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Abstract—Writing UI tests manually requires significant effort.
Several approaches have tried to address this problem in mobile
apps: by exploiting the similarities of different apps within the
same domain on a single platform, they have shown that it
is possible to transfer tests that exercise similar functionality
between the apps. A related recent technique enables transfer of
UI tests uni-directionally, from an open-source iOS app to the
same app implemented for Android. This paper presents MAPIT,
a technique that expands existing work in three important ways:
(1) it enables bi-directional UI test transfer between pairs of
“sibling” Android and iOS apps; (2) it does not assume that the
apps’ source code is available; (3) it is capable of transferring
tests containing oracles in addition to UI events. MAPIT runs
existing tests on a “source” app and builds a partial model
of the app corresponding to each test. The model comprises
the app’s screenshots, obtainable properties of each screenshot’s
constituent elements, and labeled transitions between the screen-
shots. MAPIT uses this model to determine the corresponding
information on the “target” app and generates an equivalent test,
via a novel approach that leverages computer vision and NLP.
Our evaluation on a diverse set of widely used, closed-source
sibling Android and iOS apps shows that MAPIT is feasible,
accurate, and useful in transferring UI tests across platforms.

I. INTRODUCTION

Writing UI tests manually requires significant effort. This is

an especially acute problem on mobile platforms given their

rapid app-development lifecycle. A popular alternative is to

automatically generate the UI tests, e.g., by relying on model-

based or random testing [1], [2]. While these approaches have

been shown effective for generating UI tests with high code

coverage, they cannot generate usage-based tests that target an

app’s specific functionality [3], such as login, sign-up, make

reservation, etc. It has been shown that such usage-based tests

are highly valuable to developers and testers [3], [4].
Recent work has demonstrated the possibility of generating

usage-based tests through test reuse across apps within a

single domain (e.g., news, shopping, etc.) [5], [3], [6], [7],

[8], [9], [10]. Guided by this insight, prior work has primarily

focused on transferring existing usage-based tests to a new

app within the same domain on a single platform [5], [6], [8],

[7], [3], [10]. Specifically, these approaches leverage existing

usage-based tests from a source Android app to automatically

generate equivalent tests for a target Android app.

A largely unexplored variant of this problem is transferring

tests written for an app implemented on one platform (e.g.,

Android), to the same app implemented for another platform
(e.g., iOS). We refer to such pairs of apps as sibling apps.

Cross-platform transfer has unique challenges as compared to

test transfer within Android alone. First, different platforms

employ different technologies, such as various app-development

languages and frameworks, which add significant complexity

to the problem. Second, iOS is a closed-source platform, which

has led to fewer and more limited tools for analyzing iOS apps

compared to Android. Finally, most iOS apps themselves are

closed-source, making any code-based analysis impossible.

The closest attempt at this problem is TestMig [11], which

has addressed uni-directional test transfer for sibling iOS and

Android apps. TestMig has three important limitations. First,

it assumes the availability of both the Android and iOS apps’

source code, which, as mentioned, is especially unlikely for

iOS apps. Second, TestMig only covers transferring tests in

one direction (iOS to Android). Supporting the other direction

(Android to iOS) is inherently challenging: unlike Android, for

which many open-source reverse engineering tools are readily

available (e.g., bytecode decompilers, Soot [12], Gator [13]),

iOS is a closed platform with a smaller developer base and

static analyses that existing test transfer techniques rely on are

not an option. Third, TestMig only targets UI events, but cannot

transfer test oracles or system events. Oracles are responsible

for evaluating the outcomes of tests and are therefore an

essential part of usage-based testing. Inability to migrate system

events additionally limits the set of test cases that can be

transferred. For instance, navigating to the previous screen is

an Andriod system event that frequently occurs in UI tests.

To address these limitations, we have developed MAPIT,

a novel approach for bi-directional transfer of usage-based

tests across different mobile platforms, with no source code
required on either platform. MAPIT is also the first approach

capable of transferring oracle events and system events across

mobile platforms. Specifically, MAPIT takes as input (1) the

binaries of the sibling apps-under-test implemented for both

iOS and Android as well as the (2) pre-existing tests for one

of these platforms, and automatically generates equivalent
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tests for the other platform. The transfer process comprises

two major phases. First, MAPIT dynamically extracts a GUI

model of the app on the source platform while executing the

source test. The GUI model contains the app screen bitmaps,

information regarding the relevant widgets contained on each

screen (e.g., widget images and descriptive attributes), and the

events that cause transitions from one app screen to the next.

Second, based on this GUI model, the source test is migrated

to the target platform by mapping the GUI widgets from the

source app to the most similar widgets in the sibling app. This

is done using a novel approach that combines computer vision

and NLP techniques, and therefore leverages both visual and

textual features of apps for mapping GUI widgets. This process

additionally recognizes and transfers oracle and system events.

We empirically evaluated MAPIT on 25 pairs of sibling

Android and iOS apps spanning 5 app categories. For each

pair of sibling apps, we transferred 4 test cases corresponding

to representative usage scenarios in both directions to evaluate

MAPIT’s ability to correctly transfer both (1) individual events

and test oracles, as well as (2) complete tests. In total, our

evaluation yielded bidirectional transfers of 200 test cases,

including 828 UI events, 176 oracle events, and 50 system

events. Overall, MAPIT achieved over 75% event mapping ac-

curacy and showed to be useful in reducing the required manual

effort by over 55%. Furthermore, 58 (29%) complete test cases

were transferred correctly, eliminating the manual effort. Note

that, even if a test is not completely transferred correctly, the

reduction in manual effort MAPIT affords is proportional to the

fraction of individual events that were successfully transferred.

In those cases, the developer can complete the partially

transferred test by modifying the events tagged as incorrectly

transferred. Furthermore, in our evaluation of MAPIT’s accu-

racy when transferring individual events, we compared our

composite mapping technique against only textual or only

visual information (as used in previous cross-platform transfer

techniques [11], [14]) and showed that our composite approach

outperforms the previous techniques in nearly all cases.

This paper makes the following contributions:

• A novel technique for bi-directional, cross-platform trans-

fer of usage-based tests for closed-source apps.

• A novel UI widget mapping solution that combines

pluggable computer vision and NLP techniques.

• An extensible approach for transferring test oracles and

system events across mobile platforms.

