
Use of Test Doubles in Android Testing:
An In-Depth Investigation

Mattia Fazzini∗, Chase Choi∗, Juan Manuel Copia†, Gabriel Lee∗,
Yoshiki Kakehi‡, Alessandra Gorla†, Alessandro Orso‡

∗University of Minnesota, Minneapolis, MN, USA; mfazzini@umn.edu, choix698@umn.edu, gnlee@umn.edu
†IMDEA Software Institute, Madrid, Spain; juanmanuel.copia@imdea.org, alessandra.gorla@imdea.org
‡Georgia Institute of Technology, Atlanta, GA, USA; yoshikikakehi@gatech.edu, orso@cc.gatech.edu

ABSTRACT

Android apps interact with their environment extensively, which

can result in flaky, slow, or hard-to-debug tests. Developers often ad-

dress these problems using test doubles—developer-defined objects

that replace app or library classes during test execution. Although

test doubles are widely used, there is limited understanding of how

they are used in practice. To bridge this gap, we present an in-depth

empirical study that aims to shed light on how developers create

and use test doubles in Android apps. In our study, we first analyze

a dataset of 1,006 apps with publicly available test suites to identify

which frameworks and approaches developers most commonly use

to create test doubles. We then investigate several research ques-

tions by studying how test doubles defined using these popular

frameworks are created and used in the ten apps in the dataset that

define the highest number of test doubles using these frameworks.

Our results, based on the analysis of 2,365 test doubles that replace

a total of 784 classes, provide insight into the types of test doubles

used within Android apps and how they are utilized. Our results

also show that test doubles used in Android apps and traditional

Java test doubles differ in at least some respect. Finally, our results

show that test doubles can introduce test smells and even mistakes

in the test code. In the paper, we also discuss some implications of

our findings that can help researchers and practitioners working in

this area and guide future research.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Test mocking, mobile apps, software environment

ACM Reference Format:

Mattia Fazzini∗, Chase Choi∗, Juan Manuel Copia†, Gabriel Lee∗,, Yoshiki

Kakehi‡, Alessandra Gorla†, Alessandro Orso‡. 2022. Use of Test Doubles in

Android Testing: An In-Depth Investigation. In 44th International Conference

on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510175

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510175

1 INTRODUCTION

Most Android apps have rich interactions with their environment.

Android devices, for instance, provide built-in motion, location

information, and position sensors that apps can use to offer a rich

set of features to users. In general, apps interface with external web

services, the underlying Android system, third-party libraries, as

well as content providers exposed by the device. Such extensive

interactions complicate the testing of an app, as exploring specific

behaviors may require complex configurations of the environment,

and test execution may become slow and result in flakiness.

To mitigate these issues, developers can rely on test doubles

(TDs)—classes that mimic the structure of other classes but offer

alternative implementations that are fully controlled by the devel-

oper for the purpose of testing. In the context of Android apps, TDs

can replace classes defined in the app itself, classes from the Java

library, classes defined in third-party libraries, and classes from the

Android framework. Furthermore, depending on their purpose, TDs

may be classified as follows: (i) dummies, which are often used to

simply fill-in parameters that are meaningless for a specific test; (ii)

stubs, which are simple objects that return hard-coded values when

their methods are invoked; (iii) mocks and spies, which are more

complex objects that can verify interactions with other classes; and

(iv) fakes, which consist of partially working implementations that

are more efficient than the actual class(es) they are replacing.

Because creating and maintaining TDs can involve considerable

manual effort, researchers have started investigating techniques to

support developers in this task (e.g., [1–5]). Unfortunately, however,

there is limited understanding of how TDs are used in practice,

which hinders our ability to define effective techniques in this space.

Several previous empirical studies aimed to identify general testing

practices in the development of Android apps [6–11], but they either

ignored or did not specifically focus on TDs. Other related studies

analyzed how Java developers use mocks when testing traditional

(i.e., non-mobile) software [12–14]. However, some of their findings

may not directly apply to Android apps, or new findings might

arise from the peculiarities of the Android platform.

To bridge this gap, we present an in-depth study of how develop-

ers create and use TDs when developing and testing Android apps.

Specifically, the goal of our study is to get a better understanding

of (1) how TDs are used in the Android ecosystem, and (2) whether

TDs developed for Android apps differ from traditional TDs.

In our study, we first analyzed a dataset of 1,006 apps with pub-

licly available test suites to collect information on the frameworks

and approaches used to create TDs. This analysis shows that Mock-

ito and Mockito-Kotlin are the most popular frameworks for cre-

ating TDs, with 33.5% of the apps in the dataset using either one

2266

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

of these two frameworks. We then investigated several research

questions by studying how TDs defined using these popular frame-

works are created and used in the ten apps in the dataset that define

the highest number of TDs using these frameworks.

Our results, based on the analysis of 2,365 TDs that replace a

total of 784 classes, provide insight on the types of TDs used within

Android apps and how they are utilized. In particular, they show

that developers create TDs to replace both classes in the app and

external classes, and that different kinds of TDs are indeed cre-

ated, including stubs, mocks, and dummies. Our results also show

that TDs used for testing apps differ in at least some respect from

TDs used in traditional Java software. Specifically, our study found

that there are different categories of TDs that are prevalent in this

context, namely, TDs replacing classes in the Android framework,

configuration classes, and GUI components. Whereas the first cate-

gory is not surprising, the latter two provide evidence that, within

Android apps, configurations are more common and classes are

more tightly coupled with GUI elements than in traditional Java

software. Finally, our results show that TDs can introduce test

smells and even mistakes in test code, which motivates developing

techniques to detect and eliminate these problems.

Contributions and Significance. To the best of our knowl-

edge, this is the first study that classifies how developers use TDs,

categorizing them based on their purpose and through both qualita-

tive and quantitative analyses.We believe that our findings and their

implications can inform future research in this area and help define

automated or semi-automated techniques for better supporting

developers in creating and maintaining TDs, ultimately improv-

ing the process of testing Android apps. Furthermore, our study

infrastructure and experimental data are publicly available [15].

2 BACKGROUND

Android apps and their tests are mainly written in the Java or Kotlin

programming languages [10]. These tests can run on either the

JVM (JVM tests) or a device (device tests). Generally, JVM tests can

include unit and integration tests, while device tests can include

unit, integration, system, and GUI tests [10, 16]. Both JVM and

device tests can use TDs to facilitate testing activities1. We define a

TD as a developer-defined object that provides a (possibly partial)

replacement for a class in the app or in an external library during

testing. Within Android apps, TDs can replace classes defined in

the app, classes from the Java library, classes defined in third-party

libraries, and classes from the Android framework. Based on the

functionality that the TDs provide to the test code, they can be

classified [17, 18] into five main types: (i) dummies, (ii) stubs, (iii)

mocks, (iv) spies, and (v) fakes. App developers can create TDs

using test mocking2 frameworks or by extending/implementing

classes/interfaces. Among the frameworks that allow for creating

TDs, there are both generic (e.g., Mockito [19], Mockito-Kotlin [20],

PowerMock [21]) and specialized (e.g., OkHttp [22], Retrofit [23],

1In this work, we discuss TDs of JVM and device tests, as this grouping is readily
available through the source code of Android apps—generally, JVM tests are in the
test folder and device tests are in the androidTest folder. We leave as future work
the analysis of TDs in relation to how JVM and device tests can be divided into unit,
integration, system, and GUI tests.
2Although these frameworks are informally called mocking frameworks, developers
actually use the frameworks to create different types of TDs.

Android Test Mock [24]) test mocking frameworks. The former

allow for replacing classes of varying functionality, while the latter

target classes offering a specific functionality (e.g., classes that

connect to a web server). We now describe how developers can use

generic test mocking frameworks to create TDs and then summarize

the characteristics of the different types of TDs.

2.1 Generic Test Mocking Frameworks

When developers create a TD using a generic test mocking frame-

work, they must first specify the class being replaced by the TD. To

this end, developers can use initialization methods or annotations

provided by the framework API (e.g., the mock method from the

Mockito API [25]). After this step, developers can define stubbed

method implementations for the TD and specify which method calls

made to the TD should be verified during test execution. To stub

a method, developers must specify (i) the method that should be

stubbed, (ii) the arguments to which the stubbed method should re-

spond, and (iii) the value/exception returned by the stubbed method.

Generic test mocking frameworks offer API methods that can be

combined to implement this functionality. For example, developers

can use when(td.m(arg)).thenReturn(val) (based on the Mockito

API) to specify that the TD td should return val when the method

m is called with argument arg on the object. Developers can also

use the framework API to specify the method calls that should be

verified. For example, developers can use verify(td).m(arg) (based

on the Mockito API) to check that (1) method m was called during

test execution on the object td and (2) the argument passed to the

method was arg. Finally, developers can use the APIs of these frame-

works to create different types of TDs. In our work, the type of a

TD is not identified by the API method used to create it (e.g., mock

in Mockito), but rather by the functionality it provides.

