Automated Test Generation for REST APIs: No Time to Rest Yet

Myeongsoo Kim
Georgia Institute of Technology
USA
mkim754@gatech.edu

Saurabh Sinha
IBM T.J. Watson Research Center
USA
sinhas@us.ibm.com

ABSTRACT

Modern web services routinely provide REST APIs for clients to
access their functionality. These APIs present unique challenges
and opportunities for automated testing, driving the recent devel-
opment of many techniques and tools that generate test cases for
API endpoints using various strategies. Understanding how these
techniques compare to one another is difficult, as they have been
evaluated on different benchmarks and using different metrics. To
fill this gap, we performed an empirical study aimed to understand
the landscape in automated testing of REST APIs and guide future
research in this area. We first identified, through a systematic se-
lection process, a set of 10 state-of-the-art REST API testing tools
that included tools developed by both researchers and practitioners.
We then applied these tools to a benchmark of 20 real-world open-
source RESTful services and analyzed their performance in terms of
code coverage achieved and unique failures triggered. This analysis
allowed us to identify strengths, weaknesses, and limitations of
the tools considered and of their underlying strategies, as well as
implications of our findings for future research in this area.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

KEYWORDS
Automated software testing, RESTful APIs

ACM Reference Format:

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Auto-
mated Test Generation for REST APIs: No Time to Rest Yet. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA °22), July 18-22, 2022, Virtual, South Korea. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3533767.3534401

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9379-9/22/07.

https://doi.org/l().l145/3533767.3534401

289

Qi Xin
Wuhan University
China
gxin@whu.edu.cn

Alessandro Orso
Georgia Institute of Technology
USA
orso@cc.gatech.edu

1 INTRODUCTION

The last decade has seen a tremendous growth in the availability of
web APIs—APIs that provide access to a service through a web inter-
face. This increased popularity has been driven by various industry
trends, including the advent of cloud computing, the broad adop-
tion of microservices [60], and newer value propositions enabled
by the “API economy”. A majority of modern web APIs adhere to
the REpresentational State Transfer (REST) architectural style [32]
and are referred to as RESTful APIs, whose popularity is reflected
in the availability of thousands of APIs in public directories (e.g.,
ProgrammableWeb [65] and APIs guru [4]).

Given the large number of applications that rely on web APIs,
it is essential to test these APIs thoroughly to ensure their quality.
It is therefore not surprising that many automated techniques and
tools for REST APIs have been proposed in recent years [6, 9, 13—
15, 27, 29, 35, 44, 51, 58, 74, 76, 79]. These techniques take as input
a description of the API, in the OpenAPI specification format [62]
or API Blueprint [1], and employ various strategies to generate test
cases for exercising API endpoints defined in the specification.

Although these tools have been evaluated, these evaluations have
been performed (1) in different settings (in terms of API benchmarks
considered, experiment setup, and metrics used), (2) using bench-
marks that are in some cases limited in size or closed-source, and
(3) mostly in isolation or involving only limited comparisons. It
is thus difficult to understand how these tools compare to one an-
other. Recently, and concurrently to our effort, there has been some
progress in this direction, via two empirical comparisons of black-
box REST API testing tools [25, 38] and an evaluation of white-box
and black-box REST API test generation [59]. These efforts are a
step in the right direction but are still limited in scope. Specifically,
and to the best of our knowledge, ours is the first study that (1)
systematically identifies both academic and practitioners’ tools to
be used in the comparison, (2) analyzes the code of the benchmarks
to identify code characteristics that affect the performance of the
tools and differentiate them, (3) conducts an in-depth analysis of
the failures revealed by the tools, and (4) identifies concrete and
specific future research directions.

As benchmark for our study, we used a set of 20 RESTful services
selected among those used in related work and through a search
on GitHub, focusing on Java/Kotlin open-source services that did
not excessively rely on external resources. To select the tools for
our evaluation, we performed a thorough literature search, which
resulted in 8 academic and 11 practitioners’ tools. Among those,

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3533767.3534401

ISSTA °22, July 18-22, 2022, Virtual, South Korea

we selected the tools that relied on commonly used REST API stan-

dards, such as OpenAPI, produced actual test cases, and were able

to handle our benchmark of 20 services. The resulting set consisted
of 10 tools overall: one white-box tool, EvoMasterWB [6, 9], and
nine black-box tools, APIFuzzer [3], bBBOXRT [51], Dredd [28], Evo-

MasterBB [10], RESTest [58], RESTler [14], RestTestGen [27, 79],

Schemathesis [38], and Tcases [77]. In the paper, we provide a char-

acterization of these tools along several dimensions, including their

underlying input-generation approach, their support for stateful

API testing, and the types of test oracles they use.

We applied these tools to our benchmark of 20 services and
evaluated their performance in terms of code coverage achieved
(lines, branches, and methods exercised) and different kinds of fault-
detection ability (generic errors, unique failure points, and unique
library failure points). Through a thorough analysis of the results,
we also investigated the strengths and weaknesses of the tools and
of their underlying test-generation strategies.

Overall, all tools achieved relatively low line and branch coverage
on many benchmarks, which indicates that there is considerable
room for improvement. Two common limitations of many tools, in
particular, involve the inability of (1) generating input values that
satisfy specific constraints (e.g., parameters that must have a given
format), and (2) satisfying dependencies among requests (e.g., this
endpoint must be called before these other endpoints). In general,
we found that accounting for dependencies among endpoints is key
to performing effective REST API testing, but existing techniques
either do not consider these dependencies or use weak heuristics
to infer them, which limits their overall effectiveness.

The paper also discusses lessons learned and implications for
future research based on our results. For example, REST API testing
techniques should leverage information embedded in the specifi-
cation and the server logs to improve the quality of the test in-
put parameters they generate. For another example, dependencies
among services could be detected through static analysis, if the
source code is available, and through natural language processing
techniques applied to the service specification. Finally, in addition
to discussing possible ways to improve REST testing approaches,
we also present a proof-of-concept evaluation of these ideas that
shows the feasibility of the suggested directions.

In summary, this work provides the following contributions:

o A comprehensive empirical study of automated test-generation
tools for REST APIs that involves 10 academic and practitioners’
tools and assesses their performance on 20 benchmarks in terms
of code coverage and different types of fault-detection ability.

e An analysis of the strengths and weaknesses of the tools con-
sidered and their underlying techniques, with suggestions for
improvement and a discussion of the implications for future re-
search.

e An artifact with the tools and benchmarks that can allow other
researchers to replicate our work and build upon it [12].

2 BACKGROUND

2.1 REST APIs

REST APIs are web APIs that follow the RESTful architectural
style [32]. Clients can communicate with web services through
their REST APIs by sending HTTP requests to the services and

290

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso

1 "/products/{productName}": { 12 31,

2 "get": { 13 "responses": {

3 "operationId": 14 "200": {

4 "getProductByName", 15 "description":

5 "produces": 16 "successful operation",
6 ["application/json"], 17 "schema": {

7 "parameters": [{ 18 "$ref":

8 "name": "productName", 19 "#/definitions/Product"
9 "in": "path", 20 3,

10 "required": true, 21 "headers": {}

11 "type": "string" 22 3313}

Figure 1: An example OpenAPI specification.

receiving responses. Clients send requests to access and/or manipu-
late resources managed by the service, where a resource represents
data that a client may want to create, delete, or access. The request
is sent to an API endpoint, which is identified by a resource path,
together with an HTTP method that specifies the action to be per-
formed on the resource. The most commonly used methods are
POST, GET, PUT, and DELETE, which are used to create, read, update,
and delete a resource, respectively. The combination of an endpoint
plus an HTTP method is called an operation. In addition to spec-
ifying an operation, a request can optionally also specify HTTP
headers containing metadata (e.g., the data format of the resource
targeted) and a body that contains the payload for the request (e.g.,
text in JSON format containing the input values).

After receiving and processing a request, the web service returns
a response that includes, in addition to headers and possibly a
body, an HTTP status code—a three-digit number that shows the
outcome of the request. Status codes are organized into five suitably
numbered groups. 1xx codes are used for provisional purposes,
indicating the ongoing processing of a request. 2xx codes indicate
successful processing of a request. 3xx codes indicate redirection
and show, for instance, that the target resource has moved to a new
URL (code 301). 4xx codes indicate client errors. For example, a 404
code indicates that the client has requested a resource that does
not exist. Finally, 5xx codes indicate server errors in processing the
request. Among this group, in particular, the 500 code indicates an
Internal Server Error and typically corresponds to cases in which
the service contains a bug and failed to process a request correctly.
For this reason, many empirical studies of REST API testing tools
report the number of 500 status codes triggered as the bugs they
found (e.g., [6, 13, 14, 27, 29, 38, 44, 58]).

2.2 OpenAPI Specifications

The description of a service interface is typically provided by means
of a specification that lists the available operations, as well as the
input and output data types and possible return codes for each
operation. A common, standard format for such specifications is
the OpenAPI Specification [62] (previously known as Swagger).
Other examples of specification languages include RAML [66] and
API Blueprint [1].

