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Tweezer-programmable 2D quantum walks in a

Hubbard-regime lattice

Aaron W. Young!, William J. Eckner’, Nathan Schine’, Andrew M. Childs®>3, Adam M. Kaufman®*

Quantum walks provide a framework for designing quantum algorithms that is both intuitive and
universal. To leverage the computational power of these walks, it is important to be able to programmably
modify the graph a walker traverses while maintaining coherence. We do this by combining the fast,
programmable control provided by optical tweezers with the scalable, homogeneous environment

of an optical lattice. With these tools we study continuous-time quantum walks of single atoms on a square
lattice and perform proof-of-principle demonstrations of spatial search with these walks.

When scaled to more particles, the capabilities demonstrated can be extended to study a variety of
problems in quantum information science, including performing more effective versions of spatial search

using a larger graph with increased connectivity.

he ability of quantum systems to co-
herently explore their Hilbert space,
exhibiting wavelike superposition and
interference, is a key ingredient in quan-
tum algorithms. Quantum walks are
one intuitive framework for understanding
the algorithmic speedups that these ingre-
dients can provide. In this framework, states
in Hilbert space are mapped to the locations
of a walker on a graph (7); the walker can then
traverse this graph through a superposition
of interfering paths. Even in the restrictive
case of real, equal-valued couplings and local,
time-independent control, this simple framework

is capable of universal quantum computation
(2, 3) and has inspired the development of
various quantum algorithms including those
for spatial search (4), graph traversal (5), ele-
ment distinctness (6), and formula evaluation
(7). When scaled to many particles, systems
that realize quantum walks further allow for
rich studies of quantum information and
many-body physics: controlled tunneling
of many noninteracting particles maps to
sampling problems of interest in complexity
theory (8, 9) and the combination of inter-
actions and itinerance underlies a broad class
of condensed-matter Hubbard models (10, 1I).

P oo

In this work we introduce a platform for
realizing programmable quantum walks and
lattice models that combines favorable prop-
erties of optical tweezers and optical lattices.
We use this platform to demonstrate spatial
search by continuous-time quantum walks
with neutral atoms.

Because of their broad applicability, quan-
tum walks have been realized in a number of
experimental platforms, including with pho-
tons (12-14), nuclear magnetic resonance (15),
matter waves (16), trapped ions (17, 18), and
superconducting qubits (19, 20). Optically
trapped neutral atoms are particularly ame-
nable to realizing quantum walks (21, 22)
because they allow for high-fidelity creation
and detection of individual, physically identi-
cal walkers. One approach to studying quan-
tum walks of neutral atoms is with quantum
gas microscopes, which load degenerate gases
containing thousands of particles into optical
lattices containing thousands of sites (23, 24).
Sophisticated techniques have been developed
to “cookie-cut” desired initial states out of these
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Fig. 1. Continuous-time 2D quantum walks with tweezer-implanted atoms
in a lattice. (A) Individual ®Sr atoms (solid blue sphere) are loaded and
cooled in optical tweezers (preparation/oracle tweezer, green), and then
implanted into single sites of a 3D optical lattice composed of a 1D crossed-beam
lattice aligned along gravity (axial lattice, red half-disk), and a bowtie lattice
(2D lattice, red). The 2D lattice contains more than 2000 sites that are
compatible with high-fidelity imaging and ground state cooling (42) and is
tunable to a regime where nearest-neighbor sites are coupled with a tunneling
energy J, allowing the atoms to move through the lattice (translucent blue
spheres). The preparation tweezers used to implant atoms can further be used to
programmably modify the depth of individual sites in this lattice and a large-
waisted tweezer (confinement tweezer, pink) can be used to apply a tunable
harmonic confining potential that spans many lattice sites. (B) Atoms implanted
in this lattice undergo continuous-time quantum walks in 2D, such that the
probability density p corresponding to their measured position (left panels)
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exhibits ballistic expansion and wavelike interference; this is in good agreement
with theory with fitted values of the tunneling energy (right panels) up to an
evolution time of 5 ms, where the atoms have coherently explored a region
spanning ~200 lattice sites. Each pixel in these plots represents a single lattice
site. (C) Tracing out the x axis of this 2D quantum walk yields a 1D quantum
walk along the y axis (left panel), which is in good agreement with theory
(right panel). Sampling times in these plots correspond to the leading edge of
each colored region. For data to the left of the red line, multiple atoms can

be implanted in different regions of the lattice for faster data collection (42).
Here, each point in time is averaged over 200 repetitions of the experiment. For
data to the right of the red line a single atom is implanted in the center

of the lattice to avoid overlapping atomic wavefunctions and averaging over
inhomogeneous regions in the lattice. Here, each point up to and including

