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Abstract—With the proliferation of data movement across the
Internet, global data traffic per year has already exceeded the
Zettabyte scale. The network infrastructure and end-systems
facilitating the vast data movement consume an extensive amount
of electricity, measured in terawatt-hours per year. This massive
energy footprint costs the world economy billions of dollars
partially due to energy consumed at the network end-systems.
Although extensive research has been done on managing power
consumption within the core networking infrastructure, there is
little research on reducing the power consumption at the end-
systems during active data transfers. This paper presents a novel
cross-layer optimization framework, called Cross-LayerHLA, to
minimize energy consumption at the end-systems by applying
machine learning techniques to historical transfer logs and
extracting the hidden relationships between different parameters
affecting both the performance and resource utilization. It utilizes
offline analysis to improve online learning and dynamic tuning
of application-level and Kkernel-level parameters with minimal
overhead. This approach minimizes end-system energy consump-
tion and maximizes data transfer throughput. Our experimental
results show that Cross-LayerHLA outperforms other state-of-
the-art solutions in this area.

Index Terms—energy-efficient data transfers, cross-layer opti-
mization, dynamic parameter tuning, historical log analysis.

I. INTRODUCTION

With the vast amount of data produced by scientific and
engineering applications, social media, cloud computing, and
the emerging Internet of Things (IoT), it is estimated that by
2022 the global Internet traffic will exceed 4.8 zettabytes per
year caused by a projected 28.5 billion network-connected
devices [1]. The energy consumption of telecommunication
networks has already exceeded 350 terawatt-hours, and the
Internet comprises more than 10% of the overall energy
consumption in many countries, costing the global economy
billions of dollars per year [2]. This massive energy footprint
has ignited immense research in power-aware networking,
focusing on reducing power consumption at both the hardware
and systems-levels, including network devices.

A large portion of the existing energy-efficient network-
ing research focuses on reducing power consumption within
the core networking infrastructure (e.g., switches, hubs,
and routers). State-of-the-art power-aware networking tech-
niques include emerging architectures with programmable
switches [3], power-aware networking protocols designed to
consider energy consumption while routing data [4], and
putting idle components to sleep [5]. On the other hand, many
of the existing core infrastructure solutions have shortcom-
ings. For example, putting idle components to sleep can be

detrimental to throughput. Also, replacing existing network
switches and network protocols with power-aware switches
and energy-efficient network protocols are expensive solutions
and not practical in the short term. This paper presents a
cost-effective, energy-efficient, practical end-system solution,
called Cross-LayerHLA, which is an optimization framework
that combines offline historical log analysis with dynamic
online tuning to minimize end-system energy consumption and
maximize data transfer throughput.
The major contributions of Cross-LayerHLA include:

o To the best of our knowledge, it is the first to integrate
cross-layer adaptive online tuning with offline analysis
using machine learning techniques to reduce energy con-
sumption at the end systems and improve data transfer
throughput performance.

o It is the first to dynamically tune both application-level
and kernel-level data transfer parameters while obtaining
optimal parameter values from offline analysis based on
real-time network conditions.

e Compared to state-of-the-art solutions, it reduces end-
system energy consumption during data transfers consid-
erably while increasing the data transfer throughput at the
same time.

The rest of this paper is organized as follows: Section
II describes the related work in the field; Section III de-
scribes how we model and optimize energy consumption and
throughput performance based on historical log analysis and
dynamic online tuning; Section IV evaluates Cross-LayerHLA
and compares it to other state-of-the-art solutions in this area;
and Section V concludes the paper.

II. RELATED WORK

Prior work on application level tuning of transfer parameters
mostly proposed static or non-scalable solutions to the problem
with some predefined values for the subset of the problem
space [6], [7]. The main problem with such solutions is that
they do not consider the dynamic nature of the network
links and the background traffic in the intermediate nodes.
Kasparan et al. [8] analyzed how pipelining affects throughput
in local area networks and high-speed downlink packet access
networks. Natarajan et al. [9] showed that using a single stream
for transferring independent web objects is very inefficient in
high latency networks. Using concurrent channels for deliv-
ering such objects increases download rates and decreases
browser response times by enabling concurrent rendering.



