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Abstract: In this study, we utilize an input–output (I–O) model to perform an ex-post analysis

of the COVID-19 pandemic workforce disruptions in the Philippines. Unlike most disasters that

debilitate physical infrastructure systems, the impact of disease pandemics like COVID-19 is mostly

concentrated on the workforce. Workforce availability was adversely affected by lockdowns as well

as by actual illness. The approach in this paper is to use Philippine I–O data for multiple years and

generate Dirichlet probability distributions for the Leontief requirements matrix (i.e., the normalized

sectoral transactions matrix) to address uncertainties in the parameters. Then, we estimated the

workforce dependency ratio based on a literature survey and then computed the resilience index in

each economic sector. For example, sectors that depend heavily on the physical presence of their

workforce (e.g., construction, agriculture, manufacturing) incur more opportunity losses compared to

sectors where workforce can telework (e.g., online retail, education, business process outsourcing).

Our study estimated the 50th percentile economic losses in the range of PhP 3.3 trillion (with telework)

to PhP 4.8 trillion (without telework), which is consistent with independently published reports. The

study provides insights into the direct and indirect economic impacts of workforce disruptions in

emerging economies and will contribute to the general domain of disaster risk management.

Keywords: Leontief model; Dirichlet distribution; uncertainty analysis; workforce; disaster; pandemic

1. Introduction

Outbreaks of endemic diseases occur seasonally. Nonetheless, albeit relatively rare,
severe epidemics that encompass large geographic areas and with high transmission rates—
known as pandemics—have been well documented in the past. Early in the 20th century,
the 1918 H1N1 pandemic nicknamed as the “Spanish Flu” became one of the deadliest
disasters in modern times, killing more than 50 million people worldwide (Taubenberger
and Morens 2006). Furthermore, mild to moderate pandemics occurred thereafter such as
the 1952 H2N2, 1968 H3N2, and the more recent 2009 H1N1pdm2009 (Centers for Disease
Control and Prevention 2018).

In 2007, the World Health Organization (WHO) issued a statement that emphasized
the urgency of a coordinated effort amongst the global scientific community to prepare for
and combat the risks associated with new infections (WHO 2007). Prior to the COVID-19
pandemic1, the current generation had not experienced a disaster of similar magnitude as
the 1918 Spanish Flu. Indeed, we became firsthand witnesses to the complex consequences
of COVID-19 such as mortalities, exceedance of healthcare capacity, and economic collapse,
which punctuated the clear and present threat of pandemics. This has resulted in port
closures and lockdowns, which have caused major supply chain disruptions whose impacts
cross geographical boundaries (Yu and Aviso 2020). Furthermore, the transmission rate
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and severity of viral outbreaks are fraught with uncertainties. Increased burden on the
healthcare sector arises as frontliners have heightened exposure that can worsen the sector’s
inoperability (El Haimar and Santos 2015). Coupled with their ability to mutate and evade
vaccination efforts, the recovery from a pandemic can be a complex and daunting effort
(Orsi and Santos 2010).

For novel diseases, non-pharmaceutical intervention (NPI) measures are implemented
in the absence of vaccines. The three major categories of NPI measures are containment,
suppression, and mitigation. Containment is the ability to detect the infected individuals
and separate them from the general population. Suppression, on the other hand, refers to

measures that can reduce the reproduction number2 to a value lower than 1, which may
be achieved via business and school closures, travel restrictions, and lockdowns, among
others. Finally, mitigation measures are the ones directly associated with the “flatten the
curve” concept (Centers for Disease Control and Prevention 2007, 2017), which are also
referred to as the 3Ws of mitigation—wash your hand, watch your distance, wear your
personal protective equipment (PPE). Many studies have assessed both the efficacy of
various NPI measures in reducing and delaying the impact of infections, as well as the
unwanted adverse effects associated with mental health and infringement of personal
liberties (Ferguson et al. 2020; Huzar 2020; James et al. 2020; Pueyo 2020).

Unlike most disasters where the direct damage is on physical infrastructure and the
natural environment, the impact of pandemics is concentrated on people. The workforce is
the lifeblood of any society, and massive disruptions to the workforce will immediately
translate to the inoperability of critical infrastructure systems (Santos et al. 2014a). Hence,
although pandemics do not render direct damage to physical systems, the consequences
can be as debilitating as manmade disasters (Santos 2020a). In this paper, the focus of the
analysis is on workforce disruptions attributable to NPI measures like lockdowns, business
closures, and travel bans. Indeed, disasters like pandemics can lead to “forced” absenteeism
because physical access to places of work is curtailed, or worse, completely restricted. In
addition, workforce absenteeism can also be caused by workers getting sick themselves
or providing care to sick family members, thus, requiring them to quarantine. Because of
the significant impact triggered by workforce disruptions, government agencies such as
the US Department of Labor (2020) have proposed policy recommendations to help reduce
the subsequent economic losses. For example, teleworking (or “working from home”) has
provided an opportunity for sectors to continue their operations amid the pandemic. The
availability of infrastructure and the nature of jobs allows for teleworking. Furthermore,
some sectors have creatively leveraged information technology to maintain their capability
to deliver goods and services virtually to lessen the impact of workforce disruptions. The
pandemic has fast-tracked the adoption of teleworking across different jobs and sectors.
Prior to the pandemic, the percentage of employees who were able to telework ranged from
only 2 to 20 percent varying across countries, occupations, and sectors (Messenger 2019).
However, the onset of the pandemic has led to a surge in teleworking. In the EU, 39.6%
of paid work was conducted from the employees’ homes and 46% had never teleworked
prior to the pandemic (Eurofound 2020).