3.5 ms is averaged over 3000 repetitions. The points at 4 and 5 ms are averaged
over 6000 and 14,000 repetitions, respectively.
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complicated many-body states (22, 25, 26). A
complementary approach is to rapidly assem-
ble such states with optical tweezer arrays. In
this case it is possible for individual atoms to
be deterministically assembled into nearly
arbitrary geometries (27, 28) and rapidly laser-
cooled to their three-dimensional (3D) motional
ground state (29-35). Pioneering studies have
used tweezers to explore tunneling between
up to eight sites (26, 36, 37); however, such
systems are sensitive to disorder, making it
difficult to realize coherent itinerance across
many sites. We present an alternative solution
that uses optical tweezers and high-fidelity
laser cooling for fast, programmable implanta-
tion and control of single atoms in a Hubbard-
regime optical lattice.

We use this approach to study quantum
walks of individual atoms spanning hundreds
of sites in a 2D lattice and to locally control
those walks to realize a spatial search algo-
rithm. In this case, elements of the search
space are represented by sites in the lattice;
the location of the atom, or walker, is ini-
tialized through tweezer implantation and
the search oracle is created with dynamically
programmable tweezers superimposed on the
lattice (4). The techniques demonstrated here
may advance studies of nonequilibrium and
ground-state Hubbard physics, where fast
cycle times, versatile state preparation, and site-
resolved potentials can advance entanglement-
measurement protocols and implement certain
sampling problems (8, 9, 38-40). These tools
could be further extended to other types of
systems, like molecules (34, 41), that are less
amenable to evaporative cooling but are pow-
erful in terms of many-body physics and quan-
tum information.

Our experiments begin by trapping and
cooling individual strontium (¥8Sr) atoms in
optical tweezers (32). The atoms are then
transferred into one 2D layer of a 3D optical
lattice (Fig. 1A). This transfer need not be fully
adiabatic with respect to on-site motional
timescales because the tightly confining op-
tical lattice allows for higher-fidelity optical
cooling than can be performed in the tweezers,
yielding a typical 3D motional ground state
fraction of 100*9% (42). This lattice is composed
of a 1D crossed-beam lattice which is aligned
along gravity and a 2D bowtie lattice. The
depths of these two lattices are indepen-
dently tunable and are reduced to 26.0Ep*
and 5.0E§D, respectively, to study tunneling
after optically cooling the atoms, where E‘,‘%‘”
and EI%D are the recoil energies of the two re-
spective lattices (42). The detuning between
sites in the axial lattice caused by gravity sup-
presses tunneling along this axis, whereas atoms
tunnel freely in the 2D lattice with an ave-
rage tunneling energy of J, /i = 2r x 163 Hz,
corresponding to a characteristic tunneling
time of © = A/Jy = 0.975 ms (the tunneling
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Fig. 2. Adiabatic resource state preparation. (A) An atom implanted in the site with the lowest energy
in a deep lattice with no tunneling (left callout), which we label as being in state |0), can be adiabatically
connected to the ground state |s) of a shallow lattice with tunneling (right callout) through an adiabatic
ramp of the tunneling energy (J) and the depth (V¢) of the confinement tweezer. In the callouts the

gray dashed line denotes the potential provided by the confinement tweezer and the solid gray line indicates
the sum of the tweezer and lattice potentials. The preparation tweezer used to initially implant the atom

in |0} is shown schematically in green. By ramping J and V together we can maintain a roughly fixed energy
gap AE between the ground and first excited states of the system throughout the ramp. (B) As an atom
evolves under this ramp its amplitude spreads over many sites in the 2D lattice. Here, the x coordinate has
been traced out for illustration purposes, showing the spread in the atom'’s y position (top). During this ramp,
the population on the initial site (gray points) decreases and the overlap f (see main text) between the
classical probability distributions corresponding to the prepared state |y) and the expected lattice ground
state |s) (black points) increases, eventually reaching 76.9(3.3)%. This is in reasonable agreement with
theory (solid lines) given the independently measured parameters in our ramp, and an overall scale factor to
account for filtering and loss due to imperfect preparation of the atoms in their 3D motional ground

states (42). The prepared state is not observed to substantially evolve even after more than 100 tunneling
times (right side of the broken axis), suggesting that it is indeed the lattice ground state. Each data

point corresponds to 500 repetitions of the experiment except for the points at 70 and 180 ms which are

averaged over 1500 repetitions.

energy differs slightly between the two axes of
the lattice) (42).

