
We consider the classic Bayesian decision-theoretic model pioneered by Blackwell [9, 10]. Initially, the data
buyer has only partial information about the payoff-relevant state of the world. A data seller offers additional
information about the state of the world. The information is revealed through signaling schemes, also referred
to as experiments. In the single-agent setting, any mechanism can be represented as a menu of experiments. A
recent paper by Bergemann et al. [8] present a complete characterization of the revenue-optimal mechanism in
a binary state and binary action environment. By contrast, no characterization is known for the case with more
actions. In this paper, we consider more general environments and study arguably the simplest mechanism,
which only sells the fully informative experiment. In the environment with binary state and m > 3 actions, we
provide an O(m)-approximation to the optimal revenue by selling only the fully informative experiment and
show that the approximation ratio is tight up to an absolute constant factor. An important corollary of our
lower bound is that the size of the optimal menu must grow at least linearly in the number of available actions,
so no universal upper bound exists for the size of the optimal menu in the general single-dimensional setting.
We also provide a sufficient condition under which selling only the fully informative experiment achieves the
optimal revenue.

For multi-dimensional environments, we prove that even in arguably the simplest matching utility en-
vironment with 3 states and 3 actions, the ratio between the optimal revenue and the revenue by selling
only the fully informative experiment can grow immediately to a polynomial of the number of agent types.
Nonetheless, if the distribution is uniform, we show that selling only the fully informative experiment is
indeed the optimal mechanism.
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1 INTRODUCTION

As large amounts of data become available and can be communicated more easily and processed
more effectively, information has come to play a central role for economic activity and welfare
in our age. In turn, markets for information have become more prominent and significant in
terms of trading volume. Bergemann and Bonatti [7] provide a recent introduction to markets for
information with a particular emphasis on data markets and data intermediation in e-commerce.

Information is a valuable commodity for any decision-makers under uncertainty. By acquiring
more information, the decision-maker can refine his initial estimates about the true state of the world
and consequently improve the expected utility of his decision. In many economically significant
situations, a decision-maker can acquire additional information from a seller who either already has
the relevant information or can generate the relevant information at little or no cost. Beyond digital
and financial markets, the value of information is particularly important for health economics
where it appears as the expected value of sample information, see [1] or more recently, [23] and
[21] with applications to COVID-19 testing. The value of additional information is also central in
the literature on A/B testing, see [3].

For the seller of information, the question is therefore how much information to sell and at
what price to sell it. A natural starting point is to make all the information available and sell the
information at a price that maximizes the revenue of the seller. The problem of selling information
at an optimal price is therefore closely related to the classic problem of the monopolist selling a
single unit of an object at an optimal price. Just as in the classic optimal monopoly problem, the
seller faces a trade-off in the choice of the price. A higher price generates a higher revenue for every
additional sale, but there might be few buyers who value the object higher than the price asked. A
lower price generates a larger volume of sales but with low marginal revenue. The optimal policy
finds the balance between the marginal revenue and the inframarginal revenue considerations. The
sale of complete information faces similar trade-offs. A high price for the complete information
will be acceptable for decision-makers with diffuse prior information, thus those who value the
additional information most, but may not be acceptable for those buyers who already have some
information.

We analyze these issues in the classic Bayesian decision-theoretic model pioneered by Black-
well [9, 10]. Here we interpret the decision-theoretic model as one where a data buyer faces a
decision problem under uncertainty. A data seller owns a database containing information about
a “state” variable that is relevant to the buyer’s decision. Initially, the data buyer has only partial
information about the state. This information is private to the data buyer and unknown to the data
seller. The precision of the buyer’s private information determines his willingness to pay for any
supplemental information. Thus, from the perspective of the data seller, there are many possible
types of data buyer.

A recent contribution by Bergemann et al. [8] analyzes the optimal selling policy with the tools of
mechanism design. Their analysis is mostly focused on the canonical decision-theoretic setting with
a binary state and a binary action space. In this setting, the type space is naturally one-dimensional
and given by the prior probability of one state, the probability of the other state being simply the
complementary probability.

As in [8], we investigate the revenue-maximizing information policy, i.e., how much information
the data seller should provide and how she should price access to the data. In order to screen the
heterogeneous data buyer types, the seller offers a menu of information products. In the present
context, these products are statistical experiments— signals that reveal information about the
payoff-relevant state. Only the information product itself is assumed to be contractible. By contrast,
payments cannot be made contingent on either the buyer’s action or the realized state and signal.
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Consequently, the value of an experiment to a buyer is determined by the buyer’s private belief
and can be computed independently of the price of the experiment. The seller’s problem is then to
design and price different versions of experiments, that is, different information products from the
same underlying database.

Indeed, Bergemann et al. [8] find that in the binary action and state setting it is often optimal
to simply sell the complete information to the buyers and identify the optimal monopoly price.
This is for example the case when the distribution of the prior beliefs, the types of the buyers, is
symmetric around the uniform prior. Yet, they find that sometimes it can be beneficial to offer two
information goods for sale, one that indeed offers complete information, but also an additional one
that offers only partial information. Thus, a menu of information goods sometimes dominates the
sale of a single object, namely the complete information.

Given the proximity of the problem of selling information to the problem of selling a divisible
good with a unit capacity, the superiority of a menu over a single choice may appear to be surprising.
After all, in the single good problem, Riley and Zeckhauser [35] have famously established that
selling the entire unit at an optimal price is always an optimal policy. When we consider the
problem of selling information, we find that the utility of the buyer is also linear in the posterior
probability, just as it is linear in the quantity in the aforementioned problem. Thus the emergence
of a menu rather than a single item appears puzzling. The difference is however that the utility of
the buyer is only piecewise linear. In particular, in the binary state binary action setting, it displays
exactly one kink in the interior of the prior probability. The kink emerges at an interior point of
the prior belief where the decision-maker is indifferent between the two actions that are at his
disposal. This particular prior indeed identifies the type of the decision-maker who has the highest
willingness-to-pay for complete information. Moving away from this point, the utility is then linear
in the prior probability. The kink is foremost an expression of the value of information for the
decision-maker. But following the utility descent away from the kink, the value of information is
decreasing linearly, and thus the seller faces not one, but two endpoints at which the participation
constraints of the buyer have to be satisfied.

Naturally, with complete information about binary states, there will be two actions, one for each
state which will lead to the highest utility of the decision-maker. Thus, we might expect that the
cardinality of the optimal menu remains at most binary when we allow the agents to have a larger
choice or action set but stay with binary state space that represents the uncertainty. In this paper
we pursue this question and find that the cardinality of the optimal menu increases at least linearly
with the number of available actions. Thus, selling information forces us to consider larger menus
even when the space of uncertainty remains binary, and thus the utility as a function of the one-
dimensional prior remains piecewise linear everywhere. Moreover, the cardinality of a set of optimal
actions will always remain at two. Thus, the nature of selling information is high-dimensional even
when the underlying state and ex-post optimal action space remains binary and thus small.

The main idea behind the revenue-maximizing mechanism for the information seller is akin to
offering “damaged goods” to low-value buyers. However, when selling information goods (see [38]),
product versioning allows for richer and more profitable distortions than with physical goods. This
is due to a peculiar property of information products: Because buyers value different dimensions
(i-e., information about specific state realizations), the buyers with the lowest willingness to pay
also have very specific preferences. For example, in the context of credit markets, very aggressive
lenders are interested in very negative information only, and are willing to grant a loan otherwise.
The seller can thus leverage the key insight that information is only valuable if it changes optimal
actions—to screen the buyer’s private information.
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1.1 Our Results and Techniques

We first study the environment when the state is binary, investigating the ratio between the optimal
revenue (denoted as OPT) and the revenue that can be attained with the sale of complete information
(denoted as FREV). [8] showed that in the environment with a binary state and a binary action space,
%g, < 2. What happens when there are more actions? Since there are only two states, the agent
has a single dimensional preference. Conventional wisdom from the monopoly pricing problem
suggests that the ratio should be no more than a fixed constant. Nonetheless, in the paper we show
that the ratio Sg} is ©(m), which is neither a fixed constant nor a function that scales with the
number of agent types. Here m is the number of actions.

Our first main result, Theorem 1, shows that the revenue obtainable with the sale of complete
information is only a fraction 1/Q(m) of the optimal revenue. Using Theorem 1 as a springboard,
our second main result, Theorem 2, shows that the cardinality of the optimal menu is at least Q(m).
The reason is that any menu with ¢ experiments can obtain no more than ¢ times the revenue
attained with the sale of complete information (Lemma 3). To prove Theorem 1, we explicitly
construct an environment with m actions, where selling the complete information yields low
revenue. However, characterizing the optimal menu appears to be challenging for this environment,

and even providing any incentive compatible mechanism with high revenue seems to be non-
trivial. We take an indirect approach by first constructing an approximately incentive compatible
mechanism that has a revenue at least Q(m) times larger than the revenue attained with the sale
of complete information, then converting the mechanism to a menu with negligible revenue loss.

In Theorem 3, we show that selling the complete information can always obtain at least a fraction
1/0(m) of the optimal revenue, matching the lower bound in Theorem 1 up to a constant factor.
This result is established by considering a relaxed problem for the optimal revenue maximization,
where we only keep a subset of the original incentive constraints. We show that the cardinality of
the optimal menu in the relaxed problem is always O(m), thus Theorem 3 follows from Lemma 3.
Note that we only show that the relaxed problem under which the optimal revenue can be obtained
with O(m) experiments. It remains an open question whether the cardinality of the optimal menu
in the original problem grows linearly in the number of available actions, or perhaps exceeds linear
growth in the feasible actions.

These results show that the optimal mechanism to sell information or data are likely high-
dimensional even when the underlying decision problem is low-dimensional. By tailoring the
information to different decision problems the seller can extract substantially more revenue from
the decision-maker as if he were to rely on a simple mechanism. More specifically, for any constant
¢ > 0 and any fixed finite menu, there exists a binary-state environment such that the revenue
attained by the menu is no more than a c-fraction of the optimal revenue (Corollary 1). Nonetheless,
we provide in Theorem 4 conditions under which it is indeed optimal to only sell the largest possible
amount of information, akin to the single unit monopoly problem. In Examples 1, 2, and 3 we apply
this condition to various parametrized classes of information problems.

Our results above provide a complete understanding of 1%1);/ in the binary-state environments.
What happens if there are more than two states? In fact, we show that the ratio becomes substantially
larger when the agent has a multi-dimensional preference. We consider arguably the simplest multi-
dimensional environment, where there are 3 states and 3 actions, and the buyer receives payoff 1 if
they match their action j with the state i (j = i) and receives payoff 0 otherwise. We refer to this as

the three state matching utility environment. We show in Theorem 5 that in this multi-dimensional

environment, the ratio % can scale polynomially with the number of agent types N. In particular,

OPT
FREvV

Q(N'7) experiments. The proof is adapted from the approach in [29], which was originally used in

= Q(NY7). With Lemma 3, the result also implies that the optimal menu contains at least
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the multi-item auction problem. Their approach does not directly apply to our problem due to both
the non-linearity of the buyer’s value function and the more demanding incentive compatibility
constraints in our setting. In the proof, we construct a sequence of types placed on a sequence of
concentric thin circular sectors. [29] placed all types in a sequence of complete circles. We place
the types in these carefully picked circular sectors, so that the constructed mechanism satisfies the
more demanding incentive compatibility constraints. Then we construct a discrete distribution on
those types, so that the ratio FO}%; E is large.

An alternative interpretation of the result is that: There does not exist a universal finite upper
OPT

bound on either the cardinality of the optimal menu or the ratio g that holds for all possible type
distributions. To complement this result, in Theorem 7, we show that in the same environment
- matching utility with 3 states/actions, selling the complete information is indeed optimal if
the distribution is uniform. To prove the result, we propose another relaxation of the problem
optimizing over the agent’s utility functions. We then construct a dual problem in the form of
optimal transportation [18, 36, 40]. To verify the optimality of selling complete information, we
construct a feasible dual that satisfies the complementary slackness conditions. Although Theorem 7
focuses on a special matching utility environment with 3 states, our relaxation provides a general
approach to certify the optimality of any specific menu.

The paper is organized as follows. In Section 2, we introduce the model and notations used in the

paper. In Section 3 we prove lower bounds for XL and size of the optimal menu in the binary-state

FREvV
case. In Section 4 we upper bound Sg}, matching the lower bound proved in the previous section.
Then we provide a sufficient condition under which selling complete information is optimal. In

Section 5 we consider the environment with n > 3 states. In Section 6 we conclude the paper.

1.2 Additional Related Work

Unlike selling a single unit of item, the monopolist pricing problem becomes much more involved in
multi-dimensional settings. Complete characterizations are known only in several special cases [18-
20, 24-27]. A recent line of work provides simple and approximately-optimal mechanisms [4, 11, 13-
15, 22, 28, 30, 41]. Our results (Theorem 1 and Theorem 3) provide matching upper and lower bounds
for the performance of selling the complete information, arguably the simplest mechanism for
selling information, in single-dimensional settings. In sharp contrast to the monopolist pricing
problem, our Theorem 2 indicates that the optimal solution for selling information is unlikely to be
simple even in single-dimensional settings.

Babaioff et al. [5] studies a problem that is related to ours. They consider a model where a seller
knows the state of the world w and sells the information to a buyer who has a private type. However,
there are two major differences between their model and ours. Firstly, our analysis considers the
direct sale of information. Here contracting takes place at the ex ante stage: The buyer purchases an
information structure (i.e., a Blackwell experiment), as opposed to paying for specific realizations
of the seller’s informative signals. By contrast, Babaioff et al. [5] studies a model of data lists
(i-e., pricing conditional on signal realizations). Secondly, their paper considers a different model
of uncertainty and information. In particular, the ex-post payoff function of the buyer depends
on two random variables, namely w, which is the state of the world about which the seller has
information, and 6 which is payoff type that the buyer has information about. This two-dimensional
representation of the uncertainty differs from our setting. In our setting, the payoff function of
the buyer depends only on the state of the world, and both the buyer and the seller have some,
partial or complete, information about the state. In our view this is the canonical model of decision
making under uncertainty where the buyer seeks to complement (or augment) his information by
additional information from the seller. Finally, our model assumes that the buyer’s private type
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0 is his private prior belief about the underlying state w. Babaioff et al. [5] shows that when the
correlation between 6 and o is complex enough, the optimal mechanism can extract all surplus, as
in Crémer and McLean [17]. However, their result does not seem to apply to the specific type of
correlation between w and 8 in our model. To sum up, the models of [5] and ours are not nested,
and neither is a special case of the other. Chen et al. [16] study a similar setting to Babaioff et
al. [5] where the buyer has budget constraints. Bergemann and Bonatti [7] consider the trade of
information bits (“cookies”) that are an input to a decision problem.

Moreover, there are some recent works studying the revenue-optimal mechanism in different
information-selling models. Liu et al. [32] characterizes the revenue-optimal mechanism when the
buyer has a linear value function on the scalar-valued state and action. A recent paper by Li [31]
studies the case where the agent has endogenous information, meaning that she can perform her
own experiment at a certain cost after receiving the signal. Finally, Cai and Velegkas [12] study the
same problem as ours but focus on efficient algorithms to compute the optimal menu for discrete
type distributions. We consider general type distributions and study the cardinality of the optimal
menu as well as the performance of selling the complete information.

2 PRELIMINARIES

Model and Notation. A data buyer (also referred to as the agent) faces a decision problem under
uncertainty. The state of the world w is drawn from a state space Q = {ws, ..., w,}. Foreachi € [n],
we refer to state w; as state i for simplicity.! The buyer chooses an action a from a finite action
space A. We use m to denote the size of A and let A = [m]. For every i € [n], j € [m], the buyer’s
payoff for choosing action j under state i is defined to be u;;. Denote U the n x m payoff matrix
that contains all u;;’s. The buyer has matching utility payoff if n = m and U is an identity matrix
(u;j = 1if i = j and 0 otherwise).

The buyer has some prior information about the state of the world, which is captured by a
distribution that represents the probability that the buyer assigns to each of the states. We call this
piece of prior information the type of the buyer, denoted by 6 = (0y, ..., 0,-1), where 6; represents
the probability that the buyer assigns to the state of the world w; for each i € [n — 1] (and a
probability of 1 — 37! 6; for state w,). Denote ® = {0 = (6y,...,0,-1) € [0,1]" | X1 6; < 1}
the space of 6. When the state space is binary, 0 is a scalar in [0, 1]. For ease of notation, denote
0, =1 - 3" 0; throughout the paper.

The type 0 is distributed according to some known probability distribution function F. We use
Suprp(F) to denote the support of distribution F. When F is a continuous probability distribution
(or discrete probability distribution), we use f to denote its probability density function (or its
probability mass function). Apart from the buyer, there is also a seller who observes the state of the
world and is willing to sell supplemental information to the buyer. > We refer to the buyer as he
and to the seller as she.

Experiment. The seller provides supplemental information to the buyer via a signaling scheme
which we call experiment. A signaling scheme is a commitment to n probability distributions over a
finite set of signals S, such that when the state of the world is realized, the seller draws a signal
from the corresponding distribution and sends it to the buyer. According to [8], we can without
loss of generality restrict our attention to the experiments whose signal set is the same as the
action space [m] (see Lemma 14 in Appendix A). One can think of every signal j as the seller
recommending the buyer to choose action j. We denote such an experiment E by a n X m matrix.

!Throughout the paper, we denote [k] = {1,2, ..., k} for any integer k > 1.

2Tt is not crucial to assume that the seller knows the state of the world, and it suffices to assume that the seller can send
signals that are correlated with the state of the world.
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For every i € [n],j € [m], the (i, j)-th entry, denoted as ;;(E) or m;; if the experiment is clear
from context, is the probability that experiment E sends signal j when the state of the world is w;.
It satisfies that 3’ ;¢ 7ij(E) = 1, Vi € [n].

We call an experiment E fully informative if the seller completely reveals the state of the world
by sending signals according to E. This means that for every state of the world the experiment
recommends the action that yields the highest payoff under this state, i.e. for every i € [n],
m;;(E) = 1if j = arg max, u;; and 0 otherwise. *

The Value of an Experiment. To understand the behavior of the buyer, we first explain how
the buyer evaluates an experiment. Without receiving any additional information from the seller,
the buyer’s best action is a() € argmax;(,,;{2;c[n] fiui;}, and his maximum expected pay-
off is u(0) = maxje[m|{X;c[n) Oittij}- If he receives extra information from the seller, he up-
dates his beliefs and may choose a new action that induces higher expected payoff. After re-

ceiving signal k € [m] from experiment E his posterior belief about the state of the world
. _ 071, . .. _ Yie[n] Oimikuij
1S: Pr[wi|k, 9] = W,Vl [S] [Yl] The best action is a(k|9) = argmaxje[m] {W 5
Yie[n] Oimikuij
ie(n] ik
over the signal the buyer will receive, we define the value of the experiment E for type 6 to be

Vo(E) = Yelm] MaXjcm] { Dicpn] Oiminuij}-

which yields maximum expected payoff u(k|0) = max;c|m { } Taking the expectation

Mechanism. Any mechanism M can be described as {(E(0), t(0)) }gco, where E(6) is the experi-
ment type 0 purchases and ¢(0) is the payment. The interaction between the seller and the buyer
in any mechanism works as follows:

(1) The seller commits to a mechanism M = {E(0), t(0) }gco-

(2) The state of the world w; (i € [n]) and the type of the buyer 6 are realized.

(3) The buyer reports his type 6 to the mechanism.

(4) The seller sends the buyer a signal k € [m] with probability ;. (E(6)).

(5) The buyer chooses an action j € [m], based on his type 6 and the signal k. He receives payoff
u;j, and pays t() to the seller.

In subsequent sections, sometimes we abuse the notation and denote the experiment E(0) as M(0).
We assume that the buyer is quasilinear, i.e. he wants to maximize his utility — the maximum
expected payoff minus the payment.

Incentive Compatibility. A mechanism is Incentive Compatible (IC) if reporting his type 0 truthfully
maximizes his expected utility: Vo (E(6)) — t(6) > Vp(E(0")) — t(6’),VY60,0’ € ©.For any ¢ > 0, a
mechanism is ¢-IC if the inequality is violated by at most ¢. Given any mapping o : [m] — [m],
denote Ve(a) (E) the value of the experiment E, if the buyer chooses action o(j) whenever he receives
signal j. Formally, VG(U) (E) = Yicin] Xje[m] 0imij (E) - uis(j). Hence we have Vy(E) = max, Vga) (E).
Denote V,(E) the value of the experiment E, if the buyer follows the recommendation of the seller,
i.e., o is anidentity mapping. According to [8], we can without loss of generality restrict our attention
to the mechanisms such that if the buyer reports truthfully, following the recommendation from the
seller maximizes his expected payoff (see Lemma 14). In those mechanisms, Vy(E(0)) = V; (E(0)).
Then IC constraints are equivalent to:

V; (E(9)) — 1(8) = V.7 (E(8)) - 1(6'),¥6,0’ € ©,0 : [m] — [m] (1)

3We break ties lexicographically.
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Individually Rationality. A mechanism is Individual Rational (IR) if reporting his type 6 truthfully
induces expected utility at least u(6): Vo (E(0)) —t(0) > u(0), V0 € ©. We remark that the agent has
expected payoff u(0) before receiving any additional information. Thus IR constraints guarantee
that the agent has a non-negative utility surplus by participating in the mechanism. Any IC and IR
mechanism can be described as a menu M = {(E, t(E))}ges- The buyer with any type 6 chooses
the experiment E that maximizes Vy(E) — t(E). The pair (E, t(E)) consisting of an experiment E
and its price t(E) is called an option. The option enables the data-buyer to improve his information
and consequently improve his decision. A menu is called fully informative if it only contains the
fully informative experiment. We also refer to it as “selling complete information”.

Revenue. An environment is a particular choice of parameters of the model (i.e. the payoff matrix
and type distribution). Fix an environment, we denote by REv(M) the revenue that mechanism M
generates and by OPT the optimal revenue among all IC, IR mechanisms. We denote by FREv the
maximum revenue achievable by any fully informative menu.