The primary contribution of this article is to model and evaluate the positive impact
of teleworking and their associated economic benefits. In particular, the focus of this paper
is to evaluate the benefits of teleworking on the continuity of operations across various
sectors. The subsequent sections of this article are organized as follows. In Section 2, the
methodology for modeling of workforce disruptions using input–output (I–O) modeling
is discussed, as well as the use of Dirichlet distributions to model the uncertainty of the
I–O parameters. The relevant data sources are also discussed in Section 2. In Section 3, we
perform simulations of various telework scenarios and evaluate the resulting distribution
of economic losses. The results are further discussed in Section 4. Finally, the conclusions
of the paper and other reflections for future consideration are presented in Section 5.
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2. Materials and Methods

2.1. Overview of Pandemic Impact Modeling

Pandemic and disaster risk management encompass a wide range of spatial and tem-
poral dimensions (Okuyama and Santos 2014). However, identifying the optimal model for
disaster risk analysis tends to be constrained by the availability of quality data, limitations
of quantitative techniques, and interpretation of the results (Albala-Bertrand 1993). Santos
et al. (2014a) introduced the WEIGHT framework (Workforce, Economy, Infrastructure, Ge-
ography, Hierarchy, and Time) to examine critical factors affecting disaster risk assessment
and management. As the nature of international trade entails an interconnected economy,
countries have become more vulnerable to foreign shocks.

COVID-19 has brought about global economic contraction due to a decline in con-
sumption, disrupted global supply chain and production, business closures, and loss of
work, causing an increase in the number of people living in extreme poverty with 3.3 billion
workers worldwide at risk of losing their jobs (WHO 2020). Haleem et al. (2020) categorized
the impact of the pandemic into three areas: healthcare, economic, and social. Other than
the direct effect of the morbidity and mortality of the disease, the medical system is over-
stretched and highly burdened due to the overwhelming number of cases within a short
period of time. Non-COVID patients have become neglected as healthcare professionals
become understaffed due to exposure or quarantine measures. The medical supply chain
was also disrupted due to stringent lockdown measures implemented both domestically
and globally. The impact on the economy manifests in the reduced consumption of goods
and disrupted global supply chain network. Lastly, the disruption to the social aspect
includes the imposed social distancing measures, leading to the closure of social spaces
such as restaurants, malls, entertainment areas, travel restrictions, and stalled service sector.

Previous studies have examined the impact of pandemics, and provided optimal
intervention strategies that minimize economic losses, yet save thousands of lives. Ginsberg
et al. (2009) emphasized the need for early detection and response to mitigate the impact
of both season and pandemic influenza. Eichenbaum et al. (2021) identified a trade-off
between negative short-run economic outlook and the health of the population, where
ending containment early (before 44 weeks) can create a surge in infection rates while
starting containment too late (after 33 weeks) can cause the death of up to 0.4% of the initial
population. Ferguson et al. (2006) determined that intervention measures such as rapid
case isolation can reduce cumulative attack rates by 7% (if 90% of cases are isolated), while
the implementation of border controls can only delay the spread by three to six weeks if
imported infections were reduced by over 99%. Lastly, a combination of personal behavioral
change and government intervention would be the optimal strategy to mitigate the spread
of the pandemic, emphasizing the role of the individual to conduct self-isolation, social
distancing, and to seek remote medical assistance (Anderson et al. 2020). Governments
may also impose travel restrictions and conduct rigorous contact tracing to ensure spread
containment.

Dingel and Neiman (2020) argued that low-income economies tend to have fewer jobs
that can be conducted remotely or at home. Governments implemented NPI measures
to mitigate the spread of infection before the use of vaccines became widespread. NPI
measures are done through the combination of containment, suppression, and mitigation
measures (Santos 2020a). However, such measures may result in forced absenteeism
because of mobility restrictions such as lockdowns or lack of transportation (Santos 2020b).
Sectors reliant on migrant workers were hit particularly hard (Foong et al. 2022).

Several studies on post-disaster workforce unavailability exposed the adverse eco-
nomic impact of disruptions. Orsi and Santos (2010) translated the effect of workforce
unavailability as a measure of sector productivity disruption in the state of Virginia. Using
three potential attack rates (15%, 25%, and 35%), the expected value of economic losses
would be USD 4.6 billion, USD 7.7 billion, and USD 10.8 billion, respectively. Chen et al.
(2021) examined the trade-off between economic losses due to inoperability, lockdown
duration, and averted infections and deaths. In an unmitigated scenario (no lockdown or
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NPI measures), economic losses were highly reduced but resulted in 100 million infections
and a hundred thousand mortalities. On the other hand, a lockdown scenario of 45 days
with 90% compliance rate will result in an economic loss of about USD 3.4 trillion but will
save over 110,000 lives and mitigate the infection of 115 million individuals.