2.2 Test Doubles Types

This section reports the definitions we use to characterize the dif-

ferent types of TDs, as formulated in related work [17, 18]. Due to

space limitations, we do not provide here code examples for the

different types but make them available in our online appendix [15].

Dummy: A dummy is an object that a test uses to exercise the

component under test (CUT) but such that neither the test code nor

the CUT access the object’s state during test execution. Tests tend

to use dummies to provide method parameters that are irrelevant

for a specific test.

Stub: A stub is an object providing hard-coded (i.e., stubbed) an-

swers when its callers invoke the object’s methods during test

execution. A stub might provide hard-coded answers only for some

of its methods, and the answers are often specific to the intent of

the particular test using the stub.

Mock: A mock is an object that offers a replacement for a class

and such that some of the interactions with the object are verified

during test execution. The verification task is defined in the test

code but carried out within the mock object. A mock object might

also provide hard-coded answers for some of its methods.

Spy: A spy is similar to a mock object in that some of the interac-

tions with the object are verified during test execution. However,

differently from a mock object, the primary operations for verifying

the behavior of the spy are defined in the test code, rather than

2267

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

Use of Test Doubles in Android Testing:

An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

within the TD. Usually, these operations are encoded as developer-

defined assert statements. As in the case of a mock object, a spy

might also provide hard-coded answers for some of its methods.

It is worth noting that this definition is consistent with related

work [17, 18] but differs from the use of the term within Mock-

ito [19]. Specifically, in Mockito, a spy is an object for which real

method implementations are invoked during test execution unless

they are stubbed. Because the two definitions focus on different

aspects, our findings should not be directly mapped to Mockito’s

spies and should be instead interpreted based on the functionality

provided by the TD.

Fake: A fake is an object that provides a working implementation

for some of its methods but such that the implementation is made

more efficient through “shortcuts” not suitable for production.

3 METHODOLOGY

To shed light on how Android developers create and use TDs, we

investigated the following research questions (RQs):

• RQ1: Which frameworks and approaches are most com-

monly used to create TDs? This RQ aims to identify the most

commonly used frameworks and approaches for creating TDs in

the domain of Android apps. We use the findings from this RQ

to scope the analyses of the remaining RQs.

• RQ2:What types of classes do developers replace with TDs?

The goal of this RQ is to categorize the types of classes that are

commonly replaced by TDs. In the RQ, we also provide a detailed

analysis of the Android framework classes that are replaced by

TDs.

• RQ3: What TD types do developers create? This RQ investi-

gates the types of TDs used in the context of Android app testing.

This RQ also analyzes whether developers use different types of

TDs for different types of classes.

• RQ4: How do tests use TDs?While RQ2 and RQ3 characterize

TDs through a manual inspection of the code associated with

TDs, this RQ aims to characterize the runtime properties of TDs.

Specifically, it investigates how tests use stubbed methods and

how often interactions with TDs are verified.

• RQ5: What problems can TDs introduce? Because TDs are

usually manually-created, they may introduce test smells or even

errors in the test code. This RQ investigates issues emerging from

the use of TDs.

The overall goal of these RQs is to inform researchers and prac-

titioners and provide insights that can guide them in developing

techniques and tools for creating, using, and maintaining TDs. To

answer our RQs, we divided our study into two parts. First, we

identified which frameworks and approaches developers most com-

monly use to create TDs (RQ1). Then, we studied how the TDs

defined with the most popular frameworks and approaches are

created and used (RQ2, RQ3, RQ4 and RQ5). The rest of this section

describes the qualitative and quantitative analyses we performed

to answer the RQs.

3.1 Frameworks and Approaches for TDs

In this section, we describe our methodology for answering RQ1.

Specifically, we describe the dataset we used, the frameworks and

approaches we considered, and the analysis we performed.

3.1.1 Dataset. To answer RQ1, we needed a dataset containing

Android apps with a publicly available test suite. To the best of our

knowledge, the dataset released by Lin and colleagues [10] is the

most recent one satisfying this requirement, as it contains 1,002

apps with tests. These apps were mined from GitHub, and each app

is available on at least one of 16 app markets (including the Google

Play store [26]). When we cloned the app repositories, 972 of the

1,002 apps were still available on GitHub. To ensure our dataset

does not include possibly trivial apps, we further filtered the dataset

to only contain apps available on the Google Play store. After this

step, the dataset contained 886 apps.

We performed a sanity check to verify that the apps have tests in

their test and androidTest directories, which are the default loca-

tions used to store JVM and device tests [16], respectively. For this

purpose we built an automated analysis on top of JavaParser [27]

and ktlint [28] to traverse the abstract syntax tree (AST) of the

test files looking for methods annotated with @Test, @SmallTest,

@MediumTest, @LargeTest, or @UiThreadTest; we classified a test as

any method having any of these annotations. Note that, by op-

erating at the AST level, the analysis avoids considering tests in

commented code. The analysis also excludes tests automatically

created by Android Studio, which can be identified based on the

name convention used by the IDE. Our analysis identified some

apps without any meaningful test. Manual inspection confirmed

that, at the time we retrieved them, those apps had no tests at all,

had tests that had been commented out, or only had tests automat-

ically created by Android Studio. After removing these apps, 833

apps remained in the dataset.

After manually inspecting the list of remaining apps, we ob-

served that certain widely used apps, such as AnkiDroid [29, 30]

(over five million downloads), were not present in the dataset de-

spite being available in the curated list of open-source apps provided

by F-Droid [31], whichwas considered in [10].We noticed that these

apps have multiple AndroidManifest.xml files [32], and that apps

with these characteristic were excluded by Lin and colleagues [10].

Therefore, to avoid missing relevant apps, we decided to add apps

(i) listed on F-Droid, (ii) available on GitHub, (iii) present on the

Google Play store, and (iv) having meaningful tests. This resulted

in the addition of 173 apps to the dataset, for a total of 1,006 apps.

We used this dataset to answer RQ1.

3.1.2 Frameworks and Approaches Considered. In RQ1, we investi-

gated how often developers create TDs (1) using either generic or

specialized test mocking frameworks, or (2) extending/implement-

ing classes/interfaces. To ensure we considered a comprehensive

set of relevant frameworks, we performed a Google search using

“android test mocking”3 as the search terms and analyzed the first

100 results. Our online appendix [15] contains the complete search

results. Based on the search results, we considered the generic test

mocking frameworks EasyMock [33], jMock [34], Mockito [19],

Mockito-Kotlin [20], MockK [35], and PowerMock [21], which all

allow for creating TDs as described in Section 2.

We also considered Android Test Mock [24], MockServer [36],

OkHttp [22], Retrofit [23], Robolectric [37], and RxAndroidBle [38]

as additional, specialized frameworks. Android Test Mock provides

3We used the word “mocking” because developers and the documentation of multiple
frameworks use this term to refer to test doubles in general.

2268

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

stubs and mocks for ten specific classes of the Android framework.

MockServer, OkHttp, and Retrofit support the creation of TDs for

classes communicating with a web server. Robolectric allows for

running tests interacting with the Android framework on the JVM

by using a large set of classes that offer a simplified implementation

of Android framework classes. Robolectric also allows app develop-

ers to implement their own replacements for Android framework

classes; these developer-defined replacement classes are those we

consider in this study. Finally, RxAndroidBle is a library that facili-

tates Bluetooth communications and offers support for replacing

the framework’s classes during testing.

3.1.3 RQ1: Which frameworks and approaches are most commonly

used to create TDs? — Analysis. To identify the general and spe-

cialized test mocking frameworks used by a certain app, we first

identified all the relevant import statements for each framework

(e.g., org.mockito for Mockito), and then checked the import state-

ments in the ASTs of the app’s test files; if a test file used an import

statement of a certain framework, we considered the app as using

that framework. In that case, the analysis also computed the num-

ber of test files using that framework, so as to provide an indicative

measure of the extent to which the framework was used by the

project. It is worth noting that this measure could be computed

differently, and possibly in a more accurate way (e.g., by consid-

ering all the API methods in the frameworks and identifying calls

to these methods in the test code). However, we believe that this

approximation is sufficient, as (1) we use this information only as

a secondary measure, with the primary one being the number of

apps using the framework, and (2) this measure does not affect the

main findings of the study. To determine whether an app extend-

s/implements classes/interfaces for creating TDs, we analyzed the

ASTs of the app’s test files and looked for classes that (i) contain

“Dummy”, “Stub”, “Mock”, “Spy”, or “Fake” in their name, (ii) have

a name that does not end with “Test” or “Tests”, and (iii) are part

of a file that does not use the import statements from the general

and specialized frameworks we considered. This strategy is in line

with an approach previously used in related work [13]. If an app

had such a class, we considered the app as extending/implementing

classes/interfaces for creating TDs.