Figure 1 shows a fragment of the OpenAPI specification for
Features-Service, one of the benchmarks in our study. It specifies an
API endpoint /products/{productName} (line 1), that supports HTTP
method GET (line 2). The id for this operation is getProductByName
(lines 3-4), and the format of the returned data is JSON (lines 5-6).
To exercise this endpoint, the client must provide a value for the
required parameter productName in the form of a path parameter
(lines 7-12) (e.g., a request GET /products/p where p is the product

Automated Test Generation for REST APIs: No Time to Rest Yet

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Table 1: Overview of REST API testing techniques and tools.

Name Website Testing Approach Test-Generation Technique Stateful Oracle Parameter Generation Version Used
EvoMasterWB [30] White-box Evolutionary algorithm Yes Status code Random, Mutation-based, and Dynamic v1.3.08
EvoMasterBB [30] Black-box Random Testing Yes Status code Random v1.3.08
RESTler [70] Black-box Dependency-based algorithm Yes Status code and predefined checkers Dictionary-based and Dynamic v8.3.0
RestTestGen [27)% Black-box Dependency-based algorithm Yes Status code and response validation =~ Mutation-based, Default, Example-based, Random, and Dynamic v2.0.0
RESTest [69] Black-box Model-based testing No Status code and response validation ~ Constraint-solving-based, Random, and Mutation-based Commit 625b80e
Schemathesis [73] Black-box Property-based testing Yes Status code and response validation ~ Random and Example-based v3.12.3
Dredd [28] Black-box Sample-value-based testing No Status code and response validation ~ Example-based, Enum-based, Default, and Dummy v14.1.0
Tcases [77] Black-box Model-based testing No Status code Random or Example-based v3.7.1
bBOXRT [19] Black-box Robustness testing No Status code and behavioral analysis Random and Mutation-based Commit 7c894247
APIFuzzer [3] Black-box Random-mutation-based testing No Status code Random and Mutation-based Commit e2b536f

 We obtained this tool directly from its authors when it was a private tool, so our version is not in the website.

name). If a product with that name exists and the service can process
the request correctly, the client would receive a response with status
code 200 (line 14) and the requested product data. Lines 18-19
reference the definition of the product data type, which contains
information about the product, such as its id, name, features, and
constraints (we omit the definition for lack of space).

Two operations have a producer-consumer dependency relation-
ship when one of the operations (producer) can return data needed
as input by the other operation (consumer). For example, operation
GET /products/{productName} has producer-consumer relationship
with operation DELETE /products/{productName}/constraints/{con-
straintId} (not shown in the figure). This is because a request sent
to the former can lead to a response containing a constraint id
needed to make a request to the latter.

3 TESTING TOOLS USED IN THE STUDY

3.1 Tools Selection

For selecting tools for the study, we searched for REST-API-related
papers published since 2011 in top venues in the areas of soft-
ware engineering, security, and web technologies (e.g., ASE, CCS,
FSE, ICSE, ISSTA, NDSS, S&P, TOSEM, TSE, USENIX, WWW, and
WSDM).! We identified relevant papers via keyword search, us-
ing the terms “rest”, “api”, and “test” and by transitively following
citations in the identified papers. Among the resulting set of pa-
pers, we selected those about techniques and tools that (1) rely on
well-known REST API standards (i.e., OpenAPL, RAML, and API
Blueprint), and (2) produce actual test cases.

This process resulted in 19 publicly-available tools: eight research
tools—EvoMasterWB, EvoMasterBB, RESTler, RESTest, RestTest-
Gen, bBOXRT, Schemathesis, and api-tester—and 11 practitioners’
tools—fuzz-lightyear, fuzzy-swagger, swagger-fuzzer, APIFuzzer,
TnT-Fuzzer, RESTApiTester, Tcases, gadolinium, restFuzzer, Dredd,
and kotlin-test-client.? More recently, we found a technical re-
port [38] that describes two additional tools, cats [22] and got-
swag [37]. Because Schemathesis, which is included in our study,
outperforms them significantly [38], we did not include these tools
in our comparison. We then eliminated tools that either did not
work at all or failed to run on our benchmark of 20 services. It is
worth noting that the remaining 10 tools, which are listed in Table 1,
were also the most popular based on stars, watches, and forks in
their GitHub repositories.

!The latest search was performed in December 2021.
2We define as research tools those whose technical details are presented in research
papers.

291

3.2 Tools Description

Table 1 presents an overview of the 10 tools we selected along
several dimensions: the URL where the tool is available (col-
umn 2); whether the tool is white-box or black-box (column 3);
test-generation strategy used by the tool (column 4); whether the
tool produces test cases that exercise APIs in a stateful manner (col-
umn 5); the types of oracle used by the tool (column 6); the approach
used by the tool to generate input parameter values (column 7);
and the version of the tool (column 8).

EvoMaster [7] can test a REST API in either white-box or black-
box mode. In the study, we used the tool in both modes. We re-
fer to the tool in the black-box mode as EvoMasterBB and in the
white-box mode as EvoMasterWB. Given a REST API and the Ope-
nAPI specification, both tools begin by parsing the specification
to obtain the information needed for testing each operation. Evo-
MasterBB performs random input generation: for each operation,
it produces requests to test the operation with random values as-
signed to its input parameters. EvoMasterWB requires access to the
source code of the APL It leverages an evolutionary algorithm (the
MIO algorithm [8] by default) to produce test cases with the goal of
maximizing code coverage. Specifically, for each target (uncovered)
branch, it evolves a population of tests by generating new ones
while removing those that are the least promising (i.e., have the
lowest fitness value) for exercising the branch in each iteration until
the branch is exercised or a time limit is reached. EvoMasterWB
generates new tests through sampling or mutation. The former pro-
duces a test from scratch by either randomly choosing a number of
operations and assigning random values to their input parameters
(i.e., random sampling) or accounting for operation dependencies
to produce stateful requests (i.e., smart sampling). The approach
based on mutation, conversely, produces a new test by changing
either the structure of an existing test or the request parameter
values. EvoMasterBB and EvoMasterWB use an automated oracle
that checks for service failures resulting in a 5xx status code. Recent
extensions of the technique further improve the testing effective-
ness by accounting for database states [11] and making better use
of resources and dependencies [86].

RESTler [14] is a black-box technique that produces stateful
test cases to exercise “deep” states of the target service. To achieve
this, RESTler first parses the input OpenAPI specification and infers
producer-consumer dependencies between operations. It then uses
a search-based algorithm to produce sequences of requests that con-
form to the inferred dependencies. Each time a request is appended
to a sequence, RESTler executes the new sequence to check its va-
lidity. It leverages dynamic feedback from such execution to prune
the search space (e.g., to avoid regenerating invalid sequences that

ISSTA °22, July 18-22, 2022, Virtual, South Korea

were previously observed). An early version of RESTler relies on
a predefined dictionary for input generation and targets finding
5xx failures. Newer versions of the technique adopt more intelli-
gent fuzzing strategies for input generation [35] and use additional
security-related checkers [15].

RestTestGen [27, 79] is another black-box technique that ex-
ploits the data dependencies between operations to produce test
cases. First, to identify dependencies, RestTestGen matches names
of input and output fields of different operations. It then leverages
the inferred dependency information, as well as predefined priori-
ties of HTTP methods, to compute a testing order of operations and
produce tests. For each operation, RestTestGen produces two types
of tests: nominal and error tests. RestTestGen produces nominal
tests by assigning to the input parameters of an operation either (1)
values dynamically obtained from previous responses (with high
probability) or (2) values randomly generated, values provided as
default, or example values (with low probability). It produces er-
ror tests by mutating nominal tests to make them invalid (e.g., by
removing a required parameter). RestTestGen uses two types of
oracles that check (1) whether the status code of a response is ex-
pected (e.g., 4xx for an error test) and (2) whether a response is
syntactically compliant with the response schema defined in the
API specification.

RESTest [58] is a model-based black-box input generation tech-
nique that accounts for inter-parameter dependencies [56]. An inter-
parameter dependency specifies a constraint among parameters in
an operation that must be satisfied to produce a valid request (e.g., if
parameter A is used, parameter B should also be used). To produce
test cases, RESTest takes as input an OpenAPI specification with the
inter-parameter dependencies specified in a domain-specific lan-
guage [55] and transforms such dependencies into constraints [40].
RESTest leverages constraint-solving and random input generation
to produce nominal tests that satisfy the specified dependencies
and may lead to a successful (2xx) response. It also produces faulty
tests that either violate the dependencies or are not syntactically
valid (e.g., they are missing a required parameter). RESTest uses
different types of oracles that check (1) whether the status code
is different from 5xx, (2) whether a response is compliant with its
defined schema, and (3) whether expected status codes are obtained
for different types of tests (nominal or faulty).

Schemathesis [38] is a black-box tool that performs property-
based testing (using the Hypothesis library [39]). It performs nega-
tive testing and defines five types of oracles to determine whether
the response is compliant with its defined schema based on sta-
tus code, content type, headers, and body payload. By default,
Schemathesis produces non-stateful requests with random values
generated in various combinations and assigned to the input param-
eters. It can also leverage user-provided input parameter examples.
If the API specification contains “link” values that specify operation
dependencies, the tool can produce stateful tests as sequences of
requests that follow these dependencies.