Robert et al. [10] used parallel file requests to increase usage
of available bandwidth during Internet video streaming. Li
et al. [11] presented a parallel streaming method instead
of traditional adaptive sequential streaming. In distributed
network environments, fetching media segments by parallel
channels increases streaming performance and also copes with
inefficient usage of resources. Alan et al. [12] analyzed the
effects of different application-layer protocol parameters such
as TCP pipelining, parallelism and concurrency levels on end-
to-end throughput versus total energy consumption.

In our prior work [13], we combined application-level
(pipelining, parallelism, and concurrency) and kernel-level
parameters (number of active cores, CPU frequency level)
to minimize energy consumption at the end systems (source
and destination nodes) during active data transfers. In that
work, we heuristically performed the optimization without
considering historical log analysis, but its convergence to
optimal values was slow. In this work, we optimize data
transfers and reduce energy consumption by jointly employing
offline historical analysis, machine learning techniques, and
online dynamic real-time tuning.

III. MODELING AND OPTIMIZING TRANSFER
THROUGHPUT AND ENERGY CONSUMPTION

To accurately model the data transfer throughput and end-
system energy consumption, we consider and ensure that:
(1) our model is representative and characteristic of real-
world data transfers; (2) our model accounts for fluctuating
networking conditions, external background traffic, and ex-
ternal network loads; and (3) our model considers dataset
characteristics (dataset size, average file size within a dataset,
and file size distribution). The dataset characteristics would
have a significant impact on transfer throughput performance
and end-system energy consumption [12]. For example, trans-
ferring a dataset comprised of multiple small files (such as
text files) can benefit significantly from high concurrency and
pipelining, and transferring a single large file would benefit
from parallelism. To convey the impact of the kernel-level and
application-level transfer parameters on end-system energy
consumption and throughput performance, we express the
relationships as the following functions:

E= fl(cpunuma CPU freqs CC, Ps PP, data, nEt) (1)

T = fo(cptnum, CPUsreq, cC, D, P, data, net) ()

where FE is the energy consumption, 7' is the throughput
performance, cpun..,, is the number of active CPU cores,
CpUsreq 1s the frequency level of each active CPU core, cc
is the concurrency level, p is the parallelism level, pp is the
pipelining level, data is the dataset characteristics and net is
the network characteristics.

To address the factors above, we chose to: (1) accumulate
and store real-world historical log data transfer information;
(2) utilize machine learning to perform clustering on the
historical log files, grouping/stratifying similar log entries
based on network conditions, dataset meta-information, and

network characteristics to uncover hidden relationships; and
(3) derive an appropriate interpolation or regression model
based on the rendered data characteristics. These steps are
explained in the offline optimization subsection below.

A. Offline Analysis

Step 1: Accumulate and cache historical log data: During
a data transfer, we accumulate the following information: i)
throughput performance; ii) energy consumption; iii) network
characteristics; iv) end-system resource usage; v) dataset char-
acteristics; and vi) kernel-level and application-level parameter
configuration. Kernel-level and application-level parameter
configuration includes: i) the number of active CPU cores; ii)
the frequency level in which the active CPU cores operate; iii)
concurrency; iv) parallelism; and v) pipelining. Historical log
files are accumulated periodically and cached in a log server.

Step 2: Stratify historical log data: After accumulating
historical log data, we stratify the log entries based on similar
data characteristics. We utilize Hierarchical Agglomerative
Clustering (HAC) [14] with the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) [15] to achieve this.
Also, we enforce artificial boundaries based on data transfers’
distribution characteristics to ensure accurate stratification.
Boundaries are based on the mean, and standard deviation of
the achieved throughput and energy consumption of multiple
collective data transfer runs. We utilize a bottom-up approach
to cluster data in tiers. For tier 1, we cluster log entries
based on external network characteristics. For tier 2, we
apply agglomerative hierarchical clustering within each of the
tier 1 clusters, further grouping log entries based on dataset
meta-info (dataset size, file distribution, average file size
and number of files in dataset). Since high external network
loads decreases throughput performance and increases end-
system energy consumption we further stratify the strata/data
into interval ranges based on the data transfer logs’ external
network load distribution characteristics. This is necessary
as current optimal parameters may become suboptimal as
external network traffic changes. For tier 3, we further group
tier 2 clusters based on network characteristics such as source
and destination nodes and their corresponding bandwidth and
latency.