3.2 Detailed Analysis of TDs

After investigating which frameworks and approaches developers

use to create TDs, we identified Mockito and Mockito-Kotlin as the

most popular frameworks for creating TDs in Java and Kotlin code

(see details in Section 4). Consequently, we focused the remaining

part of our study on these two frameworks. This part includes both

manual, qualitative analyses and automated, quantitative analyses.

We now describe our methodology to select the ten apps and detail

the analyses we performed to answer the remaining RQs.

3.2.1 Apps. Our qualitative analysis focused on the ten apps with

the highest number of TDs created usingMockito orMockito-Kotlin

and whose tests are maintained. We focused on ten apps due to

the significant amount of manual effort involved in this part of

the study, for both preparing the apps and performing the analysis.

For example, even simply building the apps can be extremely time-

consuming [39–41]. As for the analysis, there are many tasks that

involve a significant manual work, including classifying the types

of classes replaced by TDs and manually identifying the types of

TDs. Although focusing on a smaller set of apps may hinder the

generalizability of our results, as we also discuss in Section 6, it

allowed us to perform a detailed analysis of how developers create

and use TDs and get valuable insights.

To identify the number of TDs in an app, we (1) analyzed the

Mockito and Mockito-Kotlin APIs [20, 25], (2) identified API meth-

ods (e.g., mock) and annotations (e.g.,@Mock) that can be used to

create TDs, (3) parsed the ASTs of the test files in the app to collect

the locations using such methods or annotations, and (4) counted

the number of such locations. To identify whether an app’s tests

were maintained, we analyzed the app’s repository, counted the

number of commits of the test files in the year preceding the be-

ginning of our study (August 2020), and considered the tests to be

maintained if the app had one commit per month on average on the

test files. The rationale for using this second criterion is that tests

that are maintained are more likely to be relevant. Table 1 reports

the ten apps we selected based on this strategy. For each app, the

table provides an identifier (IDA), the app’s name (Name), the app’s

category as listed on the Google Play store (Category), the app’s

version considered (Version), the lines of code (in KLOC) for the

app’s source files (SL(K)), the lines of code (in KLOC) for the app’s

test files (TL(K)), and the number of TDs in the app created using

Mockito or Mockito-Kotlin (Total under the Test Doubles header).

It is worth noting that six of the ten apps also use additional test

mocking frameworks beside Mockito or Mockito-Kotlin. Specifi-

cally, six apps (A02, A04, A06, A08, A09, and A10) create 12 class

replacements using Robolectric, two apps (A08 and A09) create 30

TDs using Powermock, and one app (A06) creates one TD using

OkHttp. Since our analysis is based on 2,365 Mockito/Mockito-

Kotlin TDs, we believe that considering the few TDs created using

other frameworks would impact the results only marginally.

3.2.2 RQ2: What types of classes do developers replace with TDs?

— Analysis. To answer RQ2, we performed four analyses. First, we

characterized the functionality provided by the classes. Second, we

identified whether the classes belonged to the app, the Java library,

third-party libraries, or the Android framework. Third, we studied

the dependencies of those classes that are defined in the app. Finally,

we performed a categorization of the classes that are replaced by

TDs and are part of the Android framework.

The first one is a qualitative analysis that combines deductive,

inductive, and axial coding [42, 43]. Deductive coding is a systematic

approach for manually coding (i.e., labeling) textual content starting

from an already available set of codes (i.e., labels). Inductive coding

derives new codes based on a systematic analysis of the text data.

Axial coding relates codes to one another and finds higher-level

codes that represent abstractions of the original codes.

In our analysis, a code is a label that categorizes the functionality

provided by a class, which we inferred by analyzing the source code

and the documentation of the class. We also analyzed any class

dependencies that may help clarify the class functionality and the

code of the TD replacing the class. Specifically, we first looked at

the test code using the TD to identify the part of the app being

tested. We then focused on the class being replaced by the TD and

inspected the name of the class, imported dependencies, declared

2269

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

Use of Test Doubles in Android Testing:

An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Characteristics of the ten apps (and their tests) considered in the second part of our study.

IDA Name Category Version SL (K) TL (K)
Test Doubles PC Analysis TDT Analysis Tests

Total 𝐽 VM Device Total CB Sample CB Total 𝐽 VM Device

A01 andFHEM Personalization 6.0.2 25.2 5.6 70 70 0 28 10 60 10 587 585 2
A02 AnkiDroid Education 2.13 52.8 7.0 60 60 0 32 11 53 7 341 274 67
A03 AnySoftKeyboard Tools 1.1 28.7 21.6 166 166 0 53 17 117 23 1,038 1,038 0
A04 Nextcloud Productivity 3.12.1 65.1 6.5 116 108 8 57 19 90 16 1,142 1,032 111
A05 OpenSRP Medical 1.0.14 19.7 2.5 153 153 0 85 29 110 22 56 56 0
A06 StreetComplete Travel & Local 21.2 27.4 8.0 179 166 13 63 20 123 25 770 664 106
A07 Travel Weather Travel & Local 1.5.1 3.2 1.9 104 104 0 55 19 83 15 128 128 0
A08 WiFi Analyzer Tools 2.1.2 8.0 10.7 193 193 0 78 25 129 28 706 706 0
A09 Wikimedia Commons Photography 2.13 24.3 4.3 222 222 0 81 26 141 31 270 246 24
A10 WordPress Productivity 15.2.1 135.3 31.3 1102 1098 4 252 83 286 154 1,514 1,396 118

2,365 2,340 25 784 259 1,192 331 6,553 6,125 428

methods, used variables, and provided code comments. We also

used the same procedure to inspect the classes used by the class in

the case that this operation was necessary to better understand the

functionality provided by the class.

Overall, we analyzed 784 classes. Table 1 reports the number of

classes analyzed for each app (column Total under the PC Analysis

header). These are all the classes associated with the TDs we con-

sidered, which we identified by statically analyzing the compiled

code of the tests. Specifically, we compile the tests, retrieve the

locations where developers initialized TDs (e.g., where developers

use the mock method), and extract the class types associated with

the objects. We built this analysis on top of Soot [44].

Our qualitative analysis is divided into three parts and performed

by two raters, which are two of the paper authors. In the first part

of the analysis, the two raters analyzed a sample of 259 classes to

define the analysis codebook—a document detailing, for each code,

the set of rules specifies the characteristics that should be observed

to assign a code to a class. The set of rules also includes typical

examples of classes having a specific code. The sample size used to

create the codebook was created using stratified random sampling

and is statistically significant with a 95% confidence level (CL) and

a 5% margin of error (ME). Table 1 reports the sample sizes we used

to create the codebook (column CB under the PC Analysis header).

The two raters used the categories identified by related work [12,

13, 45] as the initial set of codes for the codebook (deductive coding).

In the process of analyzing the classes in the sample, the raters

increased the number of categories to 28 (inductive coding) and

then grouped the categories into five main groups (axial coding).

This iterative part of the analysis took the raters around two person-

months to complete. Table 2 reports the codes produced by this

part of the analysis. The entire codebook we used is available in our

online appendix [15]. Our analysis produced two categories that

are not present in related work: configuration and GUI component.

We believe that these new categories emerged because the software

domain we target is characterized by aspects (e.g., GUI components)

that are not a key part of the software domains analyzed in related

work [12, 13, 45]. Conversely, our codebook does not include some

of the categories identified in relatedwork—java library and external

dependencies—because we distinguish between classes in the app,

the Java library, third-party libraries, or the Android framework

later in an orthogonal categorization. Finally, our codebook contains

category generic, for classes whose functionality did not fall into a

big enough category during the axial coding analysis. This category

includes classes labeled as domain objects in related work [12, 13,

Table 2: Codes used to categorize the classes replaced by TDs.

Code Summary Description

Configuration Class used to manage the app’s settings.

Database Class that performs database operations.

GUI Component Class that is part of the app’s GUI.

Networking Class that perform network operations.

Generic Class that provides a functionality not falling
in the other categories.

45] and can also include classes from the Android framework or

external libraries that can be considered as domain objects when

the framework or libraries are considered in isolation.