Dredd [28] is another open-source black-box tool that validates
responses based on status codes, headers, and body payloads (using
the Gavel library [34]). For input generation, Dredd uses sample
values provided in the specification (e.g., examples, default values,
and enum values) and dummy values.

292

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso

Tcases [77] is a black-box tool that performs model-based testing.
First, it takes as input an OpenAPI specification and automatically
constructs a model of the input space that contains key character-
istics of the input parameters specified for each operation (e.g., a
characteristic for an integer parameter may specify that its value
is negative). Next, Tcases performs each-choice testing (i.e., 1-way
combinatorial testing [49]) to produce test cases that ensure that a
valid value is covered for each input characteristic. Alternatively,
Tcases can also construct an example-based model by analyzing the
samples provided in the specification and produce test cases using
the sample data only. For test validation, Tcases checks the status
code based on the request validity (as determined by the model).

bBOXRT [51] is a black-box tool that aims to detect robustness
issues of REST APIs. Given a REST API and its OpenAPI specifica-
tion, the tool produces two types of inputs, valid and invalid, for
robustness testing. It first uses a random approach to find a set of
valid inputs whose execution can result in a successful (i.e., 2xx)
status code. Next, it produces invalid inputs by mutating the valid
inputs based on a predefined set of mutation rules and exercises
the REST API with those inputs. The approach involves manual
effort to analyze the service behavior and (1) classify it based on
a failure mode scale (the CRASH scale [47]) and (2) assign a set of
behavior tags that provide diagnostic information.

APIFuzzer [3] is a black-box tool that performs fuzzing of REST
APIs. Given a REST API and its specification, APIFuzzer first parses
the specification to identify each operation and its properties. Then,
it generates random requests conforming to the specification to
test each operation and log its status code. Its input-generation
process targets the body, query string, path parameter, and headers
of requests and applies random generation and mutation to these
values to obtain inputs. APTFuzzer uses the generated inputs to
submit requests to the target API and produces test reports in the
JUnit XML format.

4 EMPIRICAL STUDY

In our study, we investigated three research questions for the set
of tools we considered and described in the previous section:

e RQ1: How much code coverage can the tools achieve?
e RQ2: How many error responses can the tools trigger?
e RQ3: What are the implications of our findings?

To answer RQ1, we evaluated the tools in terms of the line,
branch, and method coverage they achieve to investigate their
abilities in exercising various parts of the service code.

For RQ2, we compared the number of 500 errors triggered by
the tools to investigate their fault-finding ability, as is commonly
done in empirical evaluations of REST API testing techniques
(e.g., [6, 13, 14, 27, 29, 38, 44, 52, 58, 79, 85]). We measured 500
errors in three ways. First, to avoid counting the same error twice,
we grouped errors by their stack traces, and reported unique 500
errors. Therefore, unless otherwise noted, 500 errors will be used to
denote unique 500 errors in the rest of the paper. Second, different
unique 500 errors can have the same failure point (i.e., the method-
line pair at the top of the stack trace). Therefore, to gain insight
into occurrences of such failure sources, we also measured unique
failure points, which group stack traces by their top-most entries.
Finally, we differentiated cases in which the unique failure point

Automated Test Generation for REST APIs: No Time to Rest Yet

Table 2: RESTful web services used in the empirical study.

Name Total LOC Java/Kotlin LOC # Operations
CWA-verification 6,625 3,911 5
ERC-20 RESTful service 1,683 1,211 13
Features-Service 1,646 1,492 18
Genome Nexus 37,276 22,143 23
Languagetool 677,521 113,277 2
Market 14,274 7,945 13
NCS 569 500 6
News 590 510 7
OCVN 59,577 28,093 192
Person Controller 1,386 601 12
Problem Controller 1,928 983 8
Project tracking system 88,634 3,769 67
ProxyPrint 6,263 6,037 117
RESTful web service study 3,544 715 68
Restcountries 32,494 1,619 22
SCS 634 586 11
Scout-API 31,523 7,669 49
Spring boot sample app 1,535 606 14
Spring-batch-rest 4,486 3,064 5
User management 5,108 2,878 23
Total 977,296 207,609 675

was a method from the web service itself from cases in which it
was a third-party library used by the service; we refer to the latter
as unique library failure points.

To answer RQ3, we (1) provide an analytical assessment of the
studied tools in terms of their strengths and weaknesses and (2)
discuss the implications of our study for the development of new
techniques and tools in this space.

Next, we describe the benchmark of web services we considered
(§4.1) and our experiment setup (§4.2). We then present our results
for the three research questions (§4.3-4.5). We conclude this section
with a discussion of potential threats to validity of our results (§4.6).

4.1 Web Services Benchmark

To create our evaluation benchmark, we first selected RESTful
web services from existing benchmarks used in the evaluations of
bBOXRT, EvoMaster, and RESTest. Among those, we focused on
web services implemented in Java/Kotlin and available as open-
source projects, so that we could use EvoMasterWB. This resulted
in an initial set of 30 web services. We then searched for Java/Kotlin
repositories on GitHub using tags “rest-api” and “restful-api” and
keywords “REST service” and “RESTful service”, ranked them by
number of stars received, selected the 120 top entries, and elim-
inated those that did not contain a RESTful specification. This
additional search resulted in 49 additional web services. We tried
installing and testing this total set of 79 web services locally and
eliminated those that (1) did not have OpenAPI Specifications, (2)
did not compile or crashed consistently, or (3) had a majority of op-
erations that relied on external services with request limits (which
would have unnaturally limited the performance of the tools). For
some services, the execution of the service through the EvoMas-
ter driver class that we created crashed without a detailed error
message. Because this issue was not affecting a large number of
services, we decided to simply exclude the services affected.

In the end, this process yielded 20 web services, which are listed
in Table 2. For each web service considered, the table lists its name,
total size, size of the Java/Kotlin code, and number of operations.

293

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Table 3: Average line, branch, and method coverage achieved
and 500 errors found in one hour (E: unique error, UFP:
unique failure point, ULFP: unique library failure point).

Tool Line Branch Method #500 (E/UFP/ULFP)
EvoMasterWB 52.76% 36.08% 52.86% 33.3/6.4/3.2
RESTler 35.44% 12.52% 40.03% 15.1/21/13
RestTestGen 40.86% 21.15% 42.31% 7771271
RESTest 33.86% 18.26% 33.99% 7.2/19/1.1
bBOXRT 40.23% 22.20% 42.48% 95/21/13
Schemathesis 43.01% 25.29% 43.65% 14.2/28/2
Tcases 37.16% 16.29% 41.47% 18.5/35/2.1
Dredd 36.04% 13.80% 40.59% 69/15/0.9
EvoMasterBB 45.41% 28.21% 47.17% 16.4/33/1.8
APIFuzzer 32.19% 18.63% 33.77% 69/22/13

We obtained the API specifications for these services directly from
their corresponding GitHub repositories.

4.2 Experiment Setup

We ran our experiments on Google Cloud e2-standard-4 machines
running Ubuntu 20.04. Each machine had 4 2.2GHz Intel-Xeon
processors and 16GB RAM. We installed on each machine the 10
testing tools from Table 1, the 20 web services listed in Table 2, and
other software used by the tools and services, including OpenJDK 8,
OpenJDK 11, Python 3.8, Node.js 10.19, and .NET framework 5.0.
We also set up additional services used by the benchmarks, such as
MySQL, MongoDB, and a private Ethereum network. This process
was performed by creating an image with all the tools, services, and
software installed and then instantiating the image on the cloud
machines.

We ran each tool with the recommended configuration settings
as described in the respective paper and/or user manual. Some of the
tools required additional artifacts to be created (see also Section 4.6).
For RESTest, we created inter-parameter dependency specifications
for the benchmark applications, and for EvoMasterWB, we imple-
mented driver programs for instrumenting Java/Kotlin code and
database injection. For lack of space, we omit here details of tool
set up and configuration. A comprehensive description that enables
our experiments and results to be replicated is available at our
companion website [12].

We ran each tool for one hour, with 10 trials to account for
randomness. Additionally, we ran each tool once for 24 hours, using
a fresh machine for each run to avoid any interference between runs.
For the one-hour runs, we collected coverage and error-detection
data in 10-minute increments to investigate how these metrics
increased over time. For the 24-hour run, we collected the data once
at the end. We collected coverage information using the JaCoCo
code-coverage library [41].

