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ABSTRACT

Federated learning is an emerging machine learning
framework where models are trained using heterogeneous
datasets collected by a large number of edge clients. Standard
methods to aggregate local training models weigh each model
by a fraction of data size at that client. However, such ap-
proaches result in unfairness to clients with small and unique
datasets, leading to inferior accuracy of the global model at
these clients. In this work, we propose a novel optimization
framework called DRFL that dynamically adjusts the weight
assigned to each client, and we combine it with a biased
client selection strategy, both of which encourage fairness in
federated training. We validate the effectiveness of our pro-
posed method on a suite of both synthetic and real federated
datasets, revealing the proposed method outperforms existing
baselines in terms of resulting fairness.

Index Terms— federated learning, fairness, distributed
optimization

1. INTRODUCTION

Federated learning has emerged as an attractive paradigm for
machine learning optimization problems, in which the train-
ing process executes on an extensive distributed system with
massive clients or edge devices, and a central server aggre-
gates local models to a global model that is leveraged by all
existing and upcoming clients. Practically, clients may con-
tain local data from different distributions, resulting in data
heterogeneity [1, 2]. While various algorithms had been pro-
posed addressed with federated optimization settings since
FedAvg [3], handling data heterogeneity remains an open
problem in federated learning [1, 4]. Due to the existence
of data heterogeneity, a model trained on the local dataset at
one client may not work well for another client. In feder-
ated learning, minorities or marginalized groups are typically
under-represented in training data, and thus the global model
tends to weigh these groups less during training [5, 6, 7].

In this work, we aim to mitigate the representation dispar-
ity [1] to improve the fairness of the global model obtained
in federated learning among all groups, including the minori-
ties. To address this, we propose a new optimization objective
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DRFL that dynamically adjusts the weight assigned to each
client. We also combine a biased client selection strategy to
further improve the resulting fairness. We introduce a new
algorithm that resolves the optimization problem above, and
our experimental results illustrate the proposed method out-
performs FedAvg and g—-FFL baselines in resulting fairness.
In addition, another key advantage of our approach over pre-
viously proposed methods is that it does not change the local
optimizer at each client, and only makes adjustments to the
aggregation weights on the server-side.

2. PROBLEM FORMULATION

System Model. In the standard federated learning setup, there
are total K clients, where for each client &, it contains a lo-
cal dataset D;, with size s;. The clients communicate model
updates to a central aggregating server, which aims to find a
model parameter vector x that minimizes the empirical risk
objective:
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The standard algorithm to solve (1) is federated averag-
ing (FedAvg) [3]. FedAvg is executed in communication
rounds, where in each round, the central server selects only
a fraction C of m = max{CK, 1} clients with probability
distribution p;, = ;7ks for training. The selected clients
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perform 7, = F % local updates, where B is the batchsize
and E is the number of local epochs. The central server
takes a weighted average of the clients’ model updates (py
for client k) and updates the global model.

Though FedAvg is communication-efficient and achieves
high overall accuracy in experiments, the selection of clients
and server aggregation with unbiased weights pj; can cause
fairness issues. Specifically, clients with a larger dataset size
si are optimized more often and better than those of clients
with small s, which typically represent minorities or out-
liers, since they are less likely to be selected. To clarify what
fairness refers to in federated learning, we formally define
the desired fairness criteria as:
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Definition 2.1 (Fairness in Federated Learning [7]). For
global model  and &, we say x is a more fair solution for



defined federated learning objective than & if the accuracy
distribution of model « on m devices is more uniform than .

Related Prior Work. Fairness is a topic with various open
challenges that have received broad attention and contribu-
tions in the machine learning community [8, 9, 10, 11]. Re-
garding fairness in federated learning, multiple works [6, 7,
12] explores possible methods for better fairness in two gen-
eral approaches: optimizing more often to clients with high
losses or giving more penalties to clients with high losses.
Agnostic federated learning (AFL) [6] is a method that lever-
ages the first approach mentioned above, where it tries to
optimize the worst-performing client by giving it the largest
weight. AFL aims to minimize a modified objective function
described as:
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where A = (A1,..., Ax) lies in the simplex A = {\ : Ay >
0,55, A, = 1}. Intuitively, AFL uses a biased client se-
lection strategy that optimizes the model for the worst per-
forming client in each round. Since it chooses a single client
for optimization in each round, the gradient variance can be
much larger than that of the weighted averaging from multiple
selected clients, causing potential convergence stability issue.