• An empirical evaluation on 25 closed source real-world

apps, and a public repository with MAPIT’s implementa-

tion and artifacts to foster future research [15].

Section II presents our work’s background via an example

and introduces the key terminology. Section III presents our

approach and Section IV its empirical evaluation. Section V

overviews the related work. Section VII concludes the paper.

II. BACKGROUND AND TERMINOLOGY

Figure 1 shows the screenshots of the login pages of Etsy,

a popular shopping app, on Android (left) and iOS (right).

Although the two login pages are not identical, they share sig-

nificant similarities in (1) the appearances of their UI widgets,

(2) the textual data describing these widgets, and (3) the wid-

gets’ position on the respective screens. Such, and even greater,

pairwise similarities between “sibling” apps are common.

Let us assume that a test of Etsy’s login functionality exists

on Android, and that we want to transfer it to iOS. The widgets

involved in the login test are framed and labeled for both

platforms in Figure 1. We will use this scenario to introduce

the terms and describe the concepts relevant to our approach.

The source app is the app with existing tests that are to

be transferred to the target app. Source platform and target
platform are the platforms on which the source and target
apps run, respectively. The source test is the existing test to

be transferred, while the target test is the transferred test. A

ground-truth test is an existing test for the target app that tests

the same functionality as the transferred source test. A test
scenario is an informal description of a test case in natural

language. For instance, the login test scenario consists of

entering username and password and clicking the “login” button.

A ground-truth test is thus used for evaluating the success of

a test transfer corresponding to the same test scenario in the

two sibling apps. Note that the source test that is transferred,

e.g., from iOS to Android, serves the ground-truth test when

transferring the same test scenario in the opposite direction.

The contents of a given screen of an app form an app
state. Equivalent states on the source and target apps are the

states intended to provide the same or equivalent functionalities,

usually with similar-looking UIs. For instance, Figure 1 shows

two equivalent states of the Etsy app on Android and iOS

since they both target login functionality.

An event is defined as a 4-tuple (a, w, t, o). Each event has

one required element: a, which is the type of action associated

with the event. The remaining three elements are optional: w is

the UI widget; t is the input text associated with the event, such

as text entered by the keyboard; and o is the oracle type. MAPIT

supports three types of events: (1) UI events, for which the sup-

ported action types are click and keyboard input; (2) oracle
events, which are the assertions in the UI tests that determine

Fig. 1: Login pages of Etsy on Android (left) and iOS (right).
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Fig. 2: High-level workflow of MAPIT.

whether a test should pass or fail, for which the supported action

type is oracle; and (3) system events, for which the supported

action types are back and enter. Note that w is optional since

not all events have an associated widget (e.g., system events).

If the event is an oracle event, o contains the specific oracle

type. To demonstrate MAPIT’s ability to transfer oracles,

in this paper we focus on a representative cross-section of

assertion types identified by prior work [5], [8], which will

be detailed in Section III.

As an example, the UI event of entering the username “Usr 1”

for logging into Etsy on Android is represented as a 4-tuple

(a:‘‘keyboard input’’, w:a1, t:‘‘Usr_1’’, o:−).

Finally, each UI test consists of a sequence of 4-tuple events.

III. APPROACH

Figure 2 shows an overview of MAPIT’s workflow. The

input to MAPIT is three-fold: (1) Source Test written for

the source platform, (2) Source App that runs on the source

platform, and (3) its sibling, Target App that runs on the target

platform. MAPIT automatically transfers the Source Test
through two major phases: (1) Source Data Extraction, during

which the data needed for the test transfer is dynamically

extracted from the Source App, and (2) Test Migration, during

which the extracted data is used to generate the Target Test,
the Source Test’s equivalent on the target platform. The

remainder of this section details the two phases.

In developing MAPIT, we made several implementation deci-

sions driven by the third-party technologies on which we relied.

We highlight those whenever they are instrumental in enabling

a particular facet of MAPIT. Overall, MAPIT is implemented

in 4.5 KSLOC of Python, additionally integrating off-the-shelf

tools for mobile app monitoring, analysis, and testing.

A. Source Data Extraction

During the source data extraction phase, the Internal Test
Generator component first transforms the pre-existing Source
Test to the Internal Test, which is captured in MAPIT’s internal

representation for test cases. This internal representation is both

programming language- and testing framework-independent,

a critical requirement of cross-platform test transfer. Based

on the Internal Test, the App Explorer component gradually

generates a UI Transition Model, which consists of the

observed UI states of the app and the transitions between

them. Each transition represents one event (e.g., button click)

within the corresponding test case. The UI Transition Model

is generated by executing each event of the Internal Test on

the source platform, and dynamically extracting the requisite

information from the source app. We describe the Internal Test
Generator and App Explorer components in more detail next.

Internal Test Generator
As mentioned above, this component translates the Source

Test into the language- and platform-independent Internal
Test. Figure 3 illustrates this with an example of translating a

partial test of Etsy’s login functionality, written in Python for

the Appium testing framework [16] (Figure 3-a), to MAPIT’s

internal format (Figure 3-b). A test is represented internally

by MAPIT as a sequence of 4-tuple events, as defined in

Section II, with the event elements w, t, and o being optional.

Note that each widget w contains the information used to locate

this widget in the source test, such as accessibility id,

resource id, XPath, or coordinates. Thus w is represented as

a locator-type and its corresponding locator-value.

As a proof of concept, MAPIT currently includes support

for translating tests written in Python for Appium [16] and the

Robot [17] framework. These two frameworks are widely used

in mobile-app testing. The translation in each case is done

by mapping framework-specific tests to MAPIT’s internal

test representation through regular expression matching.

For instance, the first two lines of the Appium Python test

shown in Figure 3-a are matched by the regular expressions

‘‘.*driver.find_element_by_(.*)\(\"(.*)\"\)’’, and

‘‘el.*\.(.*)\( (.*)\)’’ respectively, and the action,

locator-type, locator-value, and input elements are

extracted from them to form the first event in MAPIT’s

—————————————————————————

Fig. 3: Translating (a) Etsy’s login test written in Python for

the Appium framework to (b) MAPIT’s internal representation.
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Fig. 4: App Explorer’s internal architecture.

internal test format shown in Figure 3-b. This mechanism

can be easily extended to translate UI tests written in other

programming languages and/or for other testing frameworks.

