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ABSTRACT

Critical infrastructure systems are essential in sustaining people’s livelihoods and the operation of
economic sectors. In this paper, we extend the dynamic inoperability IO model (DIIM), we evaluate
the resilience of economic sectors given the initial functionality loss and recovery time of an
infrastructure. The resulting model is applied in a case study of the 2020 eruption of Taal Volcano in
the Philippines. The initial inoperability and recovery period parameters are used in the 14-sector
DIIM. The dynamic recovery behaviors of the sectors are plotted over the disaster timeline based
on two metrics: (1) economic loss, which is the monetary value of the damage; and (2) inoperability,
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which is the dimensionless loss relative to the total production output of each sector. The DIIM
template and case study results from this paper can provide policy insights to enhance disaster

resilience planning for future disasters.

1. Introduction

Firms and businesses are highly dependent on critical
infrastructure systems to ensure delivery of goods and
services across the economy. As economies expand, the
role of critical infrastructures to achieve sustainable
economic growth becomes increasingly important.
Unlike other industries, critical infrastructures are
expected to function continuously regardless of any
adverse operating conditions (La Porte, 2006). They
play an integral role in supporting the population and
other industries, especially during crisis events.
Significant system degradation may exacerbate the
impact across regional systems. In the event of any
major inoperability or crisis, the restoration of critical
infrastructures is vital in assisting the recovery of eco-
nomic sectors, since critical infrastructures such as elec-
tricity, water, telecommunications, and transportation
do not have any immediate substitutes (La Porte, 2006).
In addition to reducing recovery time, increasing the
resilience of critical infrastructure sectors can reduce the
total economic losses (Baghersad & Zobel, 2015).
Although improving resilience may entail sacrificing
efficiency, Trump et al. (2020) advocate balancing
these two aspects to improve societal welfare.

The study of community disaster resilience is essen-
tial in understanding and implementing disaster risk
management. While there have been several studies on
disaster resiliency, data within these studies tends to be
qualitative (Tahizadeh et al., 2015). Frazier et al. (2013)
held focus group discussions to estimate spatial and
temporal resilience indicators for Sarasota County,
Florida. Orencio and Fujii (2013) gathered local deci-
sion makers of Baler, such as service providers on
coastal management, academia, local government, and
select community members, to identify possible disaster
vulnerabilities in coastal communities. Although inter-
view-based data can provide detailed and contextualized
information of household’s experience of natural
hazards, such methods can be costly and time-
consuming, and participants’ knowledge may only sup-
ply a limited perspective of the disaster.

Performing risk analysis quantitatively helps deci-
sion-makers to develop strategies to improve a system
cost-effectively (Paté-Cornell, 2002). It involves identi-
fying the system’s weakness and ranking them accord-
ingly (Murdock et al., 2018). Adequate data allows
decision-makers to perform risk analysis systematically
by determining probabilities of failure. This step is
essential in performing risk analysis which is divided
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into two major aspects: risk assessment and risk man-
agement. Risk assessment focuses on identifying
hazards and quantify the level of risk (Aven et al,
2018). On the other hand, risk management involves
improving the system to minimize the risks identified.
One of the effective pieces of information for risk ana-
lysis is the glossary of the Society for Risk Analysis
(Aven et al., 2018). This collection contains the concept
of performing risks analysis, as well as procedures to
perform it. The method of risk analysis is subject to the
following fundamental questions: (1) What can go
wrong? (2) What is the probability that it will go
wrong (3) What are the consequences when it happens?
(Kaplan & Garrick, 1981). The insights from the analysis
can then be integrated for managing risks through Total
Risk Management (Haimes, 1991). Risk analysis is an
important tool for disaster resilience and preparedness
especially in volcanic events.

Although risk assessment for volcanic events prior-
itizes the analysis of hazards with potential to cause
casualties, socio-economic impacts are also considered
to be important in the field (Shroder & Papale, 2015).
Network-based techniques have proven useful for mod-
elling the interlocking causality chains that link natural
hazards to socio-economic impacts (Monge et al., 2022).
These impacts may result from the eruptions them-
selves. It may also result in spillover effects that extend
beyond the immediate geographic vicinity of the event.
The potential for massive indirect losses is clearly illu-
strated, for example, by the 2010 eruption of
Eyjafjallajokull in Iceland, which led to high levels of
inoperability in the aviation sector in Europe (Budd
et al., 2011). Thus, there have been calls for establishing
resilience plans for potential large-scale eruptions with
global impacts (Papale & Papale, 2019).

Different models have been developed and used to
assess the socio-economic impacts of volcanic erup-
tions. Leung et al. (2003) applied a suite of risk analysis
and management techniques to perform an ex-post
analysis of lahar flow impacts from the 1991 eruption
of Pinatubo in the Philippines. Tradeoff analysis was
done among multiple objectives representing the per-
spectives of stakeholders. The work also considered the
inherent uncertainties in simulating extreme events and
implementing sequential decisions for mitigation.
Zuccaro et al. (2013) developed a probabilistic simula-
tion model to estimate the direct and indirect economic
impacts of the eruption of Vesuvius in Italy. Indirect
tourism losses due to damage to cultural structures were
emphasized in this work. McDonald et al. (2017)
applied DIIM to estimate losses resulting from hypothe-
tical volcanic eruptions of different intensities and at
different locations in New Zealand. They also simulated

alternative scenarios with and without mitigation mea-
Using this approach, they developed
a geographically differentiated hazard profile account-
ing for potential business losses from such events.
Kazantzidou-Firtinidou et al. (2018) developed
a deterministic risk model to compute damages and
losses resulting from a potential volcanic eruption in
Santorini, Greece. They concluded that, even with low
direct impacts, subsequent decline in tourism can result
in significant cascading losses whose effects may propa-
gate throughout the entire Greek economy. Echegaray-
Aveiga et al. (2020) used a hedonic pricing model to
estimate real estate market losses resulting from lahar
flows from Cotopaxi in Ecuador. Their work highlights
how specific sectors can be at risk based on topographic
conditions within a geographic zone in proximity to
a volcano. Peers et al. (2021) modelled the economic
losses resulting from protracted elevated volcanic alert
levels. By focusing on the business losses resulting from
such false alarms, they effectively isolated indirect effects
from physical damages and losses from actual eruptions.
They also highlighted the grave consequences of such
volcanic alert levels, which may persist much longer
than preparations for other natural hazards. Imamura
et al. (2022) provided a preliminary assessment of eco-
nomic losses in Japan resulting from the tsunami caused
by the 2022 Tonga eruption, thousands of kilometers
away. They noted that physical damage to capital stock
in the fisheries sector is likely to lead to persistent
economic losses in the future.

