
Energy-E�cient Data Transfer Optimization via
Decision-Tree Based Uncertainty Reduction

Hasibul Jamil, Lavone Rodolph, Jacob Goldverg and Tevfik Kosar
Department of Computer Science and Engineering

University at Bu�alo (SUNY), Amherst, NY 14260, USA
Email: {mdhasibu, lrodolph, jacobgol, tkosar}@bu�alo.edu

Abstract—The increase and rapid growth of data produced
by scientific instruments, the Internet of Things (IoT), and
social media is causing data transfer performance and re-
source consumption to garner much attention in the research
community. The network infrastructure and end systems that
enable this extensive data movement use a substantial amount
of electricity, measured in terawatt-hours per year. Managing
energy consumption within the core networking infrastructure is
an active research area, but there is a limited amount of work
on reducing power consumption at the end systems during active
data transfers. This paper presents a novel two-phase dynamic
throughput and energy optimization model that utilizes an o�ine
decision-search-tree based clustering technique to encapsulate
and categorize historical data transfer log information and an
online search optimization algorithm to find the best applica-
tion and kernel layer parameter combination to maximize the
achieved data transfer throughput while minimizing the energy
consumption. Our model also incorporates the ensemble method
to reduce aleatoric uncertainty in choosing optimal application
and kernel layer parameters during the o�ine analysis phase. The
experimental evaluation results show that our decision-tree based
model outperforms the state-of-the-art solutions in this area by
achieving 117% higher throughput on average while consuming
19% less energy at the end systems during active data transfers.

Index Terms—data transfer optimization, energy e�ciency,
decision search tree, diversity index, uncertainty quantification,
historical log analysis.

I. I�����������

The data requirements of commercial and scientific appli-
cations continue to increase at an unprecedented rate, gen-
erating more data in a given year than the total amount
of data generated in the previous years. The advancements
ranging from microscale sensor technologies to macroscale
supercomputers and large scientific instruments are propelling
multi-institutional experimental collaborations between geo-
graphically dispersed entities requiring massive data sharing
using high-speed wide-area networks. Internet of Things (IoT),
social media, and e-commerce applications generate a similar
demand in the industry. It is estimated that the number of
devices connected to IP networks will exceed 30 billion by
2023, which will be three times the global population [1]. As
a result, annual data movement across the global Internet has
already exceeded the zettabyte scale and continues to increase
exponentially. This vast data movement comes with a large
economic cost as well as a massive energy footprint. The en-
ergy consumption of telecommunication networks has recently

exceeded 350 terawatt-hours, and the Internet comprises more
than 10% of the overall energy consumption in many countries,
costing the global economy billions of dollars per year [2].

An extensive portion of the existing research on energy-
e�cient networking focuses on reducing energy consump-
tion in the core networking infrastructure (e.g., switches,
hubs, and routers). State-of-the-art power-aware networking
techniques include emerging architectures with programmable
switches [3], and power-aware networking protocols designed
to consider energy consumption while routing data [4], and
putting idle components to sleep [5]. Some of these solutions
have significant shortcomings. For example, placing the idle
components to sleep can be detrimental to performance while
saving power. Also, replacing existing network switches and
network protocols with power-aware switches and energy-
e�cient network protocols is a costly solution and not practical
in the short term.

In this paper, we introduce a novel decision-tree based
cross-layer optimization solution, which is low cost, very easy
and practical to deploy, and does not penalize the perfor-
mance while increasing energy e�ciency. Our approach can
successfully co-tune several application-layer and kernel-layer
parameters to achieve high data transfer throughput while
minimizing energy consumption at the same time. Our model
consists of two phases. In the first phase, an o�ine decision-
search-tree based clustering technique is used to encapsulate
and categorize historical data transfer log information, and
partition the data space from historical data transfer log files
that contain network and dataset characteristics [6]. This step
also considers the uncertainty introduced by the stochastic
nature of background tra�c during a transfer. The goal of the
o�ine analysis is to find the intrinsic structure of historical
logs by organizing data objects into similarity groups or
clusters [7]. In the second phase, an online dynamic search
optimization algorithm is used to find the best application
and kernel layer parameter combination based on our o�ine
discovered knowledge and the real-time network conditions
to maximize the achieved transfer throughput and minimize
energy.

The major contributions of this paper include:

• To the best of our knowledge, our novel multifaceted
approach is the first to dynamically construct decision
trees based on historical data transfer logs encapsulating



network conditions and file characteristics while consid-
ering uncertainty introduced from historical data.

• Our approach is the first to tune both application-layer
and kernel-layer data transfer parameters utilizing novel
decision-search-tree based optimization to maximize the
achieved data transfer throughput and reduce energy
consumption in real-time.

• Our decision-tree based optimization algorithm achieves
on average 117% higher transfer throughput compared to
state-of-the-art solutions and 19% less energy usage in
end systems during transfer.

The rest of the paper is organized as follows: Section
II presents the problem formulation; Section III discusses
our proposed decision-search-tree model and its construction;
Section IV presents the evaluation of our model; Section
V describes the related work in this field; and Section VI
concludes the paper.

II. P������ F����������

In this work, we perform joint tuning of three application-
layer parameters (i.e., concurrency, parallelism, and pipelin-
ing) and two kernel-layer parameters (i.e., number of active
CPU cores and CPU frequency level) to achieve high data
transfer performance and low energy consumption at the same
time. Concurrency (cc) controls the number of server pro-
cesses/threads, and these processes/threads can transfer various
files independently. As a result, concurrency can accelerate the
transfer throughput when many files need to be moved [8] [9]
[10]. Parallelism (p) is the number of data connections that
each server process can open to transfer di�erent portions of
the same file in parallel. Parallelism is a fine option for medium
or large file transfers in maximizing transfer throughput [11]
[12] [13]. Pipelining (pp) is useful for small file transfers as
it eliminates the delay imposed by the acknowledgment of the
previous file transfer completion before starting the following
one [14] [15] [16]. The kernel-layer parameters, such as the
number of active CPU cores (cpu_num) involved in the data
transfer and the frequency level of each active CPU core
(cpu_freq), also have a significant impact on the achieved
transfer throughput and energy consumption.