The g-FFL framework [7] utilizes the second approach,
in which the global objective is defined in a power form:
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where ¢ > 0 is a tunable parameter. By adding power terms
to the objective function, local clients with high losses can
be magnified, resulting in higher penalties despite their sj
can be small. [7] also proposed a FedAvg-liked algorithm
g-FedAvg to solve its proposed objective, and leverages the
estimated Lipschitz constant to avoid tuning learning rate for
different g. However, choosing a proper ¢ for various datasets
can be extremely sensitive, for instance, it uses ¢ = 5 for Ve-
hicle dataset but ¢ = 0.001 for Shakespeare dataset, which
can cause challenges in practical implementation.

3. FAIR FEDERATED LEARNING

To address fairness challenges in federated learning, and to
overcome some of the shortcomings of existing methods, we
proposed a novel global objective DRFL that can dynamically
adjust the weight assigned to clients. Additionally, we utilize
an optimized biased client selection strategy than AF L, which
promises better convergence stability. Finally, we derive a
complete algorithm DR-FedAvg to solve DRFL and propose
potential optimizations towards our algorithm.

Dynamic Reweighting Federated Learning. Building on
the g—FFL method reviewed in Section 2, rather than assign-
ing more penalties to clients with high losses through loss
magnification, can we add penalties to these clients simply by
assigning higher weights? Guided by this idea, we propose a
global objective function, namely dynamic-reweighting fed-
erated learning objective (DRFL):
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where ¢ > 0 is a tunable parameter similar to g—FFL. x is
the model vector obtained from the current communication
round and & is a stale model from previous training, i.e. the
model obtained from the last communication round. To avoid
tricky parameter tuning, a common strategy is to set ¢ = 0,
each client k is assigned with a weight based on its perfor-
mance in the previous step, that is, its loss on a stale model
normalized by the sum loss of all clients. Suppose the loss
for each client with a global model obtained in the previous
round can be calculated or estimated at the beginning of every
training round, then we could dynamically adjust penalties for
each client. Clients with higher loss are assigned with large
weights, receiving more penalties, and clients with lower loss
work contrarily. If a more fair model is desired, one can set
q > 1 to give even heavier penalties on bad clients. Also, by
letting ¢ = —1, (4) reduces to vanilla FedAvg.

Comparing to g—-FFL, DRFL utilizes similar mechanism
as g-FFL, which exaggerates the impacts on clients with high
losses. However, DRFL is more flexible in parameter tuning,
where one can simply set ¢ = 0 for simplicity, or tuning ¢
for the desired fairness. The proposed g—FedAvg to solve
g-FFL also requires computing A and hy in the client-side
besides the gradient calculations, causing potential aggrega-
tion information leaking and harming system security. Mean-
while, g-FFL requires to estimate a Lipschitz constant at
q = 0 for a replacement of learning rate, which causes large
extra computation cost during training.
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Biased Client Selection. Since DRFL requires a loss esti-
mation over clients for their dynamic weights, one can take
convenience from loss estimation to execute a biased client
selection. To overcome unstable convergence occurred in
AFL, Pow-D [13] proposed an optimized client selection
strategy, in which it firstly selects d clients to obtain their loss
{Fi(z),k € d}, then it picks top m = max{CK,1} < d
clients with highest losses to perform local updates. Since
Pow-D counts an averaged gradients, it is rational that
Pow~—d performs better than AFL in stability.

Our clients selection strategy is similar to Pow—d, in
which we estimate losses over selected d clients based on py,
and pick picks top m = max{CK, 1} clients with highest
losses to perform local updates. However, when the to-
tal number of clients is relatively small, we tend to choose
d = K for better generality since it evaluates the performance



of all clients rather than a partition. When the client amount
is massive and letting d = K is not practical, we back to pick
a fraction of clients as Pow—D does.

Dynamic Reweighting Federated Averaging. To resolve
the proposed objective function, we propose a FedAvg-style
algorithm names Dynamic-Reweighting Federated Averaging
(DR-FedAvg). The DR-FedAvg takes advantages of com-
munication efficiency from FedAvg, combines the above
client selection strategy to optimize DRFL objective func-
tion, guides the global model to become more fair. The full
algorithm is described in Algorithm 1.