4.3 ROQ1: Coverage Achieved

Table 3 presents the results for line, branch, and method coverage
achieved, and 500 errors, unique failure points, and unique library
failure points detected by the 10 tools in one hour. The reported
results are the average of the coverage achieved and errors found
over all services and all ten trials. Unlike Table 3, which shows only
average results, Figure 2 presents coverage data (top) and error-
detection results (bottom) as box plots. In the figure, the horizontal
axis represents the 10 tools, and the vertical axis represents, for each

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso

100 H

*e

$as
. * * $¢

’\; 75 4 : . *00 Y
o *
P L 224
& 50 von
2
) *ee
o ééé |

0 11 L]

1 2 3 4 5 6 7 8 9 10 (1 2 3 4 5 6 7 8 9 10 |1 2 3 4 5 6 7 8 g9 10
Line Branch Method
- % =

A1OD -t . * - |:1Omin_20E
g 80 o e M (S Th ~16 5‘
g ot G0 . 24 h e
Q 60 F12 2
;; * *e * * 'S
2 404 o, . N . .’ L =
E ¢ oo. ¢ * [&
2 Ul ‘aﬁ il di,

] aéé &ﬁ j : G el o,

1 2 3 4 1. 2 3 4 5 1 2
500 Error Unique Failure Point Umque L|brary Failure Point

Figure 2: Code coverage achieved and number of unique 500 errors, unique failure points, and unique library failure points
detected over all services by the ten tools in 10 minutes, 1 hour, and 24 hours (1: EvoMasterWB, 2: RESTler, 3: RestTestGen, 4:
RESTest, 5: bBBOXRT, 6: Schemathesis, 7: Tcases, 8: Dredd, 9: EvoMasterBB, 10: APIFuzzer).

tool, the results achieved by that tool after 10 minutes, 1 hour, and
24 hours. Each box represents average, median, standard deviation,
min, and max for 20 data points, one per service considered. For
the 10-minute and 1-hour runs, each point represents the coverage
achieved (or number of errors revealed) averaged over 10 trials. For
the 24-hour runs, the values reported are from single trials.

Overall coverage achieved. Table 3 shows that the tools did not
achieve a high coverage in general. In one hour, the best-performing
tool (EvoMasterWB) achieved less than 53% line coverage, less than
37% branch coverage, and less than 53% method coverage. The other
black-box tools achieved lower coverage; the best-performing tool
among them is EvoMasterBB, with 45.41% line coverage, 28.21%
branch coverage, and 47.17% method coverage. We identified three
key factors responsible for these low coverage rates.

e Parameters value generation. The tools generate many
invalid requests that are rejected by the services and fail to
exercise service functionality in depth. In most cases, this
occurs when the parameters take domain-specific values or
have data-format restrictions. As an example, for a parameter
that takes email IDs as values, one of the services enforced
the condition that the email should contain a ‘@’ character.
Tools wasted a significant amount of time attempting to pass
that check, but they all failed in the one-hour and 24-hour
runs in our experiment.

Operations dependency detection. Identifying producer-
consumer dependencies between operations is key to gen-
erating stateful tests. Existing tools either do not account
for such dependencies or use a simple heuristic approach,
which can lead to many false positives and false negatives

in the dependencies computed. Failing to identify a depen-
dency between producer A and consumer B can result in
inadequate testing of B due to not testing A first. This is
because B may require the execution of A to set the service
state needed for its testing (e.g., by adding valid data to the
database) or obtain valid parameter values. As an example,
for Languagetool, most of the tools fail to identify a depen-
dency between the two operations POST /check (consumer)
and GET /languages (producer) in 24 hours. As a result, they
did not leverage the output of the producer, which contained
language information, and were unable to produce valid
requests for the consumer.

Mismatch between APIs and their specifications. The
tools produce test cases by leveraging the API specifica-
tions, which are expected to faithfully reflect the API imple-
mentations and define, for each endpoint, supported HTTP
methods, required input parameters, responses, and so on.
Unfortunately, this is not always the case and, if the speci-
fication does not match the API implementation, the tools
can produce incomplete, invalid, or even no requests at all
for exercising the affected operations.

Existing tools fail to achieve high code coverage due to
limitations of the approaches they use for generating pa-
rameter values and detecting operation dependencies. The
effectiveness of the tools is also hindered by mismatches
between API implementations and specifications.

294

Automated Test Generation for REST APIs: No Time to Rest Yet

Coverage increase over time. As we mentioned above, we col-
lected coverage data in 10-minute increments, as well as for 24
hours. Figure 2 illustrates how the coverage rate increased from
10 minutes to 1 hour, and to 24 hours (more detailed results are
available in our artifact [12]). As the figure shows, in many cases,
the tools already achieved their highest level of code coverage in
10 minutes. However, there were several cases in which code cov-
erage kept increasing over time. We investigated the 6 services
for which the tools manifested this behavior—Features-Service,
NCS, Restcountries, SCS, RESTful Web Service Study, and User
management—and found that they all have some distinct char-
acteristics (compared to the other 14 services). Specifically these
services generally have simpler input parameters that do not take
domain-specific or otherwise constrained values, so additional in-
put generation tends to cover additional code. Conversely, for the
services that have domain-specific or constrained parameter values
(e.g., “email should contain @” or “year should be between 1900
and 22007), the tools tend to hit a coverage wall relatively soon
because they are inherently unable to generate inputs that satisfy
these requirements.

The coverage achieved by testing tools grows over time
on services that have simpler input parameters with no
domain-specific or constrained values.

4.4 RQ2:Error Responses Triggered

The ultimate goal of testing is to find bugs. In this section, we focus
on comparing the testing tools in terms of their fault-finding ability,
which we measured in terms of the numbers of unique 500 errors,
failure points, and library failure points detected. Column 5 in the
previously presented Table 3 provides this information averaged
over the services considered and the trials performed. As the table
shows, EvoMasterWB is the best performer by a wide margin, fol-
lowed by Tcases, EvoMasterBB, RESTler, and Schemathesis. The
box plot at the bottom of Figure 2 presents a more detailed view of
these results by illustrating the distribution of errors detected across
services and the increase in errors detected over time. The “500
Error” segment of the plot shows that EvoMasterWB outperforms
all the other tools in terms of the median values as well, although
with a larger spread.

7~

EvoMasterWB, by having access to source code and per-
forming coverage-driven testing, achieves significantly
higher coverage than black-box tools. However, as we will
show in Section 4.5.2, there are cases in which EvoMas-
terWB cannot produce requests covering some service
functionality, whereas black-box tools can.

The figure also shows that the number of unique failure points is
considerably smaller than the number of unique errors—on average,
there are 3 to 7 times fewer failure points than errors, indicating
that several 500 errors occur at the same program points but along
different call chains to those points. Another observation is that
approximately half of the unique failure points occur in library
methods. A more detailed analysis of these cases revealed that

295

ISSTA °22, July 18-22, 2022, Virtual, South Korea

failure points in library methods could have more serious conse-
quences on the functionality and robustness of a service, in some
cases also leaving it vulnerable to security attacks. The reason is
that failures in service code mostly originate at statements that
throw exceptions after performing some checks on input values;
the following fragment is an illustrative example, in which the
thrown exception is automatically mapped to a 500 response code
by the REST API framework being used:

1 if (product == null) {

2 throw new ObjectNotFoundException(name);
3}

Conversely, in the case of library failure points, the root cause
of the failures was often an unchecked parameter value, possibly
erroneous, being passed to a library method, which could cause
severe issues. We found a particularly relevant example in the ERC-
20 RESTful service, which uses an Ethereum [84] network. An
Ethereum transaction requires a fee, which is referred to as gas.
If an invalid request, or a request with insufficient gas, is sent to
Ethereum by the service, the transaction is canceled, but the gas
fee is not returned. This is apparently a well-known attack scenario
in Blockchain [72]. In this case, the lack of suitable checks in the
ERC-20 service for requests sent to Ethereum could have costly
repercussions for the user. We found other examples of unchecked
values passed from the service under test to libraries, resulting in
database connection failures and parsing errors.

The severity of different 500 errors can vary considerably.
Failure points in the service code usually occur at throw
statements following checks on parameter values. Failure
points outside the service, however, often involve erro-
neous requests that have been accepted and processed,
which can lead to severe failures.

We further investigated which factors influence the error-
detection ability of the tools. First, we studied how the three types
of coverage reported in Table 3 correlate with the numbers of the
500 errors found using the Pearson’s Correlation Coefficient [33].
The results showed that there is a strong positive correlation be-
tween the coverage and number of 500 errors (coefficient score is
~0.7881 in all cases). Although expected, this result confirms that it
makes sense for tools to use coverage as a goal for input generation:
if a tool achieves higher coverage, it will likely trigger more failures.

There is a strong positive correlation between code cov-
erage and number of faults exposed. Tools that achieve
higher coverage usually also trigger more failures.

Second, we looked for patterns, not related to code coverage,
that can increase the likelihood of failures being triggered. This
investigation revealed that exercising operations with different com-
binations of parameters can be particularly effective in triggering
service failures. The failures in such cases occur because the service
lacks suitable responses for some parameter combinations. In fact,
Tcases and Schemathesis apply this strategy to their advantage
and outperform the other tools. Generating requests with different
input types also seems to help in revealing more faults.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

1 public static String subject(String directory, String file) {
2 int result = 0;

String[] fileparts =
int lastpart = 0;
String suffix = null;
fileparts = file.split(".");

lastpart = fileparts.length - 1;

if (lastpart > @) { ... } //target branch
return "" + result;

3}

™

null;

S0 ®uou e w

1

Figure 3: A method used for parsing the file suffix in the SCS
web service.

Exercising operations with various parameter combina-
tions and various input types helps revealing more faults
in the services under test.

4.5 RQ3: Implications of Our Results

We next discuss the implications of our results for future research
on REST API testing and provide an analytical assessment of testing
strategies employed by the white-box and black-box testing tools
we considered.