Given a source endpoint es and destination endpoint ed; a
connection link bandwidth b and round-trip-time rtt, a dataset
with a total size dall, average file size favg , bu�er size bufsize,
number of files n, and the load from contending transfers
lctd, the achieved throughput T and end-system energy E

consumption can be expressed as following functions:

T = f1 (b, rtt, favg, bufsize, n, cc, p, pp, cpunum, cpufreq, lctd)
(1)

E = f2 (b, rtt, favg, bufsize, n, cc, p, pp, cpunum, cpufreq, lctd)
(2)

For fixed b, rtt, favg, bufsize, n, Equation 1 and 2 could be
converted to following functions:

T = g1 (✓, lctd) (3)

E = g2 (✓, lctd) (4)

where ✓ = {cc, p, pp, cpunum, cpufreq} is the list of tun-
able parameters. The optimization model is expressed with
two types of service-level agreement (SLA) based objective
functions: (1) minimum energy or energy-constrained SLA
and (2) maximum throughput or throughput guarantee SLA.
According to the SLA type and the SLA specifications, we
need to find the optimal combination of the tunable parameters
✓ to satisfy the SLA requirements. The energy-constrained op-
timization model determines the matching node from the deci-
sion search tree and constructs the "energy surface" containing
the matching node. We then find the minimum energy corre-
sponding to the tunable parameters ✓ from the energy surface.
Similarly, we construct the "throughput surface" containing the
matching node from the logs for throughput optimization. We
finally find the maximum throughput corresponding to tunable
parameters ✓ from the throughput surface. The throughput
and energy SLA based optimization models are expressed as
below:

argmax
{cc,p,pp,cpunum,cpufreq}

R tf
ts

th

subject to. cc⇥ p  Nstreams

pp  P
th  b

E  Esla

(5)

minimum
{cc,p,pp,cpunum,cpufreq}

R tf
ts

e

subject to. T � Tsla

(6)

where ts and tf are the transfer start and end times
respectively. Additionally, Nstreams and P are the maximum
allowable parameter values in the network. Our goal is to solve
the maximum throughput SLA optimization model presented
in Equation 5 and the minimum energy optimization model
presented in Equation 6. As throughput is achieved in a shared
environment, other concurrent contending transfers using the
same network resources could a�ect the behavior of achievable
throughput. Our historical logs contain information on such
transfers. We define the load from those contending transfers
as lctd. There are several assumptions made to create our
optimization model, which we describe below:

• Assumption 1: All competing transfers at a given time
can achieve aggregate throughput, T =

PN
i=1 thi, where

N is the number of TCP streams for all the competing
transfers, and thi is the throughput of an individual
transfer i.

• Assumption 2: The fluctuation on transfer behavior
(i.e., throughput) depends on all other contending trans-
fers lctd for given ✓=cc, p, pp, cpunum, cpufreq where
b, rtt, favg, bufsize, n are fixed.

• Assumption 3: Maximum achievable throughput is limited
by the end-to-end link bandwidth, disk read speed at
the source, or disk write speed at the destination. Given
disk read speed vread , disk write speed vwrite , and the



link bandwidth b, the maximally achievable end-to-end
throughput thmax would be:

thmax 6 min {b, vwrite, vread } (7)

• Assumption 4: Introduced model is agnostic of the end
nodes’ underlying file systems. Because of parallelism
and concurrency, the introduced model would fit superior
performance when parallel file systems are used at the
end nodes. Performance degradation due to hardware
configuration error, storage access delay, and intermediate
network system bottlenecks could limit the achievable
throughput. Eliminating such bottlenecks might increase
the limit of achievable throughput.

We chose to accumulate and store real-world historical log
data transfer information; and utilize a decision search tree
on the historical log files to cluster and group similar log
entries based on network conditions, dataset meta-information,
and network characteristics. The purpose of this grouping
technique is to generalize relationships between throughput
and ✓, lctd as depicted in Equations 3 and 4. The obtained
groups of logs are then used for throughput and energy surface
construction and these surfaces are consulted to find optimum
application and kernel parameter settings to achieve di�erent
SLA given b, rtt, favg, bufsize, n are available. Finally, given
a set of attribute parameters b, rtt, favg, bufsize, n and a
SLA, finding the max throughput associated or min energy
associated tunable parameters ✓=cc, p, pp, cpunum, cpufreq is
the objective of this work.

For example, in the data transfer log sample shown in
Table I, we have 5 di�erent groups of attribute/key parameters
and their corresponding throughput and transfer energy with
di�erent application and kernel parameters. For each group,
the historical logs have same b, rtt, favg, buffsize, n attributes
but di�erent throughput and transfer energy resulting from
di�erent tunable parameters ✓=cc, p, pp, cpunum, cpufreq .

III. D������� S����� T��� ��������

A. How Decision Search Tree Approach Works

To make the search operation more e�cient in the o�ine
analysis phase, we construct a decision-search-tree based data
clustering from the historical logs. The decision search tree
captures the information found in historical logs by grouping
similar logs together. The decision search tree is built so that
intermediate nodes in the search tree contain the condition
to reach leaf nodes, search tree edges contain the particular
condition, and leaf nodes contain the log entries associated
with the search attributes. Following figure 1 shows building
such search trees for an example dataset shown in Table
I. The root node contains all the logs, and for a di�erent
level of the tree, di�erent attributes present in the historical
log are used to cut the root node into multiple child nodes.
Which attribute to choose while cutting a node is selected by
an attribute selection scheme. The resultant tree could have
di�erent depths because of the attribution selection variability
at di�erent tree-building levels. In the first tree, as shown in

(a)

(b)

Fig. 1: For Tree1, we are considering bandwidth (BW) as
attributes to split nodes and build complete tree from Table I.
For Tree2, we consider FileSize (FS) and NumberOfFiles(FN)
as attributes to split nodes and build complete tree from
Table I. Resultant trees are di�erent in height based on which
attribute set we choose while building the tree.

figure 1(a), ”Bandwidth(BW )” is chosen as the attribute to
cut the root node, and all resultant child nodes achieve leaf
threshold condition. As a result, the first tree reaches a tree
height of 2.

