
Deep GUI: Black-box GUI Input Generation with
Deep Learning

Faraz YazdaniBanafsheDaragh
School of Information and Computer Sciences

University of California, Irvine, USA

faraz.yazdani@uci.edu

Sam Malek
School of Information and Computer Sciences

University of California, Irvine, USA

malek@uci.edu

Abstract—Despite the proliferation of Android testing tools,
Google Monkey has remained the de facto standard for prac-
titioners. The popularity of Google Monkey is largely due to
the fact that it is a black-box testing tool, making it widely
applicable to all types of Android apps, regardless of their
underlying implementation details. An important drawback of
Google Monkey, however, is the fact that it uses the most naive
form of test input generation technique, i.e., random testing.
In this work, we present Deep GUI, an approach that aims
to complement the benefits of black-box testing with a more
intelligent form of GUI input generation. Given only screenshots
of apps, Deep GUI first employs deep learning to construct a
model of valid GUI interactions. It then uses this model to
generate effective inputs for an app under test without the
need to probe its implementation details. Moreover, since the
data collection, training, and inference processes are performed
independent of the platform, the model inferred by Deep GUI
has application for testing apps in other platforms as well.
We implemented a prototype of Deep GUI in a tool called
Monkey++ by extending Google Monkey and evaluated it for its
ability to crawl Android apps. We found that Monkey++ achieves
significant improvements over Google Monkey in cases where an
app’s UI is complex, requiring sophisticated inputs. Furthermore,
our experimental results demonstrate the model inferred using
Deep GUI can be reused for effective GUI input generation across
platforms without the need for retraining.

I. INTRODUCTION

Automatic input generation for Android applications (apps)

has been a hot topic for the past decade in the software

engineering community [1]–[14]. Input generators have a

variety of applications. Among others, they are used for

verifying functional correctness (e.g., [13], [15], [16]), security

(e.g., [17], [18]), energy consumption (e.g., [19], [20]), and

accessibility (e.g., [21]) of apps. Depending on the objective

at hand, input generators can be very generic, and simply crawl

apps to maximize coverage [22]–[24], or can be very specific,

looking for certain criteria to be fulfilled, such as reaching

activities with specific attributes [2].

Common across the majority of existing input generators

is the fact that they are white-box, i.e., require access to

implementation details of the app under test (AUT). For

instance, many tools use static analysis to find the right

combination of interactions with the AUT [1]–[4], while other

tools depend on the XML-based GUI layout of the AUT to

find the GUI widgets and interact with them [5]–[14]. The

underlying implementation details of an AUT provide these

tools with insights to produce effective inputs, but also pose

severe limitations that compromise the applicability of these

tools. First, there is a substantial degree of heterogeneity

in the implementation details of apps. Consider for instance

the fact that many Android apps are non-native, e.g., built

out of activities that are just wrappers for web content. In

these situations, the majority of existing tools either fail to

operate or achieve very poor results. Second, the source code

analyses underlying these tools are tightly coupled to the

Android platform, and often to specific versions of it, making

them extremely fragile when used for testing apps in a new

environment.

Black-box input generation tools do not suffer from the

same shortcomings. Google Monkey is the most widely used

black-box testing tool for Android. Despite being a random

input generator, prior studies suggest Google Monkey outper-

forms many of the existing white- and gray-box tools [25].

This can be attributed to the fact that Google Monkey is

significantly more robust than almost all other existing tools,

i.e., it works on all types of apps regardless of how they

are implemented. However, Google Monkey employs the most

basic form of input generation strategy. It blindly interacts with

the screen without knowing if its actions are valid. This might

work well in apps with a simple GUI, where the probability

of randomly choosing a valid action is high, but not in apps

with a complex GUI. For instance, take Figure 1. In Figure

1a, since most of the screen contains buttons, almost all of the

times that Google Monkey decides to generate a touch action,

it touches something valid and therefore tests a functionality.

However, in Figure 1b, it is much less probable for Google

Monkey to successfully touch the one button that exists on the

screen, and therefore it takes much longer than needed for it

to test the app’s functionality.