App Explorer
As shown in Figure 2, the App Explorer component interacts

with a mobile device and gradually generates the UI Transition
Model of the Source App while executing the sequence of

Events in the Internal Test. Specifically, App Explorer consists

of three sub-components, as shown in Figure 4: Event Executor,

State Extractor, and Model Generator.

1) Event Executor: This sub-component is tasked with

initiating and maintaining an active connection with the mobile

device. It takes the Events from MAPIT’s Internal Test as input,

and transforms each event to the corresponding commands that

are transmitted to the device and executed. Event Executor uses

Appium [16] for device communication. In turn, Appium relies

on Android Debug Bridge [18], a tool for communicating with

Android devices, and Web Driver Agent [19], an interface for

remotely interacting with iOS devices.

2) State Extractor: For each event triggered by Event
Executor, State Extractor captures and processes the data

associated with the current device screen, in order to generate

the current UI State. A UI state S consists of (1) the app’s

current screenshot, (2) the graph representing the screen’s UI

layout hierarchy, and (3) all UI widgets that exist on the current

screen. Figure 5 shows an example of the UI state extracted

from the Etsy app at the beginning of a login test scenario.

Specifically, State Extractor first captures the bitmap of the

current screen (shown in the center of Figure 5) and extracts

its page source, which contains the screen’s UI information

as an XML hierarchy [20]. It then iterates through the UI

layout contained in the page source and builds a graph based

on the UI element hierarchy (shown on the left of Figure 5).

While iterating through the UI layout, State Extractor extracts

the boundaries of each UI widget and crops the captured

screenshot to get the image representing the widget on the

current screen. Also extracted and stored are each widget’s

descriptive attributes in the UI layout, such as resource id,

name, coordinates, element type, and whether it is interactable

(shown on the right of Figure 5). Finally, if the widget has any

visible text on its image, such text is captured using OCR. To

this end, we leveraged the Tesseract OCR engine [21].

3) Model Generator: App Explorer’s third sub-component

incrementally generates a UI transition model (UITM), based on

the UI States extracted from State Extractor (e.g., recall Figure

5)) and their corresponding Events obtained from Internal Test
Generator (recall Figure 2). UITM is a linear FSM representing

the transitions in the app taken while executing each event.

UITM has no back transitions: app state associated with a given

screen is captured separately each time the screen is visited.

Specifically, UITM(A, T ) is the transition model of app A
associated with UI test case T , which is a sequence of events

e1, e2, ..., en. The initial UI state of the app when executing T
is annotated as S0. Every state Si is reached by successfully

executing event ei in state Si−1. If the event sequence contains

n events, the UITM will contain n+ 1 states: S0, S1, ..., Sn.

Figure 6 shows the UITM extracted from the Android version

of Etsy, representing a login test case consisting of five events.

This UI transition model is a platform independent represen-

tation of the app under execution, and can be reused in other

cross-platform mappings involving closed-source apps. MAPIT

extracts and populates the model with more comprehensive

data from each state of an app compared to the corresponding

models offered by the existing approach that focuses on

extracting models from both iOS and Android apps [14].

B. Test Migration

In MAPIT’s second phase, the source test is migrated to the

target platform. This is done by transforming UITM(A, T ), ex-

tracted during the previous phase, into UITM(A′, T ′), where

A′ is the sibling app of A and T ′ is the test generated by MAPIT

to target the same functionality on A′ that T targeted on A.

Test migration is accomplished iteratively via three principal

components: App Explorer, Event Mapper, and Test Generator
(recall Figure 2). A high-level summary of this phase is

provided in Algorithm 1. UITM(A′, T ′) is initialized with

S′
0, which is the initial state of the target app (Lines 1-3).

As depicted in Figure 2, this state is extracted using a second

instance of the App Explorer component discussed in the

previous phase; this instance of App Explorer is responsible

for interacting with the target device. For each state Si and

transition-triggering event ei+1 in UITM(A, T ), the Event
Mapper component finds the equivalent e′i+1 event in the

current state S′
i on the target platform (Line 5). e′i+1 is

executed by App Explorer, resulting in the transition from

S′
i to S′

i+1 (Line 6). Additionally, e′i+1 is added to the target

test T ′ by the Test Generator component (Line 7). At this

point, S′
i+1 becomes the current state and its corresponding

information will be extracted by App Explorer (Line 8), and

added to UITM(A′, T ′) as a new state connected to S′
i via

the transition corresponding to e′i+1 (Lines 9-10). When the

final state of the source app’s model is reached, all events in

the source test have been migrated to the target platform.

Event Mapper is the core component of MAPIT. It dynami-

cally maps each event from the source platform to its equivalent

event that is executable in the current state of the target app. It

takes each state and event in the extracted UITM(A, T ) from

the previous phase, as well as the corresponding state in the

target app, and outputs the mapped event. Recall from Section

II that MAPIT supports the transfer of three types of events:
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Algorithm 1: High-Level Test Migration Process

Input: App A′, UI Transition Model UITM(A, T )
Output: Test T ′, UI Transition Model UITM(A′, T ′)

1 UITM(A′, T ′) = ∅;
2 S′

0 = extract current state(A′);
3 UITM(A′, T ′).add state(S′

0);
4 foreach (Si, ei+1) in UITM(A, T) do
5 e′i+1 = map event(Si, ei+1, S

′
i);

6 execute event(A′, e′i+1);
7 T ′.add event(e′i+1);
8 S′

i+1 = extract current state(A′);
9 UITM(A′, T ′).add state(S′

i+1);
10 UITM(A′, T ′).add transition(S′

i, S
′
i+1, e

′
i+1);

11 end

(1) UI, (2) oracle, and (3) system events. Correspondingly,

as shown in Figure 2, Event Mapper consists of UI Event
Mapper, Oracle Event Mapper, and System Event Mapper sub-

components. Mapping a source event is handled differently by

its corresponding mapper based on the event type. We now

detail each of these mappers. We will then elaborate on Test
Generator, the final component in MAPIT’s architecture.