In the second tree, as shown in in figure 1(b), during the
first cut ”FileSize” is selected as the attribute to cut the root
node, and in the second cut ”FileNumber” is chosen to cut
node 4, resulting in a tree with depth 3 which is higher than
tree height of the previous case. It should be noted that node
4 is the only one that gets cut in level 2 as the other node
contained logs small or equal to the leaf threshold. The leaf
threshold is the number of minimum logs that makes a node a
leaf node, and in this example case, the leaf threshold is equal
to 2.

Constructed decision-search-tree based searching for a
matching leaf node has a O(heightOfTree) time complexity,
and we can build di�erent trees for the same dataset following
a di�erent set of attributes. The generated trees, in that case,
will be di�erent in height. For a given set of attributes
(favg, n, rtt, bufsize, b), to find the matching leaf node in the
search tree, the average case search time complexity is better
than worst-case search time complexity as not all the leaf
nodes will be on the same depth of the tree. Algorithm 1 is



TABLE I: Historical transfer log sample with tunable parameters and corresponding achieved throughput and energy expenditure

Entry
No

File
Size (kB)

#of
Files RTT(ms)

TCP
Bu�er
Size(MB)

Bandwidth
(Mbps)

Throughput
(Mbps)

Transfer
Energy(J) C P PP #of

CPU
CPU
Frequency(Hz)

1 100 250 10 200 10 5 20 1 2 2 2 1.3
2 100 200 8 150 15 3 17 1 1 1 2 1.3
3 50 150 15 250 20 4 15 1 2 1 2 1.3
4 40 150 20 225 5 1 12 1 2 2 2 1.3
5 150 225 15 150 8 5 22 2 3 3 2 1.3
6 100 250 10 200 10 8 15 2 3 3 4 1.5
7 100 200 8 150 15 10 10 3 4 4 4 1.5
8 50 150 15 250 20 8 9 3 1 4 4 1.5
9 40 150 20 225 5 4 7 3 2 3 4 1.5
10 150 225 15 150 8 4 16 2 1 3 4 1.5

used to build the decision tree. For an incoming data transfer
request, the associated attributes are first obtained, and then
these attributes are used to traverse the tree to reach the
leaf node. The matched leaf nodes containing historical logs
are then used to construct throughput and energy surfaces.
By analyzing those surfaces, optimal application and kernel
parameters are finally obtained.

Algorithm 1: Decision tree construction algorithm
input : dataset, leaf_threshold, cutNumber
// leaf_threshold is minimum number of logs that

declare a node as leaf node

output
:

decision search tree

1 availableNodeToCutList=[root] // start from root node
S0 that contains all the logs from Historical log

2 while availableNodeToCutList is not empty do
3 currentNode=Pop(availableNodeToCutList);
4 chooseAttributeToCut(currentNode);

// use DI or SD metric to choose which dimension

to cut the node

5 childNodeList=CutNodeOnChoosenAttribute();
// cut the node on the chosen dimension/attribute

cutNumber times

6 for each childNode in ChildNodeList do
7 Assign matched logs to childNode;

// some number of logs from parent node will

fall into each child node

8 childNodeLogCount=NumberOfLoginNode(childNode);
if childNodeLogCount <= leaf_threshold
OR sameChildNodeAttributeV alue then

9 Continue;
10 end
11 Push ChildNode to availableNodetocutList ;
12 end
13 end

return root;

B. Handling of the Unseen Attributes

The system will return the last matched node as the
final node for unseen attributes (i.e., not present in the

history log) from an incoming data transfer request. For
example, an incoming data transfer request with attributes
favg, n, rtt, bufsize, b respectively may not match any entries
in the history log. For data transfer requests like this, the
search will report application and kernel parameters from
the constructed throughput surfaces of the last matched node
of the tree where it needs not be a leaf node. If the at-
tributes of the data transfer request will result in a match
with node N1 then node N1 corresponding logs, and those
logs contained throughput surfaces will be investigated to
report final application and kernel parameters ✓. For example,
key parameter (100,255,10,200,10) (i.e.,favg, n, rtt, bufsize, b)
will match node 4 on second tree shown in III(A) for fileSize
attribute value (i.e.,100). The fileNumber attribute value (i.e.,
255) is closer to node 7 of tree 2, so it will result in a
match with node 7 and node 7 corresponding logs will be
used to construct throughput and energy surfaces to find final
application and kernel parameters ✓.

C. Dealing with Uncertainty of Search Result

Uncertainty could be defined as situations consisting of
unknown or partial knowledge and this type of uncertainty
is fused in any stochastic and partially observable environ-
ments [17]. Epistemic uncertainty captures uncertainty in the
model parameters and aleatoric uncertainty is the uncertainty
caused by the noise that is inherited in the training dataset [18].
The historical log for data transfer su�ers partial observation
problems as computing clusters and network usually does
not give real-time performance metrics for computation or
network system resources. For example, storage servers uti-
lization metric and queue size of devices in shared networks
are some metrics that play paramount importance in transfer
performance but these parameter metrics are private. The lack
of these important real-time performance metrics from all
components of end-to-end transfers across multiple clusters
and network domains makes the historical dataset incomplete
and introduces an aleatoric type of uncertainty.