Rose (2007) differentiated static and dynamic resili-
ence such that static economic resilience is defined as
the ability of a system to continue functioning upon
experiencing a shock, while dynamic economic resili-
ence is the speed at which a system recovers from
a shock to achieve a desired state. The temporal aspect
of dynamic economic resilience, along with its focus on
recovering capital stock post-disasters, provides a more
complex analysis on the impact of various disruptions
on the economy. Lian and Haimes (2006) used the
Dynamic Inoperability Input-Output model (DIIM) to
measure inoperability, economic losses, and the recov-
ery of interdependent sectors following disruptive
events such as disasters or terrorist attacks. The DIIM
has been extended to include inventory strategies
(Barker & Santos, 2010). Inventory has been used as
a resilience building mechanism for production sectors
in the economy (Barker & Santos, 2010). However,
critical infrastructures are unique such that it is not
possible to store inventory for extended periods of
time. Some level of inventory can be considered for
electricity, gas, and water as in the case of a severe
Dutch winter storm (Jonkeren & Giannopoulos, 2014).

sures.



The DIIM Model has also been used to assess the eco-
nomic impact of the power outage due to the 2007
Oklahoma winter storm (MacKenzie & Barker, 2013).
Disruptive events such as typhoons and flooding have
increased in terms of incidence and intensity over time.
The introduction of port volume shift and freight con-
solidation centers as resilience measures against extreme
flooding events has also be explored (Roquel et al,
2019). Critical infrastructures are essential in ensuring
business continuity and post-disruption recovery. There
is a need to highlight the network structure of economic
systems to avoid underestimating the losses to economic
systems (Hynes et al., 2022). To this end, this paper
seeks to answer the overarching research question:
How can the disruptions in critical infrastructure net-
works and their inherent resilience characteristics influ-
ence the dynamics of the cascading effects and recovery
of interdependent economic sectors?

Spatial analysis through Geographical Information
System (GIS) leads to better understanding of the dis-
tribution of risks. A review of seismic and hazard risk
assessment involving GIS models was done by Jena et al.
(2020). The review emphasizes on the need of a more
comprehensive GIS-based model for disasters especially
earthquakes. GIS-based risk assessment was also per-
formed for volcanic hazards in Guallatiri Volcano, Chile
(Reyes-Hardy et al., 2021) and Mount Sinabung,
Indonesia (Hermon et al., 2019). The studies provide
useful insights as to which areas in the volcanic region
are vulnerable to damage. Although, GIS provides
a geographically detailed analysis of risk of disaster, it
is limited to the direct impacts in the affected areas. The
economic effects that arise from the disruption in acces-
sibility to that area can be estimated using the previously
discussed models.

Other decision-support systems include agent-based
modelling (Jumadi et al., 2020), Monte Carlo simulation
(Saltos-Rodriguez et al., 2021), analytical modelling
(Lewandowski & Wierzbicki, 1989), and theory of
change (Allen et al., 2017). Agent-based modelling pro-
vides a simultaneous spatial and temporal risk assess-
ment as applied in a study for volcanic eruption (Jumadi
et al., 2020). The effects of volcanic lahars in electric
power systems were assessed by Saltos-Rodriguez et al.
(2021). Analytic modelling involves optimization tools
to automatically select best alternatives (Lewandowski &
Wierzbicki, 1989). Lastly, the theory of change enables
teamwork among stakeholders by reflecting on the
inputs and outputs in a decision-support systems.
These tools can provide certain insights in risk analysis
and management for disasters.

Although a variety of methodologies and visualiza-
tion approaches are present, the indirect impacts of
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volcanic events must be considered also, particularly in
different economic sectors. Volcanic eruptions affect
critical infrastructures in varying degrees resulting
from different range of impact from tephra fall, pyro-
clastic density currents, lava flow and lahar (G. Wilson
et al., 2014). These critical infrastructure include elec-
tricity, gas, and water sector, transportation sector, and
telecommunications sector (T. M. Wilson et al., 2012).
Depending on the location of the volcano, this can affect
the severity of impact to the road network (Hayes et al.,
2022). Some volcanic eruptions can even cause disrup-
tions to port operations as floating ash and pumice can
cause damage to marine vessels (Asano & Nagayama,
2021). K. Kim et al. (2019) identifies the importance of
having a multi-disciplinary perspective in managing the
effects of hazards. However, it takes enormous amounts
of resources for a developing country; thus, there is
a need to develop simpler and more accessible tools
for policy makers to understand the full impact of
such events. Delos Reyes et al. (2018) foreshadowed
the 2020 eruption of Taal in the Philippines in their
retrospective analysis of recorded eruptions of the vol-
cano, noting that ‘an explosive eruption at Taal towards
Metro Manila would have catastrophic effects to trans-
port, utilities and business activity, potentially generat-
ing enormous economic losses.” Recognition and
knowledge of such ripple effects is needed to develop
proper actions and policies.