The unpredictable nature of the pandemic has led to governments implementing
varying levels of mobility restrictions over an extended period of time that resulted in
persistent inoperability in the economy (Yu et al. 2020b). The COVID-19 pandemic has
forced an increased adoption of alternative working arrangements globally to reduce the
spread of the virus. In the United States, 35.2% of the workforce were working from
home by May 2020 in contrast to 8.2% in February (Bick et al. 2020). There was also an
increase in work from home arrangements in the EU. Eurofound (2020) launched a survey
and found that more than 48% of its respondents who were categorized as employees
were now partially working from home, while 34% worked exclusively from home. In
the Philippines, work-from-home (WFH), or telework arrangements were adapted by
businesses if their line of work allows their employees to do so. Gaduena et al. (2022)
estimated that only 25.7% of occupations in the Philippines are teleworkable. Although
there was a swift adoption of such measure to those that have the capability to do so, some
jobs cannot be performed remotely (Gaduena et al. 2022). Further, Gaduena et al. (2022)
identified that most of the occupations that can support teleworkable jobs are typically
found in sectors that have a low share of the country’s total employment (i.e., sectors that
require at least undergraduate degrees). The Organization for Economic Co-operation and
Development (OECD) (OECD 2020) also states that most teleworkable jobs require highly
skilled workers. Generalao (2021) also made a similar argument, such that industries that
employ more educated individuals can experience the benefits of technological advances.
On the other hand, those occupations that require lower levels of education, such as
low- and medium-skilled laborers, are considered non-teleworkable (Gaduena et al. 2022;
OECD 2020). Telework arrangements brought about an unprecedented demand surge for
electronics. A prolonged shortage in essential technology metals will affect production
of equipment necessary for telework (Yu et al. 2020a). Thus, persistent supply chain
disruptions can affect teleworkability in the long run.

2.2. Economic Input–Output Model

The input–output (I–O) model provides a mathematical framework to model the
interdependencies among economic sectors that comprise an economy (Leontief 1936).
It has been used for numerous applications involving analysis and forecasting and is
considered as a standard economic tool in most countries (Miller and Blair 2009). I–O
models use systems of linear equations to capture the network-like structure of interlinked
economic structures. This feature makes this approach particularly useful for studying
the changes in production and consumption of interdependent economic sectors as a
result of network ripple effects. The basic I-O model can also serve as the basis for more
sophisticated models. Examples include mathematical programming extensions as well
as computable general equilibrium (CGE) models that relax the strict assumption of the
Leontief production function (Miller and Blair 2009).

The basic I–O model may be written as follows:

x = Ax + y (1)

where A is the matrix of technical coefficients, x is the vector of total sector outputs, and y
is the vector of sector final demands. Equation (1) shows that the total output must meet
the combined intermediate and final demands. In conventional I–O applications, these
flows are given in terms of monetary value. The coefficients of A reflect the average state
of production technology used in the system’s sectors. Their proportions are assumed
to be fixed to reflect a Leontief production function that does not allow for substitution
among inputs. This restrictive assumption is generally considered as acceptable for typical
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applications of I–O models, which are understood to provide snapshots of the state of the
economies that they represent. Rearranging Equation (1) gives:

x = (I − A)−1y (2)

where (I − A)−1 is the Leontief inverse. In this form, the I–O model can be readily used to
compute production levels associated with any given final demand scenario.

The basic I–O model has also been extended to account for the flow of inoperability
through economic or infrastructure networks (Haimes and Jiang 2001). Inoperability is
a dimensionless metric of the degree of system failure, with a value ranging from 0 for a
system at normal state to a value of 1 for a system in a state of total failure. The original
physical definition of inoperability was modified by Santos and Haimes (2004) to allow
inoperability I–O models (IIM) to be calibrated using published economic data. In such
applications, inoperability quantifies the relative or fractional drop in economic activity
(Santos 2006). The IIM formulation based on demand disruption is shown in Equation (3):

q = A∗q + c∗ (3)

where A* is the interdependency matrix, c* is the sector demand disruption vector, and q is
the sector inoperability vector. Matrix A* can be determined from the baseline state of the
economy being analyzed (Santos and Haimes 2004). Note that this model is structurally
analogous to the basic I–O model, and can also be rearranged as follows:

q = (I − A∗)−1c∗ (4)

where (I − A*)−1 is analogous to the Leontief inverse, and acts as a multiplier that quantifies
the amplification effect of an economic system on an initial input disruption (c*) to yield the
sectoral interoperability (q). This demand-reduction form of the IIM model was first used to
analyze the economic ripple effects of the September 11 terrorist attacks in the United States
(Santos and Haimes 2004). A two-part review on IIM was subsequently published, focusing
on fundamentals (Haimes et al. 2005a) and applications (Haimes et al. 2005b), respectively.
In addition to these early uses of IIM, more recent examples of disruptive events modelled
with IIM in the previous decade include earthquakes and tsunamis (MacKenzie et al. 2012),
cyberterrorist attacks (Ali and Santos 2015), droughts (Santos et al. 2014b), crop failure due
to infestation (Aviso et al. 2015), and influenza epidemics (Santos et al. 2013).

The basic I–O model and IIM can be used in parallel to analyze the effects of disasters
and other disruptive events, since they reflect different aspects of the system. These two
metrics thus generally lead to different priority rankings of economic sectors (Santos et al.
2013). For example, large economic sectors can experience high levels of economic loss even
at relatively low inoperability. Conversely, small sectors may experience seemingly small
economic losses even at high levels of inoperability. This distinction has important uses
for supporting policy decisions. Economic loss estimates from the basic I–O model can be
interpreted directly in terms of social welfare implications. On the other hand, inoperability
reflects the actual extent of loss suffered by a given sector relative to its normal state. Since
economic sectors are the aggregation of multiple private businesses, inoperability can more
accurately reflect the collective damage done to these entities (e.g., a wave of bankruptcies
in a given sector may hamper its ability to recover from a transient crisis). The inoperability
metric can also be linked to shifts in economic structure leading to improved resilience
(Okuyama and Yu 2019).