In our work, the uncertainty is captured in equation 3 and
4 of our model as the contending transfers lctd parameter is
not deterministic, the search result using the decision tree has
aleatoric uncertainty associated with it. The decision search
tree uncovers relationships between throughput and ✓, lctd and
the level of the aleatoric type of uncertainty could be reduced



by combining the search results made by an ensemble of
decision trees and performing the throughput or energy surface
construction on the combined search result logs.

An ensemble approach uses the combined output of a set
of decision trees (e.g., decision search trees in our case) to
improve on the search result accuracy o�ered by any one of
its members [19] [20]. In our example, we build two trees as
shown in section III(A) for sample log shown in Table I. For
an incoming data transfer request with attributes parameters as
favg, n, rtt, bufsize, b respectively, the request matches with
node N1 in first tree and with node N2 in second tree.
We combine the historical logs from node N1 in tree-1 and
logs from node N2 in tree-2 to construct the combined logs
throughput and energy surfaces. Finally, these surfaces are then
used to find maximum throughput or minimum energy points
and associated optimum application and kernel parameter
settings for that incoming data transfer request.

D. Constructing Decision Search Tree

The attribute selection procedure is novel in the proposed
decision search tree building process where we consider diver-
sity index and standard deviation as metrics from the historical
log attribute set to choose the attribute at which we perform
node cutting while building the tree.

1) Ranking the attributes based on Diversity Index: While
building the search trees, we expect to build trees with
minimum depth (i.e., traversing the tree is faster) and group
the historical logs so that the grouped logs are as sparse
as possible. To meet both of these objectives, choosing the
appropriate attribute to cut a tree node is important. For
example, we could choose any of the five attributes from the
root node to derive the first layer (i.e., depth=1) nodes. The
attribute should be chosen so that it maximally di�erentiates
the historical logs. Diversity Index is such a metric that could
be used to rank the attributes, and the ordered attributes could
then be used to choose one attribute while building the tree
[21]. The derivation of diversity index for an attribute from
a history log is derived as follows:

If S is a parameter value set of an attribute S =
{c1, c2, c3 · · · · · cn} and Cmax = max {c1, c2, c3 · · · · · cn},
Snormalized =

n
ci

Cmax

o
for i=1 to i=n. So,

Snormalized = {c1�norm, c2�norm, c3�norm · · · · · cn�norm}
and Sn�no�duplication = {c1�n�nd, c2�n�nd · · · · · cn�n�nd}
where, Sn�no�duplication ✓ Snormalized

if Cmax�norm = max {c1�norm, c2�norm, c3�norm · ·cn�norm}
Cmin�norm = min {c1�norm, c2�norm, c3�norm · ·cn�norm},
then diversity index (DI) could be calculated by following
equation:

DI = (Cmax�norm �Cmin�norm)⇥
i=cn�n�ndX

i=c1�n�nd

1

freq. of Ci

(8)
The first part of Equation 8 captures how much range

a particular attribute (for example, FileSize) has, and the
second part captures how unique the values for that specific

attribute are. The second part of Equation 8 is constructed to
penalize multiple occurrences of a particular value.

2) Ranking the attributes based on Standard Deviation:
Standard deviation is another metric that could be used to
rank the attributes, and the ordered attributes could be used
to build the tree while cutting a tree node. Standard deviation
measures the relative spread of the values for each attribute
field. The standard deviation for a particular attribute value is
bigger when the di�erences of those attribute values are more
spread out regarding the distribution mean. For a set of N

numbers {x1, x2, · · · , xN}, if the mean of the collection is x̄

then standard deviation, SD is as follows:

SD =

vuut 1

N � 1

NX

i=1

(xi � x̄)2 (9)

The variance was also considered to measure the spread of the
fields in a ruleset, and described as follows:

S
2 =

P
(xi � x̄)2

N � 1
(10)

where S
2 = sample variance, xi = the value of the one

observation, x̄ = the mean value of all observations, and N =
the number of items in the set.

3) Band of trees: We build two trees for a given historical
transfer log; one with diversity index as attribute selection
metric and another with standard deviation as selection metric.
Once tree-1 and tree-2 are built, the system traverses both trees
to find the matching nodes from each tree for an incoming data
transfer request with five attributes (favg, n, rtt, bufsize, b).
After traversing and matched nodes are found in the respec-
tive trees, application and kernel parameters are obtained as
described in Section III(C).

E. Searching ✓ for Incoming Data Transfer Request

Given a historical log "L", the decision search tree
leaf nodes cluster/group the logs based on combination
of five attributes (favg, n, rtt, bufsize, b). The clusters are
c1, c2, c3 · · · · · cn where n is the number of clusters and is
equal to the number of leaf nodes in a search tree. For
each incoming transfer request, corresponding five attributes
(favg, n, rtt, bufsize, b) along with target throughput Tes or
target energy Eesare used to traverse the search trees and find
corresponding matching leaf nodes. Algorithm 2 describes the
tree traversing and optimal parameter finding steps.