This paper considers the case of the 2020 Taal
Volcano Eruption to understand the impact of such
events to critical infrastructures and interdependencies
within regional economic systems. Taal volcano is one
of the 23 active volcanoes located across the Philippines
(Philippine Institute of Volcanology and Seismology, n.
d.). As of writing, Taal Volcano continues to exhibit
signs of unrest with increased levels of volcanic sulfur
dioxide gas emissions (Philippine Institute of
Volcanology and Seismology, 2022b). Based on satellite
imagery, 302.53 square kilometers, including provinces
Cavite, Laguna, Batangas, Rizal and Quezon, collectively
known as CALABARZON, was covered with heavy ash
on 27 January 2020 (Merin et al., 2021). According to
the National Electrification Administration (2020), sev-
eral towns in the province of Batangas experienced
a forced electricity shutdown as a safety precaution.
Partial water service interruptions were experienced
due to shutdown of several facilities, even as water
demand increased due to the need for ash clean-up
(Manila Water, n.d.). The ashfall caused work suspen-
sions due to possible health and safety concerns and
limited transportation due to low visibility, which may
cause road accidents (National Disaster Risk Reduction
and Management Council, 2020). The disruptions to the
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critical infrastructure system and public safety concerns
caused by the eruption affected thousands of families,
where even a month after the eruption, approximately
200,000 people remained displaced (International
Organization for Migration and Department of Social
Welfare and Development, 2020).

The remainder of this paper is organized as follows.
Section 2 presents the supporting models that serve as
the foundation to the methodology and case study.
Section 3 provides the data sources, describes how the
scenarios are formed, and presents the simulation
results leading to the estimation of sectoral economic
losses. Finally, the conclusion, key findings, and areas
for future study are summarized in Section 4.

2. Economic Input-Output (I0) models and
extensions

Input-output (I0) analysis was originally developed by
Leontief (1936) to represent the interdependencies
between economic sectors. Leontief was awarded the
Nobel Prize in Economics in 1973 for developing this
model. It is a powerful tool for economic planning
because it not only assesses direct impacts of economic
shocks but can also account for indirect, and induced
impacts resulting from ripple effects that propagate
throughout the system due to interdependencies.
Shocks to the economic system may refer to changes
in product demand, deployment of technology innova-
tions, and the implementation of policies to name a few.
For example, Xu et al. (2011) used IO to analyze the
economic impacts brought by changes in the demand of
petroleum in China, J. Kim et al. (2021) used IO to
evaluate the impact of ICT innovations on the trade
between Korea and Japan, while Tiboldo et al. (2022)
analyzed the impact of implementing a carbon tax on
food purchases in the United States. A comprehensive
discussion of the theory and fundamentals of IO analy-
sis is given in Miller and Blair (2009).

The application of IO has since diversified, and it has
been found useful in the examination of the economic
impact brought by disasters and in the evaluation of
economic resilience as discussed in a recent review by
Galbusera and Giannopoulos (2018). Such analyses arise
from the inoperability model proposed by Haimes and
Jiang (2001), which is an IO extension focusing on the
risk associated with the interdependence of critical
infrastructure systems. This was later extended into
the inoperability input-output model (IIM; Santos &
Haimes, 2004) to quantify economic sector vulnerabil-
ities resulting from disruptions. Santos and Haimes
(2004) define inoperability to be the normalized loss in
production, indicating that its value ranges from 0 to 1.

A system that has full functionality would then have an
inoperability of 0, a system that has completely failed
will have an inoperability of 1.0, and anything in
between refers to partial production loss or inoperabil-
ity. The inoperability model is given in Eq. 1 where q
represents the inoperability vector, A* is the interdepen-
dency matrix, and c¢* is the demand side perturbation
vector. This formulation shows how initial perturba-
tions ripple through the system resulting in higher
order inoperabilities.

q=A'q+c (1)

However, to capture the temporal effects arising from
a disruption, the dynamic inoperability input-output
model (DIIM) was developed (Haimes et al., 2005).
This then translates the static IIM model (Eq. 1) into
Eq. 2 to capture how inoperability changes with respect
to time. The subscripts ¢ and t + 1 refer to the state of
the system in two succeeding time steps and K is the
resilience matrix which contains information of the
recovery rate of each sector.

Qe = G+ K[A*qt + C: - qt] )

The DIIM has been used for a diverse range of applica-
tions such as analyzing the losses in economic produc-
tivity due to workforce disruptions resulting from
a pandemic (Santos et al., 2009), assessing drought risk
management strategies (Pagsuyoin et al.,, 2019; Santos
et al,, 2014), and estimating the economic impact of
cyber risk scenarios (Eling et al., 2022), to name a few.
Using publicly available ‘supply use tables’ or SUT's
which are regularly published by national statistical
agencies, it is possible to quantify the impact of critical
infrastructure disruptions on an economic system. The
dependence of an economic sector on an infrastructure
can be represented by the ratio between the expenditure
incurred by an economic sector for a particular infra-
structure (w;) and the total production output of that
economic sector (x;). These two parameters can be
extracted from the SUTs and the ratio Wi/ is referred
to as the infrastructure-use ratio. The time-varying
inoperability of any economic sector i can then be
obtained using Eq. 3 where di, is the time-varying
disruption factor for infrastructure k which will have
a range of values from 0 (fully functional) to 1 (com-
pletely disrupted). The equivalent matrix notation is

given in Eq. 4.
Wi
= (%) ®

q = dk’t*(diag(x))flw (4)



Using Eq. 4 to substitute g, in Eq. 2 then accounts for
both direct and indirect effects of a disruption in infra-
structure. The associated economic losses resulting from
the disruption can then be obtained by multiplying the
resulting inoperability of a sector with its production
output. Data on the intensity of disruptions on infra-
structure k (dy,) and the time it takes for recovery, may
be obtained through household surveys.

The impact of critical infrastructure sector failure
caused by the volcanic eruption can be estimated
through dynamic inoperability input-output modeling
(DIIM). The Philippine National Disaster Risk
Reduction Management Council (NDRRMC) publishes
situational reports that provide information on damages
and disruptions to economic and critical infrastructure
sectors as well as their recovery. These are used as inputs
for the DIIM to estimate the inoperability and economic
losses that ripple through the regional economy. The
framework for the current study is depicted in Figure 1.
An exhaustive analysis of the data available in the 2020
Taal Volcano eruption situational report released by the
government facilitated the development of study-
specific scenarios describing the extent to which each
infrastructure is disrupted as well as the length of the
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recovery period. This extracted information is then
analyzed to evaluate the unique impacts on various
economic sectors — knowing that each sector has differ-
ent levels of dependence on the affected infrastructure.
Using the DIIM, we simulated the ripple effects of
infrastructure failure scenarios on the economic sectors
of the study region to estimate a range of economic
losses. The losses computed in this study are then vali-
dated with the results from other economic impact
analysis studies pertaining to the Taal Volcano eruption.