Payoff Matrix in Binary States. When the state space is binary, we can without loss of generality
make some assumptions on the payoff matrix. For any action j, we say the action is redundant,
if there exists a set of actions S C [m]\{/} and a distribution d = {di}kes such that: u;; <
Ykes Akuix, Vi € {1, 2}. In this scenario, the buyer will never choose action j as it is dominated by
choosing an action according to distribution d regardless of the underlying state. Without loss of
generality, we assume that none of the actions is redundant, which clearly implies that there does
not exist k # j such that uyx > uyj, ugr > uy;. Thus we can assume that

Uip > Ui > .. > Uy =0 and 0= Uz < Upy < ... < U,

otherwise we can change the action indexes, or modify every u;; (or uz;) by the same amount. We
further assume u;; > uy,;, = 1, otherwise we can scale all payoffs or swap the states. Under the
assumption above, the fully informative experiment E satisfies that my; (E) = 73, (E) = 1.

(a) Payoff Matrix (b) Experiment
u ‘ 1 e .] e m E ‘ 1 e J e m
w1 Uil e ulj e 0 w1 11 e ﬂ-lj [N Tim
Wa | 0 e Uy o Ugp =1 Wy | T My Tom

3 BINARY STATE: A LOWER BOUND FOR SELLING COMPLETE INFORMATION

We focus on the binary-state case (n = 2) in Section 3 and Section 4. In this section, we show
that for any m, there exists some environment with 2 states and m actions such that selling the
complete information is only an ﬁ—fraction of the optimal revenue OPT. Proofs in this section
are postponed to Appendix B.

In fact, we prove a stronger statement that in this environment, FREv is an ﬁ-fraction of
the maximum revenue among a special class of menus called semi-informative menu. In particular,
an experiment E is semi-informative if it satisfies: (i) It only recommends the fully informative
actions (Action 1 and m), i.e., 7;;(E) = 0, for all i € {1,2},2 < j < m — 1; (i) Either 711 (E) = 1 or
Tom(E) = 1. Since ¥ jcm) 71 (E) = X je[m] 72j(E) = 1, any experiment E that satisfies both of the
above properties has one of the following patterns:

A mechanism (or menu) is called semi-informative if every experiment in the mechanism (or
menu) is semi-informative. Denote SIREV the optimal revenue achieved by any semi-informative
menu. Clearly OPT > SIREv > FREV since the fully informative experiment is also semi-informative.
The class of semi-informative menus is also useful in Section 4.
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(a) Pattern 1: o, (E) = 1 (b) Pattern 2: 111 (E) = 1
E ‘ 1 o o m E ‘ 1 e e m
W | Ty - 0 - 1= w1 1 ee 0 - 0
[a)) 0 e 0 1 ) 1_7T2m e 0 e Tom

Table 2. Two Specific Patterns of the Semi-informative Experiment

THEOREM 1. For every m, there exists a payoff matrix with 2 states and m actions, together with a
type distribution F of the agent, such that SIREV = Q(m) - FREV, which implies that OPT = Q(m) - FREV.

To prove the theorem, we first introduce the concept of IR curve in the binary-state case.

IR Curve. In binary-state case, u(-) can be viewed as a function in [0, 1], which we refer to as the
IR curve. By definition, u(+) is a maximum over m linear functions. Thus, it is a continuous, convex
and piecewise linear function. Since none of the actions is redundant, the IR curve u(-) contains
exactly m pieces. We show in Table 3 an example with 4 actions and in Figure 1 the corresponding
IR curve.

ull 2 3 4
w[1 08 06 0

w2, [0 05 08 1 | o5 7
Table 3. The payoff matrix of an example
with 2 states and 4 actions Fig. 1. The IR curve u(-). The slopes of the 4 pieces are

—1,-0.2,0.3 and 1 respectively.

LEmMMA 1. Given anya,b € (0,1) such thata < b, leth : [a,b] — (0, 1) be any piecewise linear
function that is strictly decreasing and convex. Consider any environment with IR curve h.* Then there
exists a continuous distribution F over support [a, b], such that FREv =1 — h(a), and

b
[ £(0) - (1-h(6))do 1- h(b)
=lo ,
FREV 1-h(a)
where f is the pdf of F. When uy; = uzm = 1, the highest expected payoff an agent can achieve is 1, so
/ab f(0) - (1 - h(0))d0 is also the expected full surplus under distribution F.

We provide a sketch of the proof of Theorem 1 here. In the first step, we construct an environment
with 2 states and m actions by constructing an IR curve then apply Lemma 1 to create a distribution
F over the agent types to show that the ratio between the full expected surplus and FREv is Q(m).
In the second step, we indirectly construct a semi-informative menu whose revenue is a constant
fraction of the total expected surplus, which implies that SIREvV = Q(m) - FREv. In our construction,
the payoffs satisfy uy; = upy, = 1.

Construction of the IR curve: Given m — 1 types 0 < 0; < 0; < ... < 0,,-1 < 1 which will be
determined later, we consider the following IR curve u(-) on [0y, Om-1]. The IR curve is a piecewise

4When the type distribution has support [a, b], we can restrict our attention to the IR curve at range [a, b]. In our
construction, we construct a payoff matrix that implements the IR curve.
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linear function with m — 2 pieces. For simplicity, for every 1 < i < m — 2, we will refer to piece L;
as the piece for the corresponding action m — i.> Fix any ¢ less than 2+"

Letdy := &2 For everyl <i<m-2,letd; := 2. 2™ 2" For everyl <i<m-1,letf; = Zj-_:}) d;.
Then when ¢ < ZL,,,

i-1
0, = P Z o) . 27V 2m-2ii-l (2)
j=1
For every 1 < i < m — 2, piece L; is in the range 0 € [0;, 0;11]. The slope of piece L; is [; := 2

Thus the height of piece L; is h; := u(0i41) — u(0;) = —L;d; = 2 - " . Let u(6;) := 1 - 6; and
hy == 0; = dy = €¥". Then for every 1 <i <m-—1,wehaveu(;) =1- Zj;}) h;. Since ¢ < ZL,,,,
u(60;) > 0,Vi. See Figure 2 for an illustration of notations.

Now we compute the payoff matrix according to the constructed IR curve u(-). uy; = ugp = 1,
Uim = Uy = 0. For every 1 < i < m—2, before receiving any additional information, choosing action
m — i induces expected payoft 6 - u ,,—; + (1 — 0) - g m—;. By the definition of the IR curve, it must go
through the two points (6;, u(0;)) and (0i41, u(6iv1)). Thus we have 6; - Uy i + (1 — 0;) - g m—i =
1- Z};}) hj and 01 - urm—i + (1 = Oi1) “ g = 1 — Yo hj. Thus ugpm—; = 1 - Z};}) h; — 0l;,
Uim-i = 1- Z;;O ]’lj - Gili + li.

By Lemma 1, there exists a distribution F under support [61, 0,—1], such that FREV = 1 —u(0;) =
0, = %", and

em—l 1 _ . rArl—Z hi
./ £0) - (1 - u(6))d6 = log (M) -FREv = FREV - log (—Zl_o )
2 1- u(91) hO
me2gi . 2" 3)
=FREv - log ( t=0£2m _) =FRev - log (zm—l _ 1) > FRev - log(2) - (m—2)

Next, we present a semi-informative mechanism M whose revenue is comparable to the integral

o £0) - (1 - u(0))do.

Construction of the mechanism: Consider the following m — 2 semi-informative experiments. For
every 1 < i < m — 2, we design experiment E; and its price p; so that the buyer’s utility after
purchasing experiment E; coincides with the piece L; of u(-) for 8 € [6;, 6,11], when the buyer
follows the recommendation. Formally, experiment E; is as follows:

©, 100

_____________ G0 El 1 - m
w | 1+ 0 —I;

w2 0 0 1

Table 4. Experiment E;

(Bis2,u(8i42))

Fig. 2. Notations in the construction of IR curve

The price for experiment E; is p; = Zj;(l) hj+0;l;. By definition of h; and [;, p; = 2;;3) d;- (¥ =) >
0. It is not hard to verify that the buyer’s utility for buying experiment E; is u(6;) at 0; and u(6;41)
at 9i+1 .

5We choose the subscript this way so that the IR curve goes from a piece with smaller index to a piece with larger index as
0 increases.
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Consider the following mechanism M. For every 6 € [0, 0,,-1], let i be the unique number
such that 0; < 0 < 0;;1.% The outcome and payment of M under input 0 are defined as follows: It
computes the buyer’s utilities for (E;, p;), (Ei—1, pi—1) (When i > 2), and (E;_3, pi—2) (when i > 3)
under type 60, and chooses the option with the highest utility as the experiment and payment.

We prove in Lemma 2 that M is IR and 8-IC for some § = o(e?"). Moreover, REv(M) is
comparable to the integral fe?m_l f(0)-(1—u(0))d6. M can then be converted to a semi-informative
menu by losing no more than a constant fraction of the total revenue (see Lemma 16 in Appendix B).

Since FREV = ¢¥”, Theorem 1 then follows from Inequality (3). The proofs of Lemma 2 and
Theorem 1 are postponed to Appendix B.

LEMMA 2. For any e € (0,27™), M is IR and §-IC where § = 7 - e2"+1. Moreover, REv(M) >
O
5 Jo, " F(0) - (1 u(8))de.

An important application of Theorem 1 is that, there is an Q(m) lower bound of the size of the
optimal menu. The main takeaway of this theorem is that, in our model where there is a single
agent whose type is single-dimensional, the optimal menu, however, can be complex.

THEOREM 2. For every m, there exists a payoff matrix with 2 states and m actions, together with a
type distribution F, such that any optimal menu M* consists of at least Q(m) different experiments.

To prove Theorem 2, it suffices to show that: Given any menu M with ¢ experiments, we can
sell the complete information at an appropriate price to achieve revenue at least REv(M)/¢. In
Lemma 3, we prove a more general result that applies to any IR (not necessarily IC) mechanism,
which is useful in Section 4. A similar lemma also appears in [29] for the bundling mechanism in
multi-item auctions.

DEFINITION 1. For any finite integer £ > 0, we say that a mechanism M = {(E(60),1(0))}oe[01]
(not necessarily IC nor IR) has option size ¢, if there exists { different options {(Ej, t;)};c[e) such that:
For every 0 € [0, 1], there exists some j € [f] that satisfies E(0) = E; and t(0) = t;.

LEMMA 3. For any positive integer £, let M be any IR mechanism of option size { that generates
revenue REV(M). Then there exists a menu M’ that contains only the fully informative experiment
Rev(M)
and generates revenue at least —;—.
Another important implication of Theorem 1 is shown in Corollary 1. It states that there is no
menu with finite cardinality that achieves any finite approximation to the optimal revenue for all
single-dimensional environments. The proof directly follows from Theorem 1 and Lemma 3.

CoROLLARY 1. For any finite £ > 0, any menu M with size at most £, and any ¢ > 0, there exists
an finite integer m, a payoff matrix with 2 states and m actions, together with a distribution F, such
that REV(M) is at most a c-fraction of the optimal revenue in this environment.

4 BINARY STATE: AN UPPER BOUND FOR SELLING COMPLETE INFORMATION

In this section, we provide upper bounds for the gap between the optimal revenue OPT and the
revenue by selling complete information FREv. In Section 4.1, we prove an O(m)-approximation to
the optimal menu using only the fully informative experiment, where m is the number of actions.
In Section 4.2, we provide conditions under which selling complete information is the optimal
menu. Proofs in this section are postponed to Appendix C and Appendix D.

%Choose i =1 when 8 = 0;.It’'s a point with 0 measure, so it won’t affect the revenue of the mechanism.
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4.1 An Upper Bound for Selling Complete Information

The main result of this section is stated in Theorem 3. Together with Theorem 1, we know that the
O(m) approximation ratio is tight up to an absolute constant factor.

THEOREM 3. For any environment with 2 states and m actions, there is a menu that contains only the
fully informative experiment, whose revenue is at least Q(%T). In other words, OPT = O(m) - FREV.

To prove Theorem 3, a natural idea is to first show that the optimal menu contains O(m)

experiments, then use Lemma 3 to argue that we can sell the full information at an appropriate

ReEV(M)
m

price to achieve revenue at least Q ( ) Unfortunately, we are not aware of such an upper

bound on the size of the optimal menu, and it is not clear if the size of the optimal menu is indeed
linear in m. Instead, we drop some of the IC constraints and consider the maximum revenue of a
relaxed problem.

We first introduce the concept of responsive-IC and ¢-IC constraints. Recall the IC constraint:
VI (E(9)) - t(8) =V, (E(8")) — £(6"),¥8,6" € ©,5 : [m] — [m] where V; (E(0)) is the agent’s
utility for receiving experiment E(0) and following the recommendation. We distinguish the IC
constraints by the mapping 0. When o is the identity mapping, we refer to the constraint as the
responsive-IC constraint, and when o is any non-identity mapping, we refer to the constraint as the
o-IC constraint. A mechanism is responsive-IC if it satisfies all responsive-IC constraints.

As Lemma 3 applies to any IR mechanism, we drop the o-IC constraints and bound the number
of experiments offered by the optimal responsive-IC and IR mechanism by O(m), which suffices
to prove Theorem 3. An important component of our proof is Lemma 4. Denote C, the set of all
semi-informative, responsive-IC and IR mechanisms. We prove in Lemma 4 that the maximum
revenue achievable by any responsive-IC and IR mechanism (denoted as OPT*) can be achieved by
a semi-informative mechanism.

LEMMA 4. There exists M* € C, such that REv(M*) = OPT".

By [8], any semi-informative experiment is determined by a single-dimensional variable q(E) =
11 - U1 — Tom * Usm (see also Observation 3). Given a mechanism M where every experiment is
semi-informative, for any 6 € [0, 1], we slightly abuse the notation and let q(8) := g(M(0)). M
can also be described as the tuple (q = {g(0) }sec[o.1],t = {t(6) }oe[0,1]). In Lemma 5, we present a
characterization of all {g(6) }gc[o,1] that can be implemented with a responsive-IC and IR mechanism.
The proof uses the payment identity and it is similar to Lemma 1 in [8], where there are only
two actions (Action 1 and m) in their setting. The main difference is that in our lemma, the IR
constraints are not implied by the monotonicity of q(-).

LEMMA 5. Given q = {q(0)}oe[o,1], there exists non-negative payment rule t such that M = (q, t)
is a responsive-IC and IR mechanism if and only if
(1) q(0) € [—uzm, u11] is non-decreasing in 6.
1
2) fo q(x)dx = uy1 — Ugpm.

(3) For every 6 € [0,1], up, + /09 q(x)dx = u(6). Recall that u(0) is the value of the agent with
type 0 without receiving any experiment.

Moreover, the payment rule t must satisfy that for every 6,
. 0
£(6) = 6 - q(6) +min{uy; — upm — q(0),0} — /7 q(x)dx (4)

By Lemma 5, for any q that can be implemented with some responsive-IC and IR mechanism M,
the revenue of M can be written as an integral of q(-) using Equation (4) (see the objective of the
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program in Figure 3). We notice that for continuous distribution F, Property 3 of Lemma 5 corre-
sponds to uncountably many inequality constraints. To bound the size of the optimal responsive-IC
and IR mechanism, another important component is to show that all (IR) constraints in Property
3 can be captured by O(m) constraints (Constraint (4) in Figure 3). By Lemma 5, the optimal
semi-informative, responsive-IC and IR mechanism is captured by the optimization problem in
Figure 3. A formal argument is shown in Lemma 6.

sup /0 [(0f () + F(6))q(0) + min{(u1, — uzm — q(6))f(0),0}]d0

s.t. (1) q(6) is non-decreasing in 6 € [0, 1]
(2) q(0) = —uzm, q(1) <un

3) /0 9(6)d6 = usy — s

(4) /0 () — 8) - 1[q(x) < &1dx > Upmpsk — tomy VK €{2,3,um — 1}

Fig. 3. Maximizing Revenue over Responsive-IC and IR Mechanisms

LEMMA 6. For any optimal solution q* to the program in Figure 3, the mechanism M* that imple-
ments q* (Lemma 5) achieves the maximum revenue among all responsive-IC and IR mechanisms.’

In Lemma 7, we show that there exists an optimal responsive-IC and IR mechanism whose option
size is O(m). By Lemma 6, it’s equivalent to prove that there is an optimal solution q* that takes
only O(m) different values. When F is a discrete distribution, we turn the program into a collection
of LPs (see Figure 8 in Appendix C.4), so that the highest optimum among the collection of LPs
corresponds to the optimum of the program in Figure 3. Each LP has variables that represent the
difference of the g-value between two adjacent fs (as the types are discrete). The LP has only
O(m) constraints. By the Fundamental Theorem of linear programming, each LP has an optimal
solution where at most O(m) variables are strictly positive, which corresponds to a q that takes
only O(m) different values. For continuous distribution F, we prove the claim by approximating
the continuous program with an infinite sequence of discrete programs. Theorem 3 then follows
from Lemmas 3, 4 and 7.

LEMMA 7. There exists a semi-informative, responsive-IC and IR mechanism that has option size at
most 3m — 1 (Definition 1) and obtains revenue REV(M*) = OPT".

4.2 When is Selling Complete Information Optimal?

We have proved a tight approximation ratio of ©(m) for selling complete information that applies
to all binary-state environments. A natural follow-up question is whether the approximation ratio
becomes significantly smaller for special environments. In this section, we provide a sufficient
condition for the environment, under which selling complete information achieves revenue equal
to OPT*, the maximum revenue achievable by any responsive-IC and IR mechanisms.® Note that it
immediately implies that selling complete information is the optimal menu in this environment.
"There is a feasible solution that achieves the supremum of the program. See Claim 3.

8In the paper, we indeed prove a necessary and sufficient condition under which selling complete information is optimal

among all responsive-IC and IR mechanisms (Theorem 9). However, the conditions are in abstract terms and requires further
definitions. For the purpose of presentation, we state here the sufficient condition that is easy to verify.
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Throughout this section, we consider continuous distributions and assume that the pdf f(-) of
the agent’s type distribution is strictly positive on [0, 1] and differentiable on (0, 1).

THEOREM 4. For every 6 € [0,1], let ¢~ (0) = 0f(6) + F(0) and ¢*(0) = (6 — 1)f(0) + F(0).
Suppose ¢~ (-) and ¢*(-) are both monotonically non-decreasing. Suppose the payoff matrix satisfies

(un—u12)ugm (uzm=tgm-1)un
U —uiztuzy > Ugm+Uim-1—Uzm-1

that (p‘(u%) > ot(1- ﬁ), where p = min{ . Then selling complete

information at any price p such that (p‘(u%) =¢*(1- %) achieves the maximum revenue achievable
by any responsive-IC and IR mechanisms.

Here is an interpretation of Theorem 4: Both ¢~ (+) and ¢* () are also considered in [8]. Intuitively,
they can be viewed as the agent’s “virtual value” when q(6) < uy; — uy, and when gq(6) >
U1 — Ugm respectively, in a semi-informative mechanism. Both virtual value functions being non-
decreasing is a standard regularity condition on the type distribution. The theorem applies to
stardard distributions such as uniform, exponential and Gaussian distributions. See Appendix D.2
for several examples.

To understand the condition on the payoff matrix, we point out that if selling complete infor-
mation at some price p is the optimal responsive-IC and IR mechanism, then the buyer’s utility
function must intersect with the IR curve at the first and last piece (). Otherwise we can add some
extra experiments to strictly increase the revenue, while maintaining the same utility function and
the responsive-IC and IR property, contradicting with the optimality (see Lemma 20 in Appendix D.2
for details). By some simple calculation, p is exactly the largest price that satisfies (*). The condition
guarantees the existence of such a price p < p.

Note that although the theorem applies to arbitrary number of actions, the condition itself only
depends on the payoffs of the the first two and the last two actions. Thus if the condition is satisfied,
selling complete information is always optimal for any choice of the payoffs for other actions.

To prove the theorem, we provide an exact characterization of the optimal semi-informative,
responsive-IC and IR mechanism, i.e., the optimal solution q* = {g"(6)}ge[o,1] of the program
in Figure 3, by Lagrangian duality (Theorem 10). It is a generalization of the characterization by
Bergemann et al. [8] to m > 3 actions.

5 SELLING COMPLETE INFORMATION: MORE THAN TWO STATES

In this section, we consider the environment with n > 3 states. In Section 5.1, we prove that even in
arguably the simplest environment — matching utility environment with 3 states and 3 actions, the
optimal revenue OPT and the revenue by selling complete information FREV can have an arbitrarily
large gap, i.e. there is no universal finite upper bound of the gap that holds for all type distributions.
Nonetheless, we prove in Section 5.2 that in the same environment, if the distribution is uniform,
selling complete information is in fact the optimal mechanism. Proofs in this section are postponed
to Appendix E.

5.1 Lower Bound Example for Matching Utilities

To avoid ambiguity, throughout this section we denote REv(M, D) the revenue of M with respect
to D, for any (not necessarily IC or IR) mechanism M, and any distribution D. Denote OPT(D)
and FRev(D) the optimal revenue and the maximum revenue by selling complete information,

respectively. The main result of this section shows that in the matching utility environment with
OPT(D)
FREv(D)
that in a matching utility environment, n = m and the payoffs satisfy u;; = 1[i = j], Vi, j.

n = 3 states and m = 3 actions, the ratio arbitrarily large for some distribution D. Recall

THEOREM 5. Consider the matching utility environment with 3 states and 3 actions. For any integer

N, there exists a distribution D with support size N such that %g((%)) = Q(N'7).
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The following corollary directly follows from Theorem 5 and Lemma 3.

COROLLARY 2. Consider the matching utility environment with 3 states and 3 actions. For any
integer N, there exists a distribution D with support size N such that any optimal menu has option
size Q(N'/7).

The proof of Theorem 5 is adapted from the approach in [29], which was originally used in
problem of multi-item auctions. Their approach does not directly apply to our problem due to the
non-linearity of the buyer’s value function and the existence of the extra ¢-IC and more demanding
IR constraints in our problem.