UI Event Mapper
Recall that an event is a 4-tuple (a, w, t, o), some of whose

elements may be optional. All elements present in a given

event must be mapped from the source to the target platform.
For UI events, action type a can be click or keyboard

input. In both cases, a will be migrated to the target platform

as-is. For keyboard input actions, the event will also contain

text input t, which remains unchanged in the mapped event.
To map a source UI widget w to its most similar widget in the

current UI state of the target app, MAPIT leverages both visual

and textual information. As shown in Figure 7, it does so via

Visual Comparator, Textual Comparator, and Widget Selector
sub-components. By contrast, previous work has explored using

only textual [11], [5], [6], [8] or only visual [14] features of the

screen for widget mapping. In the ensuing discussion, we refer

to the combination of these three sub-components as UI Widget
Mapper, to distinguish them from the entire UI Event Mapper:

although a key function of UI Event Mapper is indeed the

mapping of UI widgets w, it is also responsible for mapping

the other elements of an event (a, t, o) to the target platform.

1) Visual Comparator: This sub-component extracts the

cropped image and coordinates of widget w from source app’s

state S, and all widgets that exist in target app’s current UI state

S′. It then calculates a visual similarity score with respect to w
for each widget of S′ and ranks the target widgets accordingly.

The intuition behind this component is that equivalent

widgets on different platforms tend to have very similar looks

by design. Visual similarity of two widgets is computed as the

weighted average of their (1) image, (2) screen location, and

(3) size similarities. Computing the latter two scores is relatively

straightforward. The proximity score of two widgets is com-

puted based on the Euclidean distance [22] of their locations

on the screen. The size similarity score is determined based on

the difference in widget sizes (normalized by the device size).

To compute the image similarity score, Visual Comparator
leverages the key points and feature descriptors extracted

from both the source and destination widget images. An

image’s key points are its pixels that have a prominent

difference of intensity with their adjacent pixels [23]. Feature

descriptors are numerical representations that encode data

about each key point’s neighborhood [23] and are used widely

for image comparison [24]. For detecting an image’s key

points and subsequently its feature descriptors we use ORB

[25] algorithm, which is an state-of-the-art image matching

technique that has shown to be highly efficient.

Once the sets of feature descriptors corresponding to source

and destination images have been obtained, Visual Comparator
computes the Hamming distance [26] for each pair of source

and destination descriptors. It then ranks the destination descrip-

tors for each source descriptor based on the computed distance.

Good matches between these two sets of descriptors are next de-

termined via Lowe’s ratio test [27], which is widely used in im-

age matching tasks. In this test, for each descriptor of the source

Fig. 5: UI state captured from Etsy’s login page. The two UI layout hierarchy elements highlighted on the left correspond to

the widget data shown on the right.

Fig. 6: UITM extracted from Etsy’s login test case. Each state S0-S5 is in the format shown in Figure 5.
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Fig. 7: UI Event Mapper’s internal architecture.

image, the two closest matches among the destination descrip-

tors per the computed Hamming distance are selected. If the

value of
distance( closest match )

distance( second closest match ) is less than a customiz-

able ratio, then the closest match is considered to be a good
match. We empirically explored different ratios, and set the

value to 0.8 in our evaluation reported in Section IV. At the end

of this process, each descriptor of the source image is labeled

as matched if it has a good matching destination descriptor.
Finally, Visual Comparator computes a normalized image

similarity score for each destination image with respect to

the source widget w. This score is calculated as the ratio

of matched source descriptors to the maximum number of

descriptors extracted from the source and destination images.
2) Textual Comparator: This sub-component determines

a textual similarity score between two widgets. It leverages

the widgets’ textual data from their respective UITMs ex-

tracted by MAPIT’s App Explorer (recall Section III-A). A

widget’s textual data consists of the values of its textual
attributes. These attributes are a subset of the information

extracted by State Extractor (recall Figure 4) for each widget

and include: (1) content descriptor, (2) resource id, and

(3) text, for the widgets on Android; and their iOS counterparts

(1) accessibility id, (2) name, and (3) label. Any text ex-

tracted from a widget’s image is also included in its textual data.
For illustration, in the Etsy example from

Figure 1, the textual data describing the ‘‘Sign In’’

button on Android (a3) is {content descriptor:-,

resource id:‘‘com.etsy.android:id/button_signin’’,

text:-, widget text:‘‘Sign In’’} while the textual

data describing the corresponding button on iOS (b3) is

{accessibility id:-, name:‘‘Sign in’’, label:‘‘Sign

in’’, widget text:‘‘Sign in’’}. Note that a UI widget

need not have all of the mentioned textual attributes. Also, the

values of multiple attributes may be identical. In the above

case, the Android widget (a3) does not have the content

descriptor attribute, while the values of name, label, and

widget text attributes for the iOS widget (b3) are the same.
Textual Comparator first pre-processes the extracted textual

data using common NLP practices, such as tokenization and

stop-word elimination. In addition to general-purpose stop-

words [28], we constructed a new list [15] of common stop-

words in widgets’ textual attributes that typically do not

convey meaningful information, such as ‘‘view’’, ‘‘bar’’,

and ‘‘container’’.

Textual Comparator computes a pairwise similarity score for

a given pair of source−target widgets’ textual attributes. It uses

Word2Vec [29] and the standard tf-idf formula [30] to transform

each textual attribute into its embeddings. The similarity score is

then calculated based on the embeddings’ cosine similarity [31].

Textual Comparator computes the similarity score of all pairs

of textual attributes regardless of their types (e.g., it will

compare text and accessibility id), to maximize the chance

of discovering similar widgets. The reason is that meaningful

textual values may be arbitrarily assigned to any attribute in

practice. The textual similarity score between two widgets is

then calculated as the highest cosine similarity score among the

textual attribute pairs. This process naturally filters out the simi-

larity scores calculated based on meaningless textual attributes.

As an example, the home button in Etsy on Android

has ‘‘com.etsy.android:id/menu_bottom_nav_home’’

as its resource id and ‘‘Home, tab 1 of 4’’ as its

accessibility id. The same button on iOS has ‘‘Home’’ as

its name and ‘‘1’’ as its value attribute. After the preprocess-

ing step, the textual attributes for the Android widget become

‘‘Home’’ and ‘‘menu bottom nav home’’, respectively.

While the cosine similarity between, e.g., ‘‘menu bottom nav

home" and ‘‘1’’ is very low (0.007), Android’s resource id

and iOS’s name are identical (‘‘Home’’). This means that the

textual similarity score between the two widgets is 1.0.