4.5.1 Implications for Techniques and Tools Development.

Better input parameter generation. Our results show that the
tools we considered failed to achieve high code coverage and could
be considerably improved. Based on our findings, one promising
direction in this context is better input parameter generation.

In particular, for white-box testing, analysis of source code can
provide critical guidance on input parameter generation. In fact,
EvoMasterWB, by performing its coverage-driven evolutionary
approach, achieves higher coverage and finds more 500 errors than
any of the black-box tools. There are, however, situations in which
EvoMasterWB’s approach cannot direct its input search toward
better coverage. Specifically, this happens when the fitness function
used is ineffective in computing a good search gradient. As an
example, for the code shown in Figure 3, which parses the suffix
of a file, EvoMasterWB always provides a string input file that
leads to lastpart in line 8 evaluating to 0. The problem is that
EvoMasterWB cannot derive a gradient from the condition lastpart
> 0 to guide the generation of inputs that exercise the branch in
line 8. In this case, symbolic execution [17, 46] could help find a
good value of file by symbolically interpreting the method and
solving the constraint derived at line 8.

For black-box testing approaches, which cannot leverage infor-
mation in the source code, using more sophisticated testing tech-
niques (e.g., combinatorial testing at 2-way or higher interaction
levels) could be a promising direction [43, 80, 85]. Also, black-box
testing tools could try to leverage useful information embedded
in the specification and other resources to guide input parameter
generation.

Our analysis in Section 4.5.2 below shows that using sample
values for input parameter generation can indeed lead to better
tests. Therefore, another possible way to improve test generation
would be to automatically extract sample values from parameter
descriptions in the specification. For example, the description of
the input parameter language, shown in the following OpenAPI

296

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso

fragment for Languagetool (lines 4-9), suggests useful input values,
such as “en-US” and “en-GB”:

"name": "language",
"in": "formData",
"type": "string",
"description": "A language code like ~“en-US",
or “auto” to guess the language automatically
(see “preferredVariants™~ below). For languages with variants
(English, German, Portuguese) spell checking will

only be activated when you specify the variant,

e.g. “en-GB~ instead of just “en".",

"required": true

“de-DE", ~“fr-,

S o ®uwooumoa W o

Another source of useful hints for input generation can be re-
sponse messages from the server, such as the following one:

28 Apr 2021
Missing 'text'

1 Received: "HTTP/1.1 400 Bad Request\r\nDate: Wed,
2 00:38:32 GMT\r\nContent-length: 41\r\n\r\nError:
3 or 'data' parameter"

To investigate the feasibility of leveraging input parameter de-
scriptions provided in the REST API specifications to obtain valid
input values, we implemented a proof-of-concept text-processing
tool that checks whether there are suggested values supplied in
the parameter description for a given input parameter. We applied
the tool to two of the services, OCVN and Languagetool, for which
the existing testing tools failed to obtain high coverage (less than
10% line code coverage for most cases). With the help of the tool,
we identified developer-suggested values for 934 (32%) of the 2,923
input parameters. This preliminary result suggests that leveraging
parameter descriptions for input generation may be a feasible and
promising direction.

Along similar lines, we believe that natural-language processing
(NLP) [54] could be leveraged to analyze the parameter description
and extract useful information. For example, a technique may first
perform token matching [83] to identify what parameters from
the specification are mentioned in server messages and then use
parts-of-speech tagging [81] and dependency parsing [48] to infer
parameter values.

Also in this case, to investigate the feasibility of this approach,
we implemented a proof-of-concept prototype that parses depen-
dency information from natural-language descriptions in OpenAPI
specifications and server messages and collects nouns, pronouns,
conjunctions, and their dependencies. Our prototype detects param-
eter names with simple string matching on nouns and pronouns,
and relationships between parameters via conjunctions and depen-
dencies. As an example, the top part of Figure 4 shows the parsed
dependencies for parameter preferredvariants of endpoint /check.
By analyzing the tokens with, language, and auto with the con-
nected dependencies (case, punct, nsubj, and dep), our prototype
can determine that parameter language must be set to “auto”. This
simple approach was able to automatically detect 8 of the 12 unique
inter-parameter dependencies that we manually found in the bench-
mark APIs. It was also able to detect useful parameter values. For
example, none of the black-box tools studied could generate values
for parameter language; yet, our prototype detected useful values
such as “en-US”, “de-DE”, and “fr” (the parsed dependencies are
shown in the bottom part of Figure 4). As before, these preliminary
results show the feasibility of applying NLP techniques to descrip-
tions in OpenAPI specifications and server messages for improving
REST API testing.

Automated Test Generation for REST APIs: No Time to Rest Yet

ISSTA °22, July 18-22, 2022, Virtual, South Korea

punct
case
unct
nsubj
.&advmod\“ YM dep punct:
only available W|th Ianguage o auto
punct

punct:
cow (cconiT™ ¢ PROPN) PUNCT]

A Ianguage code like -

onj
det nmod appos conj conj
NOUN [NOUNT" “*™P°“"“\NOUN] {ADPT“***~\pROPNPUNCT “""§_Ffpkom PUNCT unCt§_|PROPN PUNCTT" PUnIPROPN fPuNcTT" “”C‘:"{ﬁpnopu PUNCT
i 8

DE H auto

Figure 4: Parsed dependency graphs of preferredvariants parameter description (top) and language parameter description (bottom)

from Languagetool’s OpenAPI specification.

Better support for stateful testing. As discussed in Section 4.3 and
also stressed in related work [7, 14], producing stateful tests by infer-
ring producer-consumer relationships between operations is key to
effective REST API testing. Current tools, such as RestTestGen and
RESTIer, rely on simple heuristics to infer the producer-consumer
dependencies and are inaccurate in identifying such dependencies,
which can easily lead to false positives and negatives. There is a
need for more sophisticated approaches that address the flexibil-
ity issues that we discuss later in Section 4.5.2. These approaches
should be able to account for responses dynamically generated and
to match fields of different types while still being precise (e.g., by
not identifying a dependency between two consumers that rely on
the same parameters to execute).

To determine whether two operations have a dependency rela-
tionship, one possible approach would be to check whether they
have “related” properties, such as input parameters and response
fields, that have the same or similar names. To explore the feasibil-
ity of this direction, we performed a quick case study in which we
manually identified each operation that uses path parameters and
has a dependency relationship with at least another operation. For
each of them, we then identified its path parameter(s) and compared
its textual similarity with other operations’ response fields using
the NLTK’s scoring library [61]. In this way, by considering the
top-3 matches for each parameter, we were able to correctly identify
almost 80% of the operations involved in a dependency relationship.
Based on our findings in RQ1, we expect that a similar approach
could considerably help tools to achieve higher code coverage.

We also believe that machine learning [42] could help identify
producer-consumer relationships and related dependencies. For ex-
ample, one could train, via supervised learning [87], a classifier that
accounts for a variety of features related to operation dependencies
(e.g., HTTP methods, shared input parameters, field matching on
dynamic object, field types) and then use this classifier to make
predictions on potential dependencies.

4.5.2 Analytical Comparison of White-Box and Black-Box Tools.

Next, we present an analytical assessment of the tools with re-
spect to strengths and weaknesses of their approaches for generat-
ing input parameter values and sequences of API requests. We also
provide illustrative examples taken from the benchmark services.

White-box vs. black-box tools. Among the tools we considered,
EvoMasterWB is the only one that performs white-box testing. By
having access to the API source code and performing coverage-
driven testing, EvoMasterWB achieves higher coverage than the

297

if ("male".equals(sex)) {

1
2 if ("mr".equals(title) || "dr".equals(title) ||

3 "sir".equals(title) || "rev".equals(title) ||

4 "rthon".equals(title) || "prof".equals(title)) {
5 result = 1;

6

7 } else if ("female".equals(sex)) {

8 if ("mrs".equals(title) || "miss".equals(title) ||
9 "ms".equals(title) || "dr".equals(title) ||

10 "lady".equals(title) || "rev".equals(title) ||
11 "rthon".equals(title) || "prof".equals(title)) {
12 result = 0;

13 3}
Figure 5: Sample code from the SCS web service.

other tools—according to Table 3, it achieves ~53% line coverage,
~36% branch coverage, and ~53% method coverage.

To illustrate, Figure 5 shows an if-statement in which the two
branches (lines 5 and 12) are exercised only by test cases produced
by EvoMasterWB. The if-statement is responsible for handling re-
quests for operation GET /api/title/{sex}/{title} of the SCS web
service. To cover these branches, a tool must produce valid requests
with relevant string values for parameters sex and title. Using
an evolutionary algorithm with a fitness function that measures
branch distance, EvoMasterWB successfully generates values “male”
for sex and “dr” for title to exercise line 5, and values “female” and
“prof” for those parameters to cover line 12. The black-box tools
are unable to do this by using random and/or sample values.

Another benefit of EvoMasterWB’s testing strategy is that once
it produces a test case exercising a branch A, it will not gener-
ate similar test cases to exercise A again. This is due to its MIO
algorithm [8], which handles test case generation for the target
branches separately and focuses on uncovered branches.