3. Integrated framework and application to the
Taal Volcano eruption

3.1. Case study scenarios and data sources

This study considers the case of the Taal Volcano
Eruption on 12 January 2020. The Philippine Institute
of Volcanology and Seismology (PHIVOLCS) reported
that Level 3 was raised in the surrounding communities
at 8:00 AM (Philippine Institute of Volcanology and
Seismology, 2022a). The study utilized the data pro-
vided in the situational report of the National Disaster
Risk Reduction and Management Council (NDRRMC)
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on the effects of the volcanic eruption, which includes
disruptions to infrastructure such as electric power,
water, and land transportation in the nearby commu-
nities. Specifically, three provinces were affected, which
are Cavite, Laguna, and Batangas. Such disruptions on
the infrastructure systems have incurred significant eco-
nomic costs and have posed challenges on the post-
recovery of the affected areas. This is especially true
since many communities around the Taal volcano are
dependent on tourism economic activities. Figure 2
shows the map of study region. It can be observed that
Taal Volcano is uniquely situated in Taal Lake. The 2020
Taal Volcano eruption was phreamagmatic in nature,
causing a moderate to heavy level of ashfall as far as 70
kilometers north of Taal Volcano (Balangue-Tarriela
et al., 2022).

Figure 2 also presents the road network in the study
region. Many roads were damaged and were closed due
to the significant amount of ashfall. The red lines repre-
sent the unpassable primary roads and the pink lines
represent the unpassable secondary roads. Primary
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Figure 2. Map of the study region.
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roads are national roads that connect cities while sec-
ondary roads are directly connected to primary roads
(Philippine Statistics Authority, n.d.). According to the
National Disaster Risk Reduction and Management
Council (2020) report, a total of 9 road sections were
closed and needed debris/clearing operations. As
a safety precaution, some of the roads were locked
down. It was reported that 6 out of the 9 road sections
were already passable as of last 30 January 2020. The
remaining 3 road sections remained on lockdown. This
significantly affected land transportation as many roads
had to be closed off for safety reasons. Table 1 sum-
marizes the road sections, their corresponding length in
kilometers (km) and the average recovery period (in
days). The study also does not consider in the estima-
tion the roads that were unpassable at the time that the
report was published. From the estimates, the initial
inoperability level of the land transportation sector is
3%. The average recovery period for roads is 15 days
after the volcanic eruption. Meanwhile, the standard
deviation of the recovery period for roads is 0.88 days.
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Power supply in nearby cities and municipalities
were also heavily affected by the Taal volcano eruption.
National Disaster Risk Reduction and Management
Council (2020) reported that there was a total of 23
cities/municipalities that experienced power interrup-
tion in the provinces of Cavite, Laguna, and Batangas.
Table 2 shows the municipalities or cities per province
that were affected, the number of households in each
location, and the estimated average recovery period in
days. Based on this, the estimate initial inoperability to

Table 1. Affected road sections, length of roads (in km) and
average recovery period (in days).

Length of Average Recovery
Road (in km) Period (in days)

Palico-Balayan- 5.53 15.33
Batangas Road
(Lemery
Section),
Batangas

Tanauan-Talisay- 22,07 15.33
Tagaytay Road,
Talisay-
Tagaytay
Section, Talisay,
Batangas

Talisay Laurel- 20.00 15.33
Agoncillo Road,
Laurel Section,
Batangas

Talisay Laurel- 11.98 17.42
Agoncillo Road,
Agoncillo
Section,
Batangas

KO0114 + 254 - 6.82 16.29
K0121 + 074,
Batangas

K094 + 230 - 8.57
K102 + 803,
Batangas

K0100 + 026 - 2.06
K102 + 803,
Batangas

Tagaytay-Taal 8.57 15.29
Lake Road,
Tagaytay,
Cavite

Tagaytay-Talisay 237
Road, Tagaytay,
Cavite

Total length of
unpassable
roads

Total length of
roads in Region
IV-A

Initial 3%
Inoperability
for Land
Transportation

Average
recovery
period (in
days)

Standard 0.88
deviation, 0

Road Section

87.97

3,038.76

1583 ~ 15
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be 19.5%, the average recovery period for power supply
is 6 days and the standard deviation for the recovery
period is estimated to be at 8.14 days.

Source: National Disaster Risk Reduction and
Management Council (2020) and Philippine Statistics
Authority (2022a).

The National Disaster Risk Reduction and Management
Council (2020) also reported that water supply in three
cities/municipalities in the province of Batangas were
affected. However, all the water supply services were
restored by 29 January 2020. Table 3 shows the areas
where water supply was disrupted, the number of
households in each location, and the average recovery
period (in days). The estimates suggest that the region
suffered an initial inoperability of 0.9%, it takes at an
average, 12.67 days after the volcanic eruption to restore
the water supply services. The standard deviation of the
recovery period for water supply is estimated at
6.66 days.

Table 2. Power supply outages of the affected municipalities/
cities per province, number of households in each location and
estimated average recovery period (in days).