3) Widget Selector: UI Event Mapper’s third sub-component

selects the mapped UI widget based on the visual and textual

similarity scores. It does so by first checking the top-ranked

widgets based on the visual and textual similarity scores. If the

respective top-ranked widgets are the same, Widget Selector will

select this as the mapped widget. Otherwise, since the textual

data is more informative, Widget Selector first checks whether

the top-ranked widget in the textual similarity ranking has a

score higher than a given, adjustable threshold. If such a widget

w′ exists, then Widget Selector will first select all target widgets

whose textual similarity score is within an adjustable proximity

range of the textual similarity score of w′. These selected

widgets are considered as close textual matches. Widget Selector
will choose the widget with the highest visual similarity score

among the close textual matches. If no widget’s score is above

the specified textual similarity threshold, then the mapped

widget is the one with the highest visual similarity score.

At this point, the final mapped widget is checked for compati-

bility, based on whether its action type is supported on the target

device. If the mapped widget cannot support the transferred

action, Widget Selector will remove it from both rankings, and

then choose another UI widget based on the above process.

Oracle Event Mapper
This component is responsible for mapping all four elements

(a, w, o, t) of an oracle event. For these events, the action type a
that is oracle and oracle type o are always required, and are both

migrated to the target platform as-is. Mapping the other two

elements, w corresponding to the widget and t corresponding to

text, is more challenging. MAPIT handles the transfer of these
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two elements depending on the oracle’s type as detailed below.

As explained in Section II, we currently support several com-

mon types of oracles identified by prior work [5], [8]; MAPIT

can be easily extended to include additional oracle types. Table I

shows the oracle types currently supported by MAPIT, divided

into widget-independent and widget-dependent oracles. Note

that transferring test oracles is more challenging across plat-

forms than on a single platform since the supported oracle types

and widget attributes will differ across platforms. This requires

more challenging, heuristic-based mappings as detailed next.

The widget-independent oracle types currently supported

by MAPIT are text existence(txt) and text invisible(txt). These

oracles, respectively, check the presence and visibility of text

in the app’s current state. In representing these oracles via

MAPIT’s internal events, the value of the parameter txt is

captured by the oracle event’s element t. In these cases, the

text input txt of the source event will be transferred to the

target event as-is, and the presence or visibility of the same

text checked on the target platform.

The widget-dependent oracle types MAPIT currently

supports are widget exists(w), widget invisible(w), and

assert equal(w, attr, val). For this group of oracles, the

corresponding MAPIT events also contain the widget element

w, which is mapped by UI Widget Mapper as discussed above.

Transferring the widget invisible(w) oracle is more

challenging than widget exists(w). The reason is that the

widget w does not exist in the current state of the source

app and, therefore, it is not possible to extract the needed

data for the widget mapping process from the source UI state.

Instead, we hypothesized that in most test cases in which the

invisibility of a widget w is asserted, w is visible in some other

app state that is visited during the execution of the scenario

under test. Thus, for each widget invisible oracle in the source

test, the existence of its associated widget w is checked in all

states of the source app that are visited during the migration

process. If w is found in any state S on the source app, UI
Widget Mapper will search for its equivalent widget w′ in the

equivalent state S′ on the destination platform. After mapping

w, all remaining elements of the oracle event are mapped to

the target platform. If w is not found, its corresponding oracle

event will be marked as “not mappable” on the target test.

The assert equal(w, attr, val) oracle checks whether the value

of the attribute attr of widget w is equal to the asserted value

val. In this case, MAPIT captures the combination of attr
and val parameters as oracle event’s element t. Transferring

this oracle type is challenged by the differences in the widget

attributes maintained by iOS and Android. The only attribute

that exists on both platforms is enabled. Some widget attributes

Widget-independent Test Oracles
text existence(txt)
text invisible(txt)
Widget-dependent Test Oracles
widget exists(w)
widget invisible(w)
assert equal(w, attr, val)

TABLE I: Oracle types supported by MAPIT.

have different names but equivalent meanings. This includes

the attributes forming the previously discussed textual data and

their corresponding mappings, as well as Android’s visible

and iOS’s displayed attributes. Another group of attributes

can be mapped using heuristics. For instance, the selected and

checked attributes assess whether a widget (e.g., radio button,

tab) is selected/checked on Android. Although these two at-

tributes do not exist on iOS, developers usually denote a widget

being selected/checked by assigning 1 to its value attribute or

including the word “selected” in its accessibility id.

For other attributes (e.g., Android’s clickable), a mapping

is not possible. MAPIT transfers such assert equal(w, attr, val)
oracles to a not-mappable event on the destination platform.

System Event Mapper
For system events, MAPIT supports the action types enter

and back. For these events, only the action type a in the

4-tuple (a, w, t, o) has a value. If a is enter, it will remain

unchanged between the source and target events. The challenge

in transferring system events is that they may be handled

differently across platforms. An example is the transfer of a

back system event. A back is a system event on Android, but

no corresponding system event exists on iOS. Instead, iOS’s

equivalent would be a UI event with a widget that appears as

a “back” button on the app screen. We discuss how MAPIT

handles this event’s mapping in both directions.

When mapping from iOS to Android, MAPIT only has to

check whether the source event is indeed a back event. This

is done by checking whether the source event’s action type

a is click, and whether the textual attributes of its widget

w contain the keywords ‘‘back’’ or ‘‘previous’’.

The mapping from Android to iOS is more challenging since

it requires relating a system event to a UI event, where the latter

contains information not present in the former. To address this,

MAPIT internally introduces a virtual click event and an asso-

ciated back-button widget. This widget contains the bitmap of a

typical back button, with coordinates normalized by device size,

and relevant textual data to describe the button (e.g., the string

‘‘back button’’ as the value of the content descriptor

attribute). The normalized coordinates are calculated based

on the observation that, in most iOS apps, the back button is

located in the bottom-left corner of the screen. Finally, the

corresponding back button on iOS is identified by mapping this

virtual widget using UI Widget Mapper as discussed previously.

Test Generator
Finally, the Test Generator component generates a UI test for

the target platform based on the mapped events. The generated

test is in the Internal Test format discussed in Section III-A.

Generating tests is particularly challenging when the UI

widget w′ in a mapped event (a′, w′, t′, o′) does not con-

tain an attribute that can be used as a widget locator

(e.g., accessibility id or resource id). This information

is needed to identify a specific UI widget to trigger an event.

