

1 **Tropical tree species differ in damage and mortality from lightning**
2

3 Jeannine H. Richards^{1,2}, Evan M. Gora^{1,3,4}, Cesar Gutierrez³, Jeffrey C. Burchfield⁵, Philip M. Bitzer⁵,
4 Stephen P. Yanoviak^{1,3*}

5
6 ¹ Department of Biology, University of Louisville, Louisville, Kentucky, USA
7

8 ² Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
9

10 ³ Smithsonian Tropical Research Institute, Balboa, Panama
11

12 ⁴ Cary Institute of Ecosystem Studies, Millbrook, New York, USA
13

14 ⁵ Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
15

16 * Corresponding author: Stephen P. Yanoviak, Department of Biology, University of Louisville, 139 Life
17 Sciences Building, Louisville, Kentucky 40292, USA.
18

19 Email: steve.yanoviak@louisville.edu, Tel: +1 502 852 8261
20

21
22 **Author Contributions:** JHR analyzed the data and led the writing of the manuscript. EMG contributed to
23 analyses and collected data; CG collected data and managed field operations; JCB and PMB helped
24 design the study; SPY helped design the study and coordinated the lightning data collection; all authors
25 contributed to writing the manuscript and gave final approval for publication.
26

27 **Competing Interest Statement:** The authors declare no conflict of interest.
28

29 **Classification:** Biological Sciences/Ecology
30

31 **Keywords:** disturbance, Panama, species composition, tropical forest.
32

33 **This file includes:**
34

35 Main text
36

37 Table 1
38 Figures 1-4 captions

39 **Abstract**

40 Lightning is an important agent of mortality for large tropical trees with implications for tree demography
41 and forest carbon budgets. We evaluated interspecific differences in susceptibility to lightning damage
42 using a unique dataset of systematically located lightning strikes in central Panama. We measured
43 differences in mortality among trees damaged by lightning and related those to damage frequency and
44 tree functional traits. Eighteen of 30 focal species had lightning mortality rates that deviated from null
45 expectations. Several species showed little damage and 3 species had no mortality from lightning,
46 whereas palms were especially likely to die from strikes. Species that were most likely to be struck also
47 showed the highest survival. Interspecific differences in tree tolerance to lightning suggest that lightning-
48 caused mortality shapes compositional dynamics over time and space. Shifts in lightning frequency due to
49 climatic change are likely to alter species composition and carbon cycling in tropical forests.

50

51 **Introduction**

52 Interspecific differences in tree mortality can shape the effects of global change on forests^{1,2}.
53 More frequent and intense stressors in recent years have increased tree mortality rates, decreasing carbon
54 storage and shifting tree species composition in some tropical forests³. The structure of future forests
55 depends on how these changes affect individual species^{4,5}. For example, more severe droughts are already
56 increasing the abundance of drought-resistant taxa across Amazonia³. In the only tropical forest where it
57 has been systematically quantified, lightning causes 40% of mortality among the largest trees, and thereby
58 has important implications for tree demography and forest carbon storage^{6,7}. Yet, there is little
59 information regarding interspecific differences in the effects of lightning on trees. Given that lightning
60 strikes tropical forests 35-67 million times annually⁸ and strike frequency appears to be increasing⁹,
61 quantifying interspecific differences in lightning-tree interactions is critical to understanding how
62 lightning influences the structure of tropical forests today and in the future.

63 There is a long history of speculation that tree species differ in both exposure to and damage from
64 lightning strikes¹⁰⁻¹²; however, few data exist. In wet tropical forests, a single lightning strike typically
65 kills or damages dozens of trees as the electrical current diffuses through the canopy^{6,13-15}. Lightning
66 generally strikes the tallest trees with the most expansive crowns in a patch of forest and travels through
67 the crowns of neighboring trees^{6,7}. As a consequence, many understory and midstory trees are protected
68 against direct lightning damage by their relatively small stature. Other factors, like tree architecture and
69 liana loads, appear to similarly protect some trees by shaping the path of electrical current through the
70 canopy^{7,16-18}. These factors can explain a given tree's likelihood of exposure to lightning. However, they
71 do not explain why some trees die from lightning while others are minimally damaged (i.e., tolerance) or
72 quickly recover (i.e., resilience)^{12,16,19}. Interspecific differences in lightning exposure, tolerance, and
73 resilience likely influence tree demography and forest dynamics as lightning frequency changes over
74 space⁸ and time⁹.