From a matched node containing historical logs, we
construct throughput as a polynomial surface which is
a function of the application and kernel parameters ✓

=cc, p, pp, cpunum, cpufreq . Incoming transfer request corre-
sponding attributes favg, n, rtt, bufsize, b matches one of the
leaf node in the decision search tree and that node corre-
sponding logs could construct multiple surfaces. The matched
surface could then be decomposed into multiple components
(i.e., binned surface components) based on the di�erent binned
values of throughput (i.e., throughput 0-100 could be binned
to bin 100, 101-200 to bin 200, and so on) so that expected



Algorithm 2: Optimal parameter discovery algorithm
input : � =Incoming transfer request attributes

b, rtt, favg, buffsize, n, decision
tree,targetThroughput Tes or targetEnergy Ees

as SLA
// targetThroughput is the Throughput the algorithm is

targeting to achieve based on SLA and targetEnergy

is the transfer energy budget based on SLA

output
:

✓ =cc,p,pp,cpu_num,cpu_freq

1 allTheNodesOfTreeList=getAllTheNodesAsList(decision
tree);

2 while allTheNodesOfTreeList is not empty do
3 currentNode=Pop(allTheNodesOfTreeList);
4 if currentNode has � then
5 matchedNode=currentNode;
6 break;
7 end
8 end
9 if SLA==MAXThroughput then

10 surfaces=
decomposedThroughputSurface(matchedNode);
// matchedNode throughput surface is decomposed

into multiple components with different

throughput level

11 finalThroughputSurface=getFinalSurface(surfaces,Tes);
12 ✓=maxSurfacePoint(finalThroughputSurface);
13 end
14 else
15 surfaces=

decomposedEnergySurface(matchedNode);
// matchedNode energy surface is decomposed into

multiple components with different energy level

16 finalEnergySurface=getFinalSurface(surfaces,Ees);
17 ✓=minSurfacePoint(finalEnergySurface);
18 end

return ✓ ;

throughput could be matched with a binned surface compo-
nent.

In line 10, the algorithm finds the closest throughput surface
component from expected throughput Tes. In line 11 and 12
and calculate the maximum throughput point in the selected
surface component, and return the maximum throughput point
corresponding to application and kernel parameters as final
✓=cc, p, pp, cpu_num, cpu_freq. Similar is true for finding
min energy SLA corresponding ✓ as shown in line 15,16 and
17. Using algorithm 2, we pre-compute and store optimized
kernel-level and application-level transfer parameters in our
custom data structure for our dynamic online program to use.

F. Online Dynamic Maximum Throughput Parameter Tuning

We cluster historical log entries based on network char-
acteristics, network conditions, and file characteristics during

TABLE II: Characteristics of testbeds

Testbed Bandwidth RTT BDP CPU Architecture

Chameleon 10 Gbps 34 ms 40 MB
Haswell (server)
Haswell (client)

CloudLab 1 Gbps 38 ms 4.5 MB
Haswell (server)

Broadwell (client)

Inter-Cloud 1 Gbps 45 ms 4.5 MB
Haswell (server)

Bloomfield (client)

the o�ine analysis phase. Using algorithm 2, we pre-compute
and store optimized kernel-level and application-level transfer
parameters for an exhaustive combinations of scenarios in our
custom data structure for our dynamic online program to use.
Table II shows the o�ine analysis time for three di�erent
testbed with di�erent number of historical logs. The o�ine
analysis consist of two phases: decision tree construction time
and decision tree traversing time while generating the custom
data structure for our dynamic online program. Algorithm 3
shows the steps to use the pre-computed data structure from
section III(E) for maximum throughput optimization SLA.
Before a data transfer task starts, our online dynamic tuning
algorithm for throughput first measures the RTT for 3 seconds
which is shown in line 3 of algorithm 3. Our algorithm
utilizes the measured average RTT and the associated expected
throughput entry along with other file characteristics as the
search key to retrieve initial transfer parameters (✓) from the
o�ine stage pre-computed data structure. Using the initial
transfer parameters, the algorithm performs the data transfer
for approximately 10 seconds before obtaining new transfer
parameters from the decision search tree utilizing the measured
average delta RTT and the instantaneous delta throughput.
This is necessary to ensure previously retrieved parameters
(theta) have not become sub-optimal. Since network conditions
may fluctuate in a shared network, we periodically check and
adjust transfer parameters for the reasons mentioned above.
We developed three periodic time intervals to check and adjust
transfer parameters based on network conditions and dataset
characteristics. For small, medium, and large datasets, we
review and adjust parameters every 10, 20, and 30 seconds
respectively as shown in line 7 to 10 of algorithm 3.

Algorithm 3: Dynamic Throughput Tuning

1 datasets=ClusterF iles();
2 T imeout = getT imeout(Dataset.AvgF ileSize)
3 � rtt = measureRtt(time_3sec)
4 ✓ = obtainInitParams(� rtt)
5 startTransfer(✓, Dataset)
6 for T imeout do
7 � throughput = measuredInstTrhoughput()
8 � rtt = measuredRtt()
9 ✓ = SearchTreeParams(�rtt,�Throughput)

10 UpdateParameters(✓, Dataset)
11 end



G. Online Dynamic Minimum Energy Parameter Tuning

Based on the SLA, if the given SLA is minimum energy,
a dynamic online energy constraint tuning algorithm shown
in Algorithm 4 derived from the o�ine energy constraint
optimization model. Based on the energy constraint SLA,
parameter tuner periodically monitors the instantaneous energy
consumption at specified regular time intervals as shown
in line 7 in Algorithm 4. It then uses this instantaneous
energy consumption and transfer elapsed time (i.e., line 8)
to approximate the energy consumption of the transfer. With
the approximate energy value and current measured delta rtt
(i.e., line 3), the dynamic tuner obtains the updated transfer
parameters (i.e., line 10).