After creating the codebook, the two raters analyzed 10% of the

remaining classes using the codebook (i.e., they used the codebook

rules to categorize the classes), and we measured their inter-rater

reliability (i.e., the degree of agreement among raters in the anal-

ysis) using the Krippendorff’s alpha coefficient [46, 47]. Based on

the codes assigned by the two raters, the alpha value was 0.88,
which indicates high reliability. After discussing and resolving mis-

matching codes, the two raters proceeded with the last part of the

analysis and coded the remaining classes. Given the high value of

their inter-rater reliability, they equally split the remaining classes

and coded them independently.

After finishing the coding process, the raters also identified

whether each analyzed class belonged to the app, the Java library,

a third-party library, or the Android framework. Then, for each of

the classes in the app, we identified whether the class was directly

coupled with the Android framework by checking its dependen-

cies using an AST parser that analyzes the import statements in

the class. Finally, we identified the most recurring classes from

the Android framework replaced by TDs and performed a detailed

categorization based on their containing package.

3.2.3 RQ3: What TD types do developers create? — Analysis. To

characterize the types of TDs that appear in the test code, we con-

ducted a qualitative analysis based on deductive coding, where the

code indicates a type of TD. To assign a code to a TD, we studied the

functionality of the TD by inspecting the test code, by focusing on

the methods in the Mockito API and on assertion statements. For ex-

ample, if the test code only creates the TD object without specifying

any additional behavior for it, we would classify the TD as a dummy.

As another example, if the test code creates the TD object and stubs

one of its methods (e.g., using the when(x.m()).thenReturn(y) con-

struct from Mockito), we would classify the TD as a stub. Because

different tests might define a different behavior for the same TD

2270

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

Table 3: Codes used to categorize the types of TDs.

Code Summary Description

Dummy The behavior of the test double is not stubbed nor verified.

Stub The test double offers stubbed method implementations.

Mock The interactions with the test double are verified.

Spy The test verifies the test double’s interactions using assertions.

Fake The test double provides a simplified implementation.

object (e.g., when the TD is created as a test class attribute), our

analysis might assign multiple codes to the same object.

We split this coding process into three parts, as we did for the

qualitative analysis of RQ2, and the same two authors that per-

formed the analysis of RQ2 performed this analysis as well. In the

first part of the analysis, the raters analyzed a statistically signifi-

cant sample (CL=95% and ME=5%) of 331 TDs to define the analysis

codebook. Table 1 reports the sample sizes we used to create the

codebook (column CB under the TDT Analysis header). Table 3

reports the codes used in our codebook and their summary descrip-

tions. The entire codebook is available in our online appendix [15].

After creating the codebook, the two raters labeled a statistically

significant (CL=95% and ME=5%) sample of TDs for each app, ex-

cluding samples already labeled when creating the codebook, for

a total of 1,192 TDs. The sample sizes per app are reported in Ta-

ble 1 (Sample column). We analyzed statistically significant samples

instead of the whole dataset because the effort required to do so

would be considerable (estimated at around four person-months).

In the second part of the analysis, the raters coded 10% of the TDs in

the samples, and we measured their inter-rater reliability. Based on

the coding results, the Krippendorff’s alpha value was 0.97, which
indicates high reliability. As for RQ2, after discussing and resolving

mismatching codes, the two raters split the remaining TDs and

coded them independently.

After categorizing the types of TDs, we combined the results

from RQ2 and this RQ to understand how the types of TDs relate

to the type of class they replace.

3.2.4 RQ4: How do tests use TDs? — Analysis. To further char-

acterize key properties of TDs, we analyzed how tests use TDs

by running the tests of the apps with an instrumented version of

Mockito4 while collecting various data. As the tests ran, our in-

strumentation logged the calls made to the methods of the TDs,

identified which calls were made to stubbed methods, and recorded

how many of these calls were being verified during test execution.

The instrumentation also computes various properties of these

methods: how many unique methods were being stubbed, the loca-

tion in which these methods were stubbed, and whether methods

return hard-coded values or intended exceptions. Table 1, in the

Tests section on the right, reports the number of executed tests,

both overall (Total) and grouped by test type (JVM or Device tests).

3.2.5 RQ5: What problems can TDs introduce? — Analysis. To an-

swer RQ5, our analysis identified unnecessary stubs—stubbedmethod

never called during test execution—and mismatched stubs—stubbed

methods called with arguments that differ from those specified for

the stub (e.g., a stub td specified as when(td.m(2)).thenReturn(3)

and then called by a test as td.m(4)). Although these issues might

4Because Mockito-Kotlin internally relies on Mockito, our Mockito instrumentation
worked for it transparently.

Table 4: Frameworks and approaches considered in our study

together with their occurrences in our dataset of 1,006 apps.

Type Framework/Approach Name Apps Occurrences

Generic
Test

Mocking
Frameworks

EasyMock 2 3
jMock 0 0
Mockito 323 2123
Mockito-Kotlin 55 605
MockK 17 108
PowerMock 41 148

Specialize
Test

Mocking
Frameworks

Android Test Mock 18 24
MockServer 0 0
OkHttp 42 137
Retrofit 4 5
Robolectric 29 87
RxAndroidBle 0 0

Extend/Implement
Classes/Interfaces

- 68 146

not lead to test failures, these problems often indicate potential

issues in the underlining test code. Unnecessary stubs, in particular,

may indicate superfluous, dead, or outdated code in the tests. Fur-

thermore, both unnecessary and mismatched stubs may indicate

tests that are not checking for the intended behavior of the CUT.

To identify these kinds of stubs, we ran the tests with the stubbing

hints option of Mockito enabled [48], by adding a test rule to the

tests. It is worth noting that the next major release of Mockito will

notify developers when these problems occur [49], which indicates

that they are perceived as potentially relevant issues.

4 RESULTS

In this section, we present the results of our study on how develop-

ers create and use TDs when testing Android apps.

4.1 RQ1: Which frameworks and approaches
are most commonly used to create TDs?

Table 4 shows how many of the 1,006 apps in our dataset use the

frameworks and approaches we considered. For each framework/ap-

proach, the table reports its name (Framework/Approach Name), the

number of apps with tests that use the framework/approach (Apps),

and the number of files using the framework/approach (Occur-

rences). For Robolectric and the approach based on extending/im-

plementing classes/interfaces, the number of occurrences identifies

the number of developer-defined TD classes. Of the 1,006 apps con-

sidered, 397 apps (39%) use either a framework or an alternative

approach to create TDs. (Adding the number of apps in Column

Apps results in a higher number because some apps use more than

one approach to create TDs, and thus appear in more than one row.)

Mockito is the most used framework, with 323 apps and 2,123

test files using it. This result is in line with the findings from related

work [50], which identified Mockito as the most popular framework

for Java-based projects. Our results also highlight that Mockito-

Kotlin finds a significant adoption in Android apps, with 55 apps and

605 test files using that framework. We believe that this result is due

to the fact that Kotlin is gaining popularity among the languages

used to develop Android apps [51–53]. The total number of apps

using either Mockito or Mockito-Kotlin is 337, which accounts for

33.5% of the apps in our dataset. After further analyzing the test code

of these apps we found that developers use the two frameworks

2271

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

Use of Test Doubles in Android Testing:

An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

more frequently in JVM tests than in device tests. Specifically, we

observed that 39.1% of the 758 apps with JVM tests use one of the

two frameworks within these tests. This is in contrast with what

happens for the 562 apps with device tests, where only the 9.1%

of the apps have tests that use either one of the two frameworks.

Furthermore, among the apps using Mockito or Mockito-Kotlin,

there are 7,303 TDs defined across 18,747 JVM tests, and 315 TDs

defined across 3,524 device tests. This big gap seems to indicate that

TDs are a relevant aspect of JVM-based testing of Android apps,

whereas they play a smaller role in the context of device tests.

Our results also show that generic test mocking frameworks find

a wider adoption than specialized test mocking frameworks. Specif-

ically, 35.9% of the apps use a generic test mocking framework,

while only 6.2% of them use a specialized one. Note that, although

developers do not often use Robolectric to create manually-defined

TDs (only 2.8% of the apps defines such TDs), they use the TDs

already provided by the framework more extensively; 17.3% of the

apps in our dataset have tests that rely on those TDs. When we

analyzed apps with tests that create TDs by extending/implement-

ing classes/interfaces, we found that only 6.8% of the apps in our

dataset use this approach. Our analysis also revealed that 67.6% of

them also use a generic test mocking framework. This result seems

to suggest that, at least in some cases, developers find it necessary

to create ad-hoc TDs in addition to those they create using test

mocking frameworks, which may indicate the need for additional

features within these frameworks.