However, there are also cases in which EvoMasterWB fails to
create a sequence of requests for covering some API functionality,
whereas a black-box tool is able to. Consider the code fragment
shown in Figure 6, which handles requests for operation Oz: GET
/products/{productName}/configurations of Features-Service. To
cover line 6, a request must specify a product that exists and has
configurations associated with it. None of the requests created
by EvoMasterWB satisfy both conditions: operation O;: POST
/products/{productName}/configurations/{configurationName}
must be called before O to associate configurations with a product,
and EvoMasterWB fails to recognize this producer-consumer
relation. In contrast, Schemathesis uses a testing strategy that
orders O; before O and leverages sample values from the API
specification to link two operations with the same input values.
It can therefore generate a sequence that creates a product, adds
configurations to it, and retrieves the configurations—a sequence
that covers line 6.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

1 public List<String>

2 getConfigurationsNamesForProduct(String productName) {

3 List<String> configurationsForProduct=new ArrayList<String>();

4 for (ProductConfiguration productConfiguration :

5 productsConfigurationsDAO. findByProductName (productName)) {

6 configurationsForProduct.add(productConfiguration.getName());
7}

8 return configurationsForProduct;

9}

Figure 6: A method of Features-Service used to find configu-

ration names associated with a product.

Assessment of black-box tools. Although black-box tools seems to
be less effective than EvoMasterWB in terms of coverage achieved,
which can also often result in fewer faults triggered, they have
wider applicability by virtue of being agnostic to the language
used for the service implementation. Among the black-box tools,
EvoMasterBB and Schemathesis achieve better coverage than the
other tools in terms of all the three metrics considered (unique 500
errors, failure points, and library failure points).

EvoMasterBB uses an evolutionary algorithm to generate suc-
cessful requests, create sequences from them, and discover in this
way operation dependencies. This way of operating allows it to
find more valid request sequences than other tools that just use a
randomized approach.

Schemathesis is the next best black-box tools. One characteristic
of this tool is that it considers example values provided in the
API specification, which lets it leverage the domain knowledge
encoded in such examples. Moreover, it reuses values in creating
request sequences, which enables it to successfully create covering
sequences such as that for the loop body in Figure 6.

RestTestGen also has similar features, but we empirically found
that its heuristic algorithm, which relies upon the matching of
response fields and parameter names to infer producer-consumer
dependencies between operations, yields many false positives and
false negatives. This issue weakens the effectiveness of its stateful
testing and leads to slightly lower code coverage than EvoMasterBB.

RESTler tries to infer producer-consumer relationships by lever-
aging feedback from processed requests. An important limiting
factor for RESTler, however, is that it relies on a small set of dic-
tionary values for input generation, which hinders its ability to
exercise a variety of service behaviors.

Dredd does not perform random input generation but uses
dummy values and input examples (provided in the specification)
to produce requests. This prevents Dredd from generating invalid
requests exercising uncommon behaviors in a service.

Finally, the other tools’ random-based approaches are unlikely
to produce valid test cases needed for input mutation, which limits
their overall effectiveness.

Overall, black-box tools fail to achieve high coverage because
they largely rely on random testing and/or leverage a limited set of
sample data for input generation. Among these tools, Schemathesis
and EvoMasterBB performed better than the others in our experi-
ments due to some specific characteristics of the input generation
approaches they use.

4.6 Threats to Validity

Like any empirical evaluation, our study could suffer from issues re-
lated to internal and external validity. To mitigate threats to internal
validity, we used the implementations of the testing tools provided

298

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso

by their authors (the tool versions used are listed in Table 1). Our
implementation consists of Python code for analyzing the log files
of the web services to compute unique 500 errors, failure points,
and library failure points. We thoroughly tested and spot checked
the code and manually checked the testing results (coverage and
faults) for a sample of the tools and web services to gain confidence
in the validity of our results.

As for the threats to external validity, because our evaluation is
based on a benchmark of 20 RESTful services, the results may not
generalize. We note, nevertheless, that our benchmark includes a
diverse set of services, including services that have been used in
prior evaluations of REST API testing techniques.

Another potential threat is that we ran the services locally, which
may result in different behavior than a real-world deployment. For
example, we set up a private Ethereum network instead of using
the Ethereum main network for the ERC-20 service. However, we
believe that this is unlikely to affect our results in any significant
way. Furthermore, we manually checked that the locally-installed
services behaved as expected, including for the ERC-20 deployment.

In our empirical study, we used the OpenAPI specifications pro-
vided with each web service in the benchmark. We noticed that, for
some services, the specification is incomplete, which may limit the
ability of the tools to achieve higher coverage or finding more bugs.
To investigate the prevalence of this phenomenon, we investigated
over 1,000 specifications available on https://apis.guru/ and checked
them with Schemathesis; we found that a vast majority (almost
99%) of the specifications contain some mismatch. In other words,
it seems to be a common situation to have imperfect specifications,
so the ones we used are representative of what the tools would
have to rely upon in real-world scenarios.

RESTest requires additional information over what is in OpenAPI
specifications. Specifically, it requires inter-parameter dependencies
information [56]. We therefore studied the parameters of each API
endpoint for the web services in our benchmarks and added such
dependencies (if any) as annotations to the OpenAPI specifications.
Although it was simple to create such annotations, and it typically
took us only a few minutes per specification, the quality of the
specifications might have affected the performance of the tool.
Unfortunately, this is an unavoidable threat when using RESTest.

Finally, EvoMasterWB requires, for each service under test, a test
driver that performs various operations (e.g., starting and stopping
the web service). Building such driver can require a non-trivial
amount of manual effort. For the 10 web services we selected from
previous work, we obtained the existing drivers created by the
EvoMasterWB author. For the remaining 10 web services, however,
we had to create a driver ourselves. Also in this case, this was a
fairly trivial task, which we were able to complete in just a few
minutes for each web service. And also in this case, the only way
to avoid this threat would be to exclude EvoMasterWB from the set
of tools considered, which would considerably decrease the value
of our comparative study.

5 RELATED WORK

Several recent studies have compared the effectiveness of testing
techniques for REST services. Concurrent to ours, in particular, are
three studies performed by Corradini et al. [25], Martin-Lopez, Se-
gura, and Ruiz-Cortés [59], and by Hatfield-Dodds and Dygalo [38].

https://apis.guru/

Automated Test Generation for REST APIs: No Time to Rest Yet

Corradini et al. [25] compared four black-box testing tools in
terms of tool robustness and API coverage [26]. Our study includes
all the tools they used and six additional tools. The code coverage
metrics used in our study directly measure the amount of service
code exercised and are different from the API coverage criteria [57]
computed by the Restats tool [26] and used in their study. For ex-
ample, the parameter value metric can only be applied to Boolean
or enumeration types. Moreover, our study performs a more thor-
ough assessment of the techniques’ bug-finding ability by counting
the number of unique 5xx errors, failure points, and library failure
points instead of simply checking whether a 5xx status code is
returned, as was done in their study. Finally, we provide a detailed
discussion of the strengths and weaknesses of the testing strate-
gies employed by the tools and the implications of our findings for
future technique and tool development in this area.

Martin-Lopez, Segura, and Ruiz-Cortés compared EvoMasterWB,
RESTest, and a hybrid of the two on a set of four REST APIs. Our
study is different in that we compared EvoMasterWB with a set of
9 black-box tools (including RESTest) on a benchmark of 20 APIs.
They showed that RESTest achieves better coverage than EvoMas-
terWB and that their bug-finding abilities are comparable. This is
different from our result, which indicates that EvoMasterWB out-
performs RESTest in terms of both coverage achieved and number
of failures triggered. We believe this is partially because their study
was based on only four services, which are all from the RESTest’s
benchmark dataset. Also, the manual work performed for tool con-
figuration could have affected the results. In our study, we tried to
avoid this issue by following the configuration method provided
in the tools’ papers and manuals [12]. We also collected tools and
services in a systematic way, as explained in Sections 3 and 4.1.
Compared to their study, ours also contains a more detailed analy-
sis of code coverage achieved and 500 errors found, as well as an
additional discussion of the implications of our results.

In their study, Hatfield-Dodds and Dygalo [38] compared
Schemathesis to other black-box tools. Similar to Corradini et al’s
work, their work does not contain an in-depth analysis of the code
coverage achieved and of the errors found by the tools beyond
counting the number of errors triggered. Rather than providing
a comparison of existing tools to assess their effectiveness, their
work focused on the evaluation of Schemathesis.

In Section 3, we provided a summary of 10 state-of-the-art tech-
niques and tools that perform automated testing of REST APIs and
that we considered in our evaluation. We also discussed why we did
not include in our study some of the tools we found. We note that
there are other techniques that also target REST API testing. Among
these, the approach proposed by Segura et al. [74] leverages meta-
morphic relationships to produce test cases. We do not include this
work in our study because their testing approach is not automated:
it requires a tester to provide low-level testing details, including
identifying metamorphic patterns and identifying problem-specific
metamorphic relations, which is non-trivial. Godefroid, Lehmann,
and Polishchuk [36] introduced an approach that performs differen-
tial testing to find regressions in an evolving specification and in the
corresponding service. Chakrabarti and Rodriquez [24] developed
an approach that tests the connectedness (i.e., resource reachability)
of RESTful services. The approaches proposed by Chakrabarti and

299

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Kumar [23] and by Reza and Gilst [71] rely on an XML-format spec-
ification for REST API testing. The approaches developed by Seijas,
Li, and Thompson [50], by Fertig and Braun [31], and by Pinheiro,
Endo, and Simao [63] perform model-based testing. We did not in-
clude these techniques in our study because they use a tool-specific
REST API specification [23, 71] that requires non-trivial information
to be provided by the user, rely on formal specifications [31, 50, 63],
or target specific problems [24, 36].