75 Traits that would convey tolerance or resilience to lightning are not well understood. Models
76 suggest that higher electrical resistivity should increase damage, all else being equal¹⁸, and wood with

77 lower water content and less vascular area typically has higher resistivity^{16,20}. Thus, variation in vascular
78 traits (e.g., vessel size, vessel density, wood density) among species could consistently affect the outcome
79 of a lightning strike via differences in electrical resistance in the cambium²¹. Likewise, the tendency to
80 resprout following disturbances like fire facilitates tree recovery and varies interspecifically²². Thus, it is
81 likely that anatomical and physiological differences among tree species also underlie interspecific
82 differences in the probability of death, damage, and recovery following a lightning strike.

83 The principal goal of this study was to determine whether tree species in a lowland tropical forest
84 exhibit evidence of lightning tolerance and resilience. We hypothesized that the probability of exposure to
85 and damage from lightning differs among species and that these differences are linked to functional traits.
86 We predicted that some species consistently exhibit lower overall mortality and less physical damage
87 when exposed to lightning (i.e., tolerance), and that some species consistently recover from a lightning
88 strike, even when the damage is severe (i.e., resilience). We also expected that tree species with higher
89 rates of exposure exhibit greater tolerance or resilience. Finally, we tested whether tree wood and leaf
90 functional traits are associated with lightning tolerance, with the goal of providing a predictive framework
91 for evaluation of a broader range of species.

92

93 **Results**

94 *Lightning tolerance among species*

95 The likelihood of mortality from lightning differed among species, as did the severity of damage
96 from strikes, indicating that some species can tolerate lightning exposure relatively well. Across species,
97 the probability of dying from lightning damage decreased with distance from the directly struck tree and
98 with larger DBH (Extended Data Fig. 1; Tables S1 & S2). Directly-struck trees were two orders of
99 magnitude more likely to die than secondarily damaged trees, and only canopy or emergent trees were
100 directly struck by lightning.

101 Observed mortality rates in 18 of 30 species deviated significantly from model predictions based
102 on tree DBH and distance from the struck tree (Fig. 1; Extended Data Fig. 2; Table S3). Species that were

103 more likely to die than predicted also had higher average crown dieback (Extended Data Fig. 3; $R^2 = 0.64$,
104 $F_{1,25} = 51.3$, $p = 7.0 \times 10^{-8}$). Lightning-struck palms (*Astrocaryum standleyanum*, *Oenocarpus mapora*, and
105 *Socratea exorrhiza*) were especially likely to die. Lightning-associated mortality greatly exceeded the rate
106 expected without lightning (Fig. 1), with four exceptions: *Dipteryx oleifera* ($n = 13$), *Hura crepitans* ($n =$
107 12), and *Pouteria reticulata* ($n = 8$) exhibited no mortality following lightning strikes, and only one of 27
108 *Gustavia superba* died from lightning damage. Removing palms from the model had little effect on the
109 results (Table S5, Fig. S1).

110

111 *Lightning resilience among species*

112 Only one species, *Trichilia tuberculata* ($n = 18$), showed a propensity to recover crown foliage
113 following lightning damage (Fig. 2). Across species, average crown dieback increased by 8.2% per year
114 for up to 450 days following a lightning strike, indicating that most of the species we studied are not
115 resilient to lightning. Initial damage was the most important predictor of the damage rate of change
116 (ROC) over time ($\chi^2 = 18.07$, $p = 2.1 \times 10^{-5}$). Specifically, individuals with < 25% crown dieback in the
117 initial census tended to recover or not change, whereas individuals with higher initial damage tended to
118 decline or die (Extended Data Fig. 4). ROC was not related to tree DBH after accounting for initial
119 damage ($\chi^2 = 0.03$, $p = 0.87$).

120 Resprouting from the trunk, distinct from crown recovery, was most common in heavily damaged
121 trees. The frequency of resprouting increased with amount of crown dieback ($\chi^2 = 178.85$, $p = 2.2 \times 10^{-16}$)
122 and declined with increasing tree size (DBH; $\chi^2 = 5.10$, $p = 0.02$). Distance from the struck tree and
123 interactions did not contribute to the best model. Resprouting was not universal among species; *Virola*
124 *nobilis* ($n = 7$) showed no evidence of resprouting regardless of damage (Extended Data Fig. 5).