For any mechanism M, denote RaTt1io(M) the largest ratio between REv(M, D) and FREv(D)
among all distributions, i.e.,

Rev(M, D)
RaTio(M) = _—
To(M) = sup —p D)
For every 6 € ©, denote U(6) the gain in value of a buyer with type 0, after receiving the fully
informative experiment. Formally, U(6) = )., 6;-max; u;; —max; {Z,- Giuij}. Here 0, = 1-Y77]' 6.

In Theorem 6, we prove that RaTio(M) can be written as a concrete term using U(-) and the
payment ¢(-) of M.

THEOREM 6. (Adapted from Theorem 5.1 of[29]) For any mechanism M = {E(0),t(0)}gce (not
necessarily IC or IR), we have RaTIo(M) = /0 ——dx, wherer(x) = inf{U(0) : 0 € © A £t(0) >
x},Vx = 0.

r(X)

Here is a proof sketch of Theorem 5. We first show in Lemma 8 that: Given any sequence
{yk}kN= , of vectors in © that satisfy all properties in the statement, we can construct a distribution

D with support size N, together with an IC, IR mechanism M such that the ratio R:RLA(%;) has a

lower bound that only depends on the sequence {yk}i\’= |- Properties 2 and 3 in the statement are
carefully designed to guarantee that the constructed mechanism is IC and IR. Property 1 ensures
the mechanism to obtain enough revenue. With Lemma 8, we then complete the proof of Theorem 5
by constructing a valid sequence {yk}kl\lz1 which induces a lower bound of Q(N'/7).

LEmMA 8. Consider the matching utility environment with 3 states and 3 actions. Given any integer
N and a sequence of types {yx = (Y1, yk,z)}szl in © such that

(1) gapi = min {91 = 91) k1 + (k2 = Yy2) Yz} € (0,009). Hereyo = (0,0,1).

Yk, 9 10
(2) e [, 1).

3) llyellz = Jyi, + Yz, € [0.3,0.4].

Then for any € > 0, there exists a distribution D with support size N such that

OPTD) 03 gape

> 1-
FREV(D) - yk +yk ( é‘) Zgapk

To complete the proof of Theorem 5, for any integer N, we construct a sequence of types
{ye 1N v, that satisfies all three properties in the statement of Lemma 8, and gap; = © (k™ ¢/7). Then
by Lemma 8, there exists a distribution D with support size N such that (by choosing ¢ = 5)

]gf;((g)) > 3N gap, = QXN k7%/7) = Q(N'7). The construction is adapted from Proposition
7.5 of [29]: All points {yk}kN= , are placed in a sequence of shells centered at (0, 0) with radius within
the range of [0.3, 0.4] (for Property 3). All points are placed in a thin circular sector close to the 45°

angle so that Property 2 is satisfied. See Appendix E.1 for the complete construction and proof.
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5.2 Matching Utility Environment with Uniform Distribution

As the main result of this section, we complement the result in Section 5.1, by showing that in the
matching utility environment with 3 states and 3 actions, selling complete information is indeed
optimal if the type distribution is uniform.

THEOREM 7. Consider the matching utility environment with n = 3 states and 3 actions, where the
buyer has uniform type distribution. Then selling only the fully informative experiment at price p = %
achieves the maximum revenue among all IC, IR mechanisms.

The remaining of this section is dedicated to the proof of Theorem 7. We first provide a high-level
plan of the proof. In Section 4, we considered a relaxation of our problem, which finds the optimal
responsive-IC and IR mechanism. Here we propose another relaxed problem of finding the optimal
menu for any matching utility environment (Figure 4). Then we construct a dual problem (Figure 5)
in the form of optimal transportation [18, 36, 40]. This primal-dual framework provides a general
approach to prove the optimality of any menu M: If we can construct a feasible dual that satisfies
the complementary slackness conditions, then M is the optimal primal solution to the relaxed
problem, which implies that M is the optimal menu. We apply this framework to the matching
utility environment with 3 states and uniform type distribution, proving that selling complete

information at p = § is optimal.

5.2.1 Construction of the Primal and Dual Problem. By Lemma 14, we will focus on responsive
mechanisms M = {(E(0), t(6))}sco. For any 6 € ©, denote m;;(0) the (i, j)-entry of experiment
E(0). We also use r;(0) to represent m;;(6). For every measurable set S C ©, denote VoL(S) =
fs 1d0 the volume of S. We first prove the following lemma that applies to any matching utility
environment.

LEMMA 9. In any matching utility environment, there is an optimal responsive mechanism M such
that: for every 0 € ©, there exists i € [n] such that m;(0) = 1.

By Lemma 9, we focus on all mechanisms that are responsive and satisfy: for every 6 € ©, there
exists i € [n] such that 7;(0) = 1. Recall that Vp(E) (or V;(E)) is the buyer’s value of experiment E
(or the value if she follows the recommendation) at type 6. For any 6, denote G(0) = Vy(E(0)) —t(0)
the buyer’s utility at type 6. Since the mechanism is responsive, we have

n-1 n-1
G(6) = V5 (E(0)) ~1(6) = ) mi(6) - 61 + mu(0) - (1 =20 =10
i=1

i=1

1
We prove the following observation using the IC constraints.
OBSERVATION 1. Foranyi € [n—1], %(gig) = m;(0) — 7, (6).

Let VG(0) = (%9(19), e %,5_91))- By Observation 1 and the fact that max;c[,){7: ()} = 1,V € O,

we have

1(0) = —G(0) + VG(B) - 0 + m,(0) = —G(0) + VG(B) - 0 + 1 —max{aG(e) 9G(6) 0}

30; T 30’
In Lemma 10, we prove a necessary condition under which a function G(-) is derived by some

IC, IR and responsive mechanism.

DEFINITION 2. For every type 0,0' € ©, define c(0,0’) = maxg {Vy(E) — Vo (E)}, where the
maximum is taken over all possible experiments with n states and n actions.

LEMMA 10. For any IC, IR and responsive mechanism M, let G(-) be the buyer’s utility function.
Then G(-) is convex and satisfies G(0) — G(6’) < ¢(6,0),V0, 0" € ©. Moreover, G(0) = 1.
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We notice that given any convex function G that satisfies G(6) — G(6’) < ¢(6,60"),V0,6’. The
function 5(9) = G(0) — G(0) + 1 satisfies all properties in Lemma 10. Thus a relaxation of the
problem of finding the revenue-optimal menu can be written as the optimization problem in Figure 4.
Here we replace G(0) by G(6) — G(0) + 1 and remove the constraint G(0) = 1.

aG(O)  aG(6)
90, T 90,y

sup / [_G(Q) + VG(6) - 6 — max {
G is convex [¢)
G(0)-G(0')<c(6,0'),v0,0’

o} + G(o)} £(6)do

Fig. 4. The Relaxed Problem of the Optimal Menu

In the next step, we construct a dual problem in the form of optimal transportation. We first
introduce some useful notations in the measure theory.

e I'(0) and I, (®) denote the signed and unsigned (Radon) measures on ©.

e Given any unsigned measure y € I, (® X ©), denote yy, y; the two marginals of y. Formally,
11(A) = y(A X ©) and y2(A) = y(© x A) for any measurable set A C ©.

e Given any signed measure p € I'(©), denote ., u_ the positive and negative parts of p
respectively, i.e. g = py — p_.

e Given a measure y € I'(©). A mean-preserving spread operation in set A C © is a sequence
of the following operation: picking a positive point mass on 6 € A, splitting it into several
pieces, and sending these pieces to multiple points in A while preserving the center of mass.

We define strongly convex dominance similar to the notion of convex dominance in [18, 37].
The main difference here is that only the mean-preserving spread operation is allowed during the
transformation between two measures. ’

DEFINITION 3. Given any p, i’ € T'(©), we say that u strongly convex dominates p’ (denoted
as p Zeux p') if y' can be transformed to p by performing a mean-preserving spread. By Jensen’s
inequality, if i >cyx 1, then /egd,u > f@gdp’ for any continuous, convex function g on ©.

In the following definition, we define a measure ,uP for any partition P = (@4, ..., 0,) of © such
that every component ©; is compact. Denote P the set of all partitions.

DEFINITION 4. Given any partition P = (©4,...,0,) of © such that every ©; is compact. 1* We
define a measure u* € T'(©) as follows:

n—1
P = . — . — P .
WP (A) = 14(0) + /a 1O (O)0-md0—n /@ La(0)£(0)do Z /8 | LAOFO) (e m)do

—/(aﬂA(G)'(Vf(G)-G)d9+iZ;/®i 14(0) - (e - Vf(0))do

for any measurable set A. Here 9O (or 0©;) is the boundary of ® (or ©;). n (or n;) is the outward

pointing unit normal at each point on the boundary 90© (or 90; ). e; is the i-th unit vector of dimension
n—1.14(0)=1[0 € A].

°In [18, 37], the notion of convex dominance is less restricted: u convex dominates y’ if /® gdu > f® gdy/ for any continuous,
non-decreasing, convex function g on ©. Under this notion, y/’ can be transformed to y by either performing the mean-
preserving spread, or sending a positive mass to coordinatewise larger points. In our notion, the inequality holds for any
convex function that is not necessarily non-decreasing. Thus the second operation may make / gdy’ smaller and is not
allowed during the transformation.

19Here we assume each ©; to be compact such that a intergral on ©; is well-defined. Two ©;s may overlap on their
boundaries. We still refer to (©;,...,0,) a partition of © as the set of overlapping points has 0 measure w.r.t. f.
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We prove the following lemma by applying the divergence theorem.

LEMMA 11. For any differentiable function G, we have

- = ac(e)
/@G(@)d,u _/[ G(0) + VG(0) - 0+ G(0)] £(0)d6 — Z/ f(9)d9

Choosing G(6) = 1,V0 € © implies that ¥ (©) = 0.
Now we are ready to define the dual problem (Figure 5).

inf / c(6,0")dy(6,0")
X0

PeP,yel (6x0) Jg
Y1—Y2 ZcuxH

Fig. 5. The Dual Problem in Form of Optimal Transportation

To have a better understanding of the dual problem, we prove the following lemma which shows
that the weak duality holds.

LEMMA 12. For any feasible solution G to the primal (Figure 4) and any feasible solution (P =
(©1,...,0,),y) to the dual (Figure 5),

oG(0 aG(0
/ [—G(@) +VG(0) -0 - max{ ( ), cen ( ),0} + G(o)} f(0)do < / c(6,0")dy(6,0")
e 90, 90n—1 0x0
The inequality achieves equality if and only if all of the following conditions are satisfied:
(1) 36(9) ax{agé,le), el ‘?93(9) O}for everyi € [n—1],0 € ©;; max;e[p-1] agé?) < 0 for every
9 € @n.
2) y(6,6") >0 = G(0) —-G(6') =c(6,0).
(3) /@ G0)d(y1 —y2) = /@ G(0)dy®. In other words, ¥ (in Definition 4) can be transformed to
Y1 — v2 by performing a mean-preserving spread operated in a region where G is linear.

An important application of Lemma 12 is that: Given a menu M in any matching utility envi-
ronment, we can certify the optimality of M by constructing a feasible dual (P, y) that satisfies all
conditions in Lemma 12 with respect to the utility function G(-) induced by M. This is because
G(+) being an optimal solution to the primal problem in Figure 4 immediately implies that M is
the optimal menu since the primal problem is a relaxation of our problem.

THEOREM 8. Given any matching utility environment and any menu M. Let G(-) be the buyer’s
utility function induced by M. If there exists a feasible dual solution (P, y) to the problem in Figure 5
such that G and (P, y) satisfies all conditions in the statement of Lemma 12, then M is the optimal
menu in this environment.

5.2.2  Proof of Theorem 7. Now we focus on the special case n = 3 and give a proof of Theorem 7
using Theorem 8. The type space © = {(6;,0;) € [0,1]? | 6; + 0, < 1} is a triangle. Let M* =
{E*(0),t"(0) }pco be the mechanism that only sells the full information at price p = % Let G*(0) =
Vy(E*(0)) — t*(0) be the buyer’s utility function in M*. By Theorem 8, it suffices to construct a
feasible dual (P*, y*) that satisfies all conditions in Lemma 12.

Denote 7 (0) the (i, i)-entry of E*(6). We consider the following partition P* = (@7, ©;, ©}) of
0:07={0€0|06; 20;,Vje{1,2,3}}, here 03 = 1 — 6 — 0,. See Figure 10a for an illustration. In
uniform distribution, the density f(8) = 2 is a constant for all 8 € ©. Thus we can simplify the
description of y¥" as in Observation 2.
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OBSERVATION 2. By Definition 4, the measure u* with respect to the partition P* is the sum of:

e A point mass of +1 at 0.

e For each (i,j) = (1,2),(1,3),(2,3), a mass of% uniformly distributed on the line segment
Sij={0 €0 |0;=0; > O}. Herek is the index other than i, j. 03 =1 - 0; — 0,.

o A mass of =3 uniformly distributed through out ©.

Now we construct the measure y* € I, (© x ©) as follows: Let Q; = {# € © : 1 -max;e[,) 0; = p}
be the set of types where the buyer purchases the full information in M*. Let Q, = ©\Q;. For any
measurable set A, B C O, define y(A X B) = 14(0) - -/Qz 15(0)d6/VoL(Qz). See Figure 10b for an
illustration of the notations. To verify that G* and (P*, y*) are the optimal primal and dual solution
respectively, it suffices to prove the following lemma.

LEmMMA 13. G* and (P*,y™) are feasible solutions to the primal (Figure 4) and dual problem (Figure 5)
respectively. Moreover, they satisfy all the conditions in the statement of Lemma 12.

The primal feasibility and the first two conditions are relatively easy to verify. To prove the
dual feasibility and Condition 3, denote y}, y; the marginals of y. By definition of y, u* T Yi—v)
contains only a mass of —2 uniformly distributed throughout out the hexagon €;, and a mass of
% uniformly distributed in each line segment S;2, S13, S23. Due to the special geometric shape of
the hexagon, we can transform the positive mass on the line segments to the whole region Q; via
mean-preserving spread, to “zero-out” the negative mass. This proves both the dual feasibility and

Condition 3 since G*(0) = % is constant throughout Q;.

6 CONCLUSION

We considered the problem of selling information to a data-buyer with private information. The
(approximately) optimal mechanism typically offers menu of options at different prices to the data-
buyer. We showed that this revenue maximization problem shares some features with the problem of
selling multiple items to a single buyer. Yet, the problem of finding the optimal menu of information
structure is richer in two important aspects. First, every item on the menu is information structure,
thus matrix of signals given the true state, and second, the individual rationality constraint varies
with the private information of the agent. Thus, the choice set as well as the set of constraints is
richer than the standard multi-item. Our analysis thus focused on establishing lower and upper
bounds for the optimality of the complete information structure, which is a natural information
product and in a sense the equivalence of the grand bundle in the mutli-item problem.

We established a lower bound on the cardinality of the optimal menu in the binary-state environ-
ment. An interesting future direction is to show an upper bound of the cardinality of the optimal
menu. Although we showed an O(m) approximation ratio for selling complete information in this
single-dimensional environment, no finite upper bound (in a function of m) of the cardinality that
holds for all type distribution is known.

In general environments, we offered a primal-dual approach to prove the optimality of a given
menu. We used the approach to show the optimality of selling complete information in a special
environment. We believe that this approach should be productive to further characterize the optimal
menu in other environments.
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A ADDITIONAL PRELIMINARIES

DEFINITION 5 (RESPONSIVE EXPERIMENT [8]). A buyer type 0 is responsive to an experiment E if:
There is a one-to-one mapping g : S — [m] from the signal set to the action space such that, for every
k € [m], the buyer chooses the action k when receiving signal s iff g(s) = k

LEMMA 14 (ADAPTED FROM PROPOSITION 1 FROM [8]). A mechanism M = {(E(6),t(0))}gco is
responsive if every buyer type 0 is responsive to E(0). Then for any mechanism M, there exists a
responsive mechanism M’ = {E’(0),t(0) }pco with the same payment rule, such that for every type 6,
the buyer has the same value for both experiments E(6) and E’(0).

LeEMMA 15. [8] Any optimal menu contains a fully informative experiment.

B MISSING DETAILS FROM SECTION 3

Proof of Lemma 1: Since h is strictly decreasing in [a, b], let h™! be its inverse function. Define F as
follows: F(0) = 1— %, V6 € [a,b); F(b) = 1. Here ¢ = 1—h(a) to ensure that F(a) = 0. Consider
the fully informative experiment with any price p. The utility for purchasing this experiment is
1 — p regardless of the buyer’s prior. Thus the buyer purchases the fully informative experiment iff
h(0) < 1 - p, which happens with probability 1 — F(h™!(1 — p)) = ¢/p. Thus FREV = ¢. Moreover,

£(0) = ¢ 254855, Y0 € [a,b). 1 We have

b b B
[ 1@ a-nondo=—c- [ 00— c.tog1- o) = g(—i_zgg)

d

1 As h(-) is a convex function, it is also continuously differentiable on except countably many points. For those points, we
can choose h’(0) to be any subdifferential at 6.
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Proof of Lemma 2: We first bound the revenue of M. Notice that for every 1 <i <m -2,

i-1
pi= ) h+0li= (2 —1)- " = (P Y 2 ) < (2 - 1) (5)
7=0 1<j<i
On the other hand, when ¢ < sz’ we have
pi= (Zi -1 P £2m+2i — Z 2J . gzm"'zi_zj (6)
1<j<i
> (2 -1)- " - (14 Z 2) > (20— 1) - 2" — "
1<j<i

Moreover, '
1—u(fiyy) = Z hy= (2" —1)- "
=0
Thus for every 0 such that §; < 0 < 0,4, tJhe payment of M is at least
min{p;, pi-1, pi-2} = pi-2 > %(1 —u(bi+1)) = %(1 —u(0)).

Thus we have Rev(M) > 1 - /9?'"71 £(0) - (1 —u(6))do.

Next we prove that M is IR and §-IC. Firstly, if the buyer follows the recommendation of
experiment E;, his expected utility is (1 + 1) +1 -0 —p; =1+ 0 —p; =1 — Zj;}) hj+ (0 -0l
which is u(6;) and u(6;41) if we choose 6 to be 0; and 0;,; respectively. Since u(-) is linear on
(01, 0i11], the buyer’ expected utility for receiving (E;, p;) is exactly u(6). Thus her utility by
reporting truthfully is at least u(6) > 0, and M is IR.

Now fix any 0 € [01,0,,-1]. Let i be the unique number such that §; < 0 < 0;;;. Suppose
that the buyer misreports and receives experiment E; for 1 < j < m — 2. We notice that when
the experiment recommends action 1, the state w; is fully revealed and the buyer will follow the
recommendation, choosing action 1. If the buyer chooses action m — r when being recommended
action m, for 0 < r < m — 1, then his utility for buying experiment j is

Uj,r(e) = 9(1 + lj) + 8(_lj)u1,m—r + (1 - G)uQ,m—r —pj=uUym—rt ‘9(1 + lj - ljul,m—r - uz,m—r) —Ppj-
When 1 < r < m — 2, using the fact that uy,,—, = 1 — p, and vy ;- = 1 — p» + I, we can rewrite
Uj,r(e) =1+ Q(Pr + lj(pr - lr)) —pr- pj'

We argue that for every 0 € (0;, 0;41], the following inequality holds.

U (0) < U (0) 47 7)

max max
je{1,...m-2},re{0,...m-1} j ef{ii-1,i-2},r' €{0,...,m—

Since a buyer with type 0 receives utility maxj e ;—1,-2),» Uy~ (0) in M if he reports truthfully,
Inequality (7) guarantees that M is §-IC (recall that § = 7 - £ *1), as the buy can obtain utility at
most max;e 1, m-2},r Uj(0) by misreporting his type.
Now we prove that for every j € {1,...,m—2},r € {0,...,m — 1}, U; »(0) is no more than the
RHS of Inequality (7) by a case analysis.
(1) r=0.Forevery j € {1,...,m—2}, U;o(0) = V;(E;) — p; is the agent’s utility for purchasing
E;, if he follows the recommendation. By the definition of the IR curve u(-), the function
Uy o(-) coincides with u(-) on the interval [0y, 0;41] for all £ € {1,...,m — 2}. Since u(-) is a
convex function and 6 € (6;, 0;1], Uip(0) > U;o(0) forall j € {1,...,m - 2}.

12In the RHS of the inequality, j can only take value i,i — 1 when i < 2, and can only take value i when i = 1.
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(2) r=m—1.Forevery j € {1,...,m—2},since & < 557, Ujm-1(0) = 0—p; < 0 < Opp_y < 2",

On the other hand, U;o(8) = 1+ 606 —p; > 1-2™- 2" > 1-¢""1 > Ujm-1(6).
(3) 1 <r <m—2.Recall p,— (2" =1)-£¥" € [-£¥"*1,0] for every r € {1,...,m—2} (Inequality (6)).
For every j,r € {1,...,m — 2}, U; ,(0) can be further bounded as follows:
Uir(0) 21— pr—pj+0- [(27 = 1) =& =7 (27 = 1)e¥" + )]
2l—pr—pj—9'€2j+2r—2'£2m+l

1— (242 —2) - &&" =0 /¥ _p. 2"

v

The first inequality follows from the upper bound (Inequality (5)) and the lower bound
(Inequality (6)) of p;. The second inequality follows from § < 1 and ¢ < z. The last
inequality follows from Inequality (5). On the other hand,

Ujpr(0) S 1=pr—pj+0- [(27 = D" = 2 (27 - )" = & 4 £¥)]
<1—pr—pj—0-e* 12

1—(2 427 —2)- &2 =0 e+ 4.2,

A

The first and last inequalities follow from Inequality (5) and (6). The second inequality follows
from 6 < 0,,_; < ¢2" ~1. There are two nice properties of the upper and lower bounds of
U; (0): (i) they are within O(¢2"*!) and (ii) they are both symmetric with respect to j and r.
(@) If 2/ + 2" > 2%, then either j or r must be at least i, which implies that 2/ + 2" > 2! + 2.
By Equation (2), 0 < 011 < ¢ 271 Thus 0 - ¢€2'*2" < ¢"*1. We notice that if either
jorris at least i, (2/ + 2" — 2) - ¢” is minimized when (j,r) = (i,1) or (1,i). Thus
Uj,r(Q) < Ui,1(9) +7- EZ’"+1.
(b) If 2/ + 2" < 27!, then i > 1 and thus 2/ + 2" < 2! — 2 (as both are even numbers when
i >1).Since 6 > 0; > 2171 . 2”27 we have 0 - ¢+ > 271 . @272 Ag ¢ < sz, the term
6 - ¥+? dominates (2/ +2" —2) - 2" and 1 — (2/ +2" = 2) - 2" — 0 - ¢¥’*?" is maximized
when 2/ + 2" is maximized conditioned on 2/ + 2" < 2i~! In other words, it is maximized
when (j,r) = (i —2,i = 3) or (i — 3,i — 2). Thus U;,(0) < Ui_3;-3(0) + 6 - £2"*1.
(c) If2/+2" € [271,27], then either j or risin {i—2,i—1,i}. Since |U; ,(0) - U, ;(0)| < 6-e2"*1,

forall jand rin {1,...,m—2}, we have U, () < maXje(;;1i-2}ref1,...m-—2} Uy (0) +6-
2M+1
eo

To complete the proof of Theorem 1, we need the following lemma adapted from [12].