2.3. Uncertainty Analysis

In the field of probabilistic risk analysis (PRA), it is commonplace to estimate a
consequence metric from a disaster as a range or as a point estimate with an associated
confidence interval. Indeed, Kaplan and Garrick (1981) formulated the triplet of questions
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in PRA that explicitly contains the element of uncertainty. These questions are: (i) “What
can go wrong?”, (ii) “What is the likelihood?”, and (iii) “What are the consequences?”.

Uncertainty analysis is a broad subject area, encompassing the two general categories
of uncertainty—aleatory (statistical variability or randomness) and epistemic (lack of
knowledge). In this paper, the emphasis is on the uncertainty of the model parameters of
the I–O model, which was discussed in the previous section. In particular, we will model
the effects of the I–O technical coefficient matrix (denoted by A in Equation (1)).

In the domain of I–O modeling and analysis, several papers have emphasized the
importance of conducting uncertainty analysis. Rose (2004) argues that the use of a de-
terministic point estimate to discuss the result of an analysis reflects the exaggeration of
certainty and will most likely be erroneous. Furthermore, quoting from Gerking (1976):
“It is commonplace in I–O analysis to interpret [the static I–O equation] as a deterministic
or exact forecast. However, to contend that this forecast will come true with certainty is
optimism to a fault”. As a corollary to such arguments, deterministic modeling estimates
may lead to faulty policies due to the illusion of certainty that they create.

This paper proposes the use of Dirichlet distribution to model the uncertainties as-
sociated with the elements of the I–O matrix. The Dirichlet distribution can be thought
of as an extension of the Beta distribution. When modeling a set of variable proportions
that add up to 1, the appropriate distribution to use is the Dirichlet distribution. As a
matter of fact, several papers have explicitly used the Beta and Dirichlet distributions to
model uncertainty of the I–O coefficients (see, for examples, Jansen 1994; Ten Raa and
Rueda-Cantuche 2007; Dietzenbacher 2006).

The probability density function of the Beta distribution is as follows, where x is the
random variable, and the Greek letters are the standard notation for the Beta distribution
parameters:

f (x; α, β) =
Γ(α+β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

0 ≤ x ≤ 1 and α, β > 0
(5)

The Beta distribution is commonly used to model a proportion. For example, if we
look at the proportion of the manufacturing sector with respect to the total gross domestic
product (GDP), such proportion can change from year to year and hence can be modeled
as a Beta distribution. The Beta distribution can only handle one proportion at a time as
a random variable. There are cases where it is desirable to model multiple proportions
that add up to one. For example, consider the Philippine I–O table where each column
comprises of 16 sectors + value added (see Supplementary Materials). Each column can be
normalized with respect to the total production output (i.e., production requirements of
the 16 sectors + value added). The resulting normalized column comprising of 17 elements
will necessarily add up to 1. Hence, the elements of a column of the I–O matrix can be
simultaneously modeled as a Dirichlet distribution, whose formulations are shows below.

The probability density function of the Dirichlet distribution is as follows, where xi

are the Dirichlet random variables, αi are the associated Dirichlet parameters, and Γ(·) is
the Gamma function:

f (x; α) =
Γ(∑

k
i=1 αi)

Γ(∏
k
i=1 αi)

∏
k−1
i=1 (xi)

αi−1
(

1 − ∑
k−1
i=1 xi

)αk−1

0 ≤ xi ≤ 1 and αi > 0 for i = 1, 2, . . . , k
(6)

The general formulation in the previous equation can be rewritten by letting α0 = ∑
k
i=1 αi.

f (x; α) =
Γ(α0)

Γ
(

∏
k
i=1 αi

) ∏
k−1

i=1
(xi)

αi−1
(

1 − ∑
k−1

i=1
xi

)αk−1
(7)
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Each proportion xi in the above Dirichlet distribution can be modeled separately as
a marginal distribution of a Gamma distribution variable yi, which follows the following
formula.

f (yi; αi, α0 − αi) =
Γ(α0)

Γ(αi)Γ(α0 − αi)
yα0−1

i (1 − yi)
α0−αi−1 (8)

To derive the values of the Dirichlet variable xi from the Gamma variable yi, the
following algorithm is used.

Step 1: For i = 1, 2, . . . k, draw a random number, yi, from a Gamma distribution with
parameters Γ(αi, 1), where:

Γ(αi, 1) = y
αi−1
i

e−yi

Γ(αi)
(9)

Step 2: Normalize the realizations from Step 1 to produce the Dirichlet realizations.

xi =
yi

∑
k
i=1 yi

(10)

Figure 1 shows the multiple columns of an I–O matrix, where each column adds up to
1. Each column can be modeled as a Dirichlet distribution using the previous formulations
and the foregoing simulation algorithm.

𝑓(𝑥; 𝛼) = Γ(𝛼଴)Γ(∏ 𝛼௜௞௜ୀଵ )ෑ (𝑥௜)ఈ೔ିଵ௞ିଵ௜ୀଵ ቆ1 −෍ 𝑥௜௞ିଵ௜ୀଵ ቇఈೖିଵ𝑥௜ 𝑦௜
𝑓(𝑦௜; 𝛼௜ , 𝛼଴ − 𝛼௜) = Γ(𝛼଴)Γ(𝛼௜)Γ(𝛼଴ − 𝛼௜) 𝑦௜ఈబିଵ(1 − 𝑦௜)ఈబିఈ೔ିଵ 𝑥௜ 𝑦௜𝑖 = 1,2, … 𝑘 𝑦௜Γ(𝛼௜ , 1) Γ(𝛼௜ , 1) = 𝑦௜ఈ೔ିଵ 𝑒ି௬೔Γ(𝛼௜)

𝑥௜ = 𝑦௜∑ 𝑦௜௞௜ୀଵ

 

Figure 1. Depiction of an I–O matrix where each column is modeled as a Dirichlet distribution.