In such cases, MAPIT needs to generate a locator that is

understandable to the target device.
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There are two options to locate the target widget: (1) using

the widget’s coordinates or (2) using the widget’s XPath,

which is the ancestral path from the root of the UI layout

hierarchy [32]. We choose XPath because coordinates are

tied to a specific device, which would result in brittle tests that

are not executable on other devices. To automatically generate

the XPath locator for a target widget, Test Generator leverages

the UI layout hierarchy graph (recall Figure 5), which is

stored as part of the target app’s UITM (Figure 6). Specifically,

Test Generator traverses this graph until the mapped event

(a′, w′, t′, o′) is reached, and retrieves the XPath associated

with the target widget w′. The XPath is then stored as the

mapped event’s locator using Internal Test’s representation

discussed in Section III-A and depicted in Figure 3-b.

IV. EVALUATION

Our evaluation focuses on two key aspects of MAPIT: (1) its

accuracy in mapping events from a source to a target platform

and (2) usefulness of the tests it transfers. We first describe

our empirical setup and then present the evaluation results.

A. Evaluation Setup

MAPIT is not tied to a specific Android or iOS version

or device, and is only practically constrained by the tools on

which its implementation currently relies. Our evaluation was

performed on an iPhone 7 running iOS 14.4, and a Pixel 4

emulator running Android 11.0 installed on a macOS laptop

with 16GB RAM and 3.5GHz dual-core core i7 processor.

As discussed in the context of UI Event Mapper in

Section III-B, MAPIT has two adjustable parameters:

(1) textual similarity threshold and (2) proximity range. We

empirically determined the best performing values for these

parameters to be 0.5 and 0.1, respectively. Our results reported

in this section were obtained using these values.

Recall that, unlike the lone existing approach for cross-

platform test transfer [11], MAPIT does not require the apps’

source code. Since MAPIT targets the bi-directional transfer

of the same app across different platforms, we selected

popular apps that are available on both Android and iOS.

We first chose five different app categories: News, Shopping,

ToDo List, Web Browser, and Mail Client. We chose these

categories for two reasons: (1) they have a number of sibling

apps on iOS’s App Store and Android’s Google Play, and

(2) apps from these categories have been used to evaluate test

migration techniques previously [8], [3]. In each category, we

selected five frequently downloaded apps that are available

on both platforms, totaling 25 app pairs, shown in Table II.

Table III shows the test scenarios we used to evaluate

MAPIT. We selected the most common scenarios for each app

category as identified by prior work [8], [3] and subsequently

expanded the scenarios by further examining the subject

apps. For each app, we evaluated four scenarios. More than

four scenarios are shown in three of the categories because

a given scenario may not be applicable to all subject apps.

Within each scenario, we also identified a set of oracles, i.e.,

conditions that must hold true in the app at a given point.

To generate the test scripts for both Android and iOS

platforms, we manually trigger the events, including both UI

and system events, in each test scenario, and used Appium [16]

to record the process. Appium automatically converts the

recorded test scenarios to test scripts in the Robot framework

format [17]. These test scripts serve as both source tests to be

transferred from, and ground-truth tests to evaluate MAPIT’s

accuracy and usefulness. We manually added oracle events to

the tests after they were translated to MAPIT’s internal format

during the Source Data Extraction phase (recall Section III-A).

This was done because the employed Appium interface did not

allow us to automatically add the oracle events while recording

the tests. In the required manual process, we decided to add

News Shopping ToDo List Web Browser Mail Client
BBC Wish Google Tasks Chrome Gmail

CCN Etsy Microsoft To-Do Firefox Blue Mail

ABC News ebay Todoist DuckDuckGo Edison Mail

The Guardian Poshmark Any.do Brave Spark Mail

USA Today AliExpress My Tasks Edge Newton

TABLE II: Subject apps used for MAPIT’s evaluation.

Fig. 8: The accuracy of MAPIT’s event mapping across different app categories. Within each category, there are two clusters of

results: the left (unhighlighted) cluster represent the mapping from Android to iOS and the right (highlighted) from iOS to Android.

Within each cluster, the results are divided by mapping strategy: vision-only (left), text-only (middle), and composite (right).
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these events to the internal test rather than the original tests.

Note that while this decision may be a limitation of MAPIT’s

current implementation, it does not present a threat to MAPIT’s

validity or applicability: the same regular expression matching

algorithm used in Internal Test Generator can be leveraged

to translate oracle events from any format or language that

supports them to MAPIT’s internal representation.

We used MAPIT to transfer each test script from Android

to iOS and vice-versa. This yielded 200 transfer cases in total

(25 apps × 4 tests × 2 directions). Overall, our tests contain

828 UI events, 176 oracle events and 50 system events. This

averages to slightly over 5 events per test. Overall, the choices

we made in evaluating MAPIT (number of apps, tests, oracles,

and test sizes) are at least comparable to, and in several

instances significantly surpass, those reported in the emerging

literature on mobile-app test transfer [3].

Our approach does not require all tests to have oracle events

since in some cases the goal of usage-based tests is only

to confirm that a specific scenario can be executed on a

device without causing the app to crash. Therefore, we include

scenarios both with and without oracle events. This makes

our evaluation reflective actual usage-based testing in practice.

Furthermore, there was no notable difference between the

mapping accuracies for different types of events. This strongly

suggests that omitting oracle events from certain tests does not

impact the validity of our evaluation results.

B. Accuracy of Event Mappings

This part of our evaluation focuses on MAPIT’s ability

to correctly transfer a given app, oracle, or system event e
from a source test containing e to the corresponding event

Category Test Scenario

News

1) Save or bookmark specific news article

2) Navigate to specific category of news

3) Search for specific news topic

4) Personalize newsfeed based on news topics

5) Change edition

6) Follow author

Shop

1) Login to user account

2) Remove item from shopping cart

3) Navigate between product categories

4) Add item to shopping cart

5) Make wishlist

6) Filter products

ToDo

1) Add ToDo task

2) Remove ToDo task

3) Edit ToDo task

4) Change due date of ToDo task

Web

1) Access website by URL

2) Navigate to previous page

3) Navigate to new browser tab

4) Bookmark URL

Mail Client

1) Compose email

2) Search email by keyword

3) Move emails across folders

4) Archive existing email

5) Reply to email

TABLE III: The evaluated scenarios for each app category.

e′ in the target test. Specifically, this reflects the accuracy of

Event Mapper, MAPIT’s core component (recall Section III-B).