Finally, by comparing apps that use a framework or some alter-

native approach to create TDs and apps that do not, we observed

that the average number of tests for the apps in the former cate-

gory is 65.1 and the median is 22, while for the latter category the

average is 13.9 and the median is 5. A Mann-Whitney U test (95%

CL) shows the difference between the two groups to be significant.

As we further discuss in Section 5, we believe this is a potentially

interesting result that deserves further investigation.

RQ1 answer: Mockito and Mockito-Kotlin are the most widely

used frameworks, with 33.5% of the apps using either one of the

two frameworks. Furthermore, generic frameworks find a wider

adoption than specialized frameworks or approaches. Finally,

some apps use multiple approaches, which may indicate the

need for extending the individual approaches.

4.2 RQ2: What types of classes do developers
replace with TDs?

Figure 1, Figure 2, and Table 5 present the main results of the anal-

yses we performed to answer RQ2. Fig. 1 reports the categorization

for the types of classes replaced by TDs, showing the percentage

of each category for each app and the number of classes in each

category. For the apps we considered, the generic category includes

the highest number of classes replaced by a TD. This result is in

line with related work [12, 13, 45] (as we included domain objects

in this category) and is expected, as this category is the broader

category among those we considered.

The remaining categories account for 32.5% of the classes we

analyzed, with the GUI component category being the most fre-

quent and including 10.7% of the classes. All the classes in this

category were replaced by TDs in JVM tests. The remaining three

categories (database, networking, and configuration) include classes

that provide access to external resources. All the apps creating TDs

for either one of these categories do so for multiple classes (e.g.,

WordPress (A10) creates TDs for 31 classes accessing the network).

After analyzing the types of classes replaced by TDs, we investi-

gated whether those classes are defined in the app, the Java library,

third-party libraries, or the Android framework. Figure 2 illustrates

the results of this analysis. Across all apps, there is an approxi-

mately equal balance between the classes defined in the source

code of the apps and those defined in either third-party libraries

or the Android framework. Specifically, 54.6% of the classes that

are replaced by TDs are defined in the apps’ source code, and 43.5%

of them are defined in external dependencies. Our analysis also

revealed that 90% of the classes defined in the app’s source code

and replaced by TDs have external dependencies, and for 63.1%

of those, the dependencies involve the Android framework. This

result differs from related work analyzing mocking in traditional

Java programs [12, 45], where the percentage of classes replaced

by TDs and with external dependencies is lower than 60%5

Furthermore, 19.4% of the classes replaced by TDs belong to

the Android framework. Table 5 reports, for the ten most recur-

ring packages that contain those classes, the number of unique

classes from the packages (column Classes (#)) and the number of

times that those were replaced by a TD (column Occur. (#)). The

package containing the highest number of classes and occurrences

is android.content, which contains classes used to share content

between application components through the framework. For exam-

ple, classes android.content.Context and android.content.Intent

were replaced by TDs to allow test code to retrieve specific appli-

cation data during test execution. The top packages also include

android.location, which provides classes for location-based ser-

vices. The classes from this package that were replaced by TDs

provide specific location information or facilitate access to the in-

formation during testing.

Among the Android framework classes replaced by TDs, none

are from the android.hardware package, which contains camera and

sensor classes, even if three apps (A02, A06, and A10) use classes

from this package. We find this result interesting and believe that

suitably replacing those classes might help in producing better

test suites. We additionally observed that the six apps that use

Robolectric (A02, A04, A06, A08, A09, and A10) also replace classes

defined in the Android framework, suggesting that better Robolec-

tric models may be needed because either they do not include some

commonly used classes or, if they do, they are not used.

RQ2 answer: Developers replace classes that fulfill domain

logic (67.5%), model GUI components (10.7%), access the net-

work (8.7%), perform database operations (8.5%), and provide

app configurations (4.6%). In a large number of cases (90%) de-

velopers create TDs for classes that are external or coupled with

external dependencies. Developers also replace Android classes

to be able to access specific app data during testing.

5We computed this number by aggregating the results from RQ1 in [12].

2272

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

Figure 1: Types of classes replaced by TDs. Figure 2: Location of the classes replaced by TDs.

Table 5: Packages of classes from the Android framework

frequently replaced by TDs.

ID𝑃 Package Classes (#) Occur. (#)

P01 android.content 10 36

P02 android.widget 10 10

P03 android.view 7 15

P04 android.app 6 12

P05 androidx.lifecycle 6 9

P06 android.os 5 7

P07 android.location 4 5

P08 androidx.fragment.app 4 4

P09 android.net 3 9

P10 android.content.res 3 7

4.3 RQ3: What TD types do developers create?

Figure 3 shows the different types of TDs in the apps we consid-

ered. Figure 3 displays the relative frequency for each type and

is based on the statistically significant samples of Table 1 (TDT

analysis section). Across all apps, we identified 28 unused TDs (e.g.,

attributes annotated with @Mock but never used by any test), which

are not reported in Figure 3. For this reason, and because we might

assign more than one type to a single TD (e.g., when a TD is used

differently by different tests), the total number of types in the figure

might differ from the sample size reported in Table 1. Our results

show that the apps do use different types of TDs, and that dummies,

stubs, and mocks are the most prevalent types of TDs. Specifically,

39.9% of the TDs are dummies, 32.9% are stubs, 26% are mocks, and

only 1.2% are spies. Notably, our analysis did not identify any fakes

in the ten apps we considered. This result was expected, as these

apps rely on Mockito and Mockito-Kotlin, which do not support

the creation of fakes. Overall, these numbers show that developers

often define stubbed implementations for methods but also verify

interactions between components under test and the TDs.

To provide a different view on these data, the first part of Ta-

ble 6 reports the number of dummies, stubs, mocks, and spies for

each type of class identified in RQ2. A chi-squared test at a signifi-

cance level of 5% rejected the null hypothesis that TDs types are

independent from the types of classes. The second part of Table 6

presents TD types with respect to the classes grouped based on

where they are defined. Also in this case, a chi-squared test at a

significance level of 5% rejected the null hypothesis that TDs types

are independent from classes grouped by location.

Among the two categories that are not present in related work,

GUI component and configuration, the most frequent types of TDs

are mocks (40%) and stubs (38%), respectively. Mocks for the GUI

components are mostly used to verify interactions that should or

should not happen, whereas stubs for the configuration components

allow the tests to retrieve specific configuration values.

RQ3 answer: Dummies (39.9%), stubs (32.9%) and mocks (26%)

frequently occur in the tests of the Android apps we considered.

This seems to indicate that, although a large number of TDs are

trivial classes created simply to allow the tests to run, developers

also (1) make extensive use of stubbed implementations and (2)

frequently use TDs to verify interactions.

4.4 RQ4: How do tests use TDs?

Table 7 reports the results of the dynamic analysis described in

Section 3.2.4. The table shows the characteristics of the calls made

by the tests on both stubbed and verified methods. For each app, it

reports the following information: number of TDs whose methods

are called at least once by the tests (TD, for both stubbed and verified

methods), total number of calls to stubbed methods made by the

tests (SMC), total number of locations in the tests that make calls to

stubbed methods (CL), number of unique methods that are stubbed

at least once, whether they are called or not by the tests (SM),

number of different locations in which any method is stubbed

(SL), total number of stubbed methods returning values (VR), total

number of stubbed methods returning exceptions (ER), and total

2273

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

Use of Test Doubles in Android Testing:

An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 3: Types of TDs (percentages).

number of method calls verified (VMC). In total, the tests made

27,111 calls to stubbed methods. Analyzing the 1,493 code locations

making these calls and the 782 unique methods being called, we

noticed that tests tend to rely heavily on a small subset of the

stubbed methods. For example, for three of the apps (A01, A03, and

A04), a single stub accounts for over 50% of the calls to stubbed

methods. We also inspected the code defining and using the three

most called stubbed methods for each app and observed that the

majority of these methods are stubbed to improve test execution

performance (e.g., to avoid reading from configuration files).

Table 7 also shows that developers stubbed the same methods

at different code locations. Specifically, the 782 unique stubbed

methods are stubbed in 2,174 different locations, and 423 of these

methods are stubbed more than once, which seems to indicate

that tests use stubbed methods for different purposes. Furthermore,

although the majority of stubbed methods return values (column

VR), some of them return exceptions (column ER).

The numbers in the table for the verified methods show that

2,008 TDs were used to verify 3,492 method calls. Considering

that the total number of test execution is 6,553 (see Table 1), this

roughly correspond to one verified method call for every other test

execution (on average). This result further confirms our findings

from RQ3 that TDs are frequently used to verify interactions.