Step 3: Derive interpolation/regression model: After data
is accumulated, stratified, and categorized, we analyze and
extract the hidden relationships within them. Since estimated
energy consumption and throughput can be modeled as poly-
nomial surfaces, we utilized piece-wise cubic spline interpo-
lation [16] to derive the interpolants for each cluster/stratum.
Second-order (quadratic) polynomial interpolation and third-
order (cubic) polynomial interpolation based on Newton’s or
Lagrange’s methods [17] do not fit the data as smoothly as
piece-wise cubic polynomials, which assures smoothness up
to the second derivative. Since each data transfer parameter
has distinct qualities, we model them independently. We first
model a 2-dimensional cubic spline interpolation for energy
consumption utilizing the number of CPU cores, denoted as



cpu, as the abscissas and the end-system energy consumption
values, denoted as e, as the ordinates.

€; = Si(CPUz‘) 3)

Given a cluster/stratum of discrete points which we will
refer to as knots in a 2-dimensional space {(cpu;,e;)},
¢t = 1,...,N, we formulate the interpolant e; = s(cpu;) by
using the piece-wise polynomial s;(cpu) as a nexus bridg-
ing together the pair of consecutive knots (cpu;,e;) and
(cpuit1, €ir1). This allows us to derive natural relaxed piece-
wise cubic polynomials, where each e; have zero second
derivatives at the end knots and assures curvature smooth-
ness by restricting its coefficients. We can define each cubic
polynomial piece as:

es = s(pp). For each cubic spline polynomial we obtain the
optimal parameter values based on data transfer service level
agreements (SLA) and perform uniform sampling matching
the criteria. Utilizing piece-wise cubic-spline surface interpo-
lation, we were able to stitch together multiple cubic functions
and predict/estimate both energy consumption and throughput
performance of the previously missing parameters. This was
necessary as optimal transfer parameter values needed to meet
a particular SLA may not be present in the historical log data.
To test the accuracy of our cubic spline interpolation method,
we used 70% of the logs to perform the interpolation and the
remaining 30% as the test data. We used the standard Root
Mean Squared Error (RMSE) [19] to calculate the accuracy.

B. SLA Optimization

2 3 . .
si(cpui) = a;0+a;1cputa; 2cpu”+a; zepuVepu € [cpui, cpuit1]We developed two categories of service-level agreements

“)
Since we have N — 1 piece-wise cubic polynomials, we have
4(N — 1) unknown coefficients a;; where j = 0,1,2,3
of piece-wise cubic polynomial s;(cpu). We also have N
continuity conditions/stipulations for all given knots evaluated
by the corresponding piece-wise cubic polynomial as specified
by:
i=1,..

Si(CpUi) = €4, 7N (5)

Furthermore, we have /N — 2 continuity conditions/stipulations
for all interior knots specified as:

Si(chiJrl) = Si+1(CPuz'+1), i=1,.,N—-2 (6)

Utilizing Leibniz’s notation for differentiation [18], we can
specify N — 2 slope continuity conditions/stipulations for the
interior knots as:

ds; ds;+

_ dsig1 o B
m(cpui-i-l) _ d(cpu) (Cpuz_H) 1 = 1, - N 2 (7)

This produces N — 2 quadratic polynomial continuity stip-
ulations. We also enforce N — 2 additional continuity stipu-
lations for the interior knots utilizing the second derivative as
follows:

d28i d28i 1

2 (cpu) (CpuiJrl) = d2 (CZ;L) (CpuiJrl)
This produces N — 2 Linear polynomial stipulations. Since
we are constructing a natural relaxed piece-wise cubic spline
polynomial the second derivative at the end knots are zero and
may be specified as follows:

d?s d?s
W(Cpul) = W(Cpun) =0 )

By solving the system of linear equations we obtain the
coefficients.