125

126 *Lightning damage frequency associated with tolerance*

127 Species that are frequently damaged by lightning⁷ were less likely to die from that damage (Fig.
128 3A and Extended Data Fig. 6A; $R^2 = 0.29$, $F_{1,24} = 10.02$, $p = 0.004$). However, this relationship is driven

129 by infrequently damaged palms and is not significant if they are removed ($R^2 = 0.10$, $F_{1,21} = 2.28$, $p =$
130 0.15). Nonetheless, of the three species with the highest probability of damage, *D. oleifera* and *H.*
131 *crepitans* showed no mortality, as noted above, and *Ceiba pentandra* ($n = 7$) lost one sapling-sized
132 individual; these species survived all direct lightning strikes (10, 2, and 1 direct strikes per species,
133 respectively). Excluding DBH from the models did not alter the relationship between damage frequency
134 and mortality, indicating that mortality differences among species extend beyond size-related differences
135 (Fig. 3B and Extended Data Fig. 6B; $R^2 = 0.33$, $F_{1,24} = 11.94$, $p = 0.002$; excluding palms: $R^2 = 0.09$, $F_{1,18}$
136 = 1.76, $p = 0.20$).

137

138 *Functional traits associated with tolerance*

139 Of the six traits we tested (leaf area, specific leaf area, leaf % nitrogen, maximum height, wood
140 density, and vessel lumen area) those with the greatest explanatory power with respect to the tree
141 mortality residuals were wood density, vessel lumen area, and leaf % nitrogen (Table 1; $R^2 = 0.53$, $F_{3,29} =$
142 13.00, $p = 2.5 \times 10^{-5}$). Species that had the highest probabilities of dying from lightning damage had less
143 dense wood, lower leaf N, and smaller vessels, while those with the opposite traits displayed greater
144 lightning tolerance. These multivariate relationships were significant despite non-significant univariate
145 relationships between mortality residuals and vessel size and leaf N, and a strong positive correlation
146 between vessel size and wood density (Fig.4).

147

148 **Discussion**

149 Here we provide robust empirical evidence that lightning strikes affect different tropical tree
150 species differently, placing lightning among mortality agents that can shape forest composition^{1,2,23}. These
151 results suggest that species most commonly struck by lightning have developed some lightning tolerance,
152 whereas recovery following a strike plays a relatively minor role and depends largely upon the severity of
153 initial damage from the strike. These interspecific differences in survival and their relationships with

154 functional traits suggest that lightning influences patterns of forest turnover and community dynamics
155 with consequences for how forests respond to global change.

156 Interspecific differences in lightning mortality suggest that lightning influences tree community
157 assembly and coexistence. In the short term, differences in lightning survival will determine which trees
158 persist in the forest, particularly in the canopy, and thereby influence tree species composition. In the long
159 term, lightning likely influences population-level fecundity and tree fitness by killing large trees^{6,7} that
160 contribute disproportionately to per-capita population growth rates^{24,25}. Moreover, the negative
161 relationship between the likelihood of lightning damage and the probability of survival suggests a trade-
162 off between lightning survival and exposure (Fig. 3A). Ultimately, further research is needed to fully
163 evaluate the benefits, costs, and underlying mechanisms of lightning survival.

164 Lightning frequency already varies considerably among forests globally⁸ and is projected to
165 increase in some regions⁹. This spatial and temporal variation should produce corresponding
166 compositional changes based on species tolerance to lightning. Future increases in lightning frequency
167 will favor trees that tolerate lightning while negatively affecting canopy species that are less tolerant,
168 particularly those that do not recover well. As more trees die, particularly large trees, carbon stocks will
169 be substantially reduced^{4,5}. Yet, the results of this study suggest a compensatory mechanism by which
170 forests avoid decreases, or perhaps even experience increases, in carbon storage as the proportion of
171 heavy-wooded, lightning-tolerant trees increases. Species able to recover following lightning should also
172 persist under higher lightning regimes even if they have limited tolerance to lightning (Fig. 2). The
173 capacity of forests to shift compositionally in response to changing lightning regimes, and geographic
174 variation in that capacity, will be a key factor in determining the effect of climate change on tropical tree
175 communities and the tropical forest carbon sink.

176 Although smaller trees in mature forests commonly avoid lightning damage via protection from
177 their larger neighbors⁶, small stature does not impart immunity from lightning damage. Trees in the
178 understory were more likely to die if damaged by lightning than their canopy counterparts, and this was
179 true both across and within species. The particular sensitivity of palms to lightning, attributable to damage

180 to the single apical meristem that precludes recovery^{22,26,27}, was offset by the relatively few palms
181 damaged compared to their abundance on BCI. By contrast, other small-statured species (e.g., *Gustavia*
182 *superba*) appear to be relatively tolerant of lightning damage. Some species common to the understories
183 of mature forests form the canopy in some secondary forests. As more forest area globally shifts to young,
184 short-statured forests⁴, the differences in lightning tolerance among secondary forest species will become
185 increasingly important in informing forest composition.