Province Number of Average recovery
Municipality/City Households period (in days)
Cavite
Amadeo 10,317 6.13
Tagaytay 22,399 6.13
City
Alfonso 14,556 4,06
Indang 17,012 4.06
Mendez 8,606 4,06
Laguna
Calamba 151,604 3.1
Cabuyao 100,875 4.50
Kalayaan 5,790 0.25
Lumban 8,535 0.13
Pagsanjan 11,404 0.23
Caviniti 6,300 0.17
Paete 5,883 0.23
Sta. Rosa 122,458 0.03
San Pedro 82,292 0.17
Batangas
Lipa City 89,993 17.00
Tanauan City 46,680 34.67
Laurel 9,626 417
Talisay 10,785 8.67
Lemery 21,122 17.00
Malvar 17,064 16.00
Balete 5,709 17.00
Sta. Teresita 5,547 4.00
Lian 15,991 4.00
Total Affected 790,548
Calabarzon Total 4,062,720
Initial 19.5%
Inoperability
Average 6.39 ~ 6.0
recovery
period (in
days):
Standard 8.14
deviation, o

Source: National Disaster Risk Reduction and Management Council (2020)
and authors’ calculations

Source: National Disaster Risk Reduction and Management Council (2020)
and Philippine Statistics Authority (2022a).
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Table 3. Affected water supply, number of households and
average recovery period (in days).

Table 4. Codes and descriptions of economic sectors used in the
study.

Municipality/ Number of Average Recovery Period (in
City Households days)
Laurel, Batangas 9,626 16
Talisay, 10,785 17
Batangas
Taal, Batangas 14,977 5
Total Affected 35,388
CALABARZON 4,062,720
Total
Initial 0.9%
Inoperability
Average 127 = 12
recovery
period (in
days)
Standard 6.66
deviation, o

Source: National Disaster Risk Reduction and Management Council (2020)
and authors’ calculations.

3.2. Dynamic inoperability input-output model

One of the significant contributions of this paper is the
development of a spreadsheet-based graphical user
interface (GUI) that utilizes the IO data' for the affected
region. The GUI contains a blank table where users can
directly populate the parameters pertaining to the initial
inoperability (or level of dysfunctionality) of an infra-
structure, as well as the recovery period (in days). Even
with a moderately sized matrix comprising of 14 sectors
(see, Table 4), the required computations are cumber-
some since we must account for the impact of each
infrastructure system on each economic sector and the
dynamic behavior of inoperability over time. Recovery
considers the inherent resilience of each sector and the
coupling of each sector with other sectors. The GUI is
customized for this study that features the region-
specific data such as gross domestic product (GDP),
sector-by-sector requirements, and production output,
among others. Three infrastructure systems were
included in the simulation: (a) electric power, (b)
water, and (c) land transportation. Other infrastructure
systems were excluded either because they are virtually
unaffected (e.g., telecommunications) or non-existent in
the directly affected area (e.g., air transportation). A pair
of parameter inputs were required for each system,
namely initial inoperability and recovery period. Such
parameter inputs resulted from meticulous data extrac-
tion of scenarios as reflected in the situational report for
the Taal Volcano eruption (National Disaster Risk
Reduction and Management Council, 2020).

3.2.1. Baseline scenario
Table 5 summarizes the initial inoperability and recovery
periods that were computed based on the data extracted

Code Sector Description
S01 Agriculture, Fishery and Forestry
S02 Mining and Quarrying

S03 Manufacturing

S04 Construction

S05 Electricity, Gas and Water

S06 Land Transportation

S07 Water Transport

S08 Air Transport

S09 Communications and Storage
S10 Trade

sn Finance

S12 Real Estate and Ownership of Dwellings
S13 Private Services

S14 Government Services

from the situational report and other data as discussed
in the previous section. The inoperability parameter was
based on the proportion of the region that experienced
a disruption for a specific infrastructure. Furthermore,
recovery period refers to the number of days the infra-
structure is deemed to be operating back to a ‘business
as usual’ levels. The recovery period data are not integer
values (i.e., they contain decimal points); hence, we
rounded them down to the nearest number of days to
be compatible with the DIIM (i.e., as can be seen in the
DIIM formulation in Eq. 2, the time increments are
discrete).

Using the input data in Table 5, each infrastructure
disruption scenario was simulated using the DIIM GUI.
Hence, three separate simulations were performed each
for (a) electric power, (b) water, and (c) land transpor-
tation. The plots in Figure 3 depict the inoperability (left
panel) and economic loss (right panel) results because of
separate disruptions in the three infrastructure systems.
The details of the analysis are deferred to the subsequent
sections when the results for all three infrastructure
systems are aggregated. Nonetheless, several high-level
observations can be made from Figure 3.

First, the sector rankings for inoperability and eco-
nomic loss are different even if the disruption is caused
by the same infrastructure. Looking at the first row of
Figure 3, the most affected sector in terms of inoper-
ability is SO5 (electricity, gas, and water), while the most
affected sector in terms of economic loss is S03

Table 5. Direct disruption inputs to the DIIM based on taal
volcano situation reports (Baseline scenario).

Initial Recovery
Inoperability Period
Infrastructure System (%) (days)
(a) Electric Power 19.5 6
(b) Water 0.9 12
(c) Land 3 15

Transportation




(manufacturing). This is because inoperability typically
measures the percentage disruption to the sector and
since electric power is the one being disrupted here, it
only makes sense that the worst inoperability occurs in
the overarching sector that encompasses electric power
distribution. For economic loss, the manufacturing sec-
tor is the most affected because this sector not only relies
heavily on electric power but also because it is the sector
with the highest contribution to the GDP.

Secondly, performing a cross-comparison between
electric power and water disruptions (first and second
rows in Figure 3), the sector rankings for inoperability
are similar (left panel). The same can be said about the
similarity in economic loss rankings when electric
power and water disruptions are compared (right
panel). This is due to a data limitation for the IO matrix
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used in the study where electric power and water are
aggregated within the same economic sector.
Nonetheless, we were able to disaggregate the initial
inoperability and recovery inputs that enabled us to
assess the significant losses that are attributable to the
electric power. Looking at the y-axis of electric power vs
the y-axis of water (right panel), one can conclude that
the economic losses due to electric power disruption is
significantly higher in contrast to the economic losses
due to water disruption. The breakdown of the losses
will be reported later in this paper.