LEMMA 16 (ADAPTED FROM LEMMA 8 IN [12]). Suppose M is a mechanism of option size £, where
the IC and IR constraints are violated by at most §, for some § > 0 and finite £ > 0. Then there exists
an IC, IR mechanism M’ of option size ¢ such that REv(M’) = (1 —n) - REv(M) — §/n — &, for any
n > 0. Moreover, if every experiment E in M is semi-informative, then M’ is a semi-informative

menu.

Proof of Lemma 16: Let M = ({E(0),t(0)})oe(0,1] and {(E},t;)}je[e] be the £ options in M. For
every j € [£], let tJ'. = (1-n)t; — 5. Let M’ be the menu with options {(E}, t})}je[[], i.e., the buyer
with type 0 purchase the experiment that maximizes Vy(E;) — t}. Clearly M” is IC and IR.

For any type 6 € [0,1], let j € [m] be the unique number such that E(0) = E;. Since the IC

constraints in M are violated by at most §, we know that

Vo(E;) —tj = Vo(Ex) — tx — 6, Vk € [¢]
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Now suppose that the buyer with type 6 purchases Eg+ in M’. Then
Vo(Ex) — (1= n)tiee 2 Vo(Ej) — (1 - n)t;
Choosing k to be k* in the first inequality and combining the two inequalities, we have that
é
Vo(Ep) — (1 — ry)tk* > Vo(Epr) — tpr — e+ ntj = tj -t < E
Hence, for the revenue we have REv(M’) > (1 -1n) - REv(M) - § - g. The second part of the

statement directly follows from the fact that M’ shares the same set of experiments with M. O

Proof of Theorem 1: We consider the construction present in Section 3. By Lemma 1 and Lemma 2,
1
Rev(M) > 5 -log(2) - (m —2) - FRev

We notice that FREV = £2”. According to the construction of the mechanism, M is of option size at
most m — 2. Thus by applying Lemma 16 with n = 1 and § = 7 - ¢2"*!, we have

om ) 10g(2)
18

Since OPT > SIREv, we further have OPT = Q(m) - FRev. O

SIREV > - -REV(M) —3-7- "1 > ¢ (m—2) —21e| = Q(m) - FRev

N | =

Proof of Lemma 3:Let Eq, . . ., E; be the experiments contained in mechanism M, and t(Ey), . . ., t(Ey)
be the prices. Let p; be the revenue that is generated by experiment E;, i.e., p; = Prg[M(0) =
E;] - t(E;). Then, Rev(M) = Xt pi = p; > w, for some j € [£]. Now, consider menu
M’ that contains only the fully informative experiment E* with price t(E;). We claim that for all
types 0 such that M(0) = E;, the agent with type 0 is willing to purchase the experiment E* at
price t(E;), as Vo(E*) = Vp(E;),V0 € [0, 1]. Thus, for all 8 such that M(0) = E;, Vo(E*) — t(E*) >
Vo(E;) — t(E;) = u(8), where the second inequality follows from M is IR. Hence, the revenue of
M’ is at least p; > w. a

Proof of Theorem 2: By Theorem 1, there exists some environment such that ¢ := %DEE = Q(m).
Suppose there is an optimal menu M?* that consists of ¢’ < ¢ different experiments. Then by
0Pt OTPT. Contradiction. Thus any optimal menu

applying Lemma 3 to M*, we have FREv > Oc/
consists of at least ¢ experiments. O

C MISSING DETAILS FROM SECTION 4

OBSERVATION 3. [8] For any semi-informative experiment E, q(E) = m11 - u11 — 7am - Uam Satisfies
the following: When q(E) < uy; — Uzm, E has Pattern 1 in Table 2, where 11 = (q(E) + uzm) /t11-
When q(E) > w11 — Uam, E has Pattern 2 in Table 2, where my, = (w11 — q(E)) /uzm.

OBSERVATION 4. [8] For any semi-informative experiment E, and any 0 € [0, 1], V;(E) = 0q(E) +
Upm + min{uyy — Uz, — q(E), 0} (recall that uy; > upp = 1).

C.1 Proof of Lemma 4

LEmMA 17. There exists a responsive-IC and IR mechanism M that satisfies both of the following
properties:
(1) Every experiment of M only recommends the fully informative actions. Formally, 7r;;(M(68)) = 0,
forall@ € ®,ie{1,2},2<j<m-1.
(2) REv(M) = OPT".
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Proor. Fix any responsive-IC and IR mechanism M, any experiment E that M offers, any action
¢ such that 2 < ¢ < m — 1, and any state i = 1,2. Suppose 7;¢(E) is not zero. We modify E to
get another experiment E’ by moving all the probability mass from 7;,(E) to m;; (E) and 7y, (E)
in a proper way, such that the modified mechanism generates the same revenue. Let M* be an
optimal responsive-IC and IR mechanism. We show how to modify its experiments E to obtain a
responsive-IC and IR menu that satisfies both properties in the statement.

For any 6 € [0,1], recall that V;(E) is the agent’s value for experiment E if she follows the
recommendation:

Va(B)=0 > mj(Eyuy+(1-0) > mp(E)uy
jelm] Jj€lm]

Let Up(E) = V,(E) — t(E) be her utility for E when following the recommendation. We only
consider moving the probability mass from 7, (E) to 721 (E) and 7y, (E). The case where we move
the probability mass of 71,(E) follows from a similar argument.

Without loss of generality, assume ¢ = 75, (E) > 0. We move ¢; mass from 7, (E) to 21 (E) and
&2 mass from 7y, (E) to 7y, (E). Both £ and &, which satisfy ¢, + ¢, = ¢, will be determined later.
Let E’ be the modified experiment, and we keep its price as t(E). For every 6, we show how to
choose ¢; and ¢, appropriately so that Ug(E’) = Up(E).

Up(E') = Up(E) = (1=0) > (m(E') = mp;(E))u;
j€lm]
= (1-0) - (e1(uz1 — uze) + £2(uzm — uzr))
Here the first equality follows from 71;(E") = m1;(E),Vj € [m]. Now choose ¢, &; such that
&1+ & = ¢ and & (ugp — uz1) = €3(usm — uye). In other words,

_ (Uzm — uap)e & = (U2 — un1)e
= =
(tuze — uz1) + (tpm — )’ (uze — 1) + (Uzm — Uae)

€1

Notice that since uy; < usy < ua, we have that ¢1,¢, > 0. With the choices of ¢, &5, we have
Ugp(E) = Up(E’), V0 € [0, 1]. Thus, the modified mechanism is still responsive-IC and IR and has
the same revenue. We modify M* by applying the above procedure to every experiment E offered
by M*, every £ € {2,..,m — 1} , and every state i = 1,2. Let M’ be the mechanism after the
modification. Then M’ is responsive-IC and IR and satisfies both properties in the statement. O

Due to Lemma 17, we can focus on responsive-IC and IR mechanisms that only recommend
fully informative actions. Let C, be the set of all such mechanisms. For ease of notation, we

1-
i 7[11). Note that V;(E) =

denote an experiment offered by the mechanism E =
1= 7om T2m

Ouyy - m11(E) + (1 = O)uzm - m2m (E).

Proof of Lemma 4: Let M be an arbitrary mechanism in C,. Let E be any experiment offered by M,
such that 711 < 1 and m, < 1. Without loss of generality, assume that (1 — m11)u11 < (1 — 72m) Uam.
The other case is similar. Let &g = 1 — ;1 and &, = ;‘4 - £1. By our assumption, & < 1 — mp,. We
modify experiment E and its price ¢(E) in the following way: Move probability mass & from 7y,
to 11, and move probability mass ¢, from m2; to 73, Denote E’ the modified experiment. Since
m11 + € = 1, we have
E' = 1 0 .
1—Tom — € Tom + &
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Consider the mechanism M where we replace E by E’ and let the price of experiment E’ be
t(E’) := t(E) + &2 - Uz, Formally, for every 0 such that M(0) = E, define M(Q) = E’ and the
payment t’(0) = t(0) + €2 - uzy,. For any other types, M offers the same experiment with the same
price as offered by M.

For any 0, we have that

V;(E’) - Vg*(E) = Ouyy - (111 (E") — m11(E)) + (1 = O)uzm - (m2m(E") — 7am (E))
=0e; - up + (1 - 0)eg - g = €2 - Upm.

Hence, we can immediately see that for every type 6, the agent’s utility for experiment E’ at price
t(E’")) is the same as the agent’s utility for experiment E at price t(E) Since M is responsive-IC

and IR, M is also responsive-IC and IR. Moreover, we have that REV(M) > Rev(M). By repeating
this procedure for all the experiments in the optimal mechanism M’ € C,, we can construct a
mechanism M* € C,, such that REv(M*) > Rev(M’). By Lemma 17, Rev(M’) = OPT". Thus
REv(M*) = OPT*. O
C.2 Proof of Lemma 5
We begin with necessity. For every 6, let E(9) be the experiment that corresponds to g(68) (Obser-
vation 3). For any two types 61, 6, € [0, 1], where 8, > 0;, we have
Vg, (E(61)) — t(61) >V, (E(02)) — t(62)
V (E(0,)) - t(0,) = V5, (E(8))) - £(8))
Adding up both inequalities obtains
V; (E(01)) + Vg, (E(6:)) = V. (E(6,)) + Vy, (E(8))) ®)
By Observation 4, for every 6,0" € [0, 1],
0 - q(@') + U, if q(el) < uUy1 — Uom
(0—1)-q(0') +ui1, if q(6") > w11 — uzm

If both q(6,) and q(6.) are at most u1; — uzm, Inequality (8) &= (6; — 02)(q(61) — q(62)) >
0 & q(61) < q(6). Similarly, when both q(6;) and ¢q(6,) are greater than u;; — uzm, we also
have q(61) < q(6,).

Without loss of generality, the only remaining case is when q(0;) < uy; — Uz, < q(61). Inequal-
ity (8) is equivalent to

Vo (E(6")) = {

(61 = 1)q(01) + u1r + 02 - q(02) + ugpm = 01 - q(02) + upp + (62 — 1) - q(61) + u1q
& (01 — 02)(q(61) — q(62)) >0,

which contradicts with 6; < 6,. Hence, q(61) > q(62) and ¢(0) is non-decreasing in 6.

For every 0 € [0,1], let U*(0) = V;(E(0)) — t(0) be the agent’s utility by reporting truthfully
and following the recommendation of the experiment. Let 6* = sup{6 : q(0) < uy; — uzy }. Assume
q(0%) < uyy — uzm.!®> When 0 € [0,0%], U*(0) = 0 - q(0) + uzm — t(0) is a quasilinear function, and

by Myerson’s theory [34], M is responsive-IC implies that U*(0) = U*(0) + /09 q(x)dx. Thus
6
£(0) = V4 (E(0)) = U™ () =0 - q(6) + uzm — U™ (0) — / q(x)dx ©)
0

13The other case follows from a similar argument, where we replace both intervals [0, 0*], (8%, 1] by [0, 6*), [6*,1].
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Similarly, for all 8 € (6%, 1], we have U*(0) = U*(1) — /91 q(x)dx. Hence

1
t10)=(0-1)-q0) +u;; —U(1) +/{9 q(x)dx (10)

According to Equation (9), when 6 = 0, £(0) = uy,, — U*(0) > 0. Since M is IR, U*(0) > upy.
Thus U*(0) = uyy,. Similarly, by Equation (10) we have U*(1) = uy;.
When the agent has type 6* and misreports to 8’ > 6*, responsive-IC implies that
1

Ve (E(0") = t(8") =(0" = 0") - q(0) + uy; - /0/ q(x)dx

.
<U*(0) = g + / g(x)dx
0

Let 6/ — 0*", ™ we have /01 q(x)dx > u1; — Uz Similarly, when the agent has type 6’ > 0* and
misreports to 6%, responsive-IC implies that

N
V2 (E(67) — 1(67) =(6" — 0°) - q(07) + o + /0 g(x)dx

1
<U*(0') = uny —/ q(x)dx
6/

Let 0/ — 6%, we have /01 q(x)dx < uyy; — uzm. Thus /01 q(x)dx = u1; — uzm. Now it’s easy to

verify that t(0) satisfies Equation (4). Thus for every 0, U*(6) = V,; (E(0)) —t(0) = uzm +f09 q(x)dx.
The third property directly follows from the fact that M is IR.

For sufficiency, suppose q satisfies all of the properties in the statement, construct the payment t
using Equation (4). Then by Observation 4, for every true type 0, misreporting to type 6’ induces
utility

,
VI(E0)) = 1(07) = (0 0') - q(0') + g + /O g(x)dx

Since q(6’) is non-decreasing, it is not hard to see that the utility is maximized when 6" = 6.
Thus the mechanism is responsive-IC. Moreover, the utility for reporting truthfully her type 6 is

Upm + /09 q(x)dx. Thus by property 3, the mechanism is IR.

C.3 Proof of Lemma 6

By Lemma 5, for any q that can be implemented with some responsive-IC and IR mechanism M,
the revenue of M can be written as follows:

1 1 0
REV(M) = /0 t(0)f(0)do = /0 (9 - q(0) + min{uy1 — uz, — q(0),0} —‘/0 q(x)dx) f(6)do

1 1 0
_ / (0£(0)q(8) + min{ (u1; — wam — g(6))£(0),0}1d0 — / / ¢(x)dxdF(6)

1 0 1 1
=/ [9f(9)q(9)+min{(un—uzm—q(e))f(G),O}]dG—F(@/ q(x)dX) +/ q(0)F(6)do
0 0 0 0

1
=/O [(0F(0) + F(0))q(0) + min{(u1y — tzm — q(0)) f(0), 0}]dO— (11 — tzm)

144 — b* means that a approaches b from the right.
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sup /0 [(01(6) + F(6))q(6) + min{(u1, — uzm — q(6))f(6),0}]d0

s.t. q(0) is non-decreasing in 6 € [0, 1]
q(0) > —uzm, q(1) < up

1
/ q(0)d0 = uy; — usm
0
0
Uzm +/ q(x)dx > u(9), V0 € [0, 1]
0

Fig. 6. The Optimization Problem with Explicit IR constraints

Thus the optimal mechanism M* € C, is captured by the optimization problem in Figure 6.
Notice that there is an IR constraint for every type 6 in Figure 6. To bound the size of the optimal
responsive-IC and IR mechanism, we propose an equivalent optimization problem that only contains
O(m) constraints. Recall that for every 8 € [0, 1], u(6) = maXge[m]{0 - w1+ (1-0) - uy }. For every
k e [m],let h(0) = 0 - uyme1—k + (1 = 0) - upmr1-k = 0 - tk + Ugms1-k, V0 € [0, 1] be the agent’s
value function when she has no additional information, and follows action m + 1 — k. Recall that
O = U1 m+1-k — Ugm+1—k 1S also the slope of the k-th piece (from the left) of the IR curve.

Given any feasible solution {q(0)}gc[o,1] of the program in Figure 6, the IR constraint at type 0
is equivalent to: uy,, + foe q(x)dx = hi(0),Vk € [m]. For every k € [m], let 6 := sup{6 € [0,1] :
q(0) < £ }. Consider the following function

0 0
s + / g(x)dx — b (0) = tgm + / qGOdx — 0 - b — t a1
0 0

By taking the derivative on 8, we can see that the above function is minimized at 6, as q(6) < &

forall 6 < O and q(6) > £ forall @ > 6. Thus the set of constraints {u2m + /09 q(x)dx > hi(0),V0 € [0, 1]}

is captured by a single constraint u2m+f09k q(x)dx > hi(6x). We notice that 6y = fol 1[g(x) < ]dx.
By the definition of hg, the constraint can be rewritten as

1
/0 () = &) - 1[g(x) < &]dx > Upmor—i — thzm (1)

A feasible q must satisfy that q(0) € [—uam, u11] and fol q(x)dx = uy1 —ugpm. Also & = —ug, by =
uy1. Thus, Inequality (11) is trivial when k = 1 or m. In our modified optimization problem, we only
include the constraints for2 < k < m — 1.

Proof of Lemma 6:

It suffices to show that: A solution q = {g(60)}geo,1] is feasible in the optimization problem in
Figure 6 if and only if it is feasible in the optimization problem in Figure 3.

We denote Q the optimization problem in Figure 6 and Q’ the optimization problem in Figure 3.
Suppose q is feasible in Q. For every k € [m], let 6, = sup{0 € [0,1] : q(0) < ¢ }. Then since
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O = /o [q(0) < & ]dx, we have

1 O
/ (q(x) — &) - L[q(x) < ]dx = / g(x)dx - Ot
0 0

> u(0r) — uzm — Ol 2 Upme1—k — Uam

Here the first inequality follows from the IR constraint of program Q at type 6%, and the second
inequality follows from the definition of the IR curve u(-). Thus q is feasible in Q.

For the other direction, suppose q is feasible for Q. For every k € [m], consider the following
function Hy : [0,1] — R, where H(0) := f09 q(x)dx — 0 - . Since q(6) is non-decreasing in 0,
Hy.(0) is minimized at 0 = 0 = sup{0 € [0,1] : q(0) < &}. We notice that the last constraint of
Q’ implies that Hx (6k) > g mr1-k — Uzm for all k € {2,3,..,m — 1}. It is not hard to verify that the
inequality also holds for k = 1 and k = m. When k = 1, the inequality is trivial when q(0) > —uy,.
If g(0) = —uyp, since £; = —uyy, and q(0) € [—ugm, u11], V0 € [0, 1], thus q(0) = —uzm, VO € [0, 61].
Thus H;(61) = 0 = ugy, — Ugm. When k = m, since 6,, = 1 and &, = uq1, Hyp (0) = 11 — Uom — g1 =
Uz1 — Uam-

Thus for every k € [m], 0 € [0, 1], we have

6
/ q(x)dx = 0 - b > Up my1-k — Uzm
0

Since u(0) = maxge(m|{0 - & + Uz m+1-k}, We have /Oe q(x)dx > u(0) — uzm. Thus q is feasible
for Q. O

Proof of Theorem 3: By Lemma 7, let M* be the optimal semi-informative, responsive-IC and
IR mechanism with option size at most 3m — 1. By Lemma 4, REv(M*) = OPT* > OPT. By
Lemma 3, there exists a menu M that contains only the fully informative experiment, such that
REV(M) > RF‘;’"(l/_vll*).Thus, FRev > 2L 0

C.4 Proof of Lemma 7

We first consider the case where D is a discrete distribution. For simplicity we assume that 0 €
Surp(D). Let Supp(D) = {0y,...,0n}, where 0 = 0; < 0, < ... < Oy < 1 and N is the size of the
support. For every i € N, denote f; the density of type 6;. For ease of notations, we denote Oxn41 = 1.
The optimization problem in Figure 3 w.r.t. the discrete distribution D is shown in Figure 7. 1> The
set of variables in the program is {g;};c[n]. Denote £ (D) (or  when D is clear from context) the
optimization problem in Figure 7.

Our goal is to turn the program # (D) into a collection of LPs, so that the highest optimum
among the collection of LPs correspond to the optimum of # (D). Each LP is parametrized by a
vector (i*,i = {iz,...,im-1}), and finds the optimal solution among all (¢;,...,qn)’s that satisfies
the following conditions:

(1) qi < uyy —ugy forall i < i* and q; > uyg — uyy, forall i > i,
(2) qi < fforalli < iy andq; > & foralli > ig for all k € {2,...,m — 1}. Recall that
e = U mr1-k — Uz, me1-k-

5For any solution {q; } ¢ [N], the problem in Figure 7 is clearly equivalent to the problem in Figure 3 where g(-) : [0,1] —
[—u2m, u11] is defined as q(0) = q;, Vi € [N],0 € [0, 0it1).
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N i
max Z [Qi : (91' fit+ (i1 = 0:) - ij +min {(u11 — upm — qi) - fi, 0}
i=1 7=

s.t. (1) qi < qis1s Vie [N -1]

(2) q1 > —uzm, gqn <un

N
(3 Z qi - (Oi1 — 0;) = u11 — Upm
=1

N
(4) > min{g; - 6,0} - (8501 — 0)) 2 Upmerk — tlom, Yk € {2,3,.,m—1}
i=1

Fig. 7. The Optimal Responsive-IC and IR Mechanism for Discrete Distribution D

The reason that we consider solutions that satisfy these conditions is that now the objective and
constraint (4) are linear. In particular, the objective becomes

N i N
Z%" 9i'fi+(9i+1—9i)'2ﬁ + Z(ull_uZm_qi)'ﬁ~
i=1 Jj=1 i=i+1

Constraint (4) becomes

ik
D2g5 =) - 01 = 0)) > Uy sk — Uz,
j=1

To further simplify the program, we introduce variables §; = g;+1 — ¢;, Vi € [N — 1], and replace
q; with q; + 2;11 G;j, Vi € [N]. The monotonicity constraint of # is thus captured by all §;’s being
non-negative. See Figure 8 for the LP we construct. In particular, constraint (1) corresponds to
constraint (2) of P; Constraint (2) corresponds to constraint (3) of . Constraints (3) and (4) follow
from the definition of i*. Constraints (5) and (6) follow from the definition of ix, and (7) corresponds
to constraint (4) of . In the LP in Figure 8, both i* and i = {ix }2<k<m-1 are fixed parameters. We
denote P’(D, i*, i) the LP with those parameters.