End-system energy consumption also depends on the other
four data transfer parameters: frequency (freq), concurrency
(cc), pipelining (pp), and Parallelism (p). We extend the
above example to formulate three multivariate piece-wise
cubic spline polynomials corresponding to cubic polynomial
surfaces. These include: e; = s(cpu, freq), es = s(cc, p) and

i=1,.,N—2 (8)

(SLAs) as our optimization goals: (1) energy-constrained
SLAs and (2) throughput assurance/guarantee SLAs. Based
on the SLA type and the SLA specifications, we must select
an optimal combination of the tunable parameters to satisfy
the SLA requirements. To find the optimal parameter values
for minimum end-system energy consumption, our energy-
constrained optimization model determines the local minima
in each of the three multivariate piece-wise cubic spline inter-
polation formulas and selects parameters corresponding to the
minimum of the minima. This can be achieved by performing
the second partial derivative test on all local minima, by
calculating the Hessian matrix and determining if the matrix is
positive definite. For throughput optimization, we perform the
reverse, find all local maxima, calculate the Hessian matrix,
and determine if the matrix is negative definite. We extend
our previous optimization model [20] to include kernel-level
parameters and express it as:

min (E)
parameters(kernel,app) (10)
subject to T > Tsa
Ty
i [T
parameters(kernel,app) T (11)
subject to E < FEqq

The energy-constrained model allows a user to select
optimal data transfer parameters that maximize throughput
while ensuring the achieved energy consumption does not
exceed the threshold specified by the SLA. The throughput
guarantee model allows a user to select optimal data transfer
parameters that minimizes energy consumption while ensuring
the achieved throughput does not fall below the throughput
threshold specified in the SLA. We utilize a Matlab solver to
obtain optimal transfer parameters based on the specified SLA.

After the offline analysis is performed, we store optimized
kernel-level and application-level transfer parameters in our
custom data structure for our dynamic online program to
use. Each data structure instance corresponds to the optimal
parameter configuration of a cluster satisfying the SLA.



Algorithm 1: Dynamic Energy Constraint Tuning

Algorithm 2: Dynamic Throughput Tuning

1 datasets = ClusterFiles()

2 for Timeout do

calculateDeltaEnergy()
calculateWeightedThroughput()
calculateDeltaRtt().

t = dataSize / Tavg.

Epred = Pavg * 1
calculateExternalNetworkPercentage()
startWithLightExtNetworkLoadSurface()

/+* If Energy Increased */
10 if (AEjust + Epred > (14 8) * pastEpreq) ||
(AEjqst + Epreq > SLA) then

R-EEN- - B NV ]

/* External Network Load Increased */
11 if Extyer > (14 B) * Extyefye then
/+ Obtain Cluster/Surface with Higher
External Network Load */
12 sur facemignhe < NewOptParams
13 end
14 end
// Energy Decreased & Ext Network Load
Decreased
15 else if ref ExtNet < (1 — «) * Extnetrast then
16 ‘ surfacerowg  NewOptParams
17 end

18 end

C. Online Dynamic Energy Constraint Tuning

Cross-LayerHLA employs a dynamic online energy con-
straint tuning algorithm shown in Algorithm 1 derived from
the offline energy constraint optimization model. Based on the
energy constraint SLA, it periodically monitors the instanta-
neous power consumption at specified regular time intervals.
If the instantaneous power consumption exceeds the threshold
specified in the SLA, it obtains new optimal parameters within
the confidence range/sampling region by obtaining a new
energy polynomial surface that is closest to the current mea-
sured external network load and energy consumption range.
If the measured instantaneous power consumption decreased
from the last interval check, it obtains the closest energy
polynomial surface and retrieves the associated optimal data
transfer parameters. This is done approximately three times as
continuously changing parameters are expensive.

D. Online Dynamic Throughput Guarantee Constraint Tuning

Cross-LayerHLA employs a dynamic online throughput
constraint tuning algorithm shown in Algorithm 2 derived from
the offline throughput constraint optimization model. In this al-
gorithm, it periodically monitors the instantaneous throughput
at specified regular time intervals. If the instantaneous through-
put falls below the threshold specified in the SLA, it obtains
new optimal parameters within the confidence range/sampling
region by obtaining a new polynomial throughput surface that
is closest to the current measured external network load. If

1 datasets = ClusterFiles()
2 for Timeout do

3 calculateWeightedThroughput()
4 calculateDeltaRtt().
5 calculateExternalNetworkPercentage()
6 startWithLightExtNetworklLoadSurface()
/+ If Throughput Decreased x/
7 if Toug < (1— ) *Trast || (Tawg < SLA) then
/+ External Network Load Increased */
8 if Extye: > (14 B) xref ExtNet then
/* Obtain Cluster/Surface with Higher
External Network Load x/
9 sur facemigng < NewOptParams
10 end
1 end
12 else
// Throughput Increased
13 if // External Network Load decreased
14 refExtNet < (1 — ) * ExtnetLast then
/* Obtain Cluster/Surface with Lower
External Network Load */
15 sur facepows < NewOptParams
16 end
17 end
18 end

the measured instantaneous throughput increased or decreased
from the last interval check, it obtains the closest throughput
polynomial surface and retrieves the associated optimal data
transfer parameters for the associated external network load.
Obtaining optimal parameters from the polynomial throughput
surfaces is done at a maximum of three times since it is
expensive to modify the data transfer parameters. Afterward, if
necessary, data transfer parameters are adjusted heuristically.