This article presents Deep GUI, a black-box GUI input

generation technique with deep learning that aims to address

the above-mentioned shortcoming. Deep GUI is able to filter

out the parts of the screen that are irrelevant with respect to

a specific action, such as touch, and therefore increases the

probability of correctly interacting with the AUT. For example,

given the screenshot shown in Figure 1b, Deep GUI first

produces the heatmap in Figure 1c, which shows for each

pixel the probability of that pixel belonging to a touchable

widget. It then uses this heatmap to touch the pixels with a

905

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00084

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

87
78

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d) (e)

Fig. 1: Two examples where it is respectively easy (a) and difficult (b) for Google Monkey to find a valid action, as well as

the heatmaps generated by Deep GUI associated with (b) for touch (c), scroll (d), and swipe (e) actions respectively. Note that

in (c) the model correctly identifies both the button and the hyperlink –and not the plain text– as touchable.

probability that is proportionate to their heatmap value, hence

increasing the chance of touching the button in this example.

In order to produce such heatmaps, Deep GUI undertakes

a deep-learning approach. We further show that this approach

is a special case of a more general method known as deep

reinforcement learning, and we discuss how this method can

be used to develop even more intelligent input generation

tools. Moreover, what makes Deep GUI unique is that it uses

a completely black-box and cross-platform method to collect

data, learn from it, and produce the mentioned heatmaps, and

hence supports all situations, applications, and platforms. It

also uses the power of transfer learning to make its training

more data-efficient and faster. Our experimental evaluation

shows that Deep GUI is able to improve Google Monkey’s

performance on apps with complex GUIs, where Google

Monkey struggles to find valid actions. It also shows that we

can take a Deep GUI model that is trained on Android, and

use it on other platforms, specifically web in our experiments,

for efficient input generation.

In summary, this article makes the following contributions:

1) We propose Deep GUI, a black-box approach for gen-

eration of GUI inputs using deep learning. To the best

of our knowledge, this is the first approach that uses

a completely black-box and cross-platform approach for

data collection, training, and inference in the generation

of test inputs.

2) We provide an implementation of Deep GUI for Android,

called Monkey++, by extending Google Monkey. We

make this tool available publicly.1

3) We present detailed evaluation of Deep GUI using An-

drotest benchmark [25], consisting of 31 real-world mo-

bile apps, as well as the top 15 websites in the US [26].

Our results corroborate Deep GUI’s ability to improve

both the code coverage and the speed with which this

coverage can be attained.

The remainder of this paper is organized as follows. Sec-

tion II describes the details of our approach. Section III

provides our evaluation results. Section IV reviews the most

relevant prior work. Finally, in Section V, the paper concludes

with a discussion of our contributions, limitations of our work,

and directions for future research.

1 https://github.com/Feri73/deep-gui

906

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

II. APPROACH

We formally provide our definition of the problem for

automatically generating inputs in a test environment. Suppose

that at each timestep t, the environment provides us with its

state st. This can be as simple as the screenshot, or can be a

more complicated content such as the UI tree. Also, suppose

we define A = {α1, ...αN} as the set of all possible actions

that can be performed in the environment at all timesteps.

For instance, in Figure 1b, all of the touch events associated

with all pixels on the screen can be included in A. Note

that these actions are not necessarily valid. We define a valid

action as an action that results in triggering a functionality

(like touching the send button) or changing the UI state (like

scrolling down a list). Let us define rt = r(st, at) to be 1

if at is valid when performed on st, and 0 otherwise. Our

goal is to come up with a function Q that, given st, produces

the probability of validity for each possible action. That is,

Q(st, at) identifies how probable it is for at to be a valid action

when performed on st. Therefore, Q is essentially a binary

classifier (valid vs. non-valid) conditioned on st independently

for each action in the set A. For simplicity, we also define

Q(st) as a function that, given an action α, returns Q(st, α).
That is, Q(st)(α) = Q(st, α).