We first show in Lemma 18 that the LP has an optimal solution q = (q1, {¢i}ie[n-1]) such that
all but (3m — 1) §;’s are zero, for any discrete distribution D and any set of parameters (i*,1i). We
notice that it implies that the corresponding q = {g;};c[n] takes at most 3m — 1 different values,
which then implies that the mechanism contains at most 3m — 1 different options.

LEMMA 18. For any integer N and set of parameters (i*,i) where each parameter is in [N], if
P’(D, i*,1) is feasible, then there exists an optimal solution of P'(D, i*, 1), denoted as (g, {4 }ic[N-1])>
such that |{i € [N —=1] : §; > 0}| < 3m - 1.

Proor. The LP contains N variables (q; is unconstrained), 1 equality constraint, and 4+3(m—2) =
3m — 2 inequality constraints. We add slack variables to change the LP into the canonical form
max{c’x : Ax = b,x > 0}. In particular, we replace variable q; by two non-negative variables
q;,q; such that q; = g} — q. For each inequality constraints, we add one slack variable and make
the constraint an equality.

Now, we have a canonical form LP, with N + 3m — 1 variables, and 3m — 1 equality constraints.
Thus by the Fundamental Theorem of linear programming, if ’(D, i* i) is feasible, any basic
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max Z(qﬁZ%) (6if + (611 = 6) Zﬁ>+ Z(uu m—ql—ifm-ﬁ
Jj=1

i=i*+1
s.t. (1) q 2 u2m, Q1+ Z qj < u11

N i1
(2) Z(Ch + Z%) (01 — 0;) = ugy — U

i*—1

3) ¢ +Z% < U — Ugm
Jj=1

i

(4) Q1+ZQJ' = Uy — Uom

=1
ir—1
(5) G+ ). d) < tmerk — Uomer s Vk € {2,3,...,m—1}
j=1
ik
(6) q1+ Z 4j 2 U1 mei—k — Uz mei—k Vk e {2,3,....m— 1}
j=1
k Jj-1
(7) Z(Ch T ZC}r — ) - (041 —0) 2 Up i1k —Uzm, Yk €{2,3,....m—1}
Jj=1 r=1
Gi =0, Vie [N -1]

Fig. 8. The Linear Program with Parameters (i*, i)

feasible solution in the canonical-form LP has at most 3m — 1 non-zero entries. Since there must be
an optimal solution of P’(D, i*, 1) that correspond to a basic feasible solution, so it must have at
most 3m — 1 non-zero entries. O

Proof of Lemma 7: We first prove the case when D is a discrete distribution. Let OPT’ be the
maximum objective, over all parameters (i*, i), and all feasible solutions of P’(D, i*, ).

Cram 1. For any discrete distribution D = ({0;}ie(n], {fi}ie|n]), a solution q = {q;}ie[n) is feasi-
ble for (D) if and only if there exists parameters (i*,1) such that the solution q = (q1,{§i}ie|n-1])
is feasible for P’(D, i*,i). Here §; = qi+1 — qi, Vi € [N — 1]. Moreover, OPT = OPT".

ProOF. Suppose q is feasible for P (D). Let i* = max{i € [N] : q; < u11 — uym}. For every
ke{2...,m—1},letip = max{i € [N] : ¢; < & }. We verify that q satisfies all constraints of
P’(D, i* 1i). Constraints (1), (2) follow from constraints (2), (3) of P (D) accordingly. Constraints
(3)-(6) follow from the definition of i* and all i;’s. Constraint (7) follows from the definition of
i and (4) of P (D). Moreover, by the definition of i* and the fact that ¢; = q; + 2;11 gi,Vi € [N],
the objective of solution q in £ (D) is equal to the objective of solution ¢; and q in P’(D, i*, i).
Choosing q as the optimal solution for $ (D) implies that OPT* < OPT’.

On the other hand, suppose q is feasible for $’(D, i*,i) for some parameters (i, i). For every
i€{2...,N},defineq; =q; + Z;_:ll gi. We verify that q is feasible for (D). Constraint (1) holds
as all §;’s are non-negative; Constraints (2) and (3) follow from constraints (1) and (2) of £’ (D, i*, i)
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accordingly; Constraint (4) follows from constraints (5)-(7) of ’(D, i*,1). Similarly, according to
constraints (3) and (4) of P’(D, i*,1i) and the fact that q; = q; + Zj;ll g, Vi € [N], the objective of
solution q in P’(D, i*, i) is equivalent to the objective of solution q in £ (D). Thus by choosing q as
the optimal solution among all parameters (i*, i) and all feasible solutions of P’ (D, i*, i), we have
OPT’ < OPT*. Hence, OPT’ = OPT". ]

By Lemma 18 and the definition of OPT’, there exist a set of parameters (i*, i) as well as a feasible
solution q of P’(D,i*, i) such that: (i) the solution q achieves objective OPT’ in the program
P’(D,i*,1); (i) [{i € [N = 1] : §; > 0}| < 3m — 1. By Claim 1 and property (i), the corresponding q
is the optimal solution of P (D). By property (ii), there are at most 3m — 1 different values among
{qi}tiein)- Let M = {(qi, ti) }ie[n] € C, be the responsive-IC and IR mechanism that implements
q. According to Equation (4) and the fact that g; < g;41,Vi € [N — 1], t; = t; for all i, j such that
qi = q;j. Thus M has option size at most 3m — 1.

Next we prove the case for continuous distributions.

We consider a discretization of the continuous interval [0,1]. Let N > 2 be any integer and
£= % We consider the discretized space {0, ¢, 2¢, ..., (N — 1)e}. We denote by D@ the discretized
distribution of D, and {fi(N)}iE[N], {Fi(N)}iE[N] the pdf and cdf of DY), Formally, Fi(N) = F(i¢),
and %) = F(ie) - F((i - 1)¢), Vi € [N].

Denote S = {q : [0,1] — [—uzm,u11] : q(+) is non-decreasing}. For every N and every q € S,
denote hy(q) the objective of the program in Figure 7 under solution {g((i — 1)&) };e[n], With
respect to the distribution D). Formally,

N

(@ = ) [a(G = Do)+ (= 1e- £+ 2 FN) s min{ sy = wam - q((6 = D)) - £, 03

i=1

For every q € S, denote h(q) the objective of the program in Figure 3 under solution q, with
respect to the continuous distribution D, i.e.,

1
h(q) = / [(0£(6) + F(6))q(0) + min{(u1 — uzm — q(0))f(6),0}]d0
0
Cramm 2. hy(-) uniformly converges to h(-) on S, i.e., for every § > 0 there exists Ny € N such

that |hn(q) — h(q)| < 6,YN > Ny, q € S.

Proor. Fix any § > 0. Fix any q € S. Consider the term
N 1
AV @ =Y [ =1e) - (= ve- [V +e- V)| - / (0(0) + F(6))q(0)d0
i=1 0

N ie
=Z [q((i— De) - (ie - F(ie) = (i = e - F((i = 1)¢)) _/~1) (6f(0) + F(6))q(0)do

(i

Here the second equality follows from the definition of fi(N), Fl.(N). For every i € [N], since q(+)
is non-decreasing,

ie

/( (01(0) + F(0))q(0)do > q((i - 1)e) - (0F(6))

i-1)e

0=(i-1)e

=q((i—1)e) - (ie - F(ie) = (i = De - F((i = 1)¢))
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Thus AiN) (q) < 0. On the other hand, for every i € [N], similarly we have

/(m (6f(0) + F(6))q(8)dO < q(ie) - (ie - F(ie) — (i — 1)e - F((i —1)¢))

i-1)¢

Thus

N
AN (@) = 3 (q(i - 1)e) - q(ie)) - (ie - F(ie) - (i = e - F((i = 1))

> max (ie- F(ie) = (1= De- F(i=D0) - (4(0) ~q(1)
> —2uy; - max{ie- F(ie) — (i— 1)e- F((i — 1)¢)}
i€[N]

Here the last inequality follows from q(0) > —ug,; > —uq; and ¢(1) < us;. Since F is continuous
on the closed interval [0, 1], the function 6 - F(6) is continuous on [0, 1] and thus it is uniformly
continuous. Hence there exists N; € N such that max;c[n{ie - F(ie) — (i — 1)e- F((i - 1))} <
72 VN > Ni. Thus AN (q) > 4.

Now consider the other term

N 1
A?%@=§}mmwu—wm—¢a—moyﬁwhn—£Jmmwn—wm—amvwxmw
i=1

N i€
. {ﬁm'mm@«f—ﬂdﬁ}—[lnrmMﬁWLMfwmﬂ,

where G(0) = uy; — upm — q(6) € [—uzm, u11] is non-increasing on 6. For every i € [N], we denote

T; the i-th term in the sum. Let 6* = sup{6 € [0,1] : §(f) < 0} and i* = max{i € [N] : (i —1)e <
0* < ie}.

When i < i*, since §(-) is non-increasing and ﬁ(N) = F(ie) = F((i — 1)¢),

nzﬁw”ﬂa—n@—ma—n@-( f©)a0=0
i—-1)¢
T < (V- [q((i - 1e) - gie)]
When i > i*. Clearly T; = 0. When i = i*,
”
m4=ﬁ”-ﬂw—no—z')quwweswu¢W%
i*~1)e

where the inequality follows from the fact that |§(0)| < max{u, uzm} = u11, V0 € [0, 1] and that
F(6%) — F((i* = 1)e) < £™). Thus

-1

T

i=1

=1

DN (G- Do) - gGie)]

i=1

< (1g(( = D) = O)] + 2un) - max £

1AM ()] < + T <

+ 2uqg - figN)

< 4uy; - max fl.(N)
1

€[N]
Since F(+) is uniformly continuous on [0, 1], there exists N, € N such that max; fl.(N) = max; (F(ie)—
F((i - 1)¢)) < 52-.YN > Ny. Thus |A}Y (q)] < &.
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Combining everything together, for every N > Ny = max{Nj, N, }, for every q € S, we have
6 8
Ihx (@) = h(@)] = 14" (@) + 4, (@) < 5 +5 =5
Thus Ay () uniformly converges to h(-) on S. O

Back to the proof of Lemma 7. Denote P, the program in Figure 3 and OPT"* the supremum of
the objective over all feasible solutions of P,,;. We first argue that there exists a feasible solution
q* whose objective h(q*) equals to OPT".

Cramm 3. There exists a feasible solution q* to Pcont, whose objective h(q") equals to OPT".

Proor. Let {q}}scn, be a sequence of feasible solutions such that lim, ., h(q;) = OPT*. We
notice that for every ¢, the feasible solution q;(-) is a non-decreasing function mapping [0, 1] to
a bounded interval [~uyy, u11]. Thus {q;},cn, is a sequence of non-decreasing functions and it’s
uniformly-bounded. By Helly’s selection theorem (see for instance [2, 6]), there exists a subsequence
{q;, }ien. and a function q* : [0,1] — [~uzm, u11] such that {q; }; pointwisely converges to q".

For every 6 € [0,1] and q € [—uam, u11], define

G(0.q) = (6f(0) + F(0))g + min{(u11 — uzm — q)f(6),0} (12)
For every 6 € [0,1],i € N,, define g;(0) = G(0,q; (0)) and g(0) = G(0,q"(0)). Then since
G(6, q) is continuous on q for every 6, {g;}icn, pointwisely converges to g. Moreover, define
g(0) =us1 - (Of(0) +F(0) + f(0)) = 0,V0 € [0,1]. Then §(-) is integrable in [0, 1]. And for every i
and 6, since qZ(G) € [—ugm, u11] and uy; > ugm, we have |g;(0)| < g(0). Thus by the dominated
convergence theorem,

1 1 1
OPT = lim h(q;) = lim [ gu(@)d0 = [ (lim g(@)a0 = [ g(6rdo = h(q)
1—00 11— 0 0 11— 0

It remains to verify that q* is a feasible solution to Po,;. Since {qz }i is a sequence of feasible
solutions, all constraints in Pcon; hold for q; . For every inequality, we take the limit i — oo on both
sides. Constraints (1), (2) hold for q* since {q; }; pointwisely converges to q*. In order for constraints
(3) and (4) to hold for q*, it’s sufficient to argue that we can swap the limit and integral for both
inequalities. This is because for every i and 0, we have |q; (0)| < u1; and |(q;,(0) — &) - 1[q; (0) <
61 < |q; ()| + €| < 2ury (recall that €| = |urme1-k — Uzme1-k| < max{uir, uzm} = u1). Thus by
the dominated convergence theorem, constraints (3) and (4) both hold for q*. Thus q* is feasible
for Peont. m]

For every N > 2, denote OPTy the optimum of £ (D)), the program in Figure 7 with respect
to the distribution D@, By Lemma 18 and Claim 1, there exists a set of parameters (i*,i) and
a feasible solution (qiN), {QEN) Yie[n-1]) to P’(DW)i* i) such that: (i) the solution has objective
exactly OPTy;, and (i) [{i € [N—1] : §; > 0}| < 3m — 1. Foreveryi € {2,...,N},let ql.(N) = qiN) +
25;11 c};N). Define q(N) : [0, 1] = [—ugm, u11] as follows: q(N)(Q) = qu),Vi € [N],0 € [(i—1)g, i¢),
and ¢V (1) = q;\]N). By Claim 1, {g™ ((i - 1)e)}ie[n] is a feasible solution to program P(DWN),
Moreover, hy(q™Y)) = OPTy.

For every i € [N], by Claim 1, {qu) }ie[ny is a feasible solution to P (D). By the definition
of @™, it’s not hard to verify that ¢V is a feasible solution to .. By property (ii), Im(q) =
{q(8) : 0 € [0,1]}, the image of q(-), has size at most 3m — 1. Let n =3m — 1 and S’ C S be the
set of all feasible solutions q to $cons such that |[Im(q)| < n. We notice that there is a mapping
® from every q € S’ to a set of (2n — 1) real numbers & = ({6;}ic[n-1]> {gi}ie[n]) such that
q(0) = q;,Vi € [n],0 € [0;-1,0;) and q(1) = q,,. Here 8, = 0, 6,, = 1.
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Let 7 be the set of &’s that satisfy all of the following properties:

1H0<b <...<0,1<1.

(2) —Uym < q1 <...< dn < uq1.

(3) X (6 — 6im1) - ¢i = 11 — Uppm.

(4) 221 (0 = 0i-1) - (qi — &) - Lqi < b] = uzmer—k — uzm, Yk € {2,3,...,m — 1}.

Then it’s not hard to verify that ® is an 1-1 mapping from S’ to 7. Denote ®~! the inverse of
®. Moreover, since every constraint above is either equality or non-strict inequality among the
sum and product of numbers ({0;};c[n-1], {qi}ie[n]), thus T is a closed subset of R?"1 Thus 7 is
a compact space under the Lo,-norm. Therefore, the sequence {®(q))} 5 contains a subsequence
{CID(q(I‘]"))}gel\q+ that converges to some &’ € 7. Let q’ = ®1(¢) € S”.

CramM 4. limy_,o hN,(q(N’)) = h(q).

Proor. Fix any § > 0. Since both functions GF (0) and F(0) are continuous there exists some
n(d) € (o, 8n) such that |0F(0) — 0'F(8')| < and |F(0) — F(0")| < for any 6 and 0’
with |6 — 0’| < (5).

Since {®(qN?))},en, converges to ®(q’), then there exists £ such that for every £ > #,
12(qN))~®(q") || < 1(8). Denote D(qNV) = ({6} ien-11, {4} }icin)) and @(q") = ({0} }ien-11 {a}}ien)-
Let 6 = 6, = 0 and 6, = 0}, = 1. We are going to bound |h(q<N’)) — h(q’)|. We notice that

16n Uy 16n “U1p

n gf
h(q“”’)):Z[qf [ (6f(0) + F(0))d0 + (F(6Y) — F(6_))) - min{uy; — zm — g/, 0}

=" laf - (BFF(6) = 01 F(6L,)) + (F(6}) = F(6L_,)) - min{u; - tom — g, 0} ]
i=1
Similarly,
h(a') = > g} - (O/F(6)) = 0 F(6]_,)) + (F(0]) = F(6]_)) - min{us, = upm — g, 0}]
i=1

Since |6 — 0/ < n(8),Vi € [n— 1], then for every i € [n], [(8’F(6!) — 6 ,F(6_,)) — (6/F(6;) —
0;_F(0;_))| < 2+ 52—, and |(F(6}) —F(Gf D) — (F(0)) - F(0,_))| < 2.
Slnce [|@(qN)) — ®(q")||eo < 7(8) < 2, we have

Sn’

_ 5
16n-u11 :

. . o)
| min{uyy — ugm — qf, 0} — min{u; — upm — q;, 0}] < |CIf -qil < 3

Moreover, |g¢| < uy1, | min{us; — uzm — ¢4, 0}| < ugy and 0/F(6)) — 0/_,F(0]_,) € [0,1],F(6}) -
F(0;_,) € [0,1]. Using the inequality |ab — cd| < |a| - |b —d|+|d| - |a - c| for every a,b,c,d € R, we
have for every ¢ > #;,

1)

1)
_) < —
8n - uqq 8n 2

Ih(@™?) —h(q)l < D2+ (un -
i=1

Moreover, by Claim 2, there exists £ such that for every ¢ > £, |y, (qN)) —h(qND)| < g Thus
when ¢ > max{fs, &}, we have |hy, (@) ~h(q)] < h(q™)) ~h(q") | +Ihn, (q¥) ~h(q )] <
é. O

We prove h(q’) = OPT*. For every N, we construct a feasible solution of (DN)). For every
€ [N] letp(N) 1 /<l e d q*(6)d0 (see Claim 3 for the definition of q*). We verify that {pl )}lE (N]

is a feasible solution to P(D™)). Constraint (1) follows from ¢*(-) being non-decreasing. For
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constraint (2), since ¢*(+) is non-decreasing, pr) > % f q*(0)d0 = q*(0) = —ugp,. Similarly

p(N) < q*(1) < uy;. For constramt( we have

(N) Z /_ q*(0)do = ‘/01 q*(0)d0 = u11 — uzm

For constraint (4), for every k € {2,...,m—1}.Let Oy = sup{0 € [0,1] : g*(0) < £} and let i* be
the unique number such that (i* — 1)e < 0 < i*¢. Then pl.(N) < 4, Vi < i* and pi(N) > 6, Vi > i,
We have

i1

N ie
e- > min{p{" — g0} = > (/ q*(0)do — gek) +¢-min{p") - 4,0}
i=1 im1 \Y(

i-1)e

(i*-1)e
= / (q"(0) — &)dO + ¢ - mln{p(N) — 4,0}
’ (i*=1)¢ 0 (13)
> /0 (¢°(0) - £)d0 + / (q"(0) - £)d0

—1 5
1
- / (q°(6) ~ 611" (6) < £e]dB > Upmys—t. — tizm
0

The first inequality of Equation (13) is because: By the definition of 6, eff(q*(e) —£)do > 0.
Thus
Ok

(q"(0) - £)d0 > / (¢ (0) - £)d0

(i*-1)e

i*e

£- mm{p(N) - 4,0} > ¢- (p(N) — ) =/

*—1)e
The third equality of Equation (13) follows from the definition of 0. The last inequality follows from
that q* is a feasible solution to #.,,;. Thus {pl.(N) }iepn is a feasible solution to P(DN)). Define
PN ¢ [0,1] = [—uzm, un1] as follows: p™) (0) = p™), Vi € [N],0 € [(i - 1)e, ie), and p™N) (1) =
p](VN) Then hy (p™)) is exactly the objective of {pi(N) }ie[n] With respect to the program P (D).
By the optimality of ¢V, Ay (p™)) < hn(q'N)). Thus V£ € N, hy, (p™N?)) < hy, (qN).

We will argue that hy, (p™N*)) converges to OPT* as £ — oo. If this is true, then by taking the
limit on both sides of the above inequality, we have that OPT* < lim,_,« hy, (qN*)) = h(q’), where
the equality follows from Claim 4.

Since q*(-) is non-decreasing, for every i € [N] and 0 € [(i — 1)¢, ie), we have

P (0) —g" (0] = Ip™ — ¢ (0)] < g (ie) — ¢"((i — 1)e).

Thus if ¢*(+) is continuous at 8, then limy_e [p™ (6) — ¢*(8)| = 0. Moreover, since ¢*(+) is a
monotone function in a closed interval [0, 1], the set of non-continuous points has zero measure.
Thus limy_e p™N) (0) = g* () almost everywhere.

Similar to the proof of Claim 3, we have

1 1
Jim h(p™) = Jim [ (6.9 0)d0 = [ G(0.q°(6)d0 = hia)

where the definition of G is shown in Equation (12). Thus, by Claim 2, we have lim,_,. hn, (p(N’ )) =
lim,_, H(p™N?)) = h(q*) = OPT*. We have proved that h(q’) > OPT*. On the other hand, since
q' € 8, q is feasible solution to Pcopns. Thus h(q') < OPT*. Thus we have h(q") = OPT",
which implies that q’ is indeed an optimal solution to Pcon;. Let dD(q’) = ({0 }Yie[n-11- {9} }ie[n])-
Then q'(0) = q},Vi € [n],0 € [0;_,,0]) and q’(1) = gy, Since q’ is a feasible solution to Pcont,
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let M’ = {q(0),t(0)}pej01] € C, be the responsive-IC and IR mechanism that implements q’
(Lemma 5). To show that M’ contains at most n = 3m — 1 different options, it suffices to prove that
for every i € [n], t(0) is a constant in [0]_,, 0;). Suppose there exist 0,0 € [0]_,,0;), 0 # 6§’ such
that £(0) # t(0"). Without loss of generality, assume ¢(0) < t(6’). Then when the buyer has type
0’, misreporting 0 induces the same experiment, but a lower price. It contradicts with the fact that
M’ is responsive-IC. Thus M’ is an optimal responsive-IC, IR mechanism that contains at most
3m — 1 different options. We finish the proof.
O

D MISSING DETAILS FROM SECTION 4.2

In this section we will provide a proof of Theorem 4. We first provide a sufficient and necessary
condition under which selling complete information achieves the highest revenue among all
responsive-IC and IR mechanisms (Theorem 9). Note that the same condition also guarantees that
selling complete information is the optimal mechanism among all IC and IR mechanisms.