E. Testing Online Dynamic Algorithms

In order to fairly compare the efficiency of our dynamic en-
ergy constraint algorithm and throughput guarantee algorithm
with other transfer tools/solutions, we utilize the extreme use
cases. To achieve this, we use an SLA policy that informs our
dynamic energy constraint algorithm to transfer data with the
least amount of energy/power consumption by utilizing joint
optimal kernel-level and application-level parameters. We call
this SLA policy the minimum energy consumption SLA. To
test our throughput guarantee algorithm, we use an SLA policy
that enforces our algorithm to transfer data with the maximum
throughput rate achievable, utilizing joint optimal kernel-level
and application-level parameters.

IV. EXPERIMENTAL EVALUATION

We collected experimental data by performing data transfers
on three different wide-area network testbeds over a one week
period. Our testbeds include (1) Chameleon Cloud, server
located at the University of Chicago and client located at



(a) Chameleon Throughput (Mbps)

(b) CloudLab Throughput (Mbps)

(c) Inter-Cloud Throughput (Mbps)
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(d) Chameleon Client Energy (Joules)

(e) CloudLab Client Energy (Joules)

(f) Inter-Cloud Client Energy (Joules)
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Fig. 1: Achieved throughput (Mbps) and energy consumption (Joules) over 3 diverse testbeds

Testbed Bandwidth | RTT BDP CPU Architecture
Haswell (server)
Chameleon | 10 Gbps 32 ms | 40 MB Haswell (client)
Haswell (server)
CloudLab 1 Gbps 36 ms | 4.5 MB Broadwell (client)
Haswell (server)
Inter-Cloud | 1 Gbps 48 ms | 6 MB Bloomfield (client)
TABLE I: Characteristics of testbeds
Dataset | Num Files | Total Size | Avg. File Size | Std. Dev.
Small 20,000 1.94 GB 101.92 KB 29.06 KB
Medium | 5,000 11.70 GB 2.40 MB 0.27 MB
Large 128 27.85 GB 222.78 MB 15.19 MB

TABLE II: Dataset Characteristics

the Texas Advanced Computing Center; (2) CloudLab, server
located at the University of Wisconsin and client located
at the University of Utah; (3) Inter-Cloud, server located at
the Texas Advanced Computing Center (part of Chameleon
Cloud) and client located at the University of Wisconsin (part
of CloudLab). Both the Chameleon nodes run on a Dell
PowerEdge R630 containing 24 CPU cores distributed in dual-
socket Intel Xeon E5-2670 v3 “Haswell” processors, each
containing 12 cores and 128 GiB of RAM [21]. The client
within the CloudLab architecture runs on an HPE ProLiant
XL170r server containing 10 CPU cores plus hyper-threading
distributed in an Intel E5-2640v4 “Broadwell” processor con-
taining 64 GiB of RAM. The server within the CloudLab
testbed as well as the client within the inter-cloud testbed
run on Cisco’s UCS SFF 220 M4 and UCS LFF 240 M4,
respectively. Both contain 2 Intel E5S-2630 “Haswell” proces-

sors, each containing eight cores plus hyper-threading and 128
GiB of RAM [22]. The server within the Inter-Cloud testbed
shares the same specifications as the Chameleon Cloud server.
A specification overview is provided in table I. Experimental
data transfers were performed during both peak hours and non-
peak hours utilizing three diverse datasets containing different
characteristics. These include: (1) the small file size dataset
consisting of 20,000 HTML files derived from the common
crawl project [23]; (2) the medium file size dataset consisting
of 5,000 image files derived from Flickr [24]; (3) the large
file size dataset consisting of 128 video files from Jiku [25].
Complete dataset characteristics are specified in table II. We
collected and stored data transfer meta-information on our log
servers. We analyzed, grouped, and performed optimizations
on our historical log data based on the target SLAs.