186 The correlations between functional traits and probability of mortality reported here provide a
187 foundation for future mechanistic work. The results suggest that trees with higher wood density, but
188 relatively larger vessels and higher leaf nitrogen, are more likely to survive lightning strikes. Low wood
189 density occurs in fast-growing, short-lived trees²⁸; thus, these results are consistent with other
190 observations that pioneer species are more susceptible to this growth-independent hazard²⁹. Wood density
191 and vessel area are negatively correlated because total vessel area trades off with structural support, so the
192 species showing the highest tolerance to lightning would have relatively large vessels (and higher
193 hydraulic conductance) for a given wood density, a combination that enables more efficient transport in
194 taller trees²¹. Lower leaf nitrogen is an indicator of shade tolerance³⁰, and lightning-sensitive understory
195 species likely drive this pattern.

196 Quantifying how specific disturbances, like lightning, differentially affect species is essential for
197 refining ecosystem models and making predictions about future forest structure and composition^{4,5}. We
198 have only a rudimentary understanding of how lightning kills trees, or whether it causes damage that is
199 unobservable using visual field surveys, which is crucial information that underlies mechanisms of
200 tolerance. Likewise, we suspect that structural differences among trees affect their probability of
201 experiencing secondary damage from lightning. More data are needed to rigorously evaluate this
202 possibility. Finally, interspecific differences in survival following lightning exposure suggest that
203 lightning-created forest gaps have different successional trajectories from other types of disturbance.
204 Additional long-term data are needed to evaluate this possibility. Ultimately, a complete understanding of
205 the ecological effects of lightning will require an experimental approach, even if only practical at small

206 scales. Given the importance of lightning as a source of tree mortality, especially for large trees, our scant
207 knowledge of its basic ecological effects remains a critical gap in our study of forest dynamics.

208

209 **Materials and Methods**

210 We used data from 97 lightning strikes documented in the Barro Colorado Nature Monument,
211 Panama, during the wet seasons of 2015-2020. We used a camera-based monitoring system,
212 supplemented with data from 3-4 field change meters in 2018-2019, to locate 70 strikes³¹. An additional
213 27 strike sites were located post hoc using reliable field diagnostics¹⁵. We confirmed that sites located
214 using field diagnostics were comparable to those located with the monitoring system (Table S6-S7, Fig.
215 S2). We recorded all trees visibly damaged by lightning in each site. We cannot determine whether other
216 trees were exposed to lightning but showed no damage. For each damaged tree, we measured diameter at
217 breast height (DBH), distance from the directly struck tree, estimated crown dieback (percent of crown
218 volume that died), and the presence of resprouts. We subsequently revisited most strike sites to track
219 changes in these variables over time. Trees were considered to have died from lightning if they showed
220 visible lightning damage in the first census and died at some point during the census period. Because the
221 proximate cause of death is sometimes difficult to distinguish, we did not differentiate between trees that
222 died from exposure to electrical current and trees that died from indirect effects of a strike (e.g., falling
223 trees). The dataset includes 2,284 trees greater than 1 cm DBH that were noticeably damaged by
224 lightning. Of these, 865 trees were identified to species, representing 137 taxa across 45 families. The 30
225 most common species were represented by 8 or more individuals.

226 *Lightning tolerance among species*

227 We performed all analyses in R version 4.2.0³² and all figures were produced using the R package
228 ‘ggplot2’³³. To predict the probability of mortality, for each tree, we constructed a generalized linear
229 mixed model with binomial errors using the R package ‘glmmTMB’³⁴. We included distance from the
230 struck tree, DBH, and their interaction as fixed factors; prior work showed that these factors are important

231 in predicting the distribution of lightning damage^{6,7}. We also added a binary term for directly struck vs.
232 secondary damage (hereafter, “strike status”) and a random intercept term for strike site. DBH was log-
233 transformed to meet model assumptions. We used likelihood ratio tests using the R package ‘lmtest’³⁵ to
234 compare the fit of competing models excluding predictors. We compared predicted to observed values
235 within bins for each continuous predictor to evaluate model fit.