Algorithm 4: Dynamic Energy Tuning

1 datasets=ClusterF iles();
2 Timeout = getT imeout(Dataset.AvgF ileSize)
3 � rtt = measureRtt(time_3sec)
4 ✓ = obtainInitParams(�rtt)
5 startTransfer(✓, Dataset)
6 for T imeout do
7 � Energy =measuredInstEnergy()
8 elapsedTime=getElapsedT ime()
9 approximateEnergy =

enrgyApproximation(�Energy, elapsedT ime)
10 ✓ =

SearchTreeParams(�rtt, approximateEnergy)
11 Transfer(✓, Dataset)
12 end

IV. E����������� E���������

We performed over 45,000 data transfers across three di-
verse wide-area network testbeds, collecting valuable experi-
mental data encapsulating network conditions and character-
istics. Testbeds utilized include (1) Chameleon Cloud [22],
server located at the University of Chicago and client located
at the Texas Advanced Computing Center; (2) CloudLab [23],
server located at the University of Wisconsin and client located
at the University of Utah; (3) Inter-Cloud, server located at
the Texas Advanced Computing Center (part of Chameleon
Cloud) and client located at the University of Utah (part
of CloudLab). Both the Chameleon nodes run on either a
Dell PowerEdge R630 containing 24 CPU cores distributed
in dual-socket Intel Xeon E5-2670 v3 "Haswell" processors,
each containing 12 cores, or on a PowerEdge R740 containing
two Intel Xeon Skylake CPUs (each with 12 cores / 24
threads) [22]. The client within the CloudLab architecture
runs on an HPE ProLiant XL170r server containing 10 CPU
cores plus hyper-threading distributed in an Intel E5-2640v4
"Broadwell" processor having 64 GiB of RAM. The server
within the CloudLab testbed and the client within the inter-
cloud testbed run on Cisco’s UCS SFF 220 M4 and UCS LFF
240 M4, respectively. Both contain 2 Intel E5-2630 "Haswell"
processors, each having eight cores plus hyper-threading and

TABLE III: Required time for o�ine analysis

TestBed
(#of logs)

Cloudlab
(9841)

Chameleon
(18325)

InterCloud
(11228)

Average Decision tree
Construction Time

(Second)
4.5397 10.41378 4.3038

Hash Table
construction

time from tree
traversing time

(Second)

9.025355 13.0955 20.253139

TABLE IV: Dataset Characteristics

Dataset Num Files Total Size Avg. File Size Std. Dev.
Small 20,000 1.94 GB 101.92 KB 29.06 KB
Medium 5,000 11.70 GB 2.40 MB 0.27 MB
Large 128 27.85 GB 222.78 MB 15.19 MB

128 GiB of RAM [23]. The server within the Inter-Cloud
testbed shares the same specifications as the Chameleon Cloud
server. A specification overview is provided in Table III.

Experimental data transfers were performed during peak
and non-peak hours, utilizing three diverse datasets containing
di�erent characteristics. These include: (1) the small file size
dataset consisting of 20,000 HTML files derived from the
common crawl project [24]; (2) the medium file size dataset
consisting of 5,000 image files derived from Flickr [25]; (3)
the large file size dataset consisting of 128 video files from
Jiku [26]. Complete dataset characteristics are specified in
Table IV.

On all of our testbeds, we measure the client’s energy con-
sumption using Intel’s Running Average Power Limit (RAPL),
which uses a software model to accurately estimate power
consumption based on hardware performance counters and I/O
models. David et al. [27] and Hahnel et al. [28] highlighted
RAPL’s precision in measuring both memory and CPU power
consumption. To distinguish data transfer power consumption
from total system power consumption, we subtracted the
system baseline power consumption from the total power. In
order to fairly compare the e�ciency of our dynamic minimum
energy algorithm and maximum throughput algorithm with
other transfer solutions, we utilize the extreme use cases. To
achieve this, we use an SLA policy that informs our dynamic
energy constraint algorithm to transfer data with the least
amount of energy consumption by utilizing cross-layer optimal
kernel-level and application-level parameters. We call this SLA
policy the minimum energy decision tree (i.e., Min Energy
D tree) SLA. To test our maximum throughput optimization
algorithm, we use an SLA policy maximum throughput SLA
(i.e., Max Throughput D tree) that enforces our algorithm to
transfer data with the maximum throughput rate achievable,
utilizing cross-layer optimal kernel-level and application-level
parameters.

The experimental results in Figure 2 show how our proposed
decision tree-based max throughput and min energy algorithms
compare to Di Tacchio’s algorithm implemented in [29]. Di
Tacchio et al. developed real-time tuning heuristics to opti-



(a) Chameleon Throughput (Mbps) (b) CloudLab Throughput (Mbps) (c) Inter-Cloud Throughput (Mbps)

(d) Chameleon Client Energy (Joules) (e) Cloulab Client Energy (Joules) (f) Inter-Cloud Client Energy (Joules)

Fig. 2: Achieved throughput (Mbps) and energy consumption (Joules) over 3 diverse testbeds.

mize throughput and minimize energy consumption by tuning
both application-level data transfer parameters and kernel-layer
parameters during HTTP transfers. Furthermore, we compared
our algorithms to two common data transfer baseline tools: (1)
curl, an open-source tool used to transfer data, and (2) wget, a
free command-line tool used to retrieve files from the web. For
a fair comparison between all algorithms and baseline tools,
we utilized the datasets specified in table III when performing
experimental data transfers. In addition, since the baseline
tools did not support service-level agreements (SLAs), we
set the SLAs of our models/algorithms to two diametrical
cases: (1) maximum achievable throughput and (2) minimum
achievable energy consumption.

Figure 2 compares throughput performance and energy
consumption across three diverse testbeds: (1) Chameleon,
(2) CloudLab, and (3) Inter-Cloud. As anticipated, curl and
wget produced sub-par results across all testbeds for all data
transfers due to the absence of parameter optimization. Di
Tacchio et al.’s algorithms performed better than all the base-
line tools. As demonstrated in sub-figures, 2(a) and 2(d), our

algorithm outperforms all other algorithms in both throughput
performance and energy consumption cases within a high
bandwidth and high Bandwidth Delay Product (BDP) network
environment (Chameleon Cloud). Di Tacchio’s heuristic does
not take advantage of past data transfer history and must adjust
parameters strictly on fluctuating network conditions.