2.4. Data Sources

2.4.1. Input–Output Data (2000, 2006, 2012, 2018)

This study will use the case of the Philippines to illustrate the use of 2000 (National
Statistical Coordination Board 2006a), 2006 (National Statistical Coordination Board 2006b),
2012 (Philippine Statistics Authority 2017) and 2018 (Philippine Statistics Authority 2018)
Philippine Input–Output Tables. The I–O tables for the different years were re-specified into
16-sector tables that account for one agriculture sector, four industrial sectors and eleven
services sectors. Table 1 provides details on the sector disaggregation of the input–output
tables that is adapted in the study.
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Table 1. Sector classification.

Sector Code Sector

S1 Agriculture, forestry, and fishing
S2 Mining and quarrying
S3 Manufacturing
S4 Electricity, steam, water and waste management
S5 Construction
S6 Wholesale and retail trade; repair of motor vehicles and motorcycles
S7 Transportation and storage
S8 Accommodation and food service activities
S9 Information and communication

S10 Financial and insurance activities
S11 Real estate and ownership of dwellings
S12 Professional and business services
S13 Public Administration and Defense; Compulsory social security
S14 Education
S15 Human health and social work activities
S16 Other services

2.4.2. Workforce Disruption Scenarios

The COVID-19 pandemic has resulted in significant workforce disruptions across
practically every sector of the economy. In this paper, we performed a literature search to
determine the workforce disruption percentage in the Philippines. While the disruption
fluctuated during the pandemic as influenced by the varying levels of lockdown scenarios
and the associated business closures (see Yu et al. 2020a), we will assume an average
annualized workforce disruption for simplicity. There were various estimates of workforce
disruptions in the Philippines, but the data that have been specifically used in this paper
were based on the detailed report of the International Labor Organization (ILO). In its
report, it states that: “One quarter of total employment in the Philippines is likely to be
disrupted by the impact of COVID-19 on the economy and labour market, either through
decreased earnings and working hours or complete job loss” (ILO 2020).

Using the ILO data, given a 25% general workforce disruption, the next step is to
determine the workforce dependence of each sector. A labor-intensive sector that is heavily
reliant on its workforce is likely to be more severely affected than a sector that is relatively
more automated. In the Philippine I–O tables, the sector-specific workforce dependence can
be established from the “value added” portion of the data, notably the “compensation of
employees”. If the total workforce compensation expenditure of a sector is denoted by wi,
and its total production output is denoted by xi, then the ratio wi/xi gives an estimate of
the labor dependence of that sector. Table 2 gives the sector-specific workforce dependence
ratios based on 2018 Philippine I–O data.

Hence, the 25% workforce disruption percentage obtained from the ILO is further
adjusted to account for the above sector-specific workforce dependence. Furthermore, the
baseline scenario assumed in this paper is that the sectors are not able to telework. This
baseline is simulated in this paper to determine the savings realized in contrast to the
scenario where each sector’s workforce disruption rate is further reduced depending on
the ability of each sector to telework. The description of such an approach as well as the
actual telework multipliers used in the study is described in the next section.
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Table 2. Ratio of Compensation of Employees with Production Output (both in million PhP3).

Sector Code Sector wi xi wi/xi

S1 Agriculture, forestry, and fishing 580,692 3,460,982 17%
S2 Mining and quarrying 23,593 245,169 10%
S3 Manufacturing 959,037 10,938,541 9%
S4 Electricity, steam, water and waste management 92,438 897,255 10%
S5 Construction 576,094 3,008,314 19%

S6
Wholesale and retail trade; repair of motor

vehicles and motorcycles
975,807 4,667,591 21%

S7 Transportation and storage 241,220 1,737,302 14%
S8 Accommodation and food service activities 127,419 1,074,371 12%
S9 Information and communication 156,760 1,051,165 15%

S10 Financial and insurance activities 427,069 2,743,564 16%
S11 Real estate and ownership of dwellings 56,837 1,530,595 4%
S12 Professional and business services 725,200 2,008,912 36%

S13
Public Administration and Defense; Compulsory

social security
612,367 1,265,078 48%

S14 Education 559,598 857,562 65%
S15 Human health and social work activities 84,287 460,131 18%
S16 Other services 98,666 592,942 17%

2.4.3. Telework Data

This study adapts the weighted average teleworkability of occupations by major
industry groups in the Philippines based on Generalao (2021). The major industry group
were then aggregated based on the sector classification specified in Table 1. Since this study
considered the proportion of the occupations that are not teleworkable (a dimensionless
measure), Table 3 presents the information on non-teleworkable jobs, (1 − Ti), where Ti is
the proportion of teleworkable jobs for sector i as adapted from Generalao (2021).

Table 3. Proportion of non-teleworkable occupations by major industry group.