236 We analyzed residuals of the 30 most common species to evaluate interspecific differences in
237 expected survival. We used this approach rather than including a species term in the model for three
238 reasons: 1) we lacked the data to fit species-specific mortality curves; 2) the identified individuals were a
239 biased subset of our data, primarily representing larger-statured species; and 3) identified trees were non-
240 randomly distributed among strike sites. To evaluate whether mortality rates differed from expectations
241 by species, we bootstrapped model residuals over the number of individuals within each species with
242 1000 iterations. We also tested whether each species’ observed mortality differed from predicted using
243 pairwise tests based on the z-distribution. We used linear regression weighted by the number of
244 occurrences for each species in the mortality data to determine whether mean crown dieback for a species
245 predicted its residual in the mortality model. We also tested this relationship with palms removed from
246 the dataset because of their different physiology. We used Cook’s distance to test for undue influence of
247 any species on the regression results.

248 We compared lightning-caused mortality to the probability that a random tree of the same species
249 would have died during the same time period. We constructed mortality curves using data from the BCI
250 50 ha plot³⁶ collected in six 5-year census periods (1985-2015) for all species in our dataset. The curves
251 include any deaths caused by lightning before our monitoring began in 2015. We used those curves to
252 calculate the probability that each tree damaged by lightning in our dataset would have died given its
253 DBH and the length of time we monitored it. These historic mortality probabilities were then compared
254 with observed lightning mortality rates to ascertain whether deaths attributed to lightning were distinct
255 from background rates.

256

257 *Lightning resilience among species*

258 We also tested for interspecific differences in the fate of trees that survive initial lightning
259 damage. This analysis included trees that were censused more than once, excluding trees that were dead
260 in the first census. Because initial census dates were later for some strikes, we confined the date of the
261 first census to be between 30 and 105 days after the strike. The final census was also constrained to be
262 separated from the first census by 250-450 days. We calculated a rate of change (ROC) for each tree by
263 taking the difference in crown dieback between the last census interval and the first census interval and
264 dividing that by the number of days between the two censuses. We bootstrapped the ROC 1000 times
265 over the number of trees within each species to calculate confidence intervals.

266 We used the ROC values to assess recovery or decline by species, where positive ROC values
267 indicate decline over time and negative values indicate recovery. First, we tested whether DBH and the
268 level of dieback observed in the first census (hereafter, initial damage) influenced ROC with a linear
269 mixed model. We included days between censuses as a covariate and strike site as a random intercept.
270 Second, for species with 10 or more individuals, we used a permutation test to determine whether mean
271 ROC values for each species deviated from those expected by chance. To generate the null expectations
272 for each species, we randomly selected ROC values for each individual of that species from the observed
273 ROC values for the same value of initial damage among all species. We repeated this process for 10,000
274 permutations to generate the null distribution and then compared these values to the observed mean.

275 As a second measure of recovery, we considered whether trees differed in resprouting following
276 damage. We recorded resprouts as present or absent, and used a generalized linear mixed model with
277 binomial errors to test whether resprouting depended on the maximum level of crown dieback and tree
278 DBH. We included strike site as a random intercept. We bootstrapped model residuals 1000 times within
279 each species to generate species-specific confidence intervals to compare with model predictions.

280

281 *Lightning damage frequency associated with tolerance*

282 We used the species-level expected lightning damage frequencies that were previously calculated
283 for all trees over 10 cm DBH with 25 or more individuals in the BCI 50 ha plot⁷ and compared these to
284 the species residuals from the mortality model. We used linear regression to test for a relationship
285 between predicted damage and mortality residuals, including species with at least 8 individuals from the
286 mortality model. Because DBH was included as a predictor in both the damage and mortality models, and
287 tree size varies interspecifically, we separated the total species effect by running each model excluding
288 DBH and comparing the residuals by species from the two models. Residuals for both models were
289 bootstrapped as described for the mortality model above. Both linear regressions were weighted by
290 species occurrence in the lightning mortality dataset. We also conducted the same analysis without palms
291 because they differ biologically from other trees (i.e., monocots vs. dicots) and we used Cook's distance
292 to test for undue influence of outliers. This comparison is based on the structure and composition of the
293 BCI 50 ha plot captured in the 2015 census³⁶.