In Deep GUI, we consider st to be the screenshot of AUT

at each timestep. Set A consists of touch, up and down scroll,

and right and left swipe events, on all of the pixels of the

screen. We also define rt as follows:

r(st, at) =

{
0 if equals(st, st+1)

1 otherwise

That is, if the screenshot undergoes a legitimate change after

an action, we consider that action to be a valid one in that

screen. We define what a legitimate change means later in this

section. Note that we defined st, A, and rt independent of the

platform on which AUT operates. Therefore, this approach can

be used in almost all existing test environments.

This work consists of four components:

A. Data collection: This component helps in collecting nec-

essary data to learn from.

B. Model: At the core of this component is a deep neural

network that processes st and produces a heatmap Q(st)
for all possible actions at, such as the ones shown in

Figure 1. The neural network is initialized with weights

learned from large image classification tasks to provide

faster training.

C. Inference: After training, and at the inference time, there

are multiple readout mechanisms available for using the

produced heatmaps and generating a single action. These

mechanisms are used in a hybrid fashion to provide us

with the advantages of all of them.

D. Monkey++: This is the only component that is specialized

for Android, and its application is to fairly compare Deep

GUI with Google Monkey. It also provides a convenient

medium to use Deep GUI for testing of Android apps, as

it can replace Google Monkey and be used in practically

the same way.

Figure 2 shows an overview of these four components and

how they interact.

A. Data Collection

Since we reduced the problem to a classification problem,

each datapoint in our dataset needs to be in the form of a

three-way tuple (st, at, rt), where our model tries to classify

the pair (st, at) into one of the two values that rt represents,

i.e. whether performing the action at on the state st is valid or

not. Training a deep neural network requires a large amount of

data for training. To that end, we have developed an automatic

method to generate this dataset.

As defined above, rt represents whether the screen has a

legitimate change after an action. We here define legitimate

change as a change that does not involve an animated part

of the screen. In other words, if specific parts of the screen

change even in case of no interaction with the app, we filter

those parts out when computing rt. For instance, in Android,

when focused on a textbox, a cursor keeps appearing and dis-

appearing every second. We filter out the pixels corresponding

to the cursor.

For data collection, we first dedicate a set of apps to be

crawled. Then, for each app, we randomly interact with the

app with the actions in the set A and record the screenshot, the

action, and whether the action resulted in a legitimate change.

In order to filter out animated parts of the screen, before each

action, we first record the screen for 5 seconds and consider

all pixels that change during this period to be animated pixels.

While this method does not fully filter all of the illegitimate

changes2, as our experimental results suggest, it is adequate.

A keen observer would realize that this method of data

collection is a very natural choice in the realm of Android. For

years, Google Monkey has been used to crawl Android apps

for different purposes, but the valuable data that it produces

has never been leveraged to improve its effectiveness. That is,

even if a particular app has already been crawled by Google
Monkey thousands of times before, when Google Monkey is
used to crawl that app, it still crawls randomly and makes all
of the mistakes that it has already made thousands of times
before. The collection method described here is an attempt to

share these experiences by training a model and exploiting

such model to improve the effectiveness of testing, as we

discuss next.

B. Model

While, as discussed above, the problem is to classify the

validity of a single action at when performed on st, it does

not mean that each datapoint (st, at, rt) cannot be informative

about actions other than at. For instance, if touching a point

results in a valid action, touching its adjacent points may

also result in a valid action with a high probability. This can

2 For instance, if an accumulative progress bar is being shown, this method
may not work.

907

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of the components comprising Deep GUI & Monkey++.

make our training process much faster and more data-efficient.

Therefore, we need a model that can capture such logic.

1) Input and Output: As the first step toward this goal, in

our model, we define input and output as follows. Input is a

3-channel image that represents st, the screenshot of the AUT

at time t. For output, we require our model to perform the

classification task for all the actions of all types (i.e., touch,

scroll, swipe, etc.), and not just at. While we do not directly

use the prediction for other actions to generate gradients when

training, this enables us to (1) use a more intuitive model, and

(2) use the model at inference time by choosing the action that

is most confidently classified to be valid. We use a T -channel

heatmap to represent our output; T being the number of action

types, i.e. touch, scroll, swipe. Note that we do not differentiate

between up/down scroll or left/right swipe at this stage. Each

channel is a heatmap for the action type it represents. For

each action type, the value at (i, j) of the heatmap associated

with that action type represents the probability that the model

assigns to the validity of performing that action type at location

(i, j). For instance, in Figure 1, the three heatmaps 1c, 1d, and

1e show the model’s confidence in performing touch, scroll,

and swipe, respectively, at different locations on the screen.