Figures 2(b) and 2(e) show how our dynamic max through-
put and min energy algorithm outperforms all other algorithms
in lower bandwidth and lower BDP network environments
(Cloudlab testbed). Sub-figures 2(c) and 2(f) demonstrate how
our algorithms outperform all other algorithms and baseline
tools for datasets containing small size HTML files, datasets
containing medium size image files, and a dataset containing
large video files in the intercloud testbed. Decision tree max
throughput outperformed Max throughput (Di Tacchio) across
all datasets in throughput improvement of HTML data transfers
by 180%, image data transfers by 120%, and video data trans-
fers by 52%. Additionally, the decision tree minimum energy
algorithm decreased energy consumption by an additional 37%
for HTML data transfers, 23% for image data transfers, and



Fig. 3: The convergence of achieved throughput with decision
tree max throughput algorithm for all three testbeds. The x axis
shows the timesteps and y axis is instantaneous throughput in
log scale.

6% for video data transfers, with respect to the minimum
Energy(Di Tacchio) algorithm. The cost of overestimating
or underestimating parameter values and compute resources
are expensive. Overestimating parameter values and compute
resources can increase energy consumption.

Conversely, underestimating parameter values and com-
pute resources can degrade throughput performance. Utiliz-
ing decision-search-tree based clustering techniques on past
data transfer history logs allows our algorithms to accurately
estimate near-optimal data transfer parameters for a given
SLA based on the current network conditions. This causes
our algorithms to converge faster to optimal parameters. Our
dynamic maximum throughput and min energy algorithms
converge quickly to optimal cross-layer parameter values based
on real-time network feedback and historical log analysis.
As shown in figure 3, with the decision tree approach, the
convergence to optimal throughput takes the minimal number
of timesteps1. This faster convergence is because the decision
tree combines the current network condition and knowledge
from o�ine historical analysis to provide faster convergence
towards maximally achievable throughput.

V. R������ W���

Improving data transfer throughput in wide-area high-speed
networks is a challenging task that depends on many dynamic
factors, including but not limited to: network conditions,
network settings, data transfer parameter configuration, and
dataset characteristics. Therefore, it is di�cult to develop

1For each data point in the line, it denotes the mean of all the instantaneous
throughput at that timestep and the vertical bars at each data point shows the
distribution of all the instantaneous throughput at that timestep. From the plot
it could be deduced that decision tree throughput algorithm converges to the
maximum achievable throughput within one timestep.

predictive models to accurately capture hidden throughput
patterns in fluctuating network environments. Several works on
application-level parameter tuning during data transfer mostly
propose non-scalable and static solutions to the problem
with some predefined values for the subset of the problem
space [30], [31], [32], [33].Earlier research focused on de-
veloping predictive models based on three methodologies:
analytical, empirical, and model-free [33], [34]. Hacker et al.
[31] developed an analytical model correlating throughput with
various network parameters. Yildirim et al. [35] developed
an empirical approach by applying Newton’s method to find
the optimal number of TCP streams via parallelism that
will maximize throughput. In our prior work [29] and [36],
we developed a combination of model-free and empirical
algorithms to maximize throughput by utilizing both machine
learning techniques and online dynamic parameter tuning. This
paper extends our prior work by using a novel decision tree-
based model capable of dealing with the aleatoric uncertainty
presented in the historical logs.

VI. C���������

Augmenting data transfer throughput and minimizing energy
consumption during data transfer in end hosts over high-speed,
long-distance networks is becoming progressively challenging.
Numerous factors such as fluctuating network conditions,
limitations of underlying transfer protocols, dataset charac-
teristics, network characteristics, and data transfer parameter
settings must be considered to achieve optimal or close to
optimal performance. A multifaceted approach to improving
data transfer throughput and minimum energy consumption
involves optimally and dynamically adjusting application-layer
and kernel-layer transfer parameters based on real-time net-
work conditions and dataset characteristics. In this paper, we
presented a novel two-phase dynamic throughput predictive
optimization model that utilizes o�ine decision-search-tree
based learning techniques to encapsulate and categorize his-
torical data transfer log information and an online search
optimization algorithm to find optimal transfer parameters.
Furthermore, we also explore ensemble methods to tackle the
uncertainty while carrying out the o�ine phase of analyzing
historical log data and building a decision search tree. The
experimental evaluation shows that our decision tree-based
model outperforms state-of-the-art solutions in this area by
achieving 117% higher throughput on average while consum-
ing 19% less energy at the end systems during active data
transfers.

A���������������

This project is in part sponsored by the National Science
Foundation (NSF) under award numbers CCF-2007829, OAC-
1842054, OAC-1724898. We also would like to thank the
Chameleon Cloud and CloudLab for letting us use their
resources in our experiments.



R���������

[1] Cisco, “Cisco annual internet report (2018–2023) white
paper,” Online](accessed March 26, 2021) https://www. cisco.
com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-
report/whitepaper-c11-741490. html, 2020.

[2] L. B. G.w.a.t.t., “Measuring energy consumption for short code paths
using rapl,” 2020.

[3] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Towards
a next generation data center architecture: scalability and commoditiza-
tion,” in Proceedings of the ACM workshop on Programmable routers
for extensible services of tomorrow, 2008, pp. 57–62.

[4] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright,
“Power awareness in network design and routing,” in IEEE INFOCOM,
2008, pp. 457–465.

[5] M. Gupta and S. Singh, “Greening of the internet,” in Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, 2003, pp. 19–26.

[6] L. Castin and B. F�enay, “Clustering with decision trees: Divisive and
agglomerative approach,” 2018.

[7] B. Liu, Y. Xia, and P. S. Yu, “Clustering via decision tree construction,”
2004.

[8] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data transfer
framework for large-scale science experiments,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, ser. HPDC ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 717–724. [Online]. Available:
https://doi.org/10.1145/1851476.1851582

[9] T. Kosar, “Dynamically tuning level of parallelism in wide area data
transfers,” in Ph.D. thesis. University of Wisconsin–Madison, 2005.