RQ4 answer: Tests perform a large number of calls to stubbed

methods (27,111 calls across 6,553 test executions). Many of these

calls involve stubs created to improve performance and speed up

test execution. Methods are often stubbed at multiple locations,

indicating that tests may stub the same method differently for

different purposes.

4.5 RQ5: What problems can TDs introduce?

The analysis we discussed in Section 3.2.5 revealed that all the

apps we considered contain unnecessary stubs. In many cases, this

happens because the test code that creates stubs is overly general,

and stubs are created also by tests that do not actually need them.

The most extreme example of this issue is in app andFHEM (A01),

Table 6: TD types for the different class types (abs. values).

Category Dummy Stub Mock Spy

Configuration 33 38 29 0

Database 47 63 40 0

GUI Component 55 37 64 4

Networking 65 56 40 1

Generic 501 369 257 15

App 493 369 288 9

Java 11 4 5 1

Third Party Lib. 26 69 16 1

Android 171 121 121 9

Table 7: Characteristics of the calls made by the tests on both

stubbed and verified TD methods.

IDA
Stubbed Verified

TD SMC CL SM SL VR ER TD VMC

A01 368 1557 47 35 84 84 0 5 5

A02 130 395 46 35 60 54 6 36 133

A03 596 11104 97 41 128 121 7 626 1445

A04 208 3779 55 37 76 74 2 139 236

A05 95 599 292 44 86 86 0 46 48

A06 405 711 79 64 210 181 29 180 206

A07 113 185 55 38 69 61 8 35 44

A08 406 659 230 144 404 393 11 497 781

A09 115 135 43 43 123 116 7 70 86

A10 1740 7987 549 301 934 932 2 374 508

4,176 27,111 1,493 782 2,174 2,102 72 2,008 3,492

in which a method in the test code defines a stub for each of the

767 resource strings [54] of the app and is called by 135 tests that

do not actually need the stubs. Overall, in the tests we considered,

106,545 unnecessary stubs are created at 624 test code locations. It

is worth noting that this problem can be seen as an instance of the

general fixture test smell [55].

Although not as prevalent as unnecessary stubs, our analysis

also revealed 19 issues related to mismatched stubs in 4 different

apps (A02, A07, A08, and A10). Mismatched stubs are problematic

because a test may exercise a behavior different from the intended

one and still pass. For example, in AnkiDroid (A02), a test meant

to exercise specific lines in the code never reaches them because

the call to a mismatched stub returns a value different from the

expected one, which causes the execution of a different control

flow without affecting the outcome of the test. We provide a full

discussion of this issue in our online appendix [15].

RQ5 answer: The 106,545 unnecessary and 19mismatched stubs

reported by our analysis provide evidence that TDs can lead to

test smells and to the testing of functionality that differs from

the intended one.

5 DISCUSSION AND ACTIONABLE INSIGHTS

In this section, we summarize the main findings of our study and

discuss some insight and actionable items derived from them.

Importance of TDs in Android testing. Before this study, it

was not known how frequently Android apps use a framework or

some alternative approach to create TDs. Our study shows that

2274

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

a considerable percentage (roughly 40%) of the apps that contain

automated tests use at least one of those frameworks or approaches.

This result motivates the investigation and development of techniques

that support developers in creating and maintaining TDs. The study

also finds that these apps tend to have a larger test suite as com-

pared to apps that do not use TDs. We believe that it is worthwhile

to perform additional studies, possibly including interviews to de-

velopers, to assess whether this is just a correlation or it instead

indicates that extensive testing of an app is likely to require the

use of TDs. The latter would provide an even stronger motivation

for the development of techniques that support the creation and

maintenance of TDs.

Supporting Mockito and Mockito-Kotlin. Similar to what

was found by studies on Java projects [50], we identify that Mockito

and Mockito-Kotlin, which are used by one third of the apps in

our dataset, are the most frequently used frameworks. However,

comparing the adoption of these technologies between Android and

Java projects, our results show that these two frameworks are more

widely used within Android apps than Mockito within traditional

Java projects (23% adoption rate) [50]. One possible explanation for

this difference is that Android apps are more tightly coupled with

their external dependencies [5, 56–58], and it is therefore necessary

to account for these dependencies during testing. In fact, among the

ten apps we considered in our detailed analysis, a majority (90%) of

classes replaced by TDs either are defined in external dependencies

or use external dependencies. This is in contrast with what was

identified by related work [12, 45] in the domain of Java programs,

where this percentage was 60%. These results, in addition to moti-

vating the development of techniques for creating and maintaining

TDs, also indicate that the techniques would be mostly useful if they

would support Mockito and Mockito-Kotlin.

Helping developers create TDs.When creating tests, devel-

opers must decide which parts of a system to replace with TDs

and which TDs to use [12, 14, 45]. We believe that the results of

our study, and possibly further studies along similar lines, can help

guide the development of recommender systems that help develop-

ers identify classes that should be replaced by TDs.

As a first observation, our results show that Android developers

use different types of TDs, and that stubbed implementations and

mocks that verify interactions between code under test and TDs

are prevalent. As far as stubs are concerned, we observe recurring

patterns. In particular, developers stub methods for data communi-

cations that are hard to setup (e.g., communications with classes

in the android.content package) or for specific types of data (e.g.,

data associated with classes in the android.location package). De-

velopers also create stubs to improve test execution performance.

As for TDs that verify interactions between TDs and components

under test, we find that this is done for all the types of classes we

analyzed and that both interactions that should and should not

happen are verified. Based on the results, we believe that techniques

that support creating and maintaining TDs should focus on stubs—

helping developers identify which methods require stubbing and what

values should be returned by these stubs—but also on mocks—helping

developers also decide which interactions to verify.

Identification of which methods to stub could be done by ana-

lyzing how the data is generated within the method (e.g., whether

it is location dependent) or by examining the performance cost of

different methods called during testing. This latter case is partic-

ularly important to ensure that JVM tests run quickly, as that is

one of the goals of those tests [59]. As for the values (or excep-

tions) that should be returned by the created stubs, test carving

techniques [60–62] could be used to identify, record, and suggest

values flowing between the boundaries of tests and code under

test. Similarly, approaches that analyze the interactions between

tests and code under test could be used to identify interactions that

should and should not happen, create corresponding checks, and

suggest them to developers.

Android-specific TDs. An additional way in which our results

could be leveraged to develop techniques that support Android

developers is by analyzing the Android-specific TDs that are used

in the apps. Specifically, our analysis of the different types of classes

that are replaced by TDs identifies two categories of classes that are

characteristic of Android apps: configuration and GUI component.

Because configuration and GUI component classes are typically part

of the Android framework or inherit from classes therein, they can

be easily identified and proposed to the developer as possible candi-

dates for replacement by TDs. Furthermore, our study found that

a large percentage of classes replaced by TDs consists of classes

that either are external dependencies or use external dependencies,

and that this happens more frequently than for traditional Java pro-

grams [12, 45]. One possible explanation is that Android apps tend

to have a tighter coupling with their external dependencies [5, 56–

58]. Additional studies focused on the coupling information between

apps and their external dependencies may help identify which classes

should be replaced by TDs.

TDs in JVM and device tests. Android developers can use TDs

in both JVM and device tests [10, 16]. Our study identifies a notice-

ably larger number of TDs—in particular, Mockito and Mockito-

Kotlin TDs—in JVM tests as compared to device tests. Although this

is not surprising, as JVM tests are run without a complete Android

framework and might therefore need to account for the missing

elements (even when Robolectric is used as the library provides

a partial implementation of the Android framework [37, 63]), it is

interesting to observe such a large difference. Based on these find-

ings, we recommend prioritizing the design of automated techniques

for supporting the creation and integration of TDs in 𝐽VM tests, as

those are likely to find larger adoption in practice.

Furthermore, future work could investigate the reasons behind

these differences. Analyzing the 25 TDs in the device tests for the

10 apps in Table 1, in particular, we found that all of them occur

within integration tests, none is used within GUI tests, and 17 of

them are checking for interactions happening with the TDs. This

was less expected because, for instance, GUI tests would typically

interact with external services (e.g., a backend server or a database)

and would therefore benefit from the use of TDs. Based on these

preliminary data, we hypothesize that developers may prefer to

avoid TDs in device tests, in order to have higher-fidelity tests, and

only use them for specific purposes (e.g., verifying that some calls

happen during testing, rather than replacing components in the

system). Interviews with app developers may help confirm or refuse

these hypotheses and, more generally, shed light on why TDs are

less used in device tests.