Algorithm 1 Dynamic-Reweighting Federated Averaging

1: Initialization: T K,d,C,1,q

2: for tin {0,...,7 — 1} rounds do

3: Server samples d clients with probability pj, and
sends current model & to clients to obtain estimated loss
F.(&) over a batch local data;

4: Clients send F} (&) to server, and server picks a sub-
set s; of m = max{CK, 1} clients with highest losses;

5: Selected clients k € s, perform 7 local updates to
obtain x and send back to server;

6: Server calculates dynamic weights for updated clients
pr P (2)

S pe R (&)
aggregates models by = + > /" | wyxy

7: end for

8: return x

wy = k € s; for current round, and

To save computation resources, a potential optimization
for DR-FedAvg could be: rather than updating the dynamic
weights for each round, one can update the weights for every ¢
rounds. To adapt the biased client selection, when the weights
are to update, one might pick a relatively larger d (client set
S4), obtain their estimated loss, and perform P ow—D-like up-
dates with biased client selection. For the incoming ¢ — 1
rounds, one can sample m = max{CK, 1} clients only from
Sq to perform vanilla FedAvg. By so, the dynamic weights
only need to be updated for every ¢ rounds.

4. EXPERIMENT EVALUATION

We evaluate the effectiveness of proposed method. For com-
parison, we also implement FedAvg and g-FedAvg as
baselines. The experiments are divided into two parts: First,
we evaluate DR-FedAvg versus baseline methods over syn-
thetic datasets, illustrating the proposed method leads to a
more uniform distribution; Second, we evaluate all models
over Adult and FMNIST dataset to show that DR-FedAvg
improves the performance over minorities with slightly sacri-
ficing global accuracy or performance over majorities.

Evaluation over Synthetic Data. For synthetic data, we
use SYNTHETIC(«, () that follows same settings as [14].
«, f are two varying parameters, in which « controls how

much local models are different from each other, and 5 con-
trols how much local data at each device differs from that
of other devices. Intuitively, a larger set of «, 8 indicates a
less IID dataset it generates. In our experiment, we lever-
age SYNTHETIC(0,0) and SYNTHETIC(1,1) with each
dataset contains 100 clients, and build single-layer percep-
trons W(%OOX)" and W(Gl?le respectively. The goal of this set of
experiments is not to reach as high accuracy as possible, but
to compare different performance distributions over different
methods under a similar global accuracy, thus, whether a
model is large enough does not matter too much. Since the
clients group is relatively small, we set d = K and ¢ = 0
for DRF L. For consistency and simplicity, we set local update
epoch 7 = 1 and Ir = 0.01 using SGD optimizer for all
methods. The experiment results are shown in Fig 4.

SYNTHETIC(0,0)

—— DR-FedAvg
=== q-FFL
...... FedAvg

SYNTHETIC(1,1)

—— DR-FedAvg
--- ¢FFL
...... FedAvg

S 5 = &

Num of Clients
Num of Clients

04 05 06 07 08 09 10
Accuracy

0 bt . ; ;
02 03 04 05 06
Accuracy

Fig. 1. Performance distribution on SYNTHETIC(0,0) (left)
and SYNTHETIC(1,1) (right), showing a more uniform per-
formance on DR-FedAvg than baselines

Recall the Definition 2.1, the fairer the model is, the
more uniform the accuracy distribution should be, and the
accuracy distribution should be more concentrated in the
plotting figure. For SYNTHETIC(0,0), all methods sat-
urate at approximate 60% global accuracy. However, ei-
ther FedAvg or g-FFL has two splits over accuracy range
30% ~ 50% and 60% ~ 70%, while performances distribu-
tion with DR-FedAvg is slight more concentrated, indicat-
ing a better fairness than baselines. For SYNTHETIC(1,1),
the task is simplified to a binary classification problem
such that all methods achieves higher global accuracy than
SYNTHETIC(0,0) (not equivalent to SYNTHETIC(0,0) is
less iid than SYNTHETIC(1,1)). The resulting fairness of
DR-FedAvg is slightly better than g-FFL. Experiment also
shows that FedAvg saturates at 80% global accuracy while
other two methods reach higher accuracy, which is due to a
poor performance of FedAvg over non-I1ID dataset, and has
been illustrated by previous works [15]. The experiments over
synthetic dataset demonstrate two points:1) DR-FedAvg can
work well over non-IID data, 2) DR-FedAvg has a better
guarantee of worst-case than both baselines.