On all of our testbeds we measure the client’s power con-
sumption using Intel’s Running Average Power Limit (RAPL)
which uses a software model to accurately estimate power
consumption based on hardware performance counters and I/O
models. David et al. [26] and Hihnel et al. [27] highlighted
RAPL’s precision in measuring both memory and CPU power
consumption. To distinguish data transfer power consump-
tion from total system power consumption we subtracted the
system baseline power consumption from the total power
readings. In addition, to mitigate the disk-to-disk and I/O-to-
disk transfer latency, we performed memory-to-memory data
transfers.

To the best of our knowledge there are three related state-
of-the-art solutions in this area. These include the algorithms
proposed by Alan et al. [12], Di Tacchio et al. [13] and



Nine et al. [20]. Alan et al. [12] implemented energy-aware
algorithms to optimize HTTP data transfers and reduce power
consumption based on heuristics that lacked real-time tuning,
adversely affecting throughput performance and end-system
energy consumption during fluctuating network conditions. Di
Tacchio et al. developed real-time tuning heuristics to opti-
mize throughput and minimize energy consumption by tuning
both application-level data transfer parameters and kernel-
level parameters during HTTP transfers. However, at times,
convergence to near optimal parameters was slow causing
data transfers to utilize suboptimal parameter combinations
for extended time periods during the tuning process. Slow
convergence adversely affects throughput performance and in-
creases end-system energy consumption. Over-estimating data
transfer parameters and over- provisioning compute resources
can increase energy cost. Under-estimating data transfer pa-
rameters and under-provisioning compute resources can reduce
throughput performance. Nine et al. [20] proposed dynamic
tuning algorithms for GridFTP data transfers utilizing offline
historical log analysis and online tuning mechanisms; however,
they did not consider jointly scaling pertinent kernel-level
parameters with data transfer application-level parameters. Re-
sources such as the number of active cores and CPU frequency
determine the number of Instructions per Second (IPS) that
can be executed and affects throughput performance and end-
system energy consumption. Dynamically tuning application-
level parameters without tuning kernel-level parameters can
adversely affect throughput performance and end-system en-
ergy consumption.

Since we developed and implemented algorithms to dynam-
ically tune HTTP data transfer parameters we compared our
algorithms to those of Di Tacchio et al. [13]. Furthermore, we
compared our algorithms to two common data transfer baseline
tools: 1.) curl, an open source tool used to transfer data and
2.) wget, a free command line tool used to retrieve files
from the web. For fair comparison between all algorithms and
baseline tools we utilized the datasets specified in table II when
performing experimental data transfers. In addition, since
the baseline tools did not support service-level agreements
(SLAs), we set the SLAs of our models/algorithms to two
diametrical cases: (1) maximum achievable throughput (Max
Tput HLA) and (2) minimum achievable energy consumption
(Min Energy HLA).

Figure 1 displays a comparison of throughput performance
and energy consumption across three diverse testbeds: 1.)
Chameleon Cloud, 2.) CloudLab and 3.) Inter-Cloud. As
anticipated, curl and wget produced subpar results across all
testbeds for all data transfers due to the absence of parameter
optimization. Di Tacchio et al. algorithms performed better
than all the baseline tools. However, executing dataset transfers
utilizing Di Tacchio et al. algorithms (Max Tput (Di Tac-
chio) and Min Energy (Di Tacchio) on the large Bandwidth-
Delay-Product (BDP) testbed (Chameleon Cloud) illustrated a
few shortcomings: i) Heuristically tuning transfer parameters
without using regression analysis or offline estimation tech-
niques based on past data transfer history may cause slow