Since f is strictly positive on [0, 1], F(-) is strictly increasing. Denote F~!(-) the inverse of F.
Recall that for every 0 € [0,1], ¢~ (0) = 6f(0) + F(0) and ¢*(0) = (6 — 1)f(0) + F(0). Intuitively,
they can be viewed as the agent’s virtual values when q(6) < u11 — Uz, and when q(6) > uy1 — ugm
respectively. If either ¢~ or ¢™ is not monotonically non-decreasing, we iron the functions using the
generalized ironing procedure by Toikka [39], which is a generalization of the ironing procedure
by Myerson [34]. Denote ¢~ and ¢* the ironed virtual value functions of ¢~ and ¢* respectively.
See Appendix D.1 for formal definitions of the ironing procedure and the ironed interval.

THEOREM 9. Let M* be the menu that contains only the fully informative experiment with price
p > 0. Then M* achieves the maximum revenue among all responsive-IC and IR mechanisms if and
only if, there exist two multipliers n* and A* > 0 such that:

(u1—w2)tgm _(Uzm—Uzm-1)un
Ui —uiz+uzy > Uzmtuim-1—Uzm-1

(1) p < p, wherep = min{ } . Moreover, A* > 0 only when m = 3,

Uiz —uUp =up —Landp=p=1-—uy.

(2) Let 9{; = u% and 0},{ =1- ﬁ be the two points where the utility function of buying the fully
informative experiment, i.e., a linear function, intersects with the IR curve. For every 6 € [0, 9;;),
@ (0)—n"+A* < 0; Forevery0 e [QIL,, Qf), ¢~ (0) —n*+A* = 0and $*(0) —n* < 0; For every
0 € [6;,1],¢*(8) —n* > 0.

(3) 9[]; is not in the interior of any ironed interval of ¢~ (). And 9;,{ is not in the interior of any
ironed interval of ¢* ().

Here is a proof sketch of Theorem 9. We first prove an exact characterization of the optimal
responsive-IC and IR mechanism in Cj, i.e., the optimal solution q* = {q*(0) }¢¢[0,1] of the program
in Figure 3, by Lagrangian duality (Theorem 10). It is a generalization of the characterization
by Bergemann et al. [8] to m > 3 actions. We Lagrangify constraints (3) and (4) in the program.
q = {q(0) }oe[o,1] is an optimal solution iff there exist Lagrangian multipliers that satisfy the KKT
conditions. As a second step, we apply this characterization to q that corresponds to selling the
complete information. To simplify our characterization, we show that at most two of the Lagrangian
multipliers can be non-zero (in contrast to ®(m) non-zero multipliers as in Theorem 10), when the
solution q corresponds to a mechanism that only sells complete information. This is enabled by
showing that in order to be the optimal menu, the price of the complete information can not be too
high (Lemma 20).

We notice that if a fully informative menu achieves the maximum revenue among all responsive-
IC and IR mechanisms, then it must also achieve the maximum revenue among all IC and IR mech-
anisms. In the rest of this section, we focus on responsive-IC and IR mechanisms. By Lemma 4 and
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Observation 3, we only need to consider mechanisms where every experiment is semi-informative
(Table 2). Recall that C; is the set of responsive-IC, IR mechanisms that have this format. Throughout
this section, we use q = {g(6) }ge[o,1] to represent the experiments of the mechanism. Recall that
the optimal mechanism in C; is captured in the program in Figure 3.

In Appendix D.1, we come up with an exact characterization of the optimal responsive-IC and IR
mechanism M* € C;, in any environment with 2 states and m actions. In Appendix D.2, we apply
this result to achieve a sufficient condition under which the fully informative menu is optimal.

D.1 Characterization of the Optimal Responsive-IC and IR Mechanism

In this section, we are going to present our exact characterization of the optimal mechanism in C;,
i.e., the optimal solution q* = {q"(6)}gc[0,1] of the program in Figure 3. We Lagrangify Constraints
(3) and (4) in the program. Denote 1 and A = {A¢ }2<x<m-1 the Lagrangian multipliers for both sets
of constraints accordingly.

surplus function J@A [—um, u11] X [0, 1] — R as follows:
70 (q,0) =(0£(0) + F(0)) - g + £(0) - min{us; — s — g, 0}
m—1
+1- (U —uzm —q) + Z M ((q =) - 1[q < &] = tzmer—k + tizm)
k=2
Then the Lagrangian L(q, n, A) of the program in Figure 3 can be written as: L(q, n, 1) = /01 JA (q(6),8)de.
OBSERVATION 5. For any fixed 0 € [0, 1], all of the following functions are continuous, differentiable
in [—ugm, u11| except at finitely many points, and weakly concave in q (note that g,(q) is linear)
(1) 91(q.0) = (0f(0) + F(0)) - g + f(6) - min{uy; — uzm — g, 0}.
) gz}EQ) = Ui — Uam — ¢
3) ¢ (q) = (q— &) - 1[q < b] — Upmer—i + tUzm, VK € {2,3,..sm — 1}.
Thus for any Lagrangian multipliers (n, A > 0), the function J""" (g, 0) is continuous, differentiable

inq € [—ugm, u11] except at finitely many points, and weakly concave in q, for any fixed 0 € [0, 1].
Besides,

% .0) = 0f(0) + F(0), Yq € (—uzm, U1y — Uzm)
8q ’ (9 - 1)f(9) + F(G), Vq € (un — Uom» un)

are both continuous in 0 on [0, 1]. Thus except at q = —ugm, U113 — Uzm, U11, %Z/U(q, 0) exists and is
continuous in 0 on [0, 1].

Denote S = {q : [0,1] — [—uzm, u11] : q(-) is non-decreasing}. We notice that S is convex,
thus by Observation 5, the program in Figure 3 is a general convex programming problem. Strong
duality holds according to Theorem 8.3.1 and Theorem 8.4.1 of [33].

LemMA 19. [33] Let (n*, A*) € argmin,,,, maxqes L(q, 7, A) be the optimal Lagrangian multiplier.
Then a solution q" is optimal in the program in Figure 3 if and only if " € argmax . s L(q, 1", 1%).

Now we are ready to state the characterization of the optimal solution.

DEFINITION 7 (IRONING [34]). Given any differentiable function ¢ : [0,1] — R. Let F be any
continuous distribution on [0, 1], with density f(-). Define the ironed function ¢(-) as follows: For
everyr € [0,1], let H(r) := for o(F~1(x))dx and G(-) be the convex hull of H(-). '® Let g(-) be the

16G(+) is the convex hull of H(+) if G is the highest convex function such that G(8) < H(), V¥ € [0,1].
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derivative of G(+), V7 and $(0) := g(F(0)), V0 € [0,1]. For any open interval I C (0,1), we call I an
ironed interval of p(-) if G(F(0)) < H(F(0)),V0 € L.

DEFINITION 8. Let F(-) be the agent’s type distribution on [0, 1], with density f(-). For every
0 € [0,1], letp~(6) = 0f(0) + F(0) and p*(0) = (0 —1)f(6) + F(0) be the agent’s two virtual values
at type 0.18 Denote ¢~ (-) and ¢ (-) the ironed virtual value functions of ¢~ (-) and @*(-) respectively.
We say an open interval I C (0,1) an ironed interval of ¢~ (or ¢*) if/OF(B) ¢ (F(x))dx <
/OF(B) @~ (F(x)) dx (or fOF(g) ¢t (F1(x)) dx < fOF(e) ¢* (F1(x)) dx) forall 6 € L.

THEOREM 10. Suppose q° = {q*(0) }oe[o,1] is a feasible solution of the program in Figure 3. Then q*

is optimal if and only if, there exist multipliers n* and A* = {A,*c}ke{z,...,m—l} > 0, such that all of the
following properties are satisfied:

(1) ¢*(-) is non-decreasing,
m—1
g'(0) € argmax 167(0)-g +¢7(0)-q" —n"-q+ ) Mg ) -Llg <&l
q€[~uzmsu11] —
where g~ = min{q, u11 — uzm}, " = max{q — w11 + uzm, 0}, almost everywhere.

(2) ¢ and (n*, X*) satisfy the complementary slackness, i.e., for everyk € {2,3,...,m — 1},

1
A [./0 (q" () = &) - 1[q"(x) < Gldx = (Upmeri — tzm) | = 0

(3) q° satisfies the generalized pooling property (Definition 10): For any x € [—ugm, u11], define
q*f1 (x) =inf{0 € [0,1] : g*(0) = x}. Then q" satisfies the generalized pooling property if
(a) for every x € [—uzm, U11 — Uzm] and open interval I C (0, 1):

q*i1 (x) € I and I is an ironed interval for (1) = q*(-) is constant on I.
(b) for every x € (u11 — Uam, u11] and open interval I C (0,1):
q*_1 (x) € I and ] is an ironed interval for * () = q*(-) is constant on I.

Theorem 10 follows from the generalized ironing procedure by Toikka [39]. We first introduce
the necessary background.

General Virtual Surplus Function: Given any function J(+,-) : [a, b] X [0, 1] — R. We assume that
J satisfies: (i) For every fixed ¢ € [a, b], J(g, -) is continuously differentiable on (0, 1), and (ii) For
every fixed 6 € [0,1], J(-, ) is continuous on [a, b] and weakly concave. (iii) Except at finitely
many points q € [a, b], g—{l (g, 0) exists and is continuous in 8 on [0, 1]. We define the ironed virtual
surplus in Definition 9.

DEFINITION 9 (GENERALIZED IRONING PROCEDURE [39]). Given any virtual surplus function ],
for every r € [0,1], let h(q,r) = g—{l (q. F~(r)). By assumption (iii), it is well-defined on [a,b]
except at finitely many points. We extend h to the whole interval [a, b] by left-continuity. For every
g€ labl,re[0,1],letH(q,r) := for h(q, x)dx.'® For every q € [a,b], define G(q, ) := conv H(q, -)

7Since H(-) is differentiable, G(-), as the convex hull of H(-), is continuously differentiable on (0, 1). We extend g to [0,1]
by continuity.

18~ () is the virtual value when q(6) < u1; — tzm, and @* () is the virtual value when q(6) > w1 — uam.

19By assumption (iii) of J (-, -) and the continuity of F~(-), h(g, x) continuous in x and hence is integrable in x.
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as the convex hull of function H(q, -). Let g(q,r) := %(g, r), which is non-decreasing in r for every
q € [a, b]. ?° Define the ironed virtual surplus function J : [a,b] X [0,1] — R as follows:

- q
J(q,60) = J(0.6) + / 95, F(0))ds

DEFINITION 10. [39] Given q = {q(0)}ge[o,1]- For any x € [a, b], define g' (x) = inf{0 € [0, 1] :
q(0) = x}. Then q satisfies the generalized pooling property if for every x € [a, b] and open interval
Iclo1]:

g '(x) €I and G(x,0) < H(x,0),¥0 € I = q(-) is constant on I.

THEOREM 11. [39] Let S = {q: [0,1] — [a,b] : q(-) is non-decreasing} and S’ = {q : [0,1] —

[a,b]}. Then
sup { / J(q() e)de} - sup { / J(a(0). 0)d9}.

Moreover, q € S achieves the supremum offo1 J(q(0),0)d6 ifand only if: ] (q(0), 0) = SUPge[ab] J(q,0)
almost everywhere, and q satisfies the generalized pooling property.

Proof of Theorem 10: By Observation 5, for any collection of Lagrangian multipliers n, A > 0, the
virtual surplus function J4 (-, -) satisfies our assumptions. We apply the ironing procedure in
Definition 9 to J A (-, -):

oy " TE) -+ X a4 S -
hig.r) = d (q,Fl(r)):{w( (1) =1+ Ltk b 45 Ui~ Uzm

aq et (F ' (r)) —n+ Z;":Ll(q)ﬂ Ajs @ > Uy — Usm

Recall that & = Uy m41-k — Upm+1-k> Yk € [m]. Here k(q) is the unique number j € {1,...,m — 1}
such that ¢; < q¢ < ¢j,1 (let k(q) = 1 when q = ). For every q € [—ug;,, uy1] and r € [0,1],

Fom T edx+r (S a A - 1), a <=

H(g,r) = rh L x)dx =
(¢.1) /0 (g x)dx o |

For every fixed g € [—uzm, u11], to obtain G(q, -), we take the convex hull of H(g, -). Note that
r (Z k()41 Aj— 17) is a linear function on r, thus we are effectively only taking the convex hull of
the functions H(r) := /o ¢~ (F(x))dx and H*(r) := /Or ¢* (F~!(x))dx. Denote G~ (-) and G*(-)
the convex hull of H ~(-) and 2} *(-) accordingly. Then

G (r)+r- (Z;’Z{l(q)ﬂ Aj— 17), q < u11 — Uz,

G(gq,r) =14 ~
(¢.r) GY(r)+r- (

S N~ 77), q > u11 — Uzm

By definition of ¢, ¢* (Definition 8), we have

9(qr) = ¢ (F~ 1("))+Z] k(q)+l =1, q=<un—um
rEM) + X g i =1 4> un — o

NSince H(q, -) is differentiable on (0, 1) for every q € [a,b], G(q, ), as the convex hull of H(q, -), is continuously
differentiable on (0, 1) for every q € [a, b]. We extend g(q, -) to [0, 1] by continuity.
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The ironed virtual surplus JnA (¢.0) = 7™M (0,0) +qu g(s, F(0))ds. We notice that 7 (0, 0) =
= 272! Ate, and by definition of k(q),

q m—1 m—1 q m—1
/ Z Ajdszzl/lj-/ ]l[sst’j]ds:ZAj-min{[j,q}
O j=k(s)+1 =2 0 =
Thus we have
- q
J"0) = 1" 0.0+ [ gt F0)s
0
o7 @ q—n-q+ Z5 (g - 6) - 1lg < £, q < w1~ tom
¢7(0) - (u11 — tom) + ¢*(0)(q — ur1 + tgm) =1 - q + Z;(n;zl M(q—t) - 1[qg < &), q>un—usm
m—1
=57 (0) -+ ¢ (0) - q" —n-g+ Y A(g—t) - 1g < 4],
k=2

where ¢~ = min{q, u11 — Uam }, ¢* = max{q — us1 + uzm, 0}.

We first prove that the properties are necessary for q* to be optimal. Suppose q* is an optimal so-
lution. Let (%, A*) be the optimal Lagrangian multipliers. By Lemma 19, q* maximizes L(q, n*, A*) =
fol JA1) (q(8), 6)dO over q € S. By Theorem 11, J2) (¢*(6), ) = SUP g e [—utypmytans | T4 (g, 0)
almost everywhere, which is exactly the first property in the statement of Theorem 10, and q*
satisfies the generalized pooling property. Since q* is the optimal solution and (n*, A*) are the
optimal Lagrangian multipliers, the second property in the statement of Theorem 10 directly follows
from the KKT condition. Finally, we prove the last property. An important property of H(-,-) and
G(+,-) is that for any q < uy; — ugm, H(g,7) > G(q,r) iffﬁ‘(r) > 5‘(}”), and for any q > uy; — g,
iff H*(r) > G*(r). Therefore, q" satisfies the generalized pooling property is equivalent to the last
property in the statement.

Now we prove sufficiency. For any feasible solution q*, suppose there exist multipliers (n*, A* > 0)
that satisfy all three properties in the statement. We argue that q* is the optimal solution (and
(n*, A*) are the optimal Lagrangian multipliers) by verifying the KKT conditions. Firstly, both q*
and (n*, A*) are feasible primal and dual solutions. Secondly, by the first property of the statement,
JA) (g*(0),0) = SUP g e [yt ] JnA) (g, 0) almost everywhere. As argued above, the fact that

*

q" satisfies the third property implies that q* satisfies the generalized pooling property. Thus
by Theorem 11, q* maximizes L(q, n* A*) = fOIJ(’V’”*)(q(G),Q)dﬁ over q € S. The stationary
condition is satisfied. Thirdly, the second property of the statement implies that the complementary
slackness is satisfied. Thus by the KKT conditions, q* is the optimal solution. O

D.2 Optimality Conditions for Selling Complete Information

In this section, we characterize the conditions under which selling only the fully informative
experiment is optimal using Theorem 10. Clearly, any responsive-IC and IR mechanism that only
contains the fully informative experiment E* is determined by the price p > 0 of E*. And for every
type 0 € [0, 1], the agent selects E* if and only if Vy (E*) > u(0). Since Vp(E*) = Ouq1+(1—0)ugm—p
is linear in 6 and the IR curve is convex in 6, the agent selects E* when her type 6 is in some
closed interval [91%, 9{,{ ] (see Figure 9a or Figure 9b for an illustration of oL, 6;1 ).2! Clearly, the
mechanism is also IC, since the agent will always follow the recommendation when receiving
either no information or full information.

21\We assume that 9£ and 051 exist, otherwise the price is too high, and the mechanism has revenue 0.
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We first prove the following corollary of Lemma 5. It states that any k-piecewise-linear “utility
curve”, which always stays above the IR curve, can be implemented by a responsive-IC and IR
mechanism with k experiments.

CoROLLARY 3. Given any finite integer k > 2 and any continuous, piecewise linear function
h: [0,1] — Ry with k pieces. Suppose h(-) satisfies all of the following: (i) h(0) = ugm, h(1) = u11;
(ii) —ugm < 6 < ... < & < uyy, where for each i € [k], ¢; is the slope of the i-th piece of h;
(iii) h(8) > u(8),V0 € [0,1]. Then there exists a responsive-IC and IR mechanism M € C, with
k experiments, such that for every 0 € [0, 1], the agent’s utility at type 0, when she follows the
recommendation, is h(0).

Proor. We define the mechanism M = (q, t) as follows. Let 0 < 0; < 0, < ... < x_; < 1 be the
k — 1 kinks of h. Denote 6, = 0, 0x = 1. For every 0 € [0, 1), define q(0) = ¢;, where i € [k] is the
unique number such that 0 € [0;_1, 6;). Also define g(1) = ¢.

We will verify that q satisfies all the requirements of Lemma 5. By property (ii), we have that
q(0) € [—uzm, u11] is non-decreasing in 6. Moreover, we notice that ¢(0) is the right derivative
of h(f) at every 0 € [0,1). Since h(0) = uy,, and h is continuous at § = 1, we have h(0) =

Upm + /Og q(x)dx, V0 € [0,1]. Taking 6 = 1, we have /01 q(x)dx = h(1) — ugm = U171 — Uz At last,
by property (iii) we have h(0) = ugp, + foe q(x)dx > u(0),v0 € [0,1].

Thus by Lemma 5, there exists a payment rule t such that M is a responsive-IC and IR mechanism,
and t satisfies Equation (4). By Observation 4, with such payment, the agent’s utility at every type

0, when he follows the recommendation, is uy,, + /00 q(x)dx = h(0). Since q(0) takes k different
values, the mechanism contains k experiments. O

To obtain a simplified characterization, an important step is the following observation: If some
fully informative menu with price p is the optimal menu, then both 9{; and 95 have to stay in
the first and last piece of the IR curve accordingly (see Figure 9a). To see the reason, consider a
curve h(-) (a piecewise linear function) that is the maximum of the utility function of buying the
fully informative experiment at price p and the IR curve. In other words, h(-) coincides with the
utility function of buying the fully informative experiment on interval [QIL,, 9{,1 ], and coincides with
the IR curve everywhere else. If GIL, and 6;1 do not lie in the first and last piece of the IR curve
respectively, there are pieces of the curve h(-) that belong to the i-th piece of the IR curve for
some 2 < i < m — 1 (the blue line in Figure 9b). We argue that we can change the mechanism to
offer another experiment (based on this piece of the IR curve), so that (i) the mechanism is still
responsive-IC and IR, and (ii) the revenue of the mechanism strictly increases.This contradicts with
the optimality of selling only the fully informative experiment. See Figure 9b for an illustration
and Lemma 20 for a formal statement.

LeEmMA 20. Consider the fully informative experiment E* with any price p > 0. Assume there is
some 0 such that Vy(E*) > u(6). Let 0L, 9{,1 0 < GZL, < 95 < 1) be the two 0’s such that Vo (E*) = u(09).
Let 01 and 0, be the first and last kink of the IR curve.’? Suppose selling the full information at price p
achieves the optimal revenue among all responsive-IC and IR mechanisms. Then GIL, < 0y and 9;1 > 0,
(see Figure 9a).