Measuring Event Mapper’s accuracy requires that we isolate

its impact from MAPIT’s remaining components. To explain

how we accomplish that, consider the following scenario. Si is

a state in the source app and S′
j its equivalent state in the target

app. Event ei+1 is an event in the extracted UITM representing

a source test that takes the source app from Si to Si+1 (recall

Figure 6) . We evaluate whether Event Mapper is successful

in finding the correct mapping for ei+1 that will advance the

target app from state S′
j to S′

j+1.

To this end, we manually inspect each pair of sibling

apps and detect their equivalent states for each test scenario

based on the functionality they provide. We feed those

states alongside the source event to Event Mapper. Manually

detecting equivalent states in sibling apps was straightforward

in practice: in more than 95% of the cases in our subject apps,

there existed one-to-one mappings between the source and

target states, and they occurred in the same order (i.e., i = j).

This is consistent with our guiding hypothesis that sibling

apps will have highly similar functionalities by design.

The correctness of each source event’s mapping is determined

by manually comparing the transferred test and the ground-

truth test. Note that there can be multiple correct mappings for

a given source event. For example, the correct mapping of the

click event on widget a3 in Figure 1 can be a click on either

b3 or b4 since they both result in the same action.

MAPIT’s test transfer approach assumes that there exists

one-to-one mappings between UI states of the sibling apps.

However, in certain, rare cases the numbers of events that

represent the same test scenario will differ between the two

platforms. For example, Etsy’s login on iOS requires the user to

choose the account type first and then navigate to the main login

page, whereas on Android the user chooses the account type

on the login page itself. In the 100 test scenarios used in our

evaluation, we encountered only 8 such cases; this prevalence

(8%) is consistent with previously reported results [11]. Such

differences do not impact MAPIT’s event-mapping accuracy. In-

stead, mismatched UI states affect the usefulness of transferred

tests and are taken into account in Section IV-C below.

Recall from Section III that MAPIT introduces a combination

of visual and textual techniques for mapping events between

platforms. We thus also evaluate the benefits of this composite

mapping. Note that the sole previously existing cross-platform

test migration technique, TestMig, only employs textual

mapping [11]. Adding visual information was important in

our case since we target closed-source apps whose textual

information is limited due to the unavailability of app code.

We were unable to directly compare MAPIT’s accuracy with

TestMig for two reasons. First, TestMig requires access to

an app’s source code while the code of nearly all of our

subject apps is unavailable. Second, TestMig only supports

uni-directional transfer from iOS to Android.

Figure 8 shows the accuracy of our bi-directional event map-

ping in each app category, based on vision-only, text-only, and

composite mappings. With one exception, MAPIT’s composite
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mapper outperforms the other two strategies. The composite

mapper was able to accurately map events in over 3
4 of all cases

(see “All Categories” in Figure 8). No notable differences in

accuracy emerged when mapping UI, oracle, or system events.

Furthermore, these results are independent of the platform:

the overall results are separated by a single percentage point

between the Android-to-iOS and iOS-to-Android mappings.

The lone exception to the above trends is the iOS-to-Android

mapping of Web Browser apps. Our subsequent analysis

uncovered a likely reason and a possible remedy. Namely,

in MAPIT’s analysis of some of the browser apps, a textually

mapped widget would have been the correct widget to select,

but its textual similarity with the source widget was below the

threshold discussed in Section III-B. In those cases, the visually

mapped widget was chosen per the strategy adopted by MAPIT.

However, this was a flawed strategy because of the sibling apps’

layout differences. This suggests that the thresholds, which we

set across all apps, may need to be further tuned for different

app categories and possibly based on other criteria.

C. Usefulness of Transferred Tests

To assess how useful the tests transferred by MAPIT are, we

leverage a metric introduced by recent work [3], which measurs

the reduction in the manual effort required to accomplish a test-

transfer task. Specifically, the manual effort required after using

MAPIT is quantified as the number of steps needed to rectify

the incorrectly-mapped events in the transferred test, while the

effort without using MAPIT amounts to the number of steps

needed to write the entire ground-truth test from scratch. A

step can be an event’s insertion, deletion, or substitution [3].

To perform this evaluation, we provide MAPIT with the

binaries of sibling apps as well as a test script on the source

platform, and compare the transferred test to the ground truth

on the target platform. Recall from Section IV-B that there

may exist multiple correct mappings for a source event. For

this reason, we manually inspect each transferred test to verify

the correctly mapped events.

Figure 9, shows the average effort reduction across the

different subject-app categories. Overall, MAPIT reduces more

than half the manual effort required to write UI tests for a new

platform. Furthermore, the average reductions are similar in

the two transfer directions, indicating that MAPIT’s usefulness

is independent of the platform. In our evaluation, MAPIT

Fig. 9: Effort reduction afforded by MAPIT. Result pairs within

each app category correspond to the mappings from Android

to iOS (left) and from iOS to Android (right, highlighted).

was able to achieve 100% reduction—eliminating all manual

effort—in 58 of 200 test cases (29%).

If we consider these results in tandem with those from

Figure 8, it is interesting to note that, in a number of instances,

MAPIT achieved high accuracy but relatively low reduction

(i.e., usefulness). Initially, this seemed counter-intuitive since,

in principle, accurate event mappings should result in high-

quality transferred tests. However, a more detailed analysis

uncovered that the incorrectly-mapped events in these cases are

rare, but they start appearing relatively early in a transferred

test. In turn, this leads a target app into an incorrect state early

during the test migration phase and causes it to “get lost” so

that all subsequent source events are also mapped incorrectly.

In a great majority of cases, these subsequent events would

have been mapped correctly if the app were in the correct

state (as can be confirmed by MAPIT’s complete accuracy

data [15]). In fact, 74 of the 200 test cases (37%) would only

have one incorrectly-mapped event if a correct app state were

reached. This strongly suggests that minor human effort has

the potential to improve MAPIT’s usefulness significantly.

For example, slightly “nudging” MAPIT in certain cases—by

manually providing a correct mapping of a single event or by

guiding the target app once to a correct state—would combine

these 74 cases with the 58 fully transferred test cases to raise

MAPIT’s reduction in effort to nearly zero in 2
3 of cases.