Sector Code Sector (1 − Ti)

S1 Agriculture, forestry, and fishing 0.9191
S2 Mining and quarrying 0.8744
S3 Manufacturing 0.8257
S4 Electricity, steam, water and waste management 0.7252
S5 Construction 0.9616
S6 Wholesale and retail trade; repair of motor vehicles and motorcycles 0.6058
S7 Transportation and storage 0.8038
S8 Accommodation and food service activities 0.8332
S9 Information and communication 0.3571

S10 Financial and insurance activities 0.2264
S11 Real estate and ownership of dwellings 0.4763
S12 Professional and business services 0.4987
S13 Public Administration and Defense; Compulsory social security 0.6366
S14 Education 0.4327
S15 Human health and social work activities 0.7009
S16 Other services 0.7096

3. Results

3.1. Processing the I–O Data for Uncertainty Analysis

To be able to estimate the Dirichlet parameters, the values in the I–O matrix were
normalized to compute for the shares for each sector. To get the shares for each sector,
we first calculated the total input of each sector, Sit for each sector i for each year t and it
includes the value added, VAit (see Equation (11)). We let Iit be the intermediate input of
sector i and at year t. The value added, VAit, includes: (1) Compensation of Employees;
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(2) Consumption of Fixed Capital; (3) Indirect Taxes less subsidies; and (4) Operating

Surplus4. There are 16 sectors in the Philippine I–O table and the study uses the I–O tables
for the years 2000, 2006, 2012, and 2018.

Sit =
16

∑
i=1

Iit + ∑ VAit (11)

To get the share of each intermediate input for each sector i at year t, we take the
value of the sector’s intermediate input and divide it by the total input of each sector, Sit

(see Equation (12)). The share of the value added is also calculated similarly as shown in
Equation (13). The estimated shares are then used as the dataset for the uncertainty analysis
and the Dirichlet parameters.

Share o f intermediate input o f sector i at year t =
Iit

Sit
(12)

Share o f value added o f sector i at year t =
∑ VAit

Sit
(13)

3.2. Dirichlet Parameters

The statistical distribution of the values in the I–O matrix can be generated with beta or
gamma distribution using the Dirichlet parameter âij and β̂ij using the following equations:

αij = µij

(

µij − µ2
ij

σ2
ij

− 1

)

(14)

βij = (1 − µij)

(

µij − µ2
ij

σ2
ij

− 1

)

(15)

âij = µij

(

αkj + βkj

)

(16)

β̂ij = ∑
k

i=1
α̂ij − α̂ij (17)

where µij and σij are the mean and standard deviation of the entry in the I–O matrix and
αkj is generated using the following equation:

αkj = 1 − ∑
k−1

i=1
αij (18)

Different realizations with the I–O matrix can be generated with beta distribution
using the parameters α̂ij and β̂ij or with Gamma distribution using α̂ij with a scale of 1 and
then normalization to be consistent with the property of the I–O matrix (see Supplementary
Materials). Both distributions provide the same expected value and probability distribu-
tion. The generation of these parameters is implemented using Numpy’ gamma and beta
sampling functions (random.gamma and random.beta) (Harris et al. 2020).

3.3. Description of Scenarios and Visualization of Results

This study considers two scenarios: (1) no telework, and (2) with telework. Scenario
1 does not allow for telework in any sector. This means that the full impact of the initial
disruption (c*) will ripple through the different sectors in the economy. Scenario 2 accounts
for teleworkability of jobs in the Philippines based on Generalao (2021). With telework, the
initial disruption (c*) is reduced by the proportion of jobs that are teleworkable, such that
the initial disruption in Scenario 2 for each sector i is defined as c∗i ∗ (1 − Ti), where Ti is
the teleworkability index of sector i. On the other hand, c∗i is the sector-specific workforce
disruption, which is computed as the ILO’s 25% general workforce disruption multiplied
with the sector-specific wi/xi ratio found on Table 2.
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The losses from different simulation runs are computed based on different realizations
of the I–O matrix; a boxplot can then be generated showing the uncertainty of these losses.
Figure 2 shows the boxplots for the percent losses and output losses for 25% disruption to
the general workforce. The plot shows that the largest loss is incurred in the manufacturing
sector with around PhP 1.9 trillion to PhP 3.4 trillion followed by the wholesale and trade
sector with PhP 500 billion to PhP 700 billion in losses. The plots also show that these two
sectors show the highest variability in terms of economic losses. Both sectors maintain their
ranks except if the highest loss of agricultural sector is compared with the lowest loss of
the wholesale and trade sector. It shows that if the agricultural sector is affected by the
workforce disruption worse than expected, it can incur losses comparable to other sectors.
It is also evident in Figure 2 when the percentage loss in agricultural sector is higher than
in wholesale and trade. The education sector has the second highest percentage loss to
manufacturing and is one with the least variability among sectors.

𝑇௜ 𝑐௜∗𝑤௜/𝑥௜

(a) 

 
(b) 

Figure 2. Losses incurred to different sector due to 25% disruption in general workforce in terms of

(a) percent losses and (b) actual economic loss assuming absence of telework performance.
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Figure 3 shows the boxplots for the percent losses and output losses for 25% disruption
considering the telework data. The actual losses are generally lower than that when
the telework data are not considered, providing concrete evidence that teleworking as a
resilience strategy is effective in curbing the economic losses relative to the baseline case
(i.e., no telework scenario). The same trend is observed except for certain sectors such as
the transportation sector, and education sector wherein the losses in the education sector
are lower than the transportation sector if the telework performance is considered. The
rank reverses when the telework data are not considered in the computation.