Supporting debugging of TDs. Like all activities that involve

a considerable amount of manual effort, creating and maintaining

2275

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

Use of Test Doubles in Android Testing:

An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

TDs in Android apps is error prone. In fact, our study identifies

cases of faulty TDs and instances of test code smells related to the

usage of TDs (see Section 4.5), which motivates the development

of techniques that support developers in debugging TDs. Based on

our results, a starting point could be the development of techniques

that identify obsolete TDs, which could be done by identifying TDs

that are not actually exercised during testing and by analyzing code

and tests co-evolution. It is worth noting that, although our study

highlights these issues in TDs for Android apps, they might also

appear in other types of software, so other application domains

could also benefit from these techniques.

6 THREATS TO VALIDITY

As it is the case for most empirical studies, there are threats to

validity associated with the results we presented. In terms of ex-

ternal validity, our results might not generalize to other Android

apps and corresponding tests. In RQ1, we mitigated this threat by

considering the largest (to the best of our knowledge) dataset of

apps with publicly available test suites in the literature, with apps

that vary widely in terms of size and category. For RQ2–RQ5, we

chose to perform our in-depth analysis based on the ten apps with

the highest number of TDs due to the significant manual effort

involved in preparing the apps for the analysis and performing the

analysis, as we discussed in Section 3.2.1. Although this allowed us

to perform a detailed investigation on over 2,000 TDs and carefully

inspect the results and the corresponding code, we acknowledge

that this part of the analysis is a case study. Additional studies based

on more apps, possibly selected using a different sampling strategy,

are needed to confirm the validity of our results and gather further

insights into how developers create and use TDs.

In terms of construct validity, our results might be affected by

errors in the implementation of the tools we used to perform our

analyses. To mitigate this threat, we extensively tested our tools

and manually inspected our results. Finally, we also performed

qualitative analyses, which might be characterized by divergent

understanding among the raters. We are confident in the reliabil-

ity of our analysis as the inter-rater reliability we measured was

considerably high.

7 RELATEDWORK

Other researchers performed empirical studies on Android app test-

ing [6–11]. Specifically, some work observed that developers use

testing frameworks such as JUnit, Robolectric, and Robotium [7].

Other work confirmed that most apps are still poorly tested, al-

though test automation and test quality are improving along with

the increasing success and wide adoption of mobile apps [8–10].

Yet other work showed that many apps had at least one flakiness

issue in their lifetime, and that the environment is one of the main

causes of flakiness together with concurrency [11]. None of this

body of work focuses on how Android developers use TDs within

their test suites.

Other researchers, however, have studied test mocking prac-

tices in non-mobile projects [12–14, 45, 50, 64]. Spadini and col-

leagues [12] analyze over 2,000 mocks objects in 4 Java projects and

report that the usage of mocks highly depends on the responsibility

of the class, and that developers frequently mock dependencies that

make testing difficult. Their study also shows that mocks tend to

exist since the very first version of the test class and tend to stay

for its whole lifetime. Pereira and Hora further explore this topic by

analyzing 12 popular Java software projects, distinguishing mock

objects from mock classes, and further classifying which classes

developers mock [13]. Similarly, Zhu and colleagues study over

10,000 tests in 4 open-source projects and propose a tool, Mock-

Sniffer, for identifying and recommending mocks for unit tests [14].

Additionally, the work from Trautsch and colleagues[64] focuses

on mocking practices in 10 Python projects. To the best of our

knowledge, none of the studies on mocking practices (1) differen-

tiates uses of TDs as we do in this paper, (2) focuses on mobile

apps, or (3) aims to identify possible issues with TDs. Our results

show, for instance, that Android apps replace types of classes that

were not categorized before and highlight that both stubbing and

operations to verify method calls are frequent and important. Our

study also shows the need for better techniques for debugging and

maintaining TDs.

Finally, related work also focused on generating, using, or main-

taining test mocks automatically [1–3, 5, 65–73]. Our paper provides

specific insights for researchers who want to define approaches

along these lines for in the context of Android.

ACKNOWLEDGMENTS

This work was partially supported by NSF, under grants CCF-

1563991 and CCF-0725202, Spanish Government’s SCUM grant

RTI2018-102043-B-I00, the Madrid Regional project BLOQUES,

DARPA, under contract N66001-21-C-4024, ONR, under contract

N00014-18-1-2662, DOE, under contract DE-FOA-0002460, and gifts

from Facebook, Google, IBM Research, and Microsoft Research.

8 CONCLUSION

In this paper, we presented an in-depth study aimed to understand

how developers create and use TDs in Android apps. Our results

showed that Mockito and Mockito-Kotlin are the most popular

frameworks for creating TDs. They also show that TDs are used to

replace both classes within the app and external dependencies, that

developers use different types of TDs, and that TDs can introduce

test smells and even errors in the test code.

Our results motivate further research in this area, justify the

development of techniques that can support developers in creating

and maintaining TDs, and identify several directions for future

work. As a first step, we will present our results to Android develop-

ers to gather their feedback, confirm or refuse our findings, and gain

further insights. We will also perform additional studies focused

on the coupling between apps and their external dependencies to

develop analysis techniques that can help identify which classes

should be replaced by TDs and which interactions between internal

and external code should be mocked and verified. A complementary

line of research we will pursue involves the development of tech-

niques for automatically or semi-automatically generating stubs

and mocks given a set of relevant classes and interactions. Finally,

we will keep performing empirical studies to confirm our results

and validate the new techniques we define.

2276

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Mattia Fazzini∗ , Chase Choi∗ , Juan Manuel Copia† , Gabriel Lee∗ ,

Yoshiki Kakehi‡ , Alessandra Gorla† , Alessandro Orso‡

REFERENCES
[1] K. Taneja, Y. Zhang, and T. Xie, “MODA: automated test generation for database

applications via mock objects,” in ASE 2010, 25th IEEE/ACM International Con-
ference on Automated Software Engineering, Antwerp, Belgium, September 20-24,
2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 2010, pp. 289–292.

[2] A. Arcuri, G. Fraser, and R. Just, “Private api access and functional mocking in
automated unit test generation,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE Computer Society, 2017, pp.
126–137.

[3] T. Bhagya, J. Dietrich, and H. W. Guesgen, “Generating mock skeletons for light-
weight web-service testing,” in 26th Asia-Pacific Software Engineering Conference,
APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019. IEEE, 2019, pp. 181–188.

[4] N. Alshahwan, Y. Jia, K. Lakhotia, G. Fraser, D. Shuler, and P. Tonella, “AUTO-
MOCK: automated synthesis of a mock environment for test case generation,” in
Practical Software Testing: Tool Automation and Human Factors, 14.03. - 19.03.2010,
2010.

[5] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for android apps,”
in Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis. New York, NY, USA: Association for ComputingMachinery,
2019, p. 204–215.

[6] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo, “Understanding
the test automation culture of app developers,” in 8th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2015, Graz, Austria, April
13-17, 2015. IEEE Computer Society, 2015, pp. 1–10.

[7] M. L. Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk, “How do
developers test android applications?” in 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017. IEEE Computer Society, 2017, pp. 613–622.

[8] L. Cruz, R. Abreu, and D. Lo, “To the attention of mobile software developers:
guess what, test your app!” Empir. Softw. Eng., vol. 24, no. 4, pp. 2438–2468, 2019.
[Online]. Available: https://doi.org/10.1007/s10664-019-09701-0

[9] F. Pecorelli, G. Catolino, F. Ferrucci, A. D. Lucia, and F. Palomba, “Testing of
mobile applications in the wild: A large-scale empirical study on android apps,” in
ICPC ’20: 28th International Conference on Program Comprehension, Seoul, Republic
of Korea, July 13-15, 2020. ACM, 2020, pp. 296–307.

[10] J. W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-source an-
droid apps: A large-scale empirical study,” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020, pp. 1078–1089.

[11] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in android apps,” in 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29,
2018. IEEE Computer Society, 2018, pp. 534–538. [Online]. Available:
https://doi.org/10.1109/ICSME.2018.00062

[12] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “Mock objects for testing
java systems,” Empirical Software Engineering, vol. 24, no. 3, pp. 1461–1498, 2019.

[13] G. Pereira and A. Hora, “Assessing mock classes: An empirical study,” in 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
2020, pp. 453–463.

[14] H. Zhu, L. Wei, M.Wen, Y. Liu, S.-C. Cheung, Q. Sheng, and C. Zhou, “Mocksniffer:
Characterizing and recommending mocking decisions for unit tests,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2020, pp. 436–447.