[10] E. Yildirim and T. Kosar, “End-to-end data-flow parallelism for
throughput optimization in high-speed networks,” J. Grid Comput.,
vol. 10, no. 3, p. 395–418, sep 2012. [Online]. Available: https:
//doi.org/10.1007/s10723-012-9220-9

[11] T. Hacker, B. Noble, and B. Athey, “Adaptive data block scheduling
for parallel tcp streams,” in HPDC-14. Proceedings. 14th IEEE Interna-
tional Symposium on High Performance Distributed Computing, 2005.,
2005, pp. 265–275.

[12] E. Yildirim, M. Balman, and T. Kosar, “Dynamically tuning
level of parallelism in wide area data transfers,” in Proceedings
of the 2008 International Workshop on Data-Aware Distributed
Computing, ser. DADC ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 39–48. [Online]. Available:
https://doi.org/10.1145/1383519.1383524

[13] E. Yildirim, D. Yin, and T. Kosar, “Balancing tcp bu�er vs parallel
streams in application level throughput optimization,” in Proceedings
of the Second International Workshop on Data-Aware Distributed
Computing, ser. DADC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 21–30. [Online]. Available:
https://doi.org/10.1145/1552280.1552283

[14] B. K. Y. Z. J. P. K. Farkas, P. Huang1, “Impact of tcp variants
on http performance,” Proc. High Speed Netw. 2. [Online]. Available:
http://www.hit.bme.hu/~farkask/publications/hot_HSNWKS2002.pdf

[15] F. N., “Smtp service extension for command pipelining,” RFC Editor.
[16] J. Kim, E. Yildirim, and T. Kosar, “A highly-accurate and low-overhead

prediction model for transfer throughput optimization,” in 2012 SC
Companion: High Performance Computing, Networking Storage and
Analysis, 2012, pp. 787–795.

[17] G. J. K. Bilal M. Ayyub, “Uncertainty modeling and analysis in
engineering and the sciences (1st ed.).” in Chapman and Hall/CRC.
https://doi.org/10.1201/9781420011456, 2006.

[18] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. W. Fieguth, X. Cao, A. Khosravi, U. R.
Acharya, V. Makarenkov, and S. Nahavandi, “A review of uncertainty
quantification in deep learning: Techniques, applications and challenges,”
CoRR, vol. abs/2011.06225, 2020. [Online]. Available: https://arxiv.org/
abs/2011.06225

[19] M. C. Darling and D. J. Stracuzzi, “Toward uncertainty quantification
for supervised classification,” 1 2018. [Online]. Available: https:
//www.osti.gov/biblio/1527311

[20] S. K. Mahjour, L. O. Mendes da Silva, L. A. A. Meira, G. P.
Coelho, A. A. de Souza dos Santos, and D. J. Schiozer, “Evaluation
of unsupervised machine learning frameworks to select representative
geological realizations for uncertainty quantification,” Journal of

Petroleum Science and Engineering, vol. 209, p. 109822, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0920410521014418

[21] H. Jamil and N. Weng, “Multibit tries packet classification with deep
reinforcement learning,” in 2020 IEEE 21st International Conference on
High Performance Switching and Routing (HPSR), 2020, pp. 1–6.

[22] K. Keahey, J. Anderson, Z. Zhen, and et al., “Lessons learned from the
chameleon testbed,” in Proceedings of USENIX ATC’20, July 2020.

[23] D. Duplyakin, R. Ricci, A. Maricq, and et al., “The design and operation
of CloudLab,” in Proceedings of the USENIX ATC, Jul. 2019.

[24] “Common crawl,” http://commoncrawl.org, 2020.
[25] “Yahoo flickr creative commons,” https://webscope.sandbox.yahoo.com/

catalog.php?datatype=i&did=67., 2020.
[26] “Jiku mobile video dataset,” http://www.jiku.org/datasets.html, 2020.
[27] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:

Memory power estimation and capping,” p. 189–194, 2010. [Online].
Available: https://doi.org/10.1145/1840845.1840883

[28] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 3, p. 13–17, jan 2012. [Online]. Available:
https://doi.org/10.1145/2425248.2425252

[29] L. Di Tacchio, M. S. Q. Z. Nine, T. Kosar, M. F. Bulut, and J. Hwang,
“Cross-layer optimization of big data transfer throughput and energy
consumption,” in 2019 IEEE CLOUD, 2019.

[30] K. T. K. C. DEELMAN, E. and M. LIVNY, “What makes workflows
work in an opportunistic environment?” vol. 18, no. 10, 2006, p.
1187–1199.

[31] T. J. Hacker, B. D. Noble, and B. D. Atley, “The end-to-end performance
e�ects of parallel tcp sockets on a lossy wide area network,” in
Proceedings of IPDPS ’02. IEEE, April 2002, p. 314.

[32] G. Kola, T. Kosar, J. Frey, M. Livny, R. Brunner, and M. Remijan, “Disc:
A system for distributed data intensive scientific computing,” 2004.

[33] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante, “Modeling and
taming parallel tcp on the wide area network,” in Proceedings of IPDPS
’05. IEEE, April 2005, p. 68.2.

[34] D. Yin, E. Yildirim, S. Kulasekaran, B. Ross, and T. Kosar, “A data
throughput prediction and optimization service for widely distributed
many-task computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 6, pp. 899–909, 2011.

[35] E. Yildirim, D. Yin, and T. Kosar, “Prediction of optimal parallelism
level in wide area data transfers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 12, pp. 2033–2045, 2011.

[36] L. Rodolph, M. S. Q. Zulkar Nine, L. Di Tacchio, and T. Kosar,
“Energy-saving cross-layer optimization of big data transfer based on
historical log analysis,” in ICC 2021 - IEEE International Conference
on Communications, 2021, pp. 1–7.