(a) 

(b) 

Figure 3. Losses incurred to different sectors due to 25% disruption in the general workforce in terms

of (a) percent losses, and (b) actual economic loss considering the sector-specific telework data.
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4. Discussion

4.1. Specific Findings on Philippine I–O Sectors

The results of the uncertainty analysis show how allowing telework in the 16 sectors
presented has significantly decreased the estimated economic losses due to the COVID-19
pandemic in the Philippines. If the telework arrangements were not adopted, the estimates
show that the country will have a substantial economic loss which is equivalent to PhP
4.89 trillion, or approximately USD 86.9 billion due to the lockdowns. All 16 sectors benefit-
ted from allowing the telework arrangement as the losses with telework was significantly
decreased from PhP 4.89 trillion to PhP 3.3 trillion, or approximately USD 58.7 billion.

Three sectors benefitted the most from reducing the economic losses by allowing tele-
work during the COVID-19 pandemic. The first sector, which is the manufacturing sector
(S3), had the biggest difference between with and without telework, with the difference
amounting to PhP 750 billion (USD 13.5 billion). It is expected, however, that out of all
the sectors, the manufacturing sector will have the most losses since most of its economic
activities require the physical presence of laborers. The second sector that also benefitted

from allowing telework was the wholesale and retail trade (S6)5. The difference in economic
loss between with and without telework is estimated at PhP 226 billion (USD 4 billion). The
third sector that had significantly lower losses with the introduction of telework was the
financial and insurance activities (S10). The estimated difference in the economic losses
with and without telework is PhP 139 billion (USD 2.463 billion). Looking at the rest of
the sectors, the trend is the same in which having telework has decreased the estimated
economic losses due to the pandemic.

An interesting insight from the results is that there are non-teleworkable sectors, as
classified by Gaduena et al. (2022) and Generalao (2021), that still benefitted indirectly from
teleworking. These industries include agriculture, forestry, and fishing (S1), manufacturing
(S3), wholesale and retail trade and repair of motor vehicles and motorcycles (S6), trans-
portation and storage (S7), and public administration and defense and compulsory social
security (S13). Although these sectors mostly require a physical presence, the estimates
suggest that introducing telework can mitigate the economic losses due to the pandemic.
This effect can be attributed to the use of teleworking arrangements both within these
sectors, and in other sectors with which they have strong supply chain linkages.

4.2. Uncertainty Analysis

Tables 4–6 shows the comparison between economic losses in million PhP considering
the 25th, 50th and 75th percentiles in the Dirichlet distribution for each sector. Policy makers
can use these percentile estimates in accordance with their risk appetite. In all percentile
points, most sectors such as the manufacturing, wholesale and trade, and agriculture sectors
maintain their ranks whether the telework data are considered or not. Changes in the
ranking can be observed at certain sectors when the percentile is changed. For instance, the
larger variability in financial and insurance activities sector allows it to outrank the public
administration and social security sectors when the losses are changed from the 50th to
the 75th percentile. This change shows that variability should be considered in prioritizing
certain sectors when workforce disruptions are experienced.

The results generated by the simulations are consistent and in the same order of mag-
nitude as the estimates published by the National Economic and Development Authority.
In particular, the agency has estimated the total economic losses associated with COVID-19
business interruptions and quarantines for the year 2020 to be at PhP 4.3 trillion (National
Economic and Development Authority 2021). A case in point, our 25th percentile estimates
(see Table 4) range from PhP 3.1 trillion (with telework) to PhP 4.6 trillion (without tele-
work). Furthermore, our median estimates (see Table 5) range from PhP 3.3 trillion (with
telework) to PhP 4.8 trillion (without telework). Finally, the 7th percentile estimates of
economic losses in Table 6 range from PhP 3.5 trillion (with telework) to PhP 5.2 trillion
(without telework). The total economic losses shown at the bottom of Tables 4–6 con-
sistently capture the PhP 4.3 trillion estimate published by the National Economic and
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Development Authority (2021), hence providing a validation of the model results generated
in our simulations.

Table 4. Economic losses for different sectors based on the 25th percentile in the Dirichlet distribution.

Sector Code Sector No Telework With Telework Difference

S1 Agriculture, forestry, and fishing 282,719 234,678 48,041
S2 Mining and quarrying 8963 7389 1574
S3 Manufacturing 2,437,518 1,728,333 709,185
S4 Electricity, steam, water, and waste management 45,959 30,971 14,988
S5 Construction 154,412 144,782 9630

S6
Wholesale and retail trade; repair of motor

vehicles and motorcycles
577,483 365,226 212,257

S7 Transportation and storage 96,076 71,497 24,579
S8 Accommodation and food service activities 41,300 32,588 8712
S9 Information and communication 55,598 23,287 32,311

S10 Financial and insurance activities 223,999 90,589 133,410
S11 Real estate and ownership of dwellings 38,782 20,281 18,501
S12 Professional and business services 248,541 128,356 120,185

S13
Public Administration and Defense; Compulsory

social security
165,688 105,437 60,251

S14 Education 142,433 62,043 80,390
S15 Human health and social work activities 21,650 15,134 6516
S16 Other services 29,239 20,423 8816

Total 4,570,360 3,081,014 1,489,346

Table 5. Economic losses for different sectors based on the 50th percentile (median) in the Dirichlet

distribution.