Third, doing a cross-comparison between electric
power and land transportation disruptions (first and
third rows in Figure 3), the sector rankings are markedly
different for both inoperability and economic loss mea-
sures. This is because electric power and land
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Figure 3. Inoperability and economic loss results for each infrastructure disruptions (Baseline scenario).
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transportation have separate overarching sectors (S05
and S06, respectively). For land transportation disrup-
tion, the land transportation sector (S06) ranks as the
most affected sector in both inoperability and economic
loss. It can also be noted that in the third row right panel
that manufacturing sector (S03) is the second most
affected sector in terms of economic loss. For the inop-
erability rankings in land transportation (third row, left
panel), it can be observed that the inoperability trajec-
tories of the other sectors are much lower than that of
the land transportation sector itself. It is worth noting
that resilience-enhancing strategies have been creatively
implemented in the region such that it is able to con-
tinue transporting products on partially damaged roads
and dirt roads using smaller vehicles like motorcycles.
As a matter of fact, at the height of the pandemic in the
Philippines, product deliveries using motorbikes (e.g.,
Grab) and small trucks and vans (e.g., Lalamove) have
boomed exponentially and become ubiquitous in the
Philippines (Abadilla, 2020).

More importantly, this paper focuses on the resulting
inoperability and economic loss experienced in the
region when all three infrastructure system disruptions
occurred simultaneously. When computed and aggre-
gated, the economic losses due to simultaneous infra-
structure disruptions can be validated subsequently with
estimates from other independent sources.

The plot and ranking of the most affected sectors
using the inoperability measure are shown in Figure 4
and Table 6 respectively.

Note that while most of the sectors have monotoni-
cally decreasing inoperability functions, there are sev-
eral exceptions. A case is the mining and quarrying
sector (S02) where the inoperability increases at the
onset of the disruption and decreases after reaching its
peak. Other sectors that experience an initial increase in

20%
18%
16%

14

ES

12%

10%

8%

Inoperability

6%
4%
2%

0%

Time (in days)

inoperability are the finance sector (S11), construction
sector (S04) and the agriculture, fishery and forestry
sector (S01). These sectors are strongly dependent on
the disrupted sectors thereby resulting to initially
increasing levels of inoperability. The sectors are ranked
according to their peak inoperability, which is shown in
the table below. The top-ranked sectors are evidently the
same sectors that encompass the infrastructure systems
from which the direct disruptions originated, namely
land transportation (S06) and electricity, gas, and water
(S05). The remainder of the rankings are shown in the
table below, indicating significant indirect inoperability
impacts on sectors that rely heavily on the disrupted
systems. The next three sectors reached double-digit
peak inoperability values including S13 (private ser-
vices), S10 (trade), and S09 (communications and sto-
rage). Consulting the table below, it is evident that all
economic sectors become inoperable at varying levels
depending on their dependence on electric power,
water, and land transportation infrastructure systems.
At the bottom of the ranking is construction, which
suffered a 1.22% inoperability.

Furthermore, the plot and ranking for the economic
loss measure are shown in Figure 5 and Table 6, respec-
tively. Most of the sectors have monotonically decreas-
ing loss functions, except for a few such as the light blue
curve SO01 (agriculture, fishery, and forestry), where
economic loss peaks sometime after day 1 and dissipates
thereafter. It can also be observed that the agriculture,
fishery, and forestry sector suffers the fifth highest loss,
and this is intuitive since this sector is economically
significant in the study region.

Table 7 shows the breakdown of economic losses for
the affected economic sectors ranked from highest to
lowest. The top 3 sectors incurred a combined loss of
about PhP 1,982 million, and these sectors are
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S13

S10
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——S03
—S02
—S07
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—S14
—S512
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Figure 4. Inoperability results for combined critical infrastructure disruptions (Baseline scenario).



Table 6. Inoperability rankings for combined infrastructure rank-
ings (Baseline scenario).

Most Affected Peak Inoperability
Sectors (%)
S05 Electricity, Gas and Water 17.81%
S06 Land Transportation 7.95%
S13 Private Services 6.67%
S10 Trade 6.39%
S09 Communications and Storage 5.90%
S03 Manufacturing 3.76%
S02 Mining and Quarrying 3.35%
S07 Water Transport 3.12%
S08 Air Transport 2.58%
S14 Government Services 2.41%
S12 Real Estate and Ownership of 2.17%
Dwellings

s1 Finance 1.90%
S01 Agriculture, Fishery and Forestry 1.78%
S04 Construction 1.22%

manufacturing (S03), trade (S10), and electricity, gas,
and water (S05), accounting for more than 70% of the
total loss of PhP 2,800 million. Interestingly, the loss of
the top 2 sectors are purely indirect effects due to their
reliance on the directly affected infrastructure systems.
The most impacted sector, manufacturing sector (S03),
the sector with the highest GDP contribution to the
region suffered a loss of PhP 1141 million. The region
is also heavily involved in trading; hence, it is not sur-
prising that the trade sector suffered the second largest
economic loss amounting to PhP 527 million. The third
largest loss amounted to PhP 314 million, which was
suffered by the electricity, gas, and water sector (S05).
The remainder of the economic loss breakdown for each
sector is enumerated in Table 7. All sectors suffered
varying levels of economic loss, with water transport
sector suffering the least loss of PhP 2 million. This
result is consistent with situational report findings that
indicate there was a minimal impact on water transport
activities in the region.

Economic Loss (in million PhP)

SUSTAINABLE AND RESILIENT INFRASTRUCTURE . il

3.2.2. Sensitivity analysis

In the previous section, we simulated the ripple effects
of infrastructure disruptions based on the baseline
values of the model parameters as shown in Table 5.
In this section, we will introduce two additional scenar-
ios as depicted in Table 8. From Section 3.1, we pro-
vided the calculations for the initial inoperability values
for the three infrastructure systems. Furthermore, for
the recovery period parameters, we created a new pessi-
mistic scenario in which the recovery period for each
infrastructure would exceed the baseline. We calculated
the standard deviation (o) of the recovery period data
and assumed that the pessimistic value corresponds to a
1o exceedance. The standard deviation values have also
been provided in Section 3.1. Note that this sensitivity
analysis focuses on the increase in recovery period. As
such, the same initial inoperability values were applied
in both the baseline and pessimistic scenarios.