Recently, after this work was finalized, two additional techniques
and tools were proposed that perform combinatorial testing [85]
and model-based testing [52] of RESTful APIs. Although we could
not consider them in our current comparison, we will evaluate
these tools for inclusion in an extended version of this work.

Numerous tools and libraries provide support for REST API test-
ing, such as Postman [64], REST Assured [68], ReadyAPI [67], and
API Fortress [2]. We did not include them in our study because they
do not support automated testing. There are also tools that focus on
tracking, fuzzing, and replaying API traffic such as AppSpider [5]
and WAS [82]. We did not include these tools as they target fuzzing
and require pre-recorded API usage information.

Finally, there exist many techniques and tools designed to test
SOAP web services with WSDL-based specifications (e.g., [16, 18,
53, 75, 78]) and more broadly target the testing of service-oriented
architectures (e.g., [20, 21]). We do not include these techniques
and tools in our study, as we focus on REST API testing.

6 CONCLUSION AND FUTURE WORK

To gain insights into the effectiveness of existing REST API testing
techniques and tools, we performed an empirical study in which we
applied 10 state-of-the-art techniques to 20 RESTful web services
and compared them in terms of code coverage achieved and unique
failures triggered. We presented the results of the study, along with
an analysis of the strengths and weaknesses of the techniques, sum-
marized the lessons learned, and discussed implications for future
research. Our experiment infrastructure, data, and results are pub-
licly available [12]. In future work, we will extend our evaluation by
using mutation to further evaluate the tools’ fault-detection ability.
We will also leverage the insights gained from our study and pre-
liminary investigations to develop new techniques for testing REST
APIs that perform better input parameter generation and consider
dependencies among operations. Specifically, we will investigate
ways to extract meaningful input values from the API specification
and server logs, study the application of symbolic analysis to ex-
tract relevant information from the code, and research the use of
NLP-based techniques to infer producer-consumer dependencies
between operations.

DATA-AVAILABILITY STATEMENT

Data and code for reproducing our results are available on Zen-
odo [45]. Updated information about the project can be found at
https://bit.ly/REST TestToolsStudy.

ACKNOWLEDGMENTS

This work was partially supported by NSF, under grant CCF-
0725202, DARPA, under contract N66001-21-C-4024, DOE, under
contract DE-FOA-0002460, and gifts from Facebook, Google, IBM
Research, and Microsoft Research.

https://bit.ly/RESTTestToolsStudy

ISSTA °22, July 18-22, 2022, Virtual, South Korea

REFERENCES

(1]

[9

=

[10

[11]

[12]

[13

[14

[15]

=
&

[17

(18]

[19]

[25

[26

APIBlueprint 2021. API Blueprint. https://apiblueprint.org/ Accessed: Jun 3,
2022.

APIFortress 2022. API Fortress. https://apifortress.com Accessed: Jun 3, 2022.
APIFuzzer 2022. APIFuzzer. https://github.com/KissPeter/APIFuzzer Accessed:
Jun 3, 2022.

apisguru 2022. APIs.guru API Directory. https://apis.guru/ Accessed: Jun 3,
2022.

AppSpider 2022. AppSpider.
Accessed: Jun 3, 2022.

Andrea Arcuri. 2017. RESTful API automated test case generation. In 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS). IEEE,
Prague, Czech Republic, 9-20.

Andrea Arcuri. 2018. Evomaster: Evolutionary multi-context automated system
test generation. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, Visterés, Sweden, 394-397.

Andrea Arcuri. 2019. Many Independent Objective (MIO) Algorithm for Test
Suite Generation. CoRR abs/1901.01541 (2019), 3-17. arXiv:1901.01541 http:
//arxiv.org/abs/1901.01541

Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMaster.
ACM Transactions on Software Engineering and Methodology (TOSEM) 28, 1 (2019),
1-37.

Andrea Arcuri. 2020. Automated Black-and White-Box Testing of RESTful APIs
With EvoMaster. IEEE Software 38, 3 (2020), 72-78.

Andrea Arcuri and Juan P. Galeotti. 2019. SQL data generation to enhance search-
based system testing. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO July 13-17, 2019, Anne Auger and Thomas Stiitzle (Eds.). ACM,
Prague, Czech Republic, 1390-1398. https://doi.org/10.1145/3321707.3321732
Artifact 2022. Companion page with experiment infrastructure, data, and results.
bit.ly/REST TestToolsStudy Accessed: Jun 3, 2022.

Vaggelis Atlidakis, Roxana Geambasu, Patrice Godefroid, Marina Pol-
ishchuk, and Baishakhi Ray. 2020. Pythia: Grammar-Based Fuzzing of
REST APIs with Coverage-guided Feedback and Learning-based Mutations.
arXiv:2005.11498 [cs.SE]

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. Restler:
Stateful rest api fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 748-758.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking
Security Properties of Cloud Service REST APIs. In 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, Porto, Portugal,
387-397.

Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen. 2005. WSDL-based
automatic test case generation for web services testing. In IEEE International
Workshop on Service-Oriented System Engineering (SOSE). IEEE, Beijing, China,
207-212.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR) 51, 3 (2018), 1-39.

Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. 2009. WS-
TAXI: A WSDL-based testing tool for web services. In International Conference
on Software Testing Verification and Validation (ICST). IEEE, Denver, CO, USA,
326-335.

bBOXRT 2022. bBOXRT. https://git.dei.uc.pt/cnl/bBOXRT Accessed: Jun 3,
2022.

Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. 2013. Testing and verifi-
cation in service-oriented architecture: a survey. Software Testing, Verification
and Reliability 23, 4 (2013), 261-313.

Gerardo Canfora and Massimiliano Di Penta. 2007. Service-oriented architectures
testing: A survey. In Software Engineering. Springer, Berlin, Heidelberg, 78-105.
Cats 2022. Cats. https://github.com/Endava/cats Accessed: Jun 3, 2022.

Sujit Kumar Chakrabarti and Prashant Kumar. 2009. Test-the-rest: An approach
to testing restful web-services. In 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns. IEEE, Athens, Greece,
302-308.

Sujit Kumar Chakrabarti and Reswin Rodriquez. 2010. Connectedness Testing
of RESTful Web-Services. In Proceedings of the 3rd India Software Engineering
Conference (Mysore, India) (ISEC ’10). Association for Computing Machinery,
New York, NY, USA, 143-152. https://doi.org/10.1145/1730874.1730902

Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato. 2021.
Empirical comparison of black-box test case generation tools for RESTful APIs.
In 2021 IEEE 21st International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, Luxembourg, 226-236.

Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato.
2021. Restats: A test coverage tool for RESTful APIs. In 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, Luxembourg,
594-598.

https://www.rapid7.com/products/appspider

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso

Davide Corradini, Amedeo Zampieri, Michele Pasqua, Emanuele Viglianisi,
Michael Dallago, and Mariano Ceccato. 2022. Automated black-box testing
of nominal and error scenarios in RESTful APIs. Software Testing, Verification
and Reliability (2022), e1808.

Dredd 2022. Dredd. https://github.com/apiaryio/dredd Accessed: may 1, 2022.
Hamza Ed-Douibi, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2018. Auto-
matic generation of test cases for REST APIs: a specification-based approach. In
22nd International Enterprise Distributed Object Computing Conference (EDOC).
IEEE, 181-190.

EvoMaster 2022. EvoMaster. https://github.com/EMResearch/EvoMaster Ac-
cessed: Jun 3, 2022.

Tobias Fertig and Peter Braun. 2015. Model-driven testing of restful apis. In
Proceedings of the 24th International Conference on World Wide Web. 1497-1502.
Roy T Fielding. 2000. Architectural styles and the design of network-based software
architectures. Vol. 7. University of California, Irvine Irvine.

David Freedman, Robert Pisani, and Roger Purves. 2007. Statistics (international
student edition). WW Norton & Company.

Gavel 2022. Gavel. https://github.com/apiaryio/gavel.js Accessed: Jun 3, 2022.
Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API data fuzzing. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 725-736.

Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differen-
tial regression testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 312-323.
GotSwag 2018. GotSwag. https://github.com/mobilcom-debitel/got-swag
Accessed: Jun 3, 2022.

Zac Hatfield-Dodds and Dmitry Dygalo. 2021. Deriving Semantics-Aware Fuzzers
from Web API Schemas. arXiv preprint arXiv:2112.10328 (2021).

Hypothesis 2022. Hypothesis. https://hypothesis.works/ Accessed: Jun 3, 2022.
IDLReasoner 2022. IDLReasoner. https://github.com/isa-group/IDLReasoner
Accessed: May 1, 2022.

JaCoCo 2021. JaCoCo. https://www.eclemma.org/jacoco/ Accessed: Jun 3, 2022.
Michael I Jordan and Tom M Mitchell. 2015. Machine learning: Trends, perspec-
tives, and prospects. Science (2015), 255-260.