The evolution of the system in this regime
can be understood as a quantum walk on a
graph where each site |7) in the lattice is rep-
resented by a node, and nodes corresponding
to tunnel-coupled sites are connected by an
edge. Such a graph can be represented by its
adjacency matrix 4, where 4; = 0 unless nodes
¢ and j are connected in which case 4; = 1.
Given this definition the Hamiltonian of the
system is:

Hya = _JZAU|i><i| - Z Vil (1)

where J is the tunneling energy; we have also
included a local energy shift ; that is present
as a result of the finite extent of our lattice
beams (42) and can be programmably modi-
fied through two sets of optical tweezers (Fig.
1A). If the tweezers are fully extinguished,
given the lattice uniformity, |V;|«J and this
term can be disregarded. In this case, an atom
implanted in one site of the lattice undergoes
a continuous-time quantum walk in 2D (Fig.
1B). The evolution of this atom’s wavefunc-
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tion is in good agreement with the theoretical
prediction for a flat lattice with constant V;
and a distant boundary, exhibiting the for-
mation of fringes in the probability density p
of the atom’s measured position thanks to
interference between the multiple paths by
which the atom can arrive at a given site after
its evolution. This is in contrast to the behavior
of classical random walks, which exhibit diffu-
sive expansion of a Gaussian probability den-
sity distribution. We can trace out one of the
atom’s two spatial coordinates (Fig. 1C) which,
given the form of Hy ,, for a 2D square lattice,
results in a 1D quantum walk along the re-
maining axis. The resulting data are in good
agreement with theory, showing the expected
ballistic or light-cone-like spreading of the
atomic probability density (Z). For the latest
time shown here of ¢ = 5.0 ms, the probability
density continues to exhibit clear interference
fringes (42), suggesting that the atom has
maintained phase coherence while exploring
a region spanning ~200 lattice sites. At later
times the atom begins to sample the inho-
mogeneous potential resulting from the finite
extent of the lattice beams and the infinite flat

lattice approximation breaks down (42).
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Fig. 3. Spatial search by continuous-time quantum walks. (A) When applying an oracle Hamiltonian
Hy, = —Vy|w)(w| through a tweezer (green) that selects for an arbitrary marked site |w) with appropriate
strength, the spectrum of the system includes ground and first excited states that are approximately
even and odd superpositions of |w) and the lattice ground state or resource state |s) (42). Consequently,
evolving |s) under H, results in coherent oscillations between |s) and |w). (B) Measurements of the resulting
oscillations in the populations on the marked sites (black points) are in good agreement with theory, up
to an overall offset, with independently characterized values of the state preparation fidelity, tunneling
rate, and confinement potential (black lines) (42). For comparison we also plot the population in |0), at the
center of the lattice (gray points and theory curves). (Insets) measured populations versus position at
the peak of these oscillations where the location of the relevant oracle is marked by a red point and the
lattice center by a cross. (C) The population on the marked site after a 2.46 ms quench is plotted for a
selection of oracles (the lattice center is marked by a cross, and the position of each oracle by a red
point, with the corresponding population shown in the surrounding circle. For comparison, the measured
amplitudes in |s) are shown in the background). (D) Plotting the amplitudes from (C) as a function of oracle
distance from the lattice center (black points, a = 813/v/2 nm refers to lattice spacing) reveals quench
behavior that is in good agreement with a theory prediction (black curve) with no free parameters (42).
In a region spanning ~13 lattice sites the marked site can be found by looking for the highest amplitude site
after the quench. At longer distances the amplitude on the marked site still increases from its value in |s)
(theoretical and measured amplitudes in |s) shown in dark gray shading and points, respectively), but can be

exceeded by the population at the origin in |s) (light gray shading), limiting the size of the search space.
Color scale is shared across this figure and all data points are averaged over 500 to 600 repetitions

of the experiment.

This coherent exploration of Hilbert space
through continuous-time quantum walks can
be harnessed in a variety of quantum algo-
rithms including those for spatial search
(4). Spatial search is a specialization of the
unstructured search problem with additional
constraints on how the space can be explored.
A continuous-time analog of Grover’s search
algorithm (43) performs search by quantum
walk in the limiting case of a fully connected
graph. The problem becomes more difficult
when edges are removed from the graph,
which may preclude the quadratic Grover
speedup depending on the graph structure.
Surprisingly, quadratic speedup can persist
even for much less well connected graphs.
In particular, for N-vertex square lattice
graphs the search can be performed in time
O(\/]v polylog N) in only four dimensions (4)
whereas the full, optimal (43) quadratic speedup
is recovered in five or more dimensions (4).
Although the behavior of these single-particle
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walks can be captured by a classical wave
equation involving N coupled oscillators (44),
in the specific setting of searching a memory
that is distributed in real space with a local
probe (45), quantum walks of even a single
particle can provide a notable quantum ad-
vantage (42).

