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ABSTRACT

Federated learning is an emerging machine learning

framework where models are trained using heterogeneous

datasets collected by a large number of edge clients. Standard

methods to aggregate local training models weigh each model

by a fraction of data size at that client. However, such ap-

proaches result in unfairness to clients with small and unique

datasets, leading to inferior accuracy of the global model at

these clients. In this work, we propose a novel optimization

framework called DRFL that dynamically adjusts the weight

assigned to each client, and we combine it with a biased

client selection strategy, both of which encourage fairness in

federated training. We validate the effectiveness of our pro-

posed method on a suite of both synthetic and real federated

datasets, revealing the proposed method outperforms existing

baselines in terms of resulting fairness.

Index Terms— federated learning, fairness, distributed

optimization

1. INTRODUCTION

Federated learning has emerged as an attractive paradigm for

machine learning optimization problems, in which the train-

ing process executes on an extensive distributed system with

massive clients or edge devices, and a central server aggre-

gates local models to a global model that is leveraged by all

existing and upcoming clients. Practically, clients may con-

tain local data from different distributions, resulting in data

heterogeneity [1, 2]. While various algorithms had been pro-

posed addressed with federated optimization settings since

FedAvg [3], handling data heterogeneity remains an open

problem in federated learning [1, 4]. Due to the existence

of data heterogeneity, a model trained on the local dataset at

one client may not work well for another client. In feder-

ated learning, minorities or marginalized groups are typically

under-represented in training data, and thus the global model

tends to weigh these groups less during training [5, 6, 7].

In this work, we aim to mitigate the representation dispar-

ity [1] to improve the fairness of the global model obtained

in federated learning among all groups, including the minori-

ties. To address this, we propose a new optimization objective
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DRFL that dynamically adjusts the weight assigned to each

client. We also combine a biased client selection strategy to

further improve the resulting fairness. We introduce a new

algorithm that resolves the optimization problem above, and

our experimental results illustrate the proposed method out-

performs FedAvg and q-FFL baselines in resulting fairness.

In addition, another key advantage of our approach over pre-

viously proposed methods is that it does not change the local

optimizer at each client, and only makes adjustments to the

aggregation weights on the server-side.

2. PROBLEM FORMULATION

System Model. In the standard federated learning setup, there

are total K clients, where for each client k, it contains a lo-

cal dataset Dk with size sk. The clients communicate model

updates to a central aggregating server, which aims to find a

model parameter vector x that minimizes the empirical risk

objective:

F (x) =
K∑

k=1

pkFk(x) =
K∑

k=1

sk∑K

i=1 si
Fk(x) (1)

The standard algorithm to solve (1) is federated averag-

ing (FedAvg) [3]. FedAvg is executed in communication

rounds, where in each round, the central server selects only

a fraction C of m = max{CK, 1} clients with probability

distribution pk = sk∑
K
i=1

si
for training. The selected clients

perform τk = E sk
B

local updates, where B is the batchsize

and E is the number of local epochs. The central server

takes a weighted average of the clients’ model updates (pk
for client k) and updates the global model.

Though FedAvg is communication-efficient and achieves

high overall accuracy in experiments, the selection of clients

and server aggregation with unbiased weights pk can cause

fairness issues. Specifically, clients with a larger dataset size

sk are optimized more often and better than those of clients

with small sk, which typically represent minorities or out-

liers, since they are less likely to be selected. To clarify what

fairness refers to in federated learning, we formally define

the desired fairness criteria as:

Definition 2.1 (Fairness in Federated Learning [7]). For

global model x and x̄, we say x is a more fair solution for



defined federated learning objective than x̄ if the accuracy

distribution of model x on m devices is more uniform than x̄.

Related Prior Work. Fairness is a topic with various open

challenges that have received broad attention and contribu-

tions in the machine learning community [8, 9, 10, 11]. Re-

garding fairness in federated learning, multiple works [6, 7,

12] explores possible methods for better fairness in two gen-

eral approaches: optimizing more often to clients with high

losses or giving more penalties to clients with high losses.

Agnostic federated learning (AFL) [6] is a method that lever-

ages the first approach mentioned above, where it tries to

optimize the worst-performing client by giving it the largest

weight. AFL aims to minimize a modified objective function

described as:

FAFL(x) = max
λ

K∑

k=1

λkFk(x) (2)

where λ = (λ1, . . . , λK) lies in the simplex ∧ = {λ : λk ≥

0,
∑K

k=1 λk = 1}. Intuitively, AFL uses a biased client se-

lection strategy that optimizes the model for the worst per-

forming client in each round. Since it chooses a single client

for optimization in each round, the gradient variance can be

much larger than that of the weighted averaging from multiple

selected clients, causing potential convergence stability issue.