For the new pessimistic scenario, the breakdown of
inoperability values is presented in Table 9. Note that
since the initial inoperability parameters are the same as
with the baseline case - albeit with slightly longer recov-
ery periods — we can observe from comparison of
Table 9 and Table 6 that the first 11 highest-ranked
sectors have essentially the same peak inoperability
values as the ones reported in the baseline case.
Nonetheless, the last 3 lowest-ranked sectors in the
pessimistic scenario have lower peak inoperability
values compared to their baseline counterparts, which
is counterintuitive. While the peak inoperability values
are lower in the pessimistic scenario, it should be noted
that the duration of time that the sectors remain in the
peak inoperability levels is longer due to the extended
recovery time, resulting in higher-order indirect
impacts. Longer recovery period will subsequently result
in higher economic losses as will be reflected in the
discussions surrounding Table 10.
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Figure 5. Economic loss results for combined critical infrastructure disruptions (Baseline scenario).
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Table 7. Economic losses rankings for combined infrastructure
rankings (Baseline scenario).

Economic Loss

Most Affected Sectors (in million PhP)
S03  Manufacturing 1,141
S10  Trade 527
S05  Electricity, Gas and Water 314
S13  Private Services 214
S01  Agriculture, Fishery and Forestry 181
S09  Communications and Storage 85
S11  Finance 83
S06  Land Transportation 80
S02  Mining and Quarrying 74
S12  Real Estate and Ownership of Dwellings 32
S04 Construction 30
S14  Government Services 28
S08  Air Transport 9
S07  Water Transport 2
Total Economic Loss 2,800

Table 8. Parameters used for sensitivity analysis of initial inop-
erability and recovery period.

Initial Inoperability (%) Recovery Period (days)

Scenario

Infrastructure Baseline Pessimistic Baseline Pessimistic
(a) Electric Power 19.5 19.5 6 14

(b) Water 0.9 0.9 12 19

(c) Land 3 3 15 16

Transportation

The breakdown of economic loss values for the
pessimistic scenario is presented in Table 10. While
the rankings are the similar compared with the base-
line case in Table 5, it can be observed that the
values of economic losses are significantly higher
compared with the baseline values. For example,
manufacturing suffered PhP 1,445 million in the
pessimistic scenario (see, Table 10), in contrast to
the PhP 1141 million it suffered in the baseline
scenario (see, Table 7). While some of the peak
inoperability values were lower for the pessimistic
scenario relative to the baseline scenario, the reason

why the economic loss is much higher is that the
prolonged recovery period kept the sector longer in
the peak inoperability region. The rest of the sectors
also suffered higher economic loss values when the
pessimistic scenario is juxtaposed with the corre-
sponding values in the baseline scenario.

3.3. Summary of results for the two scenarios

Table 11 summarizes the inoperability and economic
loss rankings, respectively, for the two scenarios.
Scenario 1 corresponds to the baseline column, while
Scenario 2 corresponds to the pessimistic column. Most
of the analyses for the two scenarios have been discussed
separately in the previous sections and will not be
repeated here. Nonetheless, there are main takeaway
points that need to be reemphasized as follows:

e The rankings of inoperability and economic loss
are different; and both rankings must be consid-
ered when implementing policy decisions pertain-
ing to resource allocation.

e The baseline and pessimistic values present
a possible range of values adhering to the need
for uncertainty analysis required when making
estimates of disaster losses.

e Sensitivity analysis revealed that the total economic
losses (see last row of Table 11) can range between
PhP 2.8 billion to PhP 3.5 billion.

e The estimated economic loss (see last row of
Table 11) is aligned with the official estimated loss
of PhP 4.8 billion as published by the National
Economic and Development Authority Region IV-
A (2020) such that the lower estimates presented in
Table 11 excludes the initial inoperability in the
agriculture, fishery and forestry sector.

Table 9. Inoperability rankings for combined infrastructure rankings

(Pessimistic scenario).

Most Affected Sectors

Peak Inoperability (%)

S05  Electricity, Gas and Water
S06  Land Transportation

S13  Private Services

S10  Trade

S09  Communications and Storage
S03  Manufacturing

S07  Water Transport

S02  Mining and Quarrying

S08  Air Transport

S14  Government Services

S12  Real Estate and Ownership of Dwellings

N Finance
S01  Agriculture, Fishery and Forestry
S04  Construction

17.81%
7.95%
6.67%
6.39%
5.90%
3.76%
3.12%
3.00%
2.58%
241%
2.17%
1.76%
1.70%
1.17%




Table 10. economic losses rankings for combined infrastructure
rankings (Pessimistic scenario).

Economic Loss (in million

Most Affected Sectors PhP)
S03  Manufacturing 1,445
S10  Trade 668
S05  Electricity, Gas and Water 398
S13  Private Services 271
S01  Agriculture, Fishery and Forestry 230
S09  Communications and Storage 108
S11  Finance 105
S06  Land Transportation 101
S02  Mining and Quarrying 94
S12  Real Estate and Ownership of 41
Dwellings
S04 Construction 38
S14  Government Services 35
S08  Air Transport 12
S07  Water Transport 2

Total Economic Loss = 3,546

Table 11. Economic loss rankings the two scenarios in thousand
PHP.

Scenario 1: Scenario 2:

Most Affected Sectors Baseline  Pessimistic
S06  Manufacturing 1,14 1,445
S05  Trade 527 668
S13  Electricity, Gas and Water 314 398
S10  Private Services 214 271
S09  Agriculture, Fishery and Forestry 181 230
S02  Land Transportation 85 108
S03  Communications and Storage 83 105
S12  Finance 80 101
S14  Mining and Quarrying 74 94
S11  Real Estate and Ownership of Dwellings 32 41
S01  Construction 30 38
S04  Government Services 28 35
S07  Air Transport 9 12
S08  Water Transport 2 2
Total Economic Loss (in million PhP) 2,800 3,546

4, Conclusions and areas for future research

In this paper, we developed and customized the classical
economic I-O model for estimating the direct and indir-
ect ripple effects due to the eruption of Taal Volcano in
the Philippines. This disaster affected primarily the pro-
vinces of Cavite, Laguna, and Batangas in the island of
Luzon, which is the largest island of the Philippines.
Although the region is contiguous to the Philippine
National Capital Region, the spillover effects were for-
tunately minimal; hence the losses estimated in this
paper are only focused on the directly affected provinces
and municipalities (see, Figure 2, Tables 1- 3).