[15] M. Fazzini, C. Choi, J. M. Copia, G. Lee, Y. Kakehi, A. Gorla, and A. Orso. (2022,
Feb.) An artifact for the article: "use of test doubles in android testing: An in-depth
investigation". [Online]. Available: https://doi.org/10.5281/zenodo.6000372

[16] (2021, Apr.) Fundamentals of testing. [Online]. Available: https://developer.
android.com/training/testing/fundamentals

[17] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education, 2007.
[18] M. Fowler. (2021, Apr.) Testdouble. [Online]. Available: https://martinfowler.

com/bliki/TestDouble.html
[19] (2021, Apr.) Mockito. [Online]. Available: https://site.mockito.org
[20] (2021, Apr.) Mockito-kotlin. [Online]. Available: https://github.com/mockito/

mockito-kotlin
[21] (2021, Apr.) Powermock. [Online]. Available: https://powermock.github.io
[22] (2021, Apr.) Okhttp. [Online]. Available: https://square.github.io/okhttp
[23] (2021, Apr.) Retrofit. [Online]. Available: https://square.github.io/retrofit
[24] (2021, Apr.) Android test mock. [Online]. Available: https://developer.android.

com/reference/android/test/mock/package-summary
[25] (2021, Apr.) Mockito api. [Online]. Available: https://javadoc.io/doc/org.mockito/

mockito-core/latest/org/mockito/Mockito.html
[26] (2021, Apr.) Google play. [Online]. Available: https://play.google.com/store
[27] (2021, Apr.) Javaparser. [Online]. Available: https://javaparser.org
[28] (2021, Apr.) ktlint. [Online]. Available: https://github.com/pinterest/ktlint
[29] (2021, Apr.) Ankidroid. [Online]. Available: https://play.google.com/store/apps/

details?id=com.ichi2.anki
[30] (2021, Apr.) Ankidroid github. [Online]. Available: https://github.com/ankidroid/

Anki-Android
[31] (2021, Apr.) F-droid. [Online]. Available: https://f-droid.org/en

[32] (2021, Apr.) App manifest overview. [Online]. Available: https://developer.
android.com/guide/topics/manifest/manifest-intro

[33] (2021, Apr.) Easymock. [Online]. Available: https://easymock.org
[34] (2021, Apr.) jmock. [Online]. Available: http://jmock.org
[35] (2021, Apr.) Mockk. [Online]. Available: https://mockk.io
[36] (2021, Apr.) Mockserver. [Online]. Available: https://www.mock-server.com
[37] (2020, Apr.) Robolectric. [Online]. Available: http://robolectric.org
[38] (2021, Apr.) Rxandroidble. [Online]. Available: https://github.com/Polidea/

RxAndroidBle
[39] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for android

against real-world bugs,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2021,
p. 119–130.

[40] T. Wendland, J. Sun, J. Mahmud, S. M. H. Mansur, S. Huang, K. Moran, J. Rubin,
and M. Fazzini, “Andror2: A dataset of manually-reproduced bug reports for
android apps,” in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 600–604.

[41] J. Johnson, J. Mahmud, T. Wendland, K. Moran, J. Rubin, and M. Fazzini, “An
empirical investigation into the reproduction of bug reports for android apps,” in
Proceedings of the 29th edition of the IEEE International Conference on Software
Analysis, Evolution and Reengineering. IEEE Computer Society, 2022.

[42] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and procedures
for developing grounded theory. Sage publications, 2014.

[43] M. B. Miles, A. M. Huberman, and J. Saldaña, Qualitative data analysis: A methods
sourcebook. Sage publications, 2018.

[44] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot: A
java bytecode optimization framework,” in CASCON First Decade High Impact
Papers. USA: IBM Corp., 2010, p. 214–224.

[45] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “To mock or not to mock?
an empirical study on mocking practices,” in Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE Press, 2017, p. 402–412.

[46] K. Krippendorff, “Reliability in content analysis: Some common misconceptions
and recommendations,” Human communication research, vol. 30, no. 3, pp. 411–
433, 2004.

[47] ——, Content analysis: An introduction to its methodology. Sage publications,
2004.

[48] (2021, Apr.) Mockitohint. [Online]. Available: https://javadoc.io/static/org.
mockito/mockito-core/3.2.4/org/mockito/quality/MockitoHint.html

[49] (2021, Apr.) Mockito strictness documentation. [Online]. Avail-
able: https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/
quality/Strictness.html

[50] S. Mostafa and X.Wang, “An empirical study on the usage of mocking frameworks
in software testing,” in 2014 14th International Conference on Quality Software,
2014, pp. 127–132.

[51] B. G. Mateus and M. Martinez, “An empirical study on quality of android applica-
tions written in kotlin language,” Empirical Software Engineering, vol. 24, no. 6,
pp. 3356–3393, 2019.

[52] V. Oliveira, L. Teixeira, and F. Ebert, “On the adoption of kotlin on android
development: A triangulation study,” in 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020, pp.
206–216.

[53] (2021, Apr.) Update on kotlin for android. [Online]. Available: https://android-
developers.googleblog.com/2017/11/update-on-kotlin-for-android.html

[54] (2021, Apr.) String resources. [Online]. Available: https://developer.android.com/
guide/topics/resources/string-resource

[55] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“On the distribution of test smells in open source android applications: An ex-
ploratory study,” in Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering. USA: IBM Corp., 2019, p. 193–202.

[56] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accurate two-
phase approach to android app clone detection,” in Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p. 71–82.

[57] H. Wang and Y. Guo, “Understanding third-party libraries in mobile app analy-
sis,” in Proceedings of the 39th International Conference on Software Engineering
Companion, ser. ICSE-C ’17. IEEE Press, 2017, p. 515–516.

[58] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and
adoption in the android ecosystem,” in 2013 IEEE International Conference on
Software Maintenance. IEEE, 2013, pp. 70–79.

[59] (2021, Dec.) Build local unit testsk. [Online]. Available: https://developer.android.
com/training/testing/unit-testing/local-unit-tests

[60] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differential unit test
cases from system test cases,” in Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2006, p. 253–264.

[61] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and replaying
differential unit test cases from system test cases,” IEEE Transactions on Software

2277

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

Use of Test Doubles in Android Testing:

An In-Depth Investigation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Engineering, vol. 35, no. 1, pp. 29–45, 2009.
[62] A. Kampmann andA. Zeller, “Carving parameterized unit tests,” in 2019 IEEE/ACM

41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), 2019, pp. 248–249.

[63] (2020, Apr.) Robolectric. [Online]. Available: http://robolectric.org/extending
[64] F. Trautsch and J. Grabowski, “Are there any unit tests? an empirical study on

unit testing in open source python projects,” in 2017 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017. IEEE Computer Society, 2017, pp. 207–218.

[65] M. Islam and C. Csallner, “Generating test cases for programs that are coded
against interfaces and annotations,” ACM Trans. Softw. Eng. Methodol., vol. 23,
no. 3, pp. 21:1–21:38, 2014.

[66] A. Arcuri, G. Fraser, and J. P. Galeotti, “Generating TCP/UDP network data for
automated unit test generation,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, E. D. Nitto, M. Harman, and P. Heymans, Eds. ACM, 2015,
pp. 155–165.

[67] L. Gazzola, M. Goldstein, L. Mariani, I. Segall, and L. Ussi, “Automatic ex-vivo
regression testing of microservices,” in AST@ICSE 2020: IEEE/ACM 1st Interna-
tional Conference on Automation of Software Test, Seoul, Republic of Korea, 15-16
July, 2020. ACM, 2020, pp. 11–20.

[68] P. Zhang and S. G. Elbaum, “Amplifying tests to validate exception handling code:
An extended study in the mobile application domain,” ACM Trans. Softw. Eng.

Methodol., vol. 23, no. 4, pp. 32:1–32:28, 2014.
[69] G. Fourtounis, L. Triantafyllou, and Y. Smaragdakis, “Identifying java calls in

native code via binary scanning,” in ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020,
S. Khurshid and C. S. Pasareanu, Eds. ACM, 2020, pp. 388–400.

[70] L. Brutschy, P. Ferrara, O. Tripp, and M. Pistoia, “Shamdroid: gracefully degrading
functionality in the presence of limited resource access,” in Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, J. Aldrich and P. Eugster, Eds. ACM, 2015, pp. 316–331.

[71] B. Mariano, J. Reese, S. Xu, T. Nguyen, X. Qiu, J. S. Foster, and A. Solar-Lezama,
“Program synthesis with algebraic library specifications,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, pp. 132:1–132:25, 2019.

[72] X. Wang, L. Xiao, T. Yu, A. Woepse, and S. Wong, “An automatic refactoring
framework for replacing test-production inheritance by mocking mechanism,”
in Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2021, p. 540–552.

[73] M. Fazzini, A. Gorla, and A. Orso, “A framework for automated test mocking
of mobile apps,” in 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2020, pp. 1204–1208.

2278

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:44:50 UTC from IEEE Xplore. Restrictions apply.