The q-FFL framework [7] utilizes the second approach,

in which the global objective is defined in a power form:

Fq(ω) =
K∑

k=1

pk

q + 1
F

q+1
k (ω) (3)

where q ≥ 0 is a tunable parameter. By adding power terms

to the objective function, local clients with high losses can

be magnified, resulting in higher penalties despite their sk
can be small. [7] also proposed a FedAvg-liked algorithm

q-FedAvg to solve its proposed objective, and leverages the

estimated Lipschitz constant to avoid tuning learning rate for

different q. However, choosing a proper q for various datasets

can be extremely sensitive, for instance, it uses q = 5 for Ve-

hicle dataset but q = 0.001 for Shakespeare dataset, which

can cause challenges in practical implementation.

3. FAIR FEDERATED LEARNING

To address fairness challenges in federated learning, and to

overcome some of the shortcomings of existing methods, we

proposed a novel global objective DRFL that can dynamically

adjust the weight assigned to clients. Additionally, we utilize

an optimized biased client selection strategy than AFL, which

promises better convergence stability. Finally, we derive a

complete algorithm DR-FedAvg to solve DRFL and propose

potential optimizations towards our algorithm.

Dynamic Reweighting Federated Learning. Building on

the q-FFL method reviewed in Section 2, rather than assign-

ing more penalties to clients with high losses through loss

magnification, can we add penalties to these clients simply by

assigning higher weights? Guided by this idea, we propose a

global objective function, namely dynamic-reweighting fed-

erated learning objective (DRFL):

FDRFL(x) =
K∑

k=1

pkF
q+1
k (x̃)

∑K

i=1 piF
q+1
i (x̃)

Fk(x) (4)

where q ≥ 0 is a tunable parameter similar to q-FFL. x is

the model vector obtained from the current communication

round and x̃ is a stale model from previous training, i.e. the

model obtained from the last communication round. To avoid

tricky parameter tuning, a common strategy is to set q = 0,

each client k is assigned with a weight based on its perfor-

mance in the previous step, that is, its loss on a stale model

normalized by the sum loss of all clients. Suppose the loss

for each client with a global model obtained in the previous

round can be calculated or estimated at the beginning of every

training round, then we could dynamically adjust penalties for

each client. Clients with higher loss are assigned with large

weights, receiving more penalties, and clients with lower loss

work contrarily. If a more fair model is desired, one can set

q > 1 to give even heavier penalties on bad clients. Also, by

letting q = −1, (4) reduces to vanilla FedAvg.

Comparing to q-FFL, DRFL utilizes similar mechanism

as q-FFL, which exaggerates the impacts on clients with high

losses. However, DRFL is more flexible in parameter tuning,

where one can simply set q = 0 for simplicity, or tuning q

for the desired fairness. The proposed q-FedAvg to solve

q-FFL also requires computing ∆k and hk in the client-side

besides the gradient calculations, causing potential aggrega-

tion information leaking and harming system security. Mean-

while, q-FFL requires to estimate a Lipschitz constant at

q = 0 for a replacement of learning rate, which causes large

extra computation cost during training.

Biased Client Selection. Since DRFL requires a loss esti-

mation over clients for their dynamic weights, one can take

convenience from loss estimation to execute a biased client

selection. To overcome unstable convergence occurred in

AFL, Pow-D [13] proposed an optimized client selection

strategy, in which it firstly selects d clients to obtain their loss

{Fk(x), k ∈ d}, then it picks top m = max{CK, 1} ≤ d

clients with highest losses to perform local updates. Since

Pow-D counts an averaged gradients, it is rational that

Pow-d performs better than AFL in stability.

Our clients selection strategy is similar to Pow-d, in

which we estimate losses over selected d clients based on pk,

and pick picks top m = max{CK, 1} clients with highest

losses to perform local updates. However, when the to-

tal number of clients is relatively small, we tend to choose

d = K for better generality since it evaluates the performance



of all clients rather than a partition. When the client amount

is massive and letting d = K is not practical, we back to pick

a fraction of clients as Pow-D does.

Dynamic Reweighting Federated Averaging. To resolve

the proposed objective function, we propose a FedAvg-style

algorithm names Dynamic-Reweighting Federated Averaging

(DR-FedAvg). The DR-FedAvg takes advantages of com-

munication efficiency from FedAvg, combines the above

client selection strategy to optimize DRFL objective func-

tion, guides the global model to become more fair. The full

algorithm is described in Algorithm 1.