294

295 *Functional traits associated with tolerance*

296 We tested whether species mortality probabilities from lightning were associated with functional
297 traits. We selected commonly measured traits, including leaf area, specific leaf area (SLA), leaf nitrogen
298 content (N_{mass}), and maximum plant height that capture various elements of growth strategy²⁸. We also
299 include two wood characteristics, wood density and vessel lumen area, that we expected to relate to the
300 electrical conductivity of wood^{21,37,38}. The majority of these data were collected on BCI^{21,28} and accessed
301 from the TRY database³⁹. Leaf area and vessel area were log-transformed to meet model assumptions.
302 Using residuals from the lightning mortality model, we constructed weighted linear regressions for 33
303 species with ≥ 5 individuals represented in our dataset that had species mean values available for all traits.
304 The regression was weighted by the sample size for each species, and we scaled and centered all predictor
305 variables. We used stepwise selection based on AIC values to identify the most parsimonious model, and
306 a variance inflation factor cutoff of 5 to test for highly correlated variables. None of the variables was
307 excluded due to correlation.

308 **Data Availability:** The lightning dataset is available in the Dryad repository,
309 <https://doi.org/10.5061/dryad.gf1vhmusp>. Data from the Barro Colorado Island 50-ha plot³⁶ are available
310 in the Dryad repository, <https://doi.org/10.15146/5xcp-0d46>. Data from the lightning risk model^{7,40} are
311 available in the Dryad repository, <https://doi.org/10.5061/dryad.c59zw3r48>. Data for wood density^{37,38} are
312 available in the Dryad repository, <https://doi.org/10.5061/dryad.234>. Data from the TRY plant database³⁹
313 are available from the TRY website, <https://www.try-db.org/TryWeb/Home.php>.

314

315 **Code Availability:** The R code used for analysis is available in the Dryad repository,
316 <https://doi.org/10.5061/dryad.gf1vhmusp>

317

318 **Acknowledgements:** Benjamin Adams, Matteo Dettò, Roberta Ethington, Noah Gripshover, Riley
319 Kneale, and Alyssa Stark assisted in the field. Oris Acevedo, Melissa Cano, and the staff of the
320 Smithsonian Tropical Research Institute provided logistical support. Comments from two anonymous
321 reviewers improved the manuscript. This work was supported by grants from the National Science
322 Foundation (DEB-1354060 and DEB-1655346 to S.P.Y., DEB-1354510 and DEB-1655554 to P.M.B.,
323 GRF-2015188266 to E.M.G., and DBI-2010942 to J.H.R.) and the National Geographic Society (9703-15
324 to E.M.G.).

325 **Competing Interests Statement:** The authors have no competing interests.

326

327 **Table 1.** Multiple linear regression results for trait signal in species residuals from the lightning mortality
328 model. Vessel lumen area was log-transformed and all variables were standardized by scaling.

Parameter	Coefficient	Std. Error	T-value	P-value	Partial R ²
Intercept	-0.05	0.01	-3.37	0.002	
Leaf nitrogen	-0.04	0.01	-2.87	0.007	0.22
Vessel area	-0.06	0.02	-2.97	0.006	0.23
Wood density	-0.11	0.02	-5.44	7.4x10 ⁻⁶	0.51

329

330 **Figure captions**

331 **Fig. 1.** Lightning mortality predictions (with 95% CI) by species for common trees (those with $n \geq 8$ in
332 the dataset) compared with their historical mortality rates. Residuals indicate difference between model
333 predictions and observed means for each species. Species are ordered by the residual value. Asterisks
334 indicate significant p-values based on a two-sided Z-test as follows: *A. standleyanum* ($p = 1.7 \times 10^{-16}$, $n =$
335 9), *O. mapora* ($p = 2.3 \times 10^{-21}$, $n = 9$), *S. exorrhiza* ($p = 4.6 \times 10^{-101}$, $n = 21$), *A. membranacea* ($p = 2.5 \times 10^{-4}$,
336 $n = 14$), *T. arborea* ($p = 7.3 \times 10^{-4}$, $n = 13$), *F. occidentalis* ($p = 1.6 \times 10^{-5}$, $n = 79$), *A. blackiana* ($p = 0.02$, n
337 = 37), *H. triandra* ($p = 3.3 \times 10^{-8}$, $n = 28$), *D. panamensis* ($p = 1.4 \times 10^{-4}$, $n = 8$), *P. reticulata* ($p = 3.9 \times 10^{-4}$, n
338 = 8), *H. crepitans* ($p = 4.9 \times 10^{-7}$, $n = 12$), *G. recondita* ($p = 0.002$, $n = 10$), *G. superba* ($p = 5.1 \times 10^{-24}$, $n =$
339 37), *D. oleifera* ($p = 1.0 \times 10^{-7}$, $n = 13$).