In these algorithms the lack of structure
in the search space suggests that a natural
starting point is the uniform superposition

1Sy = Zilﬁ)/\/ﬁ over all standard basis

states in the relevant Hilbert space. Assuming
periodic boundary conditions, this resource
state |S) is precisely the ground state of Hy
with constant V;. To approximate this resource
state we prepare the ground state |s) of Hy
(Fig. 2) in the presence of a potential I/; pro-
vided by an extra confinement tweezer (Fig. 1A).
This tweezer has a nearly Gaussian profile
with a fixed waist of 5.8a, where a is the 2D
lattice spacing, and tunable overall depth
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Ve. At fixed J, the lattice ground state |s) is
similar to |S) except with an approximately
Gaussian envelope with a width determined by
the value of V.

To prepare the state |s) we implant an atom
in the deepest site of the combined potential
generated by the lattice and the confinement
tweezer, which we label as being in state |0).
This is the ground state of the system when
the lattice is deep and J«V¢. The state |0) can
be adiabatically connected to the ground state
|s) in a shallow lattice through a ramp of the
tunneling energy (Fig. 2A). In practice we
perform a linear ramp of the lattice depth 11,
as a function of time ¢ resulting in a nonlinear
ramp in the tunneling energy (42). We also
ramp the depth 1/ of the confinement tweezer
to maintain an approximately constant value
of the energy gap AE between the ground and
first excited states during the ramp, which subs-
tantially relaxes the requirements on adiabatic-
ity and improves the fidelity with which we
can prepare |s). The observed evolution during
this ramp is in reasonable agreement with
theory (Fig. 2B), where the atoms start out
primarily in |0) and smoothly delocalize over
many sites over the course of an adiabatic
ramp of V- and J that is 80 ms in length. The
prepared state |y) can be compared with |s) by
computing the overlap between their pop-
ulations, namely with the classical fidelity

2
f= (Zi\/pw.ips,i) , where p, ; and p,; de-

note the populations on site ¢ in states |y) and
|s), respectively. This yields an upper bound on
the fidelity with which we have prepared |s)
of 76.9(3.3)% but does not certify any phase
coherence between the amplitudes occupy-
ing different sites. However, the prepared
state is not observed to substantially evolve
over more than 100 tunneling times and the
adiabatic ramp can be reversed to recover
57(5)% of the atoms in |0) (excluding loss
caused by filtering of hot atoms) (42). This
suggests that |s) has been prepared with a
fidelity of 76(3)% in agreement with the bound
set by the classical fidelity; we can thus pro-
ceed with the search procedure. Note that in
this work and the associated supplementary
materials all confidence intervals refer to one
standard error of the mean.

The central idea in quantum-walk-based
search algorithms is the presence of two com-
peting terms in the Hamiltonian: a diffusion
term Hi,, corresponding to tunneling, whose
ground state is |s), and an oracle term H,, =
—Vw|w)(w|, whose ground state marks a
specific site |w). H, can be applied to the
system with variable drive strength V,, but the
choice of |w) is unknown to the experimenter
and is the quantity being searched for. Given a
sufficiently connected graph and appropriate
choice of ¥, the states |s) and |w) are similar
in energy and coupled under the full search
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Hamiltonian H = Hy, + Hy,. This results in
ground and first excited states |+) that are
approximately the even and odd superpositions
of|s) and |w), and are separated by an energy
gap AE = O(1/V/N), where N is the number
of elements in the search space (Fig. 3A) (42).
As a result quenching to this Hamiltonian
from the resource state |s) yields coherent
oscillations to |@) and back with a characteris-
tic period of O(/N) that is independent of
the specific choice of |w). Measuring the
position of the walker after a half period of this
oscillation identifies the marked site |w). This
procedure can also be run backward to pre-
pare |s) from an atom implanted in a pre-
determined site |@'), avoiding any additional
overhead associated with adiabatic resource
state preparation (42).