Algorithm 1 Dynamic-Reweighting Federated Averaging

1: Initialization: T,K, d, C, τ, q

2: for t in {0, . . . , T − 1} rounds do

3: Server samples d clients with probability pk, and

sends current model x̃ to clients to obtain estimated loss

F̂k(x̃) over a batch local data;

4: Clients send F̂k(x̃) to server, and server picks a sub-

set st of m = max{CK, 1} clients with highest losses;

5: Selected clients k ∈ st perform τ local updates to

obtain x and send back to server;

6: Server calculates dynamic weights for updated clients

wk =
pkF

q+1

k
(x̃)

∑
m
i=1

pkF
q+1

k
(x̃)

, k ∈ st for current round, and

aggregates models by x←
∑m

k=1 wkxk

7: end for

8: return x

To save computation resources, a potential optimization

for DR-FedAvg could be: rather than updating the dynamic

weights for each round, one can update the weights for every t

rounds. To adapt the biased client selection, when the weights

are to update, one might pick a relatively larger d (client set

Sd), obtain their estimated loss, and perform Pow-D-like up-

dates with biased client selection. For the incoming t − 1
rounds, one can sample m = max{CK, 1} clients only from

Sd to perform vanilla FedAvg. By so, the dynamic weights

only need to be updated for every t rounds.

4. EXPERIMENT EVALUATION

We evaluate the effectiveness of proposed method. For com-

parison, we also implement FedAvg and q-FedAvg as

baselines. The experiments are divided into two parts: First,

we evaluate DR-FedAvg versus baseline methods over syn-

thetic datasets, illustrating the proposed method leads to a

more uniform distribution; Second, we evaluate all models

over Adult and FMNIST dataset to show that DR-FedAvg

improves the performance over minorities with slightly sacri-

ficing global accuracy or performance over majorities.

Evaluation over Synthetic Data. For synthetic data, we

use SYNTHETIC(α, β) that follows same settings as [14].

α, β are two varying parameters, in which α controls how

much local models are different from each other, and β con-

trols how much local data at each device differs from that

of other devices. Intuitively, a larger set of α, β indicates a

less IID dataset it generates. In our experiment, we lever-

age SYNTHETIC(0, 0) and SYNTHETIC(1, 1) with each

dataset contains 100 clients, and build single-layer percep-

trons W 60×5
(0,0) and W 60×2

(1,1) respectively. The goal of this set of

experiments is not to reach as high accuracy as possible, but

to compare different performance distributions over different

methods under a similar global accuracy, thus, whether a

model is large enough does not matter too much. Since the

clients group is relatively small, we set d = K and q = 0
for DRFL. For consistency and simplicity, we set local update

epoch τ = 1 and lr = 0.01 using SGD optimizer for all

methods. The experiment results are shown in Fig 4.

Fig. 1. Performance distribution on SYNTHETIC(0,0) (left)

and SYNTHETIC(1,1) (right), showing a more uniform per-

formance on DR-FedAvg than baselines

Recall the Definition 2.1, the fairer the model is, the

more uniform the accuracy distribution should be, and the

accuracy distribution should be more concentrated in the

plotting figure. For SYNTHETIC(0, 0), all methods sat-

urate at approximate 60% global accuracy. However, ei-

ther FedAvg or q-FFL has two splits over accuracy range

30% ∼ 50% and 60% ∼ 70%, while performances distribu-

tion with DR-FedAvg is slight more concentrated, indicat-

ing a better fairness than baselines. For SYNTHETIC(1, 1),
the task is simplified to a binary classification problem

such that all methods achieves higher global accuracy than

SYNTHETIC(0, 0) (not equivalent to SYNTHETIC(0, 0) is

less iid than SYNTHETIC(1, 1)). The resulting fairness of

DR-FedAvg is slightly better than q-FFL. Experiment also

shows that FedAvg saturates at 80% global accuracy while

other two methods reach higher accuracy, which is due to a

poor performance of FedAvg over non-IID dataset, and has

been illustrated by previous works [15]. The experiments over

synthetic dataset demonstrate two points:1) DR-FedAvg can

work well over non-IID data, 2) DR-FedAvg has a better

guarantee of worst-case than both baselines.