The direct effects were caused mainly by disrupted
critical infrastructure systems such as electric power,
water, and land transportation. These are the systems
that were heavily impacted in the region. While there
are other types of critical infrastructure systems, they
are either practically non-existent in the region (e.g., air
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and water transport) or minimally disrupted due to
their higher resilience (e.g., communications and sto-
rage). In modeling the infrastructure disruptions, we
calculated the dependence of each economic sector on
the affected infrastructure and simulated the trajectory
of inoperability given the recovery periods available in
a government-released situational report. Inoperability
is a dimensionless measure of the proportional extent to
which an infrastructure’s functionality is disrupted rela-
tive to its ideal operation.

Different municipalities suffered varying levels of
inoperability and we calculated the weighted average
of both the initial inoperability and recovery time, con-
sidering the significance of the infrastructure and the
number of affected populations in each municipality.
Given these input parameters, we simulated the
dynamics of the recovery for the affected economic
sectors. Since the IO data for the Philippines is typically
available at the national scale, this paper developed an
IO table customized for the region, comprising of 14
sectors (see, Table 2).

A graphical user interface (GUI) for the dynamic inop-
erability input-output model, or DIIM, was developed and
deployed in this study. The GUI has a simple interface
where users can enter different combinations of initial
inoperability and recovery period values. After these
model parameters are entered, the DIIM automatically
calculates and provides visualizations of the inoperability
and economic loss for each sector over the recovery hor-
izon. The resulting plots are accompanied by a table con-
taining the ranking of sectors based on the inoperability
and economic loss measures. These two measures gener-
ate different sector rankings. Inoperability typically
focuses on the sectors that — albeit their relatively low
contribution to the GDP - can potentially create more
cascading effects and consequently can further lengthen
the recovery. Economic loss, on the other hand, reflects
the monetary worth of damage incurred in each sector.
Together, these two measures can provide a more robust
guidance pertaining to resource allocation decisions.

For this study, sectors that were found to have the
highest peak inoperability include electricity, gas, and
water, land transportation, private services, and trade, to
name a few. It is intuitive that the two most affected
sectors are the same sectors that encompass the initially
affected infrastructure systems. Private services and
trade were also among the sectors that suffered the
brunt of the inoperability measure, and this result is
intuitive since these sectors are heavily dependent pri-
marily on electric power and land transportation.

In contrast, the sectors that incurred the highest eco-
nomic losses include manufacturing, trade, electricity,
gas and water, private services, and agriculture, fishery
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and forestry. Manufacturing is the largest GDP contri-
butor in the region and it comes with no surprise that it
also suffered the highest economic loss, accounting for
nearly 40% of the total economic loss for the region. It is
also worth noting that the region is resource rich and
heavily engaged in agricultural activities, hence making
this sector also vulnerable to the eruption. For the case
study, we simulated two different scenarios (baseline,
and pessimistic) to generate a range of economic loss
estimates, which we estimated to be somewhere between
PhP 2.8-3.5 billion.” As a validation, we have found that
our estimates are consistent as other independent stu-
dies, which estimated the losses at PhP 4.8 billion which
includes initial inoperability in the agriculture, fishery
and forestry sector (NEDA Region IV-A, 2020).

While our results matched the official estimates,
there are assumptions and limitations that can further
refine the analysis. Taal Volcano, one of the world’s
smallest volcanoes blanketed by the picturesque Taal
Lake, attracts many tourists both domestic and foreign.
Within the regional I-O data, the tourism industry is
heavily aggregated within the private services sector and
it is difficult to extract it separately to estimate its con-
tribution to the economic loss. However, the Taal
Volcano eruption occurred during an off-peak season,
and we argue that the loss to the tourism industry would
have been far greater had it happened during the holi-
days or the summer peak season. Other extensions that
can be revisited in the future include the costs associated
with evacuation of displaced populations, productivity
losses due to degraded morale and post-traumatic stress
disorder, as well as the medical costs associated with
illnesses and deaths — which are beyond the economic
loss scope of the current study.

In conclusion, the I-O based methodology and com-
panion decision support system developed in this paper
can serve as a template for future studies to estimate the
ripple effects of infrastructure failures to interdependent
economic sectors. Our model and analysis prescribe dif-
ferent dimensions of prioritization. Typically, policy-
makers are primarily concerned with keeping economic
losses to a minimum. Nonetheless, such one-dimensional
mindset has the tendency to leave out sectors with rela-
tively low contribution to the GDP but are critical to
expediting the recovery process. As such, a myopic or
short-term focus on economic loss reduction can poten-
tially create a paradox of neglecting other sectors that
could be pivotal to the recovery process - ironically
generating more losses in the long run. Hence, sensitivity
analysis such as the ones performed in the study is needed
to enhance the robustness of the prioritization process
that consider other metrics such as peak inoperability,
resilience and its impact on recovery period, and the

degree and complexity of the coupling amongst the sec-
tors. Examples of resilience strategies that can be further
explored include excess inventory in anticipation of
a disaster, production recapture (e.g., employee overtimes
to compensate for loss of production), facility relocation,
building up buffer capacity, among others. Hence,
a future topic can investigate the cost-effectiveness and
impact of such resilience tactics on economic loss reduc-
tion and the enhanced pace of regional recovery.

Notes

1 The input-output table of Region IV-A
(CALABARZON Region), for 2019 was estimated
using location quotient approach (Miller & Blair,
2009) based on the 2012 Philippine Input-Output
Table (Philippine Statistics Authority, 2017) calibrated
with the 2019 regional gross domestic product
(Philippine Statistics Authority, 2022b).

2 As a reference, in year 2020, USD 1 is approximately
PhP 50; hence the economic losses vary between USD
56-70 million.
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