Sector Code Sector No Telework With Telework Difference

S1 Agriculture, forestry, and fishing 307,765 253,668 54,097
S2 Mining and quarrying 9804 7981 1823
S3 Manufacturing 2,599,304 1,847,460 751,844
S4 Electricity, steam, water, and waste management 49,449 33,269 16,180
S5 Construction 157,967 146,988 10,979

S6
Wholesale and retail trade; repair of motor

vehicles and motorcycles
614,992 390,473 224,519

S7 Transportation and storage 102,952 76,081 26,871
S8 Accommodation and food service activities 43,406 33,846 9560
S9 Information and communication 58,663 25,070 33,593

S10 Financial and insurance activities 238,084 99,343 138,741
S11 Real estate and ownership of dwellings 43,137 22,751 20,386
S12 Professional and business services 256,613 133,108 123,505

S13
Public Administration and Defense; Compulsory

social security
167,897 106,825 61,072

S14 Education 143,404 62,630 80,774
S15 Human health and social work activities 21,996 15,361 6635
S16 Other services 30,441 21,186 9255

Total 4,845,874 3,276,040 1,569,834
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Table 6. Economic losses for different sectors based on the 75th percentile in the Dirichlet distribution.

Sector Code Sector No Telework With Telework Difference

S1 Agriculture, forestry, and fishing 337,089 276,171 60,918
S2 Mining and quarrying 10,799 8674 2125
S3 Manufacturing 2,780,086 1,972,136 807,950
S4 Electricity, steam, water, and waste management 53,585 35,977 17,608
S5 Construction 162,628 149,988 12,640

S6
Wholesale and retail trade; repair of motor

vehicles and motorcycles
656,070 419,259 236,811

S7 Transportation and storage 111,320 81,573 29,747
S8 Accommodation and food service activities 46,200 35,549 10,651
S9 Information and communication 62,338 27,358 34,980

S10 Financial and insurance activities 254,440 109,449 144,991
S11 Real estate and ownership of dwellings 48,309 25,830 22,479
S12 Professional and business services 265,813 138,767 127,046

S13
Public Administration and Defense; Compulsory

social security
170,319 108,397 61,922

S14 Education 144,715 63,465 81,250
S15 Human health and social work activities 22,499 15,700 6799
S16 Other services 31,966 22,234 9732

Total 5,158,176 3,490,527 1,667,649

5. Conclusions

The COVID-19 pandemic has brought an unprecedented cascade of economic losses
across the globe. The largest contributor to economic loss is attributable to workforce
disruptions resulting from quarantines and business closures. Workforce disruptions
subsequently led to significant direct and indirect ripple effects on the operation of the
economic sectors. Several studies, even prior to the COVID-19 pandemic, already indicated
that business interruptions during disasters were a top factor leading to economic losses.
In this paper, we perform an ex-post analysis of the COVID-19 workforce disruptions in
the Philippines. The aim is to estimate the workforce-induced economic losses for year
2020. Using a series of Philippine I–O data, we estimated the probability distributions of
the model parameters to allow for uncertainty analysis in the estimates of economic losses.
The simulation results are consistent with the official deterministic figure of 4.3 trillion
PhP. Furthermore, a novel feature of this paper is the use of Dirichlet distributions to
generate a range of economic losses (e.g., 25th, 50th, and 75th percentiles) for two scenarios:
(i) an extreme case assuming no telework, and (ii) sector-specific telework analysis using
estimates from previous studies. The advantage of uncertainty analysis is that it allows the
presentation of results as a distribution, consistent with the argument that a fixed-point
estimate often creates an illusion of precision, which can restrict the flexibility in resource
allocation decisions. A range of estimates allows for the implementation of “what if”
scenarios, which leads to a more holistic and robust policymaking.

Some of the highlights of the results in this paper are as follows: Intuitively, the
magnitude of losses depends on the size of the sector (GDP), as well as the labor-dependence
of the sectors. To wit, sectors that contribute highly to GDP were among the most affected
sectors such as manufacturing, trade, agriculture, and construction, which happen to
be among the highest contributors to the Philippine GDP. It has also been found that
labor-dependent sectors with less telework index can be observed in the fractional loss
(inoperability) rankings albeit their moderate contribution to the GDP, such as public
administration, education, professional and business Services.

To conclude, current disaster management policies need to be enhanced to minimize
the impact of pandemics and future disasters. The COVID-19 pandemic in particular has
exposed challenges and constraints in socioeconomic and infrastructure systems. Nonphar-
maceutical intervention measures could reduce the impact on the workforce, healthcare
systems, and continuity of government. Measures like teleworking can have a significant
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impact on the extent to which the pandemic curve can be flattened. The benefits of such
arrangements were shown to also indirectly accrue to sectors that are not inherently suited
to teleworking. Results from this paper can be used to determine the key sectors that are
most impacted by the disaster and can be used to formulate polices to target sectors that
contribute the most to the direct and ripple effects of indirect losses. These results can be
generalized to other countries in preparation for future pandemics. Finally, the methodol-
ogy for this paper can be adopted and extended for other disaster risk management studies,
particularly those that affect the workforce more than the infrastructure.

Supplementary Materials: The 16-sector Philippine Input–Output Tables used in this study can be

accessed through 10.6084/m9.figshare.20374587. The Python code used for this study can be accessed

in https://github.com/fredtapia/IO-Dirichlet (accessed on 17 August 2022).
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Notes

1 COVID-19, or coronavirus disease 2019, a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2).
2 In the field of epidemiology, the basic reproduction number (R0) is a parameter used to describe the expected number of people

that can be infected by a sick individual. It is used extensively in the mathematical formulations for the “Susceptible Infected

Removed” (SIR) model and extensions (Anderson and May 1992).
3 For reference, USD 1 is equivalent to approximately PhP 50 in year 2020.
4 It should be noted that for the 2018 IO, the Operating Surplus is not included. The Operating Surplus is removed from the IO

matrices.
5 In the grouping of the industries in the Philippine IO, wholesale and retail trade is combined with repair of motor vehicles and

motorcycles.
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