340 **Fig. 2.** Violin plots of permutation distributions for species mean ROC values (for species with $n \geq 10$
341 individuals in the dataset) overlayed with bootstrapped confidence intervals around the observed mean.
342 Values below zero represent recovery (decreasing crown dieback) and those above zero represent decline
343 (increasing crown dieback). Significant difference of the species mean from the permutation distribution:
344 *T. tuberculata* ($p = 0.0002$, $n = 18$); significant difference of the species mean from zero based on
345 bootstrapped distribution: *F. occidentalis* ($p = 0$, $n = 24$), *A. excelsum* ($p = 0.001$, $n = 21$), *Q. asterolepis*
346 ($p = 0.005$, $n = 16$), *T. tuberculata* ($p = 0$, $n = 18$).

347 **Fig. 3.** (A) Mortality model residuals (for species with $n \geq 8$ individuals in the dataset) compared with
348 mean damage frequencies projected by the lightning risk model⁷ by species. Mortality sample size
349 indicates confidence of the estimate. The color gradient depicts the mean crown dieback among members
350 of the species that were damaged. (B) Residuals from damage and mortality models (for species
351 represented by $n \geq 8$ individuals) with DBH removed from both models to capture the full species effect
352 including size differences. See Extended Data Fig. 6 for similar plots showing all species names.

353 **Fig. 4.** Top row: Linear regression between species means of mortality model residuals and (A) wood
354 density ($R^2 = 0.38$), (B) vessel lumen area ($R^2 = 0.03$), and (C) Leaf N ($R^2 = 0.10$). Bottom row: Pearson
355 correlations with points color-coded by mortality model residuals for (D) wood density and leaf N ($r =$
356 0.15), (E) vessel area and leaf N ($r = -0.23$), and (F) wood density and vessel area ($r = -0.60$). Shading
357 indicates standard error of the mean.

358

359 **References**

- 360 1. Dale, V. H. *et al.* Climate change and forest disturbances. *BioScience* **51**, 723 (2001).
- 361 2. McDowell, N. *et al.* Drivers and mechanisms of tree mortality in moist tropical forests. *New Phytol*
362 **219**, 851–869 (2018).
- 363 3. Esquivel-Muelbert, A. *et al.* Compositional response of Amazon forests to climate change. *Glob*
364 *Change Biol* **25**, 39–56 (2019).
- 365 4. McDowell, N. G. *et al.* Pervasive shifts in forest dynamics in a changing world. *Science* **368**,
366 eaaz9463 (2020).
- 367 5. Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest
368 carbon dynamics. *Nat. Plants* **7**, 384–391 (2021).
- 369 6. Yanoviak, S. P. *et al.* Lightning is a major cause of large tree mortality in a lowland neotropical
370 forest. *New Phytol* **225**, 1936–1944 (2020).
- 371 7. Gora, E. M. *et al.* A mechanistic and empirically supported lightning risk model for forest trees. *J*
372 *Ecol* **108**, 1956–1966 (2020).
- 373 8. Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical
374 geography of lightning-caused disturbance and its implications for tropical forests. *Glob Change Biol*
375 **26**, 5017–5026 (2020).
- 376 9. Harel, M. & Price, C. Thunderstorm trends over Africa. *J Climate* **33**, 2741–2755 (2020).
- 377 10. Maxwell, H. Observations on trees, as conductors of lightning. *Memoirs of the American Academy of*
378 *Arts and Sciences* **2**, 143 (1793).
- 379 11. Covert, R. N. Why an oak is often struck by lightning: A method of protecting trees against lightning.
380 *Monthly Weather Review* **52**, 492–493 (1924).
- 381 12. Taylor, A. R. Lightning damage to forest trees in Montana. *Weatherwise* **17**, 61–65 (1964).
- 382 13. Furtado, C. X. Lightning injuries to trees. *Journal of the Malaysian Branch of the Royal Asiatic*
383 *Society* **13**, 157–162 (1935).

384 14. Magnusson, W. E., Lima, A. P. & De Lima, O. Group lightning mortality of trees in a Neotropical
385 forest. *J. Trop. Ecol.* **12**, 899–903 (1996).

386 15. Yanoviak, S. P., Gora, E. M., Burchfield, J. M., Bitzer, P. M. & Detto, M. Quantification and
387 identification of lightning damage in tropical forests. *Ecol Evol* **7**, 5111–5122 (2017).