Evaluation over Real Data. For real dataset, we leverage



Dataset Adult

Method Avg PhD non-PhD

FedAvg 83.1 65.6± 3.9 83.3± 0.1

q-FFL 83.3± 0.1 75.7± 4.7 83.4± 0.1

DR-FedAvg 83.1± 0.1 75.9± 3.1 83.2± 0.1

Dataset FMNIST

Method Avg Shirt Pullover T-shirt

FedAvg 77.7± 3.2 70.7± 13.0 77.4± 9.5 85.3± 8.3

q-FFL 82.9± 1.6 78.5± 11.5 85.0± 9.4 83.2± 8.4

DR-FedAvg 81.4± 1.2 80.5± 3.6 82.1± 4.1 79.1± 3.6

Table 1. Validation Accuracy (%) over Adult and FMNIST,

DR-FedAvg achieves highest accuracy over PhD (minority)

on Adult, and most uniform accuracy distribution on FMNIST

Adult [16] and FMNIST [17]. Following a similar setup in

[7], for Adult, we split the dataset into PhD and non-PhD

groups, where PhD group is the minority that receives much

lower prediction accuracy compared to the global average.

For FMNIST, we sample data from categories Shirt, Pullover,

and T-shirt. Our goal is to evaluate whether DR-FedAvg

could improve the performance of PhD of Adult, and Shirt of

FMNIST than FedAvg as q-FFL does, with rational scarifi-

cation of accuracy over other groups.

In the experiments, we build a 3-layer DNN for the Adult,

and 2-layer convolutional layers with a 2-layer MLP classi-

fier followed for FMNIST. We do non-IID sampling for both

datasets, for each client, it contains data and labels only from

a single category. We employ 30 clients for the Adult, with

one client containing all data from PhD group, and another

29 with data sampled from non-PhD group without replace-

ment. For FMNIST, we leverage 60 clients, with 20 for each

selected category with relatively uniform samplings. All

other settings are the same as experiments over the synthetic

dataset, the results are shown in Fig 4 and Table 4.

Fig. 2. Worst category performance on Adult (left) and FMNIST

(right) over training rounds, DR-FedAvg ensures better guaran-

tee over all categories than baselines

Fig 4 reveals that DR-FedAvg achieves a faster conver-

gence speed than the baselines, and DR-FedAvg or q-FFL

Dataset Adult

q-value Avg PhD non-PhD

0 83.0± 0.1 74.6± 2.5 83.1± 0.1

0.1 83.1± 0.1 75.1± 2.5 83.1± 0.1

1 83.3± 0.1 75.6± 2.2 83.4± 0.1

10 82.9± 0.1 71.7± 3.1 83.0± 0.1

Dataset FMNIST

q-value Avg Shirt Pullover T-shirt

0 85.4± 0.9 86.4± 6.6 90.1± 4.4 79.7± 6.1

0.1 84.7± 0.8 86.2± 6.6 87.7± 4.9 80.2± 7.1

1 84.9± 0.8 85.5± 6.7 88.6± 5.6 80.7± 7.6

10 84.6± 0.5 85.2± 5.8 88.9± 4.4 79.8± 7.5

Table 2. Validation Accuracy (%) over Adult and FMNIST of

DR-FedAvg with different q values, indicating q = 1 gives

best worst-case guarantees on both Adult and FMNIST.

have better guarantees on minorities than vanilla FedAvg.

The proposed method performs better than baselines on FM-

NIST rather than Adult, which possibly due to a heterogeneity

in client datasize in Adult sampling, where a relatively small

pk for PhD group degrades its contribution during aggrega-

tion. The figure also indicates a smaller confidence interval

of DR-FedAvg than other methods. Table 4 further indicates

that, DR-FedAvg ensures a even more fair result and a much

better stability guarantee than q-FFL, though its global ac-

curacy is slightly lower than q-FFL.

In addition, we also investigate the impact of q by switch-

ing different values. Intuitively, a larger q can ensure bet-

ter fairness since it exaggerates more penalties than smaller q

does. However, our empirical result, shown in Table 4, does

not indicate a larger q is always favorable. The evaluation

shows that DR-FedAvg has best worst-case guarantees when

q = 1 on both Adult and FMNIST, and our interpretation is

that a large q can cause higher error flow and instability, which

may sacrifice the global accuracy too much and degrade the

performance of all categories, including minorities.

5. CONCLUSION

In this work, we proposed DRFL, a novel optimization ob-

jective that encourages more uniform accuracy distributions

across devices in federated learning. We devise a method

DR-FedAvg that can solve the proposed objective effi-

ciently in massive networks. Our empirical evaluation on

a suite of the federated datasets, including synthetic and real

datasets, demonstrates our method can achieve better fair-

ness than baselines and can avoid sensitive parameter tunings

in q-FFL. Future works may make extensions in two di-

rections: 1) Convergence analysis for DRFL to support its

feasibility theoretically, 2) Giving theoretical proofs of how

DR-FedAVg leads to better fairness, i.e. with DR-FedAVg,

the variance over clients is theoretically lower than FedAvg.
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