Another aspect of MAPIT’s usefulness we measured is

its performance. Although we have not optimized MAPIT

for speed, this aspect of our prototype is an indication of its

real-world applicability. On average, MAPIT’s Source Data
Extraction phase took 101 seconds and its Test Migration
phase took 217 seconds; in other words, the entire transfer

process averaged slightly over 5 minutes per test. In general,

MAPIT’s execution time depends on the number of events in

a test, as well as the complexity of an app’s screen layout at

each step of the execution. An average test in our evaluation

had 5 events, while each app screen averaged 25 widgets that

needed to be extracted and compared.

V. RELATED WORK

TestMig [11] is the lone existing approach for migrating tests
across platforms. However, TestMig only transfers tests from

iOS to Android and requires the source code of both source and

target apps. Other approaches in the mobile-app domain have

focused on migrating UI tests between different Android apps

within the same category. Behrang et al. [5], [6] and Lin et

al. [8] rely on static code analysis for extracting the GUI models

of the app, which are not available for closed-source iOS apps.

Mariani et al. [10] formulated the test reuse problem as a

search problem and used evolutionary testing to transfer tests

across different Android apps. Hu et al. [7] proposed a machine

learning-based approach for generating UI tests for an app using

a library of existing tests. This work generates regression tests

for a specific app rather than enabling test migration. Zhao

et al. [3] proposed a framework for automatically evaluating

the previous approaches, but did not specifically address test

migration. Mariani et al. [33] presented an empirical study
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on techniques for semantic matching of GUI events used by

existing test reuse approaches.

Beyond the mobile-app arena, Rau et al. [34] proposed

an approach for efficiently generating UI tests by learning

from the existing tests of other apps, but their work targets

web applications. Similarly, Yeh et al. [35] proposed an early

image-based platform-independent testing tool for testing

desktop and web applications. Finally, Mariani et al. [36]

proposed an approach that automatically exploits the common

functionalities of Java applications to generate UI tests.

Another related body of work focuses on remote app
execution. Yu et al.[14] proposed LIRAT, a record-and-replay

technique for executing scenarios across mobile platforms.

Their approach is based on image feature matching and UI

layout characterization. Compared to MAPIT’s composite

approach, using only visual features lowers the mapping

accuracy, especially in cases where the source and target apps

are not visually identical. Furthermore, leveraging textual data

using a technique such as Word2Vec, which focuses on the

semantics behind the data instead of the exact word matching,

makes MAPIT’s approach more suitable as a foundation for

cross-platform test transfer than LIRAT [14]. Another recent

approach [37], [38] enabled remote interaction with iOS devices

and dynamic extraction of partial app UI models. These

approaches do not generate a test case from an existing UI

test, but replay on a target device a specific scenario that was

recorded on a source device. Cross-platform test migration is

different from them in at least three important ways. (1) Actual

test cases must be human readable and modifiable. (2) Migrated

test cases include oracle events, which may in fact benefit

record-and-replay but are not considered by it. (3) Migrated

test cases are not device coordinate-dependent and can be

directly reused across devices on the same platform.

There is an emerging body of work that extracts UI models
from Android apps and uses them to guide testing. This may be

done statically [39], dynamically [2], [40], or by a combined

strategy [41], [42]. Our approach is platform-independent and

is, in principle, closer to dynamic approaches that do not

assume the existence of app code.

VI. LIMITATIONS AND DISCUSSION

MAPIT’s approach and current implementation have several

potential limitations. We discuss them in this section.

One limitation is presented by sibling apps whose events

are not related 1-to-1. Supporting 1-to-N event mappings is

especially challenging in bi-directional test transfer across

mobile platforms. This is because of an important difference

between Android and iOS. In Android, many reverse engi-

neering tools are available that can help to extract a complete

model of a closed-source app (e.g., Gator [13]). On the other

hand, no analogous mechanism exists for iOS, which makes it

challenging to predict possible future events in each state of a

closed-source iOS apps. Even though both our evaluation and

prior work indicate that sibling apps whose events have the

1-to-N relationships occur relatively infrequently, finding ways

to address this issue would further improve MAPIT’s utility.

MAPIT currently only supports clicks and keyboard inputs

as UI events. These two UI events are the most common types

of events. They are also more challenging to map than other

UI events since they are associated with UI widgets. MAPIT’s

underlying modular design makes it easily extensible to support

additional types of UI events, such as swiping and scrolling.

One strategy for doing so would be by introducing event-

specific heuristics. We will have to implement and evaluate

the effectiveness of such an approach.

Another limitation of MAPIT is its inability to extract

data (e.g., the UITM discussed in Section III-A) from certain

commercial apps. Our analysis of this problem identified four

potential reasons: (1) some apps may use obfuscation and make

certain UI elements inaccessible; (2) hybrid apps that combine

web and native code may not be analyzable by tools such as

Appium; (3) certain UI states may not allow data extraction

for security reasons (e.g., no screenshots may be taken on the

login screen); and (4) the execution of some tests requires

currently unrecognized types of action (e.g., scrolling). Some

of these (e.g., adding support for scrolling) are straightforward

extensions to MAPIT, but others (e.g., overcoming obfuscation)

present compelling research challenges.

Finally, as discussed in Section III-A, MAPIT currently

relies on regular expression matching for translating tests to

MAPIT’s internal representation. We have considered using

methods based on program analysis (e.g., AST parsing) for the

translation. However, we decided to use regular expressions

because they are fast and accurate, and most testing frameworks

have APIs that generate tests in a specific format. The

requirement that original tests be in a specific format can limit

the number of input tests MAPIT can handle. As a potential

remedy, MAPIT’s modular architecture makes it possible to

substitute the current Internal Test Generator component with

a more complex translator.

VII. CONCLUSION

Our work has demonstrated that it is viable to flexibly

transfer both individual app events and entire UI tests across

mobile platforms. This will serve as a foundation for a range of

follow-on activities in this area. Several of those will, naturally,

focus on improving MAPIT’s accuracy and usefulness, and on

addressing its current shortcomings. This may involve relaxing

some of our assumptions, such as taking advantage of code

when it is available. It may also involve leveraging MAPIT’s

modular architecture to introduce platform- or technology-

specific components when appropriate, as discussed above.

Future work will also require overcoming specific challenges

enumerated in Section VI that have not been our focus to date

for practical reasons.
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