388 16. Makela, J., Karvinen, E., Porjo, N., Makela, A. & Tuomi, T. Attachment of natural lightning flashes
389 to trees: preliminary statistical characteristics. *Journal of Lightning Research* **1**, 9–21 (2009).

390 17. Yanoviak, S. P. Shock value: Are lianas natural lightning rods? in *Treetops at Risk* (eds. Lowman,
391 M., Devy, S. & Ganesh, T.) 147–153 (Springer New York, 2013). doi:10.1007/978-1-4614-7161-
392 5_15.

393 18. Gora, E. M., Bitzer, P. M., Burchfield, J. C., Schnitzer, S. A. & Yanoviak, S. P. Effects of lightning
394 on trees: A predictive model based on in situ electrical resistivity. *Ecol Evol* **7**, 8523–8534 (2017).

395 19. Orville, R. E. Photograph of a close lightning flash. *Science* **162**, 666–667 (1968).

396 20. Gora, E. M. & Yanoviak, S. P. Electrical properties of temperate forest trees: a review and
397 quantitative comparison with vines. *Can J Forest Res* **45**, 236–245 (2015).

398 21. Hietz, P., Rosner, S., Hietz-Seifert, U. & Wright, S. J. Wood traits related to size and life history of
399 trees in a Panamanian rainforest. *New Phytol* **213**, 170–180 (2017).

400 22. Clarke, P. J. *et al.* Resprouting as a key functional trait: how buds, protection and resources drive
401 persistence after fire. *New Phytol* **197**, 19–35 (2013).

402 23. Kozlowski, T. T. & Pallardy, S. G. *Physiology of Woody Plants*. (Academic Press, 1997).

403 24. Bruijning, M. *et al.* Surviving in a cosexual world: A cost-benefit analysis of dioecy in tropical trees.
404 *Am Nat* **189**, 297–314 (2017).

405 25. Visser, M. D. *et al.* Strict mast fruiting for a tropical dipterocarp tree: a demographic cost–benefit
406 analysis of delayed reproduction and seed predation. *J Ecol* **99**, 1033–1044 (2011).

407 26. Charles, A. E. Coconut lightning strike. *Papua and New Guinea Agricultural Journal* **12**, 192–195
408 (1960).

409 27. Sharples, A. Lightning storms and their significance in relation to diseases of *Cocos nucifera* and
410 *Hevea brasiliensis*. *Ann Appl Biol* **20**, 1–22 (1933).

411 28. Wright, S. J. *et al.* Functional traits and the growth–mortality trade-off in tropical trees. *Ecology* **91**,
412 3664–3674 (2010).

413 29. Camac, J. S. *et al.* Partitioning mortality into growth-dependent and growth-independent hazards
414 across 203 tropical tree species. *Proc Natl Acad Sci USA* **115**, 12459–12464 (2018).

415 30. Poorter, L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical
416 forests. *New Phytol* **181**, 890–900 (2009).

417 31. Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutiérrez, C. & Yanoviak, S. P. The contributions of
418 lightning to biomass turnover, gap formation, and plant mortality in a tropical forest. *Ecology* (2021)
419 doi:doi:10.1002/ecy.3541.

420 32. R Core Team. *R: A language and environment for statistical computing*. (R Foundation for Statistical
421 Computing, 2021).

422 33. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag, 2016).

423 34. Brooks, M. E. *et al.* *glmmTMB: Generalized linear mixed models using template model builder*.
424 (2019).

425 35. Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. *R News* **2**, 7–10 (2002).

426 36. Condit, R. *et al.* Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019
427 version. *Dryad, Dataset* (2019) doi:<https://doi.org/10.15146/5xcp-0d46>.

428 37. Chave, J. *et al.* Towards a worldwide wood economics spectrum. *Ecol Lett* **12**, 351–366 (2009).

429 38. Zanne, A. E. *et al.* Data from: Towards a worldwide wood economics spectrum. *Dryad, Dataset*
430 (2009) doi:<https://doi.org/10.5061/dryad.234>.

431 39. Kattge, J. *et al.* TRY plant trait database – enhanced coverage and open access. *Glob Change Biol* **26**,
432 70 (2020).

433 40. Gora, E. M. *et al.* Data from: A mechanistic and empirically-supported lightning risk model for forest
434 trees. *Dryad, Dataset* (2020) doi:<https://doi.org/10.5061/dryad.c59zw3r48>.