Evaluation over Real Data. For real dataset, we leverage



Dataset Adult
Method Avg PhD non-PhD
FedAvg 83.1 65.6+39 83.3+01
q-FFL 83.3+ 01 75.7+47 83.4+0.
DR-FedAvg | 83.1x01 | 759451 | 832104
Dataset FMNIST
Method Avg Shirt Pullover | T-shirt
FedAvg 77732 | 7072150 | 774x05 | 853153
q-FFL 829+ 156 78.5+ 115 85.0+ 094 83.2+54
DR—FedAVg 81.4+12 80.5+36 82.1+41 79.1+356

Table 1. Validation Accuracy (%) over Adult and FMNIST,
DR-FedAvg achieves highest accuracy over PhD (minority)
on Adult, and most uniform accuracy distribution on FMNIST

Adult [16] and FMNIST [17]. Following a similar setup in
[7], for Adult, we split the dataset into PhD and non-PhD
groups, where PhD group is the minority that receives much
lower prediction accuracy compared to the global average.
For FMNIST, we sample data from categories Shirt, Pullover,
and T-shirt. Our goal is to evaluate whether DR-FedAvg
could improve the performance of PhD of Adult, and Shirt of
FMNIST than FedAvg as g—FFL does, with rational scarifi-
cation of accuracy over other groups.

In the experiments, we build a 3-layer DNN for the Adult,
and 2-layer convolutional layers with a 2-layer MLP classi-
fier followed for FMNIST. We do non-IID sampling for both
datasets, for each client, it contains data and labels only from
a single category. We employ 30 clients for the Adult, with
one client containing all data from PhD group, and another
29 with data sampled from non-PhD group without replace-
ment. For FMNIST, we leverage 60 clients, with 20 for each
selected category with relatively uniform samplings. All
other settings are the same as experiments over the synthetic
dataset, the results are shown in Fig 4 and Table 4.
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Fig. 2. Worst category performance on Adult (left) and FMNIST
(right) over training rounds, DR-FedAvg ensures better guaran-

tee over all categories than baselines

Fig 4 reveals that DR-FedAvg achieves a faster conver-
gence speed than the baselines, and DR-FedAvg or g—-FFL

Dataset Adult

g-value Avg PhD non-PhD

0 83.0x01 | 74.6+25 | 83.1+0:

0.1 83.1x01 | 75.1x25 | 83.1x0:

1 83.3£01 | 75.6+22 | 83.4+0:

10 82.9+01 | T1.7x31 | 83.0x0:
Dataset FMNIST
q-value Avg Shirt | Pullover | T-shirt
0 854100 | 864166 | 901444 | 797161
0.1 84.7+0s | 86.2+65 | 87. 7140 | 80.2+7.
1 84.9+0s | 85.5+67 | 88.6+56 | 80.7+7s6
10 84.6+0s5 | 85.2+5s | 889144 | 79.817s

Table 2. Validation Accuracy (%) over Adult and FMNIST of
DR-FedAvg with different ¢ values, indicating ¢ = 1 gives
best worst-case guarantees on both Adult and FMNIST.

have better guarantees on minorities than vanilla FedAvg.
The proposed method performs better than baselines on FM-
NIST rather than Adult, which possibly due to a heterogeneity
in client datasize in Adult sampling, where a relatively small
pi. for PhD group degrades its contribution during aggrega-
tion. The figure also indicates a smaller confidence interval
of DR-FedAvg than other methods. Table 4 further indicates
that, DR-FedAvg ensures a even more fair result and a much
better stability guarantee than g—-FFL, though its global ac-
curacy is slightly lower than g—-FFL.

In addition, we also investigate the impact of ¢ by switch-
ing different values. Intuitively, a larger ¢ can ensure bet-
ter fairness since it exaggerates more penalties than smaller ¢
does. However, our empirical result, shown in Table 4, does
not indicate a larger ¢ is always favorable. The evaluation
shows that DR-FedAvg has best worst-case guarantees when
q = 1 on both Adult and FMNIST, and our interpretation is
that a large ¢ can cause higher error flow and instability, which
may sacrifice the global accuracy too much and degrade the
performance of all categories, including minorities.

5. CONCLUSION

In this work, we proposed DRFL, a novel optimization ob-
jective that encourages more uniform accuracy distributions
across devices in federated learning. We devise a method
DR-FedAvg that can solve the proposed objective effi-
ciently in massive networks. Our empirical evaluation on
a suite of the federated datasets, including synthetic and real
datasets, demonstrates our method can achieve better fair-
ness than baselines and can avoid sensitive parameter tunings
in g-FFL. Future works may make extensions in two di-
rections: 1) Convergence analysis for DRFL to support its
feasibility theoretically, 2) Giving theoretical proofs of how
DR-FedAVg leads to better fairness, i.e. with DR-FedAVg,
the variance over clients is theoretically lower than FedAvg.
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