convergence to optimal parameter values. This may be further
exacerbated by fluctuating external network conditions which
may cause the heuristic to overestimate application-level trans-
fer parameters and compute resources such as the number of
CPU cores. Additionally, dynamic external network conditions
can cause the heuristic to underestimate application-level
data transfer parameters and compute resources. ii) The cost
of over-estimating or under-estimating parameter values and
compute resources is expensive. Overestimating parameter val-
ues and compute resources can increase energy consumption.
Conversely, underestimating parameter values and compute
resources can degrade throughput performance. Utilizing ma-
chine learning techniques and interpolation on past data trans-
fer history logs allows our algorithms to accurately estimate
near optimal data transfer parameters for a given SLA based on
the current network conditions. This causes our algorithms to
converge faster to optimal parameters. This is clearly observed
in figure 1(a) and 1(d) which compares achieved throughput
performance and data transfer energy across all algorithms
and datasets. Max Tput HLA outperformed Max Tput (Di
Tacchio) across all datasets increasing throughput of HTML
data transfers by 69%, image data transfers by 31% and video
data transfers by 20%. Furthermore, Max Tput HLA achieved
the lowest power consumption due to reduced data transfer
time. Extended data transfer time increases both static and
non-static power consumption. Additionally, Min Energy HLA
algorithm decreased energy consumption by an additional 46%
for HTML data transfers, 26% for image data transfers and
42% for video data transfers, with respect to Min Energy (Di
Tacchio). Further throughput improvement was observed when
we compared Max Tput HLA algorithms against the baseline
tools. Max Tput HLA improved throughput performance for
both HTML and image data transfers by up to 99% when
compared to curl and wget. For video data transfers, Max
Tput HLA increased throughput by 73%. Furthermore, Min
Energy HLA decreased energy consumption by an additional
99% for HTML data transfers, 98% for image data transfers
and 75% for video data transfers. Moreover, for all algorithms
we enhanced throughput performance and minimized end-
system energy consumption utilizing approximately 67% of
the available CPU cores.

Data transfers executed on the CloudLab network, a lower
BDP network, demonstrated that Max Tput HLA outperformed
Max Tput (Di Tacchio) by up to 35% for HTML transfers. Max
Tput HLA further increased throughput by 14% for image
data transfers and 8% for video transfers. For lower BDP
networks, both Max Tput (Di Tacchio) and Min Energy (Di
Tacchio) were able to converge faster to optimal parameters
than on larger BDP networks. Nevertheless, the heuristic
tuning mechanism has the propensity to either overestimate or
underestimate data transfer parameters and compute resources
when network conditions fluctuate. On the otherhand, Min
Energy HLA decreased energy consumption by an additional
48% for HTML data transfers, 18% for image data trans-
fers and 9% for video transfers compared to Min Energy
(Di Tacchio). With respect to the baseline tools, Max Tput



HLA further increased throughput by up to 99% for HTML3]
transfers, 94% for image transfer and up to 34% for video
transfers. Furthermore, Min Energy HLA decreased energy
consumption by an additional 99% for HTML transfers and4]
up to 24% for video transfers. Experiments performed on the
Inter-Cloud network demonstrated that the Max Tput HLAg,
algorithm increased throughput by an additional 40% for
HTML data transfer, 13% for image data transfers and 8% for
video data transfers with respect to Max Tput (Di Tacchio).[
Furthermore, Min Energy HLA decreased energy consumption
by an additional 36% for HTML data transfers, but slightly’]
increased energy consumption for image and video transfers.
Compared to curl, Max Tput HLA increased throughput fofs]
HTML data transfers by 99%, 95% for image data transfers
and 89% for video data transfers. In addition, Min Energy
HLA decreased energy consumption by an additional 99% for9]
HTML data transfers, 92% for image data transfer and 74%
for video data transfers. Compared to wget, Max Tput HLA,,
increased throughput by 99% for HTML data transfers, 95%
for image data transfers and 89% for video data transfers.
Furthermore, Min Energy HLA decreased energy consumptiog
by an additional 99% for HTML data transfers, 93% for image
data transfers and 88% for video data transfers. Additionall
for all algorithms we enhanced performance by approximatel
using only 80% of the available CPU cores. [13]

[14]
V. CONCLUSION
In this paper, we have introduced a cross-layer optimizatiogs;
framework that combines offline analysis with adaptive on-
line tuning to minimize end-system energy consumption and
maximize data transfer throughput performance. We presente[clm
novel algorithms that dynamically tune both application-level7]
and kernel-level parameters based on historical log analysis
and current network conditions to meet the requirements sgfg;
by the service-level agreements (SLAs). Our detailed exper-
imental analysis and results show that our proposed Cros$!%!
LayerHLA algorithms outperforms the state-of-the-art solyyy,
tions in this area, reducing energy consumption considerably

while increasing data transfer throughput. 1]
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