Proor. Let M be the menu that only contains the fully informative experiment E* with price p.
We prove by contradiction. Without loss of generality, assume that 91% > 6. Let L: [0,1] — Rbe
the agent’s utility function for the experiment E*, i.e., L(0) = Vo(E*) —p = 6 - us1 + (1 — O)ugm — p.
Consider the function h : [0,1] — R such that A(0) = max{u(8),L(0)},V6 € [0,1]. One can

%Formally, 0; satisfies uzp, (1 — 01) = u1,m-101 + (1 — 01)uz m-1, and 0, satisfies w1102 = u1202 + (1 — 02)u;.
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easily verify that h is a piecewise linear function that satisfies the requirement of Corollary 3. By
Corollary 3, there exists a responsive-IC and IR mechanism M’ = (q’,t") € C,, such that for every
0 € [0, 1], the agent’s utility at type 0, when she follows the recommendation, is A(6). When the
agent’s type 0 € [0{;, 011,1 ], she purchases experiment E* at price p in M’, and thus the mechanism
collects total revenue REV(M) at interval [6L, Gf ]. It suffices to show that M’ collects strictly
positive revenue from types in [0, 0{;) U (9;1 , 1], which contradicts with the optimality of M.
Since 0; < 9}%, there is at least one (linear) piece of the piecewise linear function A(-) is in [0, GIL, ].
Consider any such piece. The whole piece is also on the IR curve. Let (6, u(60")) and (6”,u(8"")) be
the two endpoints of this piece (8" < 6”’) and ¢ be the slope. Then —usm, < £ < u11 — tzm. We design
an experiment E offered by M’, so that all types on interval (8’, 0”’) purchase this experiment.
Denote g the variable corresponds to the experiment E. Then by Observation 4, ¢ = £ < uy1 — tgm.
Thus when 6 € (0,0”), Vo(E) = q - 0 + uzm,. Moreover, notice that (i) u(0’) > uzm — uzm,0’, the
RHS is agent’s payoff for always choosing action m without receiving any experiment, and (ii)

h(0) =¢-(0-0") +u(6'),Y0 € [0’,6"]. Hence
t'(0) = Vo(E) = h(0) = tigm + € - 0" —u(0") = (upm + £)0" > 0,Y0 € (6,0”)

Therefore, REv(M’) > REV(M) + (F(0”) — F(8)) - (uzm + £)8’" > REV(M), as F(-) is strictly
increasing, contradicting with the optimality of M. Hence, we must have 6% < 6, and 6 > 6,. O

u(0)
u(6)

u(9)

(1 u11)

(1L u1q)
__________ (0, uzm)f- 7

0, upp)f---""" B P

9;2 6, 8, Sg’ . . éz 95

(b) The scenario when the fully in-
(a) The fully informative experi- formative experiment is not opti- (c) In the proof of Theorem 9: 951 >
ment where 9;5 < 6; and 0{,1 > 6, mal 02 when £y, = u11 — ugm

Fig. 9. lllustrations of notations and the utility curve of full information

To prove Theorem 9, we also need the following lemma for the ironed virtual value, which may
be of independent interest.

LemMA 21. (Adapted from Lemma 4.11 in [39]) Let ¢y, 2 be any pair of differentiable real-valued
functions on [0, 1]. Let F be any continuous distribution on [0, 1]. Denote (1, ¢, the ironed functions of
@1, @2 respectively, with respect to the distribution F (Definition 7). Suppose ¢1(0) > ¢2(0),V6 € [0, 1].
Then ¢1(0) > ¢2(6),V0 € [0,1].

ProoF. Let f be the pdf of F. As shown in Definition 7, define H;(r) = /Or @1 (F1(x))dx,Vr €
[0,1], G;(+) as the convex hull of H(+), and g;(-) as the (extended) derivative of G;(-) (see Foot-
note 17). Define Hj, G, g, similarly for .

For every 0 € [0, 1], $1(0) = g1(F(0)), $2(0) = g2(F(0)). Thus to show @;(0) > ¢2(0), it suffices
to prove that g;(r) > go(r), Vr € [0, 1]. We prove the claim by contradiction. Suppose there exists
ro € [0, 1] such that g;(ry) < g2(ro). We notice that

H(r) = Hi(r) — Hy(r) =/0 [01(F7(x)) = @2(F7 (x))] dx,
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which is non-decreasing in r, since ¢, (F~1(x)) > @2 (F1(x)), Vx € [0,1]. Let p = G1(ry) — G2 (rp).
To reach a contradiction, we show that there exists r; < ry such that H(r;) > p and there exists
ry > ro such that H(r;) < p, which contradicts with the fact that # is non-decreasing.

Let L; : [0,1] — R (or L) be the unique linear function tangent to G; (or Gy) at ry. Then since
G (or Gy) is the convex hull of H; (or H,), we have for every r € [0,1], L1(r) < G;(r) < Hy(r) and
Lz(r) < Gg(r) < Hg(r).

The existence of r1: If Gz(ry) = Hy(ry), then Hy(ry) — Ha(rg) = G1(r9) — G2(r9) = p. By choosing
r1 = ro we have H(r1) > p. Now assume Gz(ry) < Hy(ry). Then ry is in the interior of some ironed
interval I of ¢,. Let r; < ry be the left endpoint of the interval I. Then Hy(r;) = Ly(r1). We have

H(r1) = Hi(r1) — Hy(r1) = L1(r1) — La(r1) > Li(r0) — La(ro) = G1(ro) — Ga(ro) = p

Here the first inequality follows from H;(ry) > Ly(r;) and Hy(r;) = Ly(ry). The second inequality
follows from the fact that d(Li(r) — Lo(r))/dr = G{(ro) — G,(ro) = g1(ro) — g2(rg) < 0. The
second-last equality follows from the fact that L; (or L;) meets G; (or Gy) at ro.

The existence of rp: The proof follows from a similar argument as ry. If G1(ry) = Hi(ro), then
G{(ro) = H{(r0) = g1(ry). We notice that

d(Hy(r) — Ly(r))

i = g1(ro) — g2(rg) < 0.

r=ro
Thus there exists some r, > rg such that H{(r) —g,(ro) < 0forallr € [ro, 2] due to the continuity
of H{(-), which implies that

p = Gi(ro) — Ga(ro) = Hy(ro) — L2(ro) > Hi(r2) — Ly(r2) 2 Hy(r2) — Ha(r2) = H(rz)

Now assume G;(rg) < Hj(ro). Then rq is in the interior of some ironed interval I of ¢;. Let
rs > ro be the right endpoint of the interval I. Then H;(r;) = Ly(r;). We have

H(rz) = Hi(ry) = Hy(r2) < Li(r2) — Lo(r2) < Li(r0) = La(ro) = G1(ro) — Ga(ro) = p

Here the first inequality follows from H;(r;) = Li(r;) and Hy(r2) > Ly(r2). The second inequality
follows from the fact that d(L;(r) — L,(r))/dr < 0 and r, > ry. The second-last equality follows
from the fact that L; (or L;) meets G; (or G) at ry.

The existence of r; and r, contradicts with the fact that H is non-decreasing. Thus ¢;(6) >
2(0),V0 € [0,1]. O

Proof of Theorem 9: Let L™ be the affine utility function for purchasing the fully informative experi-

ment at price p,i.e. L*(0) = u110+uzp(1—0) —p = (411 —uzm) 0 +uzm — p. Denote 9;; and 951 the two

points where L* intersects with the IR curve. For every k € [m], let Ly be the affine function for the

k-th piece of the IR curve, i.e., Ly (0) = 0 - ug my1-k + (1 = 0) - ugms1-k = 0 - b + g me1-k, YO € [0, 1].
Let q* be the experiments purchased by the agent in M*, i.e.,

—Upm, 0 € [0,65)
q(0) = Jun —usm, 6 € [65,6]) (14)
U1, 0 e [9;1, 1]

Necessary condition. We first prove that the properties in the statement are necessary. Suppose
M* is the optimal responsive-IC and IR mechanism, then q* is the optimal solution to the program
in Figure 3. We are going to verify each property of the statement by applying Theorem 10 to the
solution q*.
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Property 1. Recall that 0y, 0, are the first and last kink of the IR curve. By Footnote 22,

5

Uom — U2,m-1 Uz2
0, 0= —————
U,m-1+ Uzm — U2, m-1 Uy + Uz — Up2

By Lemma 20, 0% < 6; and 62 > 0,. Thus GIE, 91’,{ are the points where L* intersects with the first
and last piece of the IR curve, respectively. We have L*(@II;) = ulmHIL, + U, (1 — QIL,) = QIL, = u%.
Similarly, L*(Qf) = uu@f +uy(1— 05) =3 9;1 =1- ﬁ. Thus QIL, < 0y and 9},{ > 0, are equivalent
to

(w11 — ur2)uom  (Uzm — uz,m—l)ull }
, .
Uyp — Uiz + Uz Ugm + UL m-1 — U2 m-1

pSﬁ=min{

.....

0 and 7 that satisfy all properties of Theorem 10. We choose n* = 5 and A* = A,. For ev-
ery k € {2,3,...,m — 1}, let 6, = sup{0 € [0,1] : ¢"(0) < f}. Then since —upm < & =
Ut m+1-k — Uzm+1-k < 11, we have 0; = GILJ iff & < w11 — upm, and 0] = 91’,{ otherwise. Notice that

1
Ag = / (" () — ) - 1[q" (x) < £e]dx — (st o1 — tzm)
0 (15)
0%
= [ @0~ 8k~ sk b = 1 (6)) = 1u(6))

L
Here the last inequality is because: uy,;, + foe" q (x)dx = ugm(1 — GIE) = Uy, (1 — u%) = L*(GIL,)

H
and ugy, + /06" g (x)dx = L*(%) + (Gf - 915) (w1 — ugm) = L*(@f).
First consider the case when m = 3. We argue that if £, # u;; — ug,,, then A; = 0. We only prove
the case when ¢, < u;; — uz,;. The other case is similar. Suppose A; > 0, the ironed virtual surplus
function j (7.2 can be written as follows (denote a = uy; — usp):

]N(””D (¢.0) = ¢~ (0) - min{q, a} + $*(0) - max{q — @, 0} — nq + A5 - min{q — £, 0}

For every fixed 0, the function JA (. 0) is continuous and 3-piecewise-linear. Thus at least one

of the four values —uyp, f2, U117 — Uzm, and uy; must be in arg max j(’M) (gq,0). We also

qE[~uam,u11]
have

¢ (O)—n+hy q<b
(q:0) =1¢7(6) —n, q€ (ba)
¢*(6) —n, q>a
Define ¢1(6) = ¢7(0) —n + Az, $2(0) = $~(6) — np and ¢3(0) = ¢*(0) — 5. By Definition 8,
0~ (0) — 9™ (0) = f(0) > 0,¥0 € [0,1]. Thus by Lemma 21, 3~(6) > ¢*(6),v0 € [0,1]. Thus
$1(0) > ¢2(0) = ¢3(0),V0 € [0,1]. We notice that —u,,, € argmaxqj(”’x)(q, 0) iff 9:1(0) < 0.
Since ¢*(0) = —uym, V0 € [0, 9{;) and q* is a pointwise maximizer of J ("% (g, §) almost everywhere
(the first property of Theorem 10), we have ¢1(0) < 0. Since A; > 0, ¢2(0) < 0. Similarly, since
Uy € arg maxqj(”””(q, 0) iff $3(0) > 0, we have ¢3(1) > 0. Thus ¢,(1) > 0. By Footnote 17, ¢, is
a continuous function on [0, 1]. Let ¢ = A;/2 > 0, then there exists an opened interval I such that
$2(0) € (—¢,0),V0 € I. At interval I, ¢1(0) = ¢2(0) + A2 > 0, and ¢3(0) < ¢2(6) < 0. This implies
that for every 6 € I, arg max, J@ (g, 0) contains a single value ¢ = £,, which contradicts with the

afnd)
9q

fact that q* is a pointwise maximizer of ] (g, 6) almost everywhere.
Thus, if A* > 0, then £, = uy; — uy, = w1y — upy = U1 — 1. Moreover, by the second property
of Theorem 10, we have

0=A; = L*(Gf) —Lz(ef) Sl — P —Upm-1 = p=1—up
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Now consider the case when m > 4. We prove that A = 0 and thus A* = A, = 0. For every
k € {3,...,m— 2}, since O}L, < 6, and 011,1 > 0,, we have L*(GIE) > LZ(GIIJ) > Lk(%) and L*(Gf) >
Lm_l(ﬁg) > Lk(Q{,{).For every k € {3,...,m—2}, A > 0. By the second property of Theorem 10, we
have Ay = 0. For k = 2,if £ > uy; — uypm, then 6 = Qf. We thus have L*(Qf) > Lm,l(efj) > LZ(GII){),
since m > 4. By the second property of Theorem 10, A; = 0. Similarly, if £,—1 < w11 — ugm,
Am—1 = 0. If £,_1 = Uy — Uz, we have 9;1 > 0, (see Figure 9c for a proof by graph). We have

L*(Qf) = Lm(GIIf) > Lm,l(Qf), which implies that A,,_; = 0. Since Ay = 0,Vk € {3,...,m — 2},
then J() (g, 0) can be written as
Jjod (q,0) = ¢~ (0) -min{q, a}+¢* (0) -max{q—a, 0} —nq+A;-min{q—£, 0} +Ap_; -min{g—4£,_1,0}

Now suppose A; > 0 and Ax_; > 0. The case when A; > 0 = A4_; and Ax_; > 0 = A; follows from
a similar argument where either the term A, - min{q — &, 0} or A,;,—; - min{q — £,—1, 0} is redundant.
Since Ay > 0 and Ax_; > 0, we have £, < uy; — gy < fy_1. Thus

(,5_(9) -n +/12 +Am,1, q < fz

aj<w>( o) = G (0) =+ Aoy, g€ (La)
og " G (0) =+ At q€ (& bm1)
o (0) —n, q > tna

Similar to the proof for the m = 3 case, since A; > 0, we can find an opened interval I such that
for every 0 € I, arg max q J (n.4) (g, 0) contains a single value 0 = £, which contradicts with the fact
that q* is a pointwise maximizer of ] (g, §) almost everywhere.? Thus we have A; = 0,Vk €
{2,...,m—1}.

Property 2. In property 1, we show that when m = 3, either A, = 0 or £, = uy; — upy,. When m > 4,
A = 0. Recall that " = 5 and A* = A;. In any of the scenarios, the ironed virtual surplus function
](’M) can be expressed as follows (recall that & = uy; — ugm):

J"(q,60) = 3(6) - min{g, a} + §*(6) - max{g — &, 0} =" - g+ A" (g~ @) - 1[q < a]

_ @O ="+ A7) g - Na, g<a (16)
(@ (O)—n") - q+(¢7(0) - ¢7(0) @, qg>a

For every fixed 0, the function j (n.4) (+, 0) is continuous and 2-piecewise-linear. Thus at least one of
the three values —uyp, t11 — Uzm, and uy; must be in arg MAaXge [y, ;] ]N(””D (g, 0). We study the
set arg max, JM (g,0) by a case analysis.
® 7 (6)—n"+A* < 0:Since A* < 0,9*(0)—n* < ¢~ (6)—n* < 0.Thus —uy, € arg maxqj(”’l)(q, 0).
On the other hand, —u;, € arg max, Jh (g, ) clearly implies that ¢~ (0) — 5" + A* < 0.
e $=(0) —n*+ 1" > 0and ¢* () — n* < 0:Now q = uy; — uzp, maximizes | " (g, §), and vice
versa.
e 97(0)—n* > 0: Then ¢~ (0) —n* +A* = ¢*(0) —n* > 0. Thus uy; € arg maxqj(”’A>(q, 0). On
the other hand, uy; € arg max, J@N (g, 0) clearly implies that $*(8) — n* > 0.
Thus by the first property of Theorem 10, q* is a pointwise maximizer of the ironed virtual surplus
function almost everywhere. Thus property 2 holds almost everywhere. Moreover, if there exists
some 0 € [0, 1] such that ¢"(6) ¢ arg max, J@ (g, ). Suppose g*(6y) = —ugm. Then according

BIf 33 = 0 and A;p—; > 0, we reach a contradiction by finding an opened interval I such that for every 6 € I,
arg maxq]("’ﬂ) (q, 6) contains a single value 0 = £,,,_;.
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to the above case analysis, ¢~ (6y) — " + A* > 0. Since ¢~ (+) is continuous at 6y, there exists a
neighborhood I of 0 such that ¢~ (6y) —n*+A* > 0,V € 1.2* Thus —uy,, ¢ arg max, Jh (q,0),v0 €
I, contradicting with the fact that q* is a pointwise maximizer of the ironed virtual surplus function
almost everywhere. Similarly, we reach a contradition when q*(6y) = u1; — uzm or uy;. Hence, q*
is a pointwise maximizer of J(») everywhere on [0, 1], which implies that property 2 holds for
every 0 € [0,1].

Property 3. q* only takes three different values —uy,, 11 — Uzm, 1. Moreover, q*_1 (—usm) =0,
q’f1 (u11 — upm) = 6%, q’f1 (u11) = Gf. Thus by the third property of Theorem 10, q* satisfies the
generalized pooling property iff 0{; is not in the interior of any ironed interval of ¢~ (), and 9;1 )
is not in the interior of any ironed interval of ¢*.

Sufficient Condition. Next, we prove that the properties in the statement are sufficient. Given
a menu M that contains only the fully informative experiment with with price p > 0. Suppose
there exist multiplier n* and A* > 0 that satisfies all properties in the statement. We prove that q*
(defined in Equation (14)) is an optimal solution to the program in Figure 3.

Firstly, since p < p, due to the analysis for Property 1, we know that 0% < 6; and 62 > 6,. Thus
HIL, < 9;1 and q* is a feasible solution of the program, which induces strictly positive revenue.

To apply Theorem 10, we choose multipliers " and A" = {4, }xe(z...m-1} > 0, and prove that
all three properties in the statement of Theorem 10 are satisfied for q* and (5, A’), which implies
that q* is an optimal solution. Let n” = n*. When m = 3, let A; = A*. When m > 4, let 4; = 0 for all
ke{2,....m—1}.

For the first property of Theorem 10, we notice that the ironed virtual surplus function -4 (g, 6)
satisfies Equation (16). As argued earlier in the case analysis in property 2, when property 2 of The-
orem 9 is satisfied, q* is a pointwise maximizer of J(7**)(q, §). The first property of Theorem 10 is
satisfied.

For the second property of Theorem 10, according to the choice of A’, we only have to argue
that the equality holds when m = 3 and A* > 0. For other scenarios, the property trivially holds
since the corresponding multiplier A; is 0. Thus by property 1 (in the statement of Theorem 9),
Uiz — uzz = Uy — 1and p = 1 — up,. We follow the notation 6; and A as used for proving property
1 is necessary. By Equation (15),

Ag = L*(GS) —LZ(GQ‘) = L*(HII;I) —Lz(ef) = U3 —p — U2 = 0, (U;B =lasm= 3)

Thus the second property of Theorem 10 is satisfied. As argued above, q* satisfies the generalized
pooling property iff 9{; is not in the interior of any ironed interval of ¢~, and 9{,{ is not in the
interior of any ironed interval of ¢*. Thus the third property of Theorem 10 is also satisfied. Hence,
q" and (n’, A’) satisfy all properties in Theorem 10, which implies that q* is an optimal solution. O

Proof of Theorem 4: We are going to show that there exist p > 0 and multipliers n*, A* > 0 that
satisfy all properties of Theorem 9. Then by Theorem 9, selling the complete information at price p
is the optimal menu.

We notice that in Definition 7, if ¢(+) is non-decreasing, H(-) is a convex function. Thus G(r) =
H(r),¥r € [0,1] and ¢(0) = ¢(0),¥0 € [0,1]. Since ¢~ (-) and ¢*(-) are both monotonically
non-decreasing, we have ¢~ (0) = ¢~ (0) and ¢*(0) = ¢*(0),V6 € [0, 1].

Define function W : [0,1] — Ras: W(p) = ¢~ (L) - p*(1 - %) Then by Definition 8, we

Ui

have W(0) = ¢~ (0) — ¢*(1) = -1. If(p’(u%) >0 (1- %), W (p) = 0. Since both ¢~ and ¢* are

2When 6 = 0 (or 1), $~(+) is right-continuous (or left-continuous) at 8. We choose I to be [0, 8) or (1 — 8, 1] for some
sufficiently small § > 0.
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continuous, W is also continuous. Thus there exists py € (0, p] such that W(p,) = 0. Consider
p = po and multipliers n* = ¢ (51"1) =¢o*(1- p"m ), A* = 0. Property 1 of Theorem 9 holds since

po < pand A* = 0. Property 3 of Theorem 9 holds since neither ¢~ (+) nor ¢*(+) requires ironing. For
property 2 of Theorem 9, since GL = PO and QH =1- 2> by our choice of n*, ¢ ( ,)—n" =0and

(p+(9£10 ) —n* = 0. Property 2 then follows from the fact that ¢~ (+) and @™ (-) are both monotonically
non-decreasing.
O

For several standard distributions, ¢~ (-) and ¢*(-) are both monotonically non-decreasing. The
following examples are some applications of Theorem 4.

ExaMmpLE 1 (UNTFORM DISTRIBUTION). Consider the uniform distribution U[0, 1]. Then ¢~ (6) = 20
and ¢*(6) = 260 — 1 are both increasing functions. Thus whenm = 3 and u;, — uzz = uy; — 1, selling the

complete information is optimal. When uy; = ug,, = 1, @ (uzl’l) > ¢*(1 - L) ifand only if p > e
In other words, if usz < 3(1 — uy2) and Uy m—1 < 3(1 — ugm-1), selling the complete information is

optimal.

EXAMPLE 2 (EXPONENTIAL DISTRIBUTIONS RESTRICTED ON [0,1]). f(6) = ¢ - Ae ™Y, where c =
1—e™ f7(0) =—cA?- e When ) <2, (¢p7)"(0) =2f(0) + 0f'(0) = cA(2—602) - % > 0. And
(0%)'(0) =2f(0) + (0 —1)f’(0) > 0, since f'(0) < 0. Selling the complete information is optimal if
either conditions in Theorem 4 is satisfied.

ExAMPLE 3 (NORMAL DISTRIBUTIONS RESTRICTED ON [0, 1]). Conszder the normal distribution
N(o, 02) restricted on [0, 1]. f(9) =c-exp(- 202) where ¢ = l/f0 2” exp(—z%)dG () =
—c = exp(——) < 0. When o? > 2, (™) (0) =2f(0) +0f"(0) =c(2 - ) exp(——) > 0. And
(<p+) (9) = 2f(0) + (0 - l)f’(H) > 0, since f'(0) < 0. Selling the complete lnformatlon is optimal if
either conditions in Theorem 4 is satisfied.

E MISSING DETAILS FROM SECTION 5
E.1 Missing Details from Section 5.1

Proof of Theorem 6: Let = /0 ——dx. We first show that for any distribution D, % <p.In
fact, we have

Rev(M, D) = 9]~ED[t(9)] = /0m QF:rD[t(G) > x|dx < /malz%[U(H) > r(x)]dx

0
< / de = - FRev(D)
0 r(x)

Here the first inequality follows from the definition of r(x): t(8) > x implies that U(6) > r(x).
For the second inequality, we notice that by the definition of U(8), the buyer will purchase the fully
informative experiment at price p if and only if U(6) > p. Thus FREV(D) > r(x) -Pr[U(6) > r(x)].