Stefan Karlsson, Adnan Caugevi¢, and Daniel Sundmark. 2020. Automatic
Property-based Testing of GraphQL APIs. arXiv preprint arXiv:2012.07380 (2020).
Stefan Karlsson, Adnan Causevi¢, and Daniel Sundmark. 2020. QuickREST:
Property-based Test Generation of OpenAPI-Described RESTful APIs. In 13th
International Conference on Software Testing, Validation and Verification (ICST).
IEEE, 131-141.

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated
Test Generation for REST APIs: Replication Package. https://doi.org/10.5281/
zenodo.6534554

James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385-394.

Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and Ted
Marz. 1997. Comparing operating systems using robustness benchmarks. In
Proceedings of 16th IEEE Symposium on Reliable Distributed Systems (SRDS). IEEE,
72-179.

Sandra Kiibler, Ryan McDonald, and Joakim Nivre. 2009. Dependency parsing.
Synthesis lectures on human language technologies (2009), 1-127.

D Richard Kuhn, Raghu N Kacker, and Yu Lei. 2013. Introduction to combinatorial
testing. CRC press.

Pablo Lamela Seijas, Huiqing Li, and Simon Thompson. 2013. Towards property-
based testing of RESTful web services. In Proceedings of the twelfth ACM SIGPLAN
workshop on Erlang. 77-78.

Nuno Laranjeiro, Jodo Agnelo, and Jorge Bernardino. 2021. A Black Box Tool for
Robustness Testing of REST Services. IEEE Access (2021), 24738-24754.

Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan
Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-based RESTful API Testing
with Execution Feedback. arXiv preprint arXiv:2204.12148 (2022).

Chunyan Ma, Chenglie Du, Tao Zhang, Fei Hu, and Xiaobin Cai. 2008. WSDL-
based automated test data generation for web service. In 2008 International
Conference on Computer Science and Software Engineering, Vol. 2. IEEE, 731-737.
Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

Alberto Martin-Lopez, Sergio Segura, Carlos Muller, and Antonio Ruiz-Cortes.
2021. Specification and Automated Analysis of Inter-Parameter Dependencies
in Web APIs. IEEE Transactions on Services Computing (2021), 1-1. https:
//doi.org/10.1109/TSC.2021.3050610

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2019. A catalogue
of inter-parameter dependencies in RESTful web APIs. In International Conference
on Service-Oriented Computing. Springer, 399-414.

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2019. Test Cov-
erage Criteria for RESTful Web APIs. In Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and Evaluation.
15-21.

https://apiblueprint.org/
https://apifortress.com
https://github.com/KissPeter/APIFuzzer
https://apis.guru/
https://www.rapid7.com/products/appspider
https://arxiv.org/abs/1901.01541
http://arxiv.org/abs/1901.01541
http://arxiv.org/abs/1901.01541
https://doi.org/10.1145/3321707.3321732
bit.ly/RESTTestToolsStudy
https://arxiv.org/abs/2005.11498
https://git.dei.uc.pt/cnl/bBOXRT
https://github.com/Endava/cats
https://doi.org/10.1145/1730874.1730902
https://github.com/apiaryio/dredd
https://github.com/EMResearch/EvoMaster
https://github.com/apiaryio/gavel.js
https://github.com/mobilcom-debitel/got-swag
https://hypothesis.works/
https://github.com/isa-group/IDLReasoner
https://www.eclemma.org/jacoco/
https://doi.org/10.5281/zenodo.6534554
https://doi.org/10.5281/zenodo.6534554
https://doi.org/10.1109/TSC.2021.3050610
https://doi.org/10.1109/TSC.2021.3050610

Automated Test Generation for REST APIs: No Time to Rest Yet

[58]

[59

[64]
[65]

[70]

[71]

[72]

[73]

[74]

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest:
Black-Box Constraint-Based Testing of RESTful Web APIs. In International Con-
ference on Service-Oriented Computing. Springer, 459-475.

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. Black-Box
and White-Box Test Case Generation for RESTful APIs: Enemies or Allies?. In Pro-
ceedings of the 32nd International Symposium on Software Reliability Engineering.
to appear.

Sam Newman. 2015. Building Microservices (1st ed.). O’'Reilly Media.

NLTK 2021. NLTK. https://www.nltk.org/ Accessed: Jun 3, 2022.

] OpenAPI 2022. OpenAPI Specification. https://swagger.io/specification/ Ac-

cessed: Jun 3, 2022.

Pedro Victor Pontes Pinheiro, Andre Takeshi Endo, and Adenilso Simao. 2013.
Model-based testing of RESTful web services using UML protocol state machines.
In Brazilian Workshop on Systematic and Automated Software Testing. Citeseer,
1-10.

Postman 2022. Postman. https://getpostman.com Accessed: Jun 3, 2022.
progweb 2022. ProgrammableWeb API Directory. https://www.
programmableweb.com/category/all/apis Accessed: Jun 3, 2022.

raml 2022. RESTful API Modeling Language. https://raml.org/ Accessed: Jun 3,
2022.

ReadyAPI 2022. ReadyAPI. https://smartbear.com/product/ready-api/overview/
Accessed: Jun 3, 2022.

RESTAssured 2022. REST Assured. https://rest-assured.io Accessed: Jun 3, 2022.
RESTest 2022. RESTest. https://github.com/isa-group/RESTest Accessed: Jun 3,
2022.

RESTler 2022. RESTler. https://github.com/microsoft/restler-fuzzer Accessed:
Jun 3, 2022.

Hassan Reza and David Van Gilst. 2010. A framework for testing RESTful web
services. In 2010 Seventh International Conference on Information Technology: New
Generations. IEEE, 216-221.

Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin
Shetty, DaeHun Nyang, and Aziz Mohaisen. 2019. Exploring the attack surface
of blockchain: A systematic overview. arXiv preprint arXiv:1904.03487 (2019).
schemathesis 2022. schemathesis. https://github.com/schemathesis/schemathesis
Accessed: Jun 1, 2022.

Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2017. Meta-
morphic testing of RESTful web APIs. IEEE Transactions on Software Engineering

301

[75]

[76

=
=

(87

ISSTA °22, July 18-22, 2022, Virtual, South Korea

(TSE) (2017), 1083-1099.

Harry M Sneed and Shihong Huang. 2006. Wsdltest-a tool for testing web services.
In 2006 Eighth IEEE International Symposium on Web Site Evolution (WSE 06). IEEE,
14-21.

Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2021. Improv-
ing Test Case Generation for REST APIs Through Hierarchical Clustering. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 117-128.

tcases 2022. tcases restapi tool. https://github.com/Cornutum/tcases/tree/
master/tcases-openapi Accessed: Jun 3, 2022.

Wei-Tek Tsai, Ray Paul, Weiwei Song, and Zhibin Cao. 2002. Coyote: An xml-
based framework for web services testing. In Proceedings of 7th IEEE International
Symposium on High Assurance Systems Engineering. IEEE, 173-174.

Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RestTestGen:
automated black-box testing of RESTful APIs. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE, 142-152.
Diba Vosta. 2020. Evaluation of the t-wise Approach for Testing REST APIs.
Atro Voutilainen. 2003. Part-of-speech tagging. The Oxford handbook of compu-
tational linguistics (2003), 219-232.

WAS 2022. Qualys Web Application Scanning (WAS). https://www.qualys.com/
apps/web-app-scanning/ Accessed: Jun 3, 2022.

Jonathan] Webster and Chunyu Kit. 1992. Tokenization as the initial phase in NLP.
In COLING 1992 Volume 4: The 14th International Conference on Computational
Linguistics.

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial Testing
of RESTful APIs. In ACM/IEEE International Conference on Software Engineering
(ICSE).

Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2021. Resource and depen-
dency based test case generation for RESTful Web services. Empirical Software
Engineering (2021), 1-61.

Xiaojin Zhu and Andrew B Goldberg. 2009. Introduction to semi-supervised
learning. Synthesis lectures on artificial intelligence and machine learning (2009),
1-130.

https://www.nltk.org/
https://swagger.io/specification/
https://getpostman.com
https://www.programmableweb.com/category/all/apis
https://www.programmableweb.com/category/all/apis
https://raml.org/
https://smartbear.com/product/ready-api/overview/
https://rest-assured.io
https://github.com/isa-group/RESTest
https://github.com/microsoft/restler-fuzzer
https://github.com/schemathesis/schemathesis
https://github.com/Cornutum/tcases/tree/master/tcases-openapi
https://github.com/Cornutum/tcases/tree/master/tcases-openapi
https://www.qualys.com/apps/web- app- scanning/
https://www.qualys.com/apps/web- app- scanning/

	Abstract
	1 Introduction
	2 Background
	2.1 REST APIs
	2.2 OpenAPI Specifications

	3 Testing Tools Used In The Study
	3.1 Tools Selection
	3.2 Tools Description

	4 Empirical Study
	4.1 Web Services Benchmark
	4.2 Experiment Setup
	4.3 RQ1: Coverage Achieved
	4.4 RQ2: Error Responses Triggered
	4.5 RQ3: Implications of Our Results
	4.6 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