The choice of V,, must be carefully fine-
tuned to minimize the energy gap between |+)
given N and the connectivity of the graph (4).
Here we choose V,, = 12.55(65).J,, which is
biased deeper than the optimal value to avoid
certain sources of technical noise (42). Even
with optimal V,, in a 2D square lattice with
cyclic boundary conditions |£) deviate from the
even and odd superpositions of |s) and |w) and
the scaling of AE with N is modified, resulting
in an asymptotic runtime of >O(V /polylog N)
(4). This scaling is further modified by the
nonperiodic boundary conditions in our ex-
periment (42). Nonetheless, upon quenching
to H starting in the state |s), we observe
coherent oscillations in the population on the
marked site |w) for a selection of different
oracles (Fig. 3B). At the peak of these oscilla-
tions the marked site is readily identified as
the highest amplitude site in the lattice. Crit-
ically, the amplitudes of these oscillations are
in good agreement with theory and limited in
magnitude not by technical noise but rather
by the expected performance of this search
procedure in a 2D square lattice (42).

It should be noted that in the case of open
boundary conditions or in the presence of
the confinement tweezer the behavior of these
oscillations is dependent on the specific posi-
tion of |w) (42). This position-dependent
behavior sets the effective size of the search
space where at greater range reduced overlap
between |w) and |s) yields oscillations with
reduced amplitude. In our experiment, for
an oracle with a distance of v/2a from the
center of the confinement tweezer (the origin)
the optimal evolution time after the quench is
2.46 ms. Performing this quench and evolution
for a variety of different oracles (Fig. 3C), we
find that the amplitude on the marked site
after the evolution decreases as a function of
distance from the origin, in agreement with
theory (Fig. 3D). Within 2a—corresponding
to a region spanning ~13 lattice sites—we can
blind ourselves to the position of the oracle
tweezer and identify the marked site by look-
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ing for the most probable location of the walker
after the quench. At longer range the amplitude
at the origin after the quench and subsequent
evolution can exceed that of the marked site.
However, within \/13a—corresponding to a
region spanning ~45 lattice sites—there is still
a several-fold increase in the amplitude on the
marked site relative to what was present in the
resource state. This suggests that the effective
size of the search space could be increased
with constant overhead by measuring the am-
plitude of these oscillations over time. Although
not demonstrated here this would help to reject
any background signal that remains near the
origin or effects relating to variable oscillation
frequencies for different oracles.

In this work we have performed a proof-
of-principle demonstration of spatial search
through continuous-time quantum walks of
a single particle on a 2D square lattice. This
is accomplished by introducing a platform
that combines the programmability of optical
tweezer arrays with a Hubbard-regime optical
lattice which provides a clean environment for
tunneling in addition to several thousand sites
which are compatible with high-fidelity cool-
ing, imaging, and coherent control (42, 46).
Beyond studies with itinerance, these capa-
bilities can also be used to prepare large, well-
controlled ensembles of atomic qubits for
quantum information, simulation, and metrol-
ogy (35, 46, 47, 48, 49, 50).

In the specific context of spatial search the
runtime of the algorithm demonstrated in this
work does not exhibit a quadratic speedup in
comparison to classical search algorithms as a
result of our use of a 2D square lattice (4). A
runtime of O(v/NlogN) is achievable with a
single particle in such a lattice if an additional
spin degree of freedom is used to implement
a Dirac Hamiltonian (51) or a discrete-time
quantum walk (52). This degree of freedom
can be either internal to the walker or external
and realized with a modified optical lattice
containing an array of doublets (53). The op-
tical clock qubit in strontium is a strong can-
didate for implementing this spin internally
because it is well controlled (46) and long lived
compared with the tunneling time (35). More-
over, it is possible to engineer state-dependent
optical potentials for this qubit (54) to realize a
broad class of discrete-time quantum walks
(21, 55).

Although there is a setting in which such
single-particle quantum walks can provide a
uniquely quantum advantage (45), this advan-
tage can be extended to a broader class of
problems by realizing these dynamics in a
system whose state space scales rapidly with
physical resources. This can be achieved by
extending this work to multiple particles,
where the state space and thus graph size
grows exponentially with particle number (42).
Given the cooling performance and single-
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particle control demonstrated here such ex-
periments could be performed with tens to
hundreds of atoms, where the appropriate
many-body oracle is applied through tunable
Rydberg-mediated interactions (42, 46). Beyond
spatial search the programmable control and
assembly of large-scale itinerant systems en-
abled by this platform provides one route
toward programmable boson sampling with
many particles (8, 9) as well as the direct
assembly and characterization of Hubbard
models (56, 57).
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Combining lattices and tweezers

Optical lattices have been used as a platform for quantum simulation for the past two decades. More recently, arrays
of optical tweezers, which have the advantage of rapid reconfigurability, have risen to prominence. Young et al.
combined these tools to perform large-scale quantum walks of strontium-88 atoms prepared in optical tweezers and
then implanted into the sites of an optical lattice. The combined platform holds promise for applications in quantum
science. —JS
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