Now we prove that Ratio(M) > f. In particular, we show that for any ’ < f there exists a
distribution D such that Rev(M, D) > " - FRev(D).

Since 1/r(x) is weakly decreasing, non-negative, and fooo ﬁdx = f, there exist 0 =ty < t; <

- <ty < oo with 0 =r(ty) < r(t;) <--- < r(ty) < oo such that ?°

N
B = Z e = 1 B

(i)

r(X)

%5We notice that U (0) = 0 as the payment () is non-negative. Thus r(¢y) = r(0) = 0.
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Let € > 0 be small enough so that " > (1+¢)p" and r(fg41) > (1+¢)r(ty) forall1 < k < N.By
the definition of r(-), we can choose a sequence of types {6 }ke[ny in © such that t(05)) > 1
and r(t) < UOW®) < (1 +&)r(t). Then

itk_tk—l >i =t _ B” S p
Lyw) - S+t 1+
For every k € [N], let & = U(0%)). We notice that U(8F)) < (1+&)r(t) < r(tesr) < U(O*HD)
for 0 < k < N. Consider the distribution D with support {8V, ...,0(™} and Pr[d = %] =
& - ( - —) for all k € [N], where &nyg =
Recall that the buyer will purchase the fully informative experiment at price p if and only if

U(6) > p. Thus under distribution D, it’s sufficient to consider the price p = U(6%)) = & for some
k € [N].Since {U(0%))},c [N] is a strictly increasing sequence, then the buyer will purchase at price

p = & whenever 6 € {89, ..., 0N}, which happens with probability Zj.\]:k & - (§k Ek+1) = —.
Hence we have FREv(D) = &;.
N
REv(M,D) = » t(6%) - Pr[0=0"]= > ¢ — -
( kZ_:‘ Z ke (fk §k+1

Nt —t,
= &

O

Proof of Lemma 8: Recall that under this environment U(0) = 10i - 1 — max{6,,0,,65} =

1 — max{0y, 6, 05} (here 03 = 1 — 0; — 0,). We first construct the dlstrlbutlon D based on the given
sequence {yk}kN:I. Let { tk}k]\]:1 be a sequence of positive numbers that increases fast enough so
that: (i) (#x/gap;) - U(yx) is increasing, and (ii) tx41/tx > 1/eforall 1 < k < N. Such a sequence
must exist since after ty,..., t_; are decided, we can choose a large enough #; to satisfy both
properties. Let § > 0 be any number such that 1/8 > maxie[ny{tx/gap;}. For every k € [N],
define x; € [0, 1]? as xx = (5tx/gapy) - yk. For every k € [N], since 8t /gap, < 1 and yx € ©, we
have x;, € ©.

By Property 2 and 3 of the statement, 0.4 > \/yil +yr, 2 \/yil + (0.9yg.1)?, which implies that

Yk < 40.4%2/1.81 < % Similarly, y , < % Let yps =1 —yr1 — Yr2 and xx3 = 1 — xx 1 — Xk 2. Then
U(yr) = 1 — max{yr1, Yk 2 Y3} = 1 — Yk3 = Yk1 + Yk,2. Moreover, since St /gap, < 1, we have
Xki < Yk < % fori=1,2. Thus U(xg) = 1 — xx3 = xk1 + Xk2 = (Stx/gapy) - U(yk). For every
k € [N],let & = U(xx). Then {& }lk\]:1 is an increasing sequence due to (i).

Consider the distribution D with support {xy,...,xn}. Pr[0 = xx] = & - (é - fkﬁ) for all

k € [N], where &n41 = 0. In the next step, we construct a sequence of experiménts {1 Yre[N]
and a mechanism M. For every k € [N], define experiment IT%) as follows:

n® | 1 2 3
w1 | Y1 0 T—yka

oy 0 Yrz 1-—ke
w3 0 0 1

Now consider the following mechanism M. For every buyer’s type € in the support, the buyer
chooses the experiment I1*") where k* = arg max; {Ve* ey —s- tk}, and pays ¢ - tg+. In other
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words, he chooses the option (with experiment II'*") and price § - t;-) that obtains the highest
utility, when he follows the recommendation.

Cramm 5. M is IC and IR.

Proor. We first prove that M is IR. For every buyer’s type x, the buyer’s utility after purchasing
%) is
Vi (M) =8 e > vz (%)) =5 1y
>V (M) -6 1
= Xk1Yk,1 + Xk2Uk2 + Xk3 — 6 - B

2 2
Yea T Yk
oL T2 ) xes

gapg

= Oty -

> Xkyg

Here the second inequality follows from the definition of k*; The first equality follows from the fact
that: under the matching utility environment, Vy () =, Yg.1 + O2yk 2 + 05 for every type 0 € ©;
The second equality follows from the definition of xi; The last inequality follows from Property
1 and 3 of the statement. We notice that at type xi, the buyer has value max;{3; xx; - u;;} =
max{xg 1, Xk 2, X3} = Xk,3 before purchasing any experiment. Thus M is IR.

By the definition of M, it’s clear that M is responsive-IC. To prove that M is also IC, it suffices
to show that for any type 6 from the distribution D and any experiment II®¥, following the
recommendation always maximizes the buyer’s utility, i.e. Vp(II'®)) = vy (1)), In fact, according
to the construction of H(k), when action 1 or 2 is recommended, the corresponding state (1 or
2, respectively) is fully revealed and thus following the recommendation clearly maximizes the
buyer’s expected payoff. When action 3 is recommended, the buyer with type x, (for some g € [N])
has expected payoff xg1 (1 — yx1), xq2(1 — yx,2) and x¢3, by choosing action 1, 2 and 3 respectively.
Since x¢1 < 3 and xg2 < 3, we have xg3 > 3 > max{xq1(1 - yk1), Xq2(1 — yx2) }. Thus the buyer
will always follow the recommendation for every experiment I1%). Since M is responsive-IC, M is
also IC. O

Back to the proof of Lemma 8. Now we compute REV(M, D). We notice that for every k € [N]
and every type 0 € O,

V;(H(k)) =01 yg1 + 02 - ygo + 0.
Consider any buyer’s type xi. For any 1 < g < k, by the definition of x; and gap,, we have
V;k (H(k)) - V;,c (H(q)) = %1 (Y1 — yq,l) + X2 - (Yk2 — yq,z)

Oty

~ gap,
> Oty > Oty — 5tq

Ayre1 - (Y1 — yq,l) + Y2 (Y2 — yq,z)}

Recall that in mechanism M, the buyer chooses the experiment IT'? that maximizes {Ve* (M) -5 tq}.

Thus the above inequality implies that in M, the buyer must purchase an experiment I1(? where
q > k. Since {tk}kN: | is an increasing sequence, the buyer’s payment is at least § - #x. By Theorem 6,
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N N Ik — tk—1
REV(M,D)ZZ5-tk'§1 (_—_)_551'Z§—

py &k el

\%

> (1-e)& - Z‘St" =(1-¢)- Zﬂ FRev(D)

s = Yper + Yk

\

3 N
5(1 —¢)- Z:: gap, - FREV(D)

Here the second inequality follows from tk+1/te = 1/e. The third inequality follows from the
fact that both y; and yi, are at most 3 3, as shown in the beginning of the proof. The second
equality follows from & = U(xx) = (Str/gapy) - U(yk) = (Otx/gapy) - (Y1 + Yk2) and the fact that
FREV(D) = &1, which is proved in Theorem 6. We include the proof here for completeness. Recall
that a buyer with type x will purchase the fully informative experiment at price p if and only if
U(x) > p. Thus under distribution D, it’s sufficient to consider the price p = U(xy) = & for some
k € [N]. Since {U(xx) }ke[n) is a strictly increasing sequence, then the buyer will purchase at

)—_

price p = & whenever x € {xy, ..., xn}, which happens with probability Z?]: e (F &
Hence, FREV(D) = £.
The proof is done by noticing that Rev(M, D) < OPT(D), since M is IC and IR by Claim 5. O

§k+1

Proof of Theorem 5: For any integer N, we construct a sequence {yk}i\]: , that satisfies all three

properties in the statement of Lemma 8, and gap, = ©(k~°7). Then by Lemma 8, there exists a
distribution D with support size N such that (by choosing ¢ = l)

o) Zgapk=9<2k6”> QN

FRev(D) —

All the points {yk}kN: , are placed in a sequence of “shells”. As k goes larger, yj stays in a shell with
a larger and larger radius. For every i = 1,..., M, the i-th shell has radius 0.3 + Y,}_, £7%/%/a, where
a=0.1- ZM £73/2 For every shell i, let r; be the arc from angle arctan( 5) to angle arctan( 0) The
i-th shell contains i*/* points. All points are evenly spread in the arc r;, so that angle between any
two of them is at least ¢ - i~>/* for some absolute constant c.

We notice that the radius of every shell is in the range [0.3, 0.4]. Thus any point yx on each shell

satisfies yx 1 +yk2 < 1and ||yk|l2 = /yi Lt ylzc , € [0.3,0.4]. Moreover, according to the definition of

r;, all points yj on this arc must satlsfy y’“

Yin) Yka+(Yk2—Yj2) Yk} = mmo<]<k{yk (yk— y])} We have that y;-yx = [ly;ll2-[lyll2 - cos(a)
where «a is the angle between yi and y;. Let i and i’ be the shell that y; and y; are placed in
respectively. Then i’ < i. Suppose i’ = i. Since & = Q(i~>/*), we have cos(a) = 1 — Q(i73/?)
(because cos(ar) = 1—a?/2+a*/24~...). (ye —y;) - yk = |lyell%- Q~>/?) = Q(i7*/?). Now suppose
i < i lykllz = llyjllz = Dy €3 /a > i73/2 /. Since 352, £7%/% converges, @ = 0.1- ¥ M ¢73/2
is bounded by some absolute constant. Thus

e[ 5 ] It remains to analyze gap; = ming<;<x{(yr1—

(k=) - vk = yell3 = [lyjllallyell > 0.3(llyell2 = [ly;ll2) = QG/2),

where the second inequality follows from ||y;||; > 0.3. Combining both cases, we have proved
that gap, = ©(i~>/?). Since the first i shells together contain Y;_, i3/* = ©(i”/*) points, we have
k = ©(i"*) and gap, = ©(k™%/7). O
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E.2 Missing Details from Section 5.2

The following observation directly follows from the definition of responsive mechanisms.

OBSERVATION 6. In the matching utilities environment, a mechanism M is responsive if and only
if@,-m,-(@) > 9]'71']'1'(9), VO eT, i,j € [n] Here gn =1- Z?;ll 91'.

Proof of Lemma 9: Let M be any optimal responsive mechanism. Then the buyer’s value for
experiment E(0) is (0, = 1 - 21 0;):

n n—1
Vi (B0) = )" 0mi(0) = )" 0; - (m:(0) = 7a(0)) + 7 (6) (17)
i=1 i=1

Now for every type 6, let ¢(6) = 1 — max;{m;(0)} > 0. For every i € [n], we arbitrarily move a
total mass of ¢(0) from {7;;(0)} i to m;(0). We also increase the payment of type 6 by c(6). Let
M’ ={E’(0),t'(0)}oco be the induced mechanism. By Observation 6, M’ is responsive since M
is responsive and m;;(6) is (weakly) increased while 7;;(6) is (weakly) decreased for i # j.

Moreover, for every 0 € ©, the buyer’s utility after purchasing E'(6), V,; (E'(0)) — t'(6), is the
same as V, (E(0)) — t(0). Since M is IC, IR, M” is also IC, IR. And Rev(M’) > Rev(M). Thus M’
is also the optimal responsive mechanism. The proof is finished by noticing that M’ satisfies the
property in the statement due to the choice of ¢(0). O

Proof of Observation 1: For any 6, 6" € ©, since the mechanism is responsive, IC and IR, we have

G(0") = G(0) 2 [V, (E(0)) —t(0)] — [V5(E(9)) — t(0)]
n-1

=V3 (E(9)) = V5 (E9)) = > (m:(6) = ma(6)) (6] - 6,)

i=1
Taking derivative on both sides at " = 0 finishes the proof. O

Proof of Lemma 10: For any 0, the buyer’s utility function G(0) is the maximum of a collection of
linear functions over 0. Thus G(-) is convex. Moreover, for any 0,6’ € ©,

G(0) - G(8') < [Vo(E(9)) — t(0)] — [Vor (E(0)) — £(0)] < ¢(6.6")

Here the first inequality follows from the fact that G(6”) = Vp (E(07)) — t(0") = Vp (E(0)) — t(0)
since M is IC. The second inequality follows from the definition of ¢(8, 8”).

It remains to show that G(0) = 1. Since M is IR, G(0) > u(0) = 1. On the other hand, the buyer’s
value for any experiment is at most 1. Thus G(0) < 1. O

Proof of Lemma 11: We use the notations from Definition 4. For every 6 € O, by the product rule,
we have %

div(G(0)f(0) - 0) =0 -V(G(0) - f(0)) —=G(0)f(6) - VO
=0-[G(0) - Vf(0) +(0) - VG(O)] + (n—-1) - G(0)f(6)

Integrating over © for both sides, by the divergence theorem, we have

[ 6@ -or@i= [ corx0-mio- [ 60)-1970) -0+ m-nr@1d0 3)
F

Similarly, for every i € [n — 1],

div(G(0)f(0) - ei) = e; - [G(0) - Vf(0) + f(0) - VG(O)]

26For any real-valued function F(-) over ©, div(F) is the divergence of F, defined as div(F) = Z;:ll ggf .
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Thus

./aaaﬂmw /mew@vwme

o o (19)

=/.QWWWVMW—/G@T%VﬂWW
90, 0;

Combining Equation (18), Equation (19) and the fact that f@ f(0)df = 1 completes the proof. O
Proof of Lemma 12: By Lemma 11,

b = ac(e)
/@G(Q)du _/[ G(0) + VG(0) - 6 + G(0)] £(6)d6 — Z/ f(a)de
9G(0) oG (0)

2/@ o agn_l,o}m(o)]f(e)de

The last inequality achieves equality if and only if Condition (1) is satisfied. It suffices to prove that
/@ G(9)du® < f®x® c(0,0")dy(6,0"). In fact, since G(0) — G(8’) < ¢(0,0"),V0, 0’ € ©, we have

/ c(6,0)dy(6,0") > / (G(8) — G(0"))dy(6,0")
Ox0 Ox0

:/@G(Q)dyl—/eG(@')dYZ
ZAG@@P

The first inequality achieves equality if and only if Condition (2) is satisfied. The last inequality
follows from the fact that y; — y; >cux pf and G is convex. The last inequality achieves equality if
and only if Condition (3) is satisfied. O

—-G(0) + VG(0) - 0 — max {

6,

(b) Q1 is the hexagon separated by the three red lines.
(a) llustration of P*. Line segments ad, bd, cd corre-  y* has a positive density between 0 and each point
spond to Sy3, S23, S12 respectively. in Q.

Fig. 10. lllustrations of the optimal dual when n =3

Proof of Observation 2: Firstly, Vf(6) = 0 for every 6 since f(6) is a constant. Thus the last two
terms in Definition 4 is always 0. Moreover, the term 1,4(0) contributes a point mass of +1 at 0.
The term —n - f® 14(0)f(0)d0 contributes a total mass of —3 uniformly distributed through out ©.
By Lemma 11, the other two terms contribute a total mass of 2 on the boundary of triangle © and
line segments ad, bd, cd. We notice that when 0 is on the x-axis (or y-axis), both 0 - n and e; - n; (or
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e; - ny) are 0. Moreover, for any point 6 on the line segment 0; + 8, = 1, the outward pointing unit
vector is (1,1). Thus 6 - n =1 =e; - n; for any i € {1, 2}. Thus there is no mass on the boundary of
the big triangle © and a total mass of 2 is distributed among line segments ad, bd, cd. The mass on
each segment is then obtained by calculating the line integral. O

Proof of Lemma 13: We verify feasibility and all three conditions in the statement of Lemma 12:

Primal Solution Feasibility. Since G* is induced by a responsive, IC and IR mechanism M®*, by
Lemma 10, G* is a feasible solution to the primal.

Condition 1. By Observation 1, for every i € {1, 2}, ac (9) 7} (0) — m;(0), V0 € ©. Now for any

i€{1,2,3}and 0 € ©;,if § € Qq, *(9) =1,Vje{L2 3} Thus max{aG*(g), %G (0)} =0;If0 € Q,,
the buyer does not purchase any experlment Since M* is responsive, by Observatlon 6 and the
fact that §; > 0;,Vj # i, we have that ﬂ* ;(0) = 1,Vj € {1,2,3}. Thus max{ 9 (9), %G (9)} equals to

1ifi € {1,2}, and -1 otherwise. Thus COl’ldlthl’l (1) is satisfied.

Condition 2. y*(0,0") > 0 if and only if § = 0 and 0’ € Q,. Thus G*(0) — G*(0") = 1 -
max{0], 05, 1-0]—0,}, since the buyer with any type 6" has utility u(8"’) = max{6;’,6,’,1-0;"-0,'}
if she does not purchase any experiment. Consider the experiment E such that 7;1(E) = 1,Vj €
{1,2,3} and 0 elsewhere, which is one of the no information experiments. Then Vp(E) = u(0) =
1 and Vp(E) = u(0’) = max{0;,0,,1 - 0; — 0;}. G*(0) — G*(0") = Vp(E) — Vp (E). Moreover,
G*(0) — G*(0") < ¢(0,0’) since G* is feasible. Thus the inequality achieves equality for any (0, 0")
such that y*(6,60") > 0.

Condition 3 and Dual Solution Feasibility. Denote y7, y; the marginals of y. We prove that we can
transform p” to y} — y; through a sequence of mean-preserving spreads in the region where G*
is linear. By the definition of y*, y; has a point mass of +1 at 0. —y; has a mass of —1 uniformly
distributed on Q,. Recall that Q; = {6 € © : max{0;,6,} > 2} U{0 € © : 6, +0, < 1},
which consists of 3 right triangles with side length % Thus VoL(Q,) = % = % - VoL(0). Thus by
Observation 2, y* (Q;) = (yi —v5)(Q2). Hence n = uf” - (y; —v,) can be written as 1, — 175, where

(1) n1: A mass of % uniformly distributed on each line segment ad, bd, cd, having a total mass of
2.
(2) n2: A mass of 2 uniformly distributed through out Q;.

We notice that for every 0 € Qj, the buyer purchases the fully informative experiment and
thus G*(0) = £ 1s constant throughout the region Q;. Hence, to prove y; — y3 >cux pf and that
Condition 3 is satlsﬁed it suffices to show that we can spread the positive mass on ad, bd, cd to the
whole region Q; via mean-preserving spreads, to “zero out” the negative mass (in —n,).

To visualize the proof, we map each point (61, 8;) € © to the point (61, 05, 03 = 1-0,-0,) € [0,1]3,
so that the type space becomes a regular triangle (Figure 11). Now Q; is separated into three
pentagons by ad, bd and cd.

For every 0 on the line segment cd, denote w(6) the width of the pentagon efhdg at 6 (Figure 12).
Similarly, define w(0) for 6 on the line segment ad, bd to be the width of the corresponding pentagon
at 0. Let ryé be a measure that has a total mass of 2 on the line segments ad, bd, cd, such that the
density of each point 0 is proportional to w(0). We claim that 17, >, 7, by transforming 7, to
12 by mean-preserving spreads. For each point 6 on the line segment cd, we spread the mass of
6 uniformly to all points 6’ in the pentagon efhdg such that 83 = 6;. This is a mean-preserving
spread since by symmetry, the mean of those points is §. Moreover, since the density of 8 in 7,
is proportional to the width of the pentagon at 0, all the mass are uniformly distributed in the
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(0,0,1)

100)

Fig. 11. Proof of Condition 3

pentagon. We perform similar operations for the other two pentagons. Thus we can transform 7
to 12 by mean-preserving spreads.

0,01
a b
d
Q)
g b h
(1,0,0) £ X . / % (0,1,0)

Fig. 12. llustration of w(8) and 6y in the proof

Now it suffices to prove that we can transform 7 to 7, by mean-preserving spreads. We prove
the following claim.

CLAIM 6. For any x,y € Ry such that x < y, let 01, 03, 03 be the three points on the line segments
ad, bd, cd respectively, such that the distance between each 6; and d = (%, %, %) is x (green points
in Figure 11). Similarly, let 01, 05, 0 be the points that have distance y from point d (red points in
Figure 11). Then any positive mass uniformly distributed in 01, 03, 05 can be transformed to the same

amount of mass uniformly distributed in 07, 0, 07, via a mean-preserving spread.

Proor. For every i € {1, 2,3}, we notice that 0; is a convex combination of d and 91’-. Thus we
can spread the mass at 0; to d and 0 for every i € {1,2,3}. Next, since d is a convex combination
of 07, 6;, 05, we can then spread of mass at d to 67, 0, 5. By symmetry, the mass is uniformly
distributed in those three points. O
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Back to the proof of Lemma 13. The density of each point in #; is Zc/fj = %5. For n;, by symmetry,
the density of each point 6 is

WO __ 23w® e
3 [w(6")do’  Area of pentagon efhdg

Let 6, be the (unique) point in the interior of cd, such that w(6,) = % (Figure 12). 2’ Then for
any point ¢ in the line segment dfy, the density of 6 in 7, is at least the density of 6 in 7;; For any
point 6 in the line segment yc, the density of 0 in 7; is at most the density of 6 in n;. By Claim 6,
we can transform #; to 77, via mean-preserving spreads, by keeping spreading the mass of points in
d6, to points in fyc. Thus we have 1, >cux 1. Combining with the fact that 17, >cyx 175, We have
N2 Zcux 11, Which implies that y} — v >cux b

O

\/“

?TThe point is unique since Tz =ef < gh.
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