2) UNet: We also would need a model that can intuitively

relate the input and output, as defined above. We use a UNet
architecture, since it has shown to be effective in applications

such as image segmentation, where the output is an altered

version of the input image [27]. In this architecture, the input

image is first processed in a sequence of convolutional layers
known as the contracting path. Each of these layers reduces

the dimensionality of the data while potentially encoding

different parts of the information relevant to the task at hand.

The contracting path is followed by the expansive path, where

various pieces of information at different layers are combined

using transposed convolutional layers3 to expand the dimen-

sionality to the suitable format required by the problem. In our

case, the output would be a 3-channel heatmap. In order for

this heatmap to produce values between 0 and 1 (as explained

above), it is processed by a sigmoid function in the last step

of the model. As one can notice, because of the nature of

convolutional and transposed convolutional layers, adjacent

coordinate pairs are processed more similarly than other pairs.

3 In some references these are referred to as deconvolutional layers.

This makes it easier for the network to make deductions

about all actions, and not just at. Moreover, the entire model

seems to have an intuitive design: First, the relevant parts of

information are extracted and grouped in different layers, and

then combined to form the output. This is similar to how the

UI elements are usually represented in software applications

as a GUI tree.

3) Transfer Learning: While Google Monkey might strug-

gle in finding valid actions when crawling an app, and other

tools might need to use other information such as GUI tree

or source code to detect such actions, humans find the logic

behind a valid action to be pretty intuitive, and can learn it

within minutes of encountering a new environment. The reason

behind this “intuition” lies in the much more elaborate visual

experience that humans have that goes beyond the Android

environments. Since birth, we see a myriad of objects in

a myriad of contexts, and we learn to distinguish objects

from their backgrounds. This information helps us a lot to

distinguish a button in the background of an app, even if the

background itself is a complicated image. Because of this, we

humans do not need thousands of examples to learn to interact

with an environment.

How can we use this fact to get the same training perfor-

mance with fewer data in our tool? Research in machine learn-

ing has shown the possibility of achieving this through transfer
learning [29]. In transfer learning, instead of a randomly

initialized network, an existing model previously trained on a

dataset for a potentially different but related problem is used

as the starting point of all or some part of the network. This

way, we “transfer” all the experience related to that dataset (as

summarized in the trained weights), without having invested

time to actually process it. Therefore, training is more data-

efficient. This is in particular important for us because, as

discussed, the data collection process is very time-consuming

given that the tool needs to monitor the screen for animations

before collecting each datapoint.

The contracting path of the UNet seems like a perfect

candidate for transfer learning because, unlike the expansive

path, it is more related to how the network processes the input,

rather than how it produces the output. This means that any

trained model that exists for processing an image can be a

candidate for us to use its weights.

908

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The deep neural network architecture used in Deep GUI. The layers’ names shown in MobileNetV2 are from Tensorflow

[28] implementation of the architecture. ConvT is a transpose convolutional layer.

In this work, as the contracting path, we used part of

the network architecture MobileNetV2 [30] trained on the

ImageNet dataset [31].4 We chose MobileNetV2 because it

is powerful and yet lightweight enough to be used inside

mobile phones if necessary. Figure 3 shows how MobileNetV2

interacts with our expansive path to build the model used

in Deep GUI. Note that in order for the screenshot to be

compatible with the already trained MobileNetV2 model, we

first resize it to 224 × 224. Also, because of computational

reasons, the produced output is 56×56, and is later upsampled

linearly to the true screen size.
4) Training: At the training time, for each datapoint

(st, at, rt), the network first produces Q(st) as the described

heatmaps. Then, using the information about the performed

action at, it indexes the network’s prediction for the action to

get Q(st)(at) = Q(st, at). Finally, since this is a classification

task, we use a binary crossentropy loss between rt and

Q(st, at) to generate gradients and train the network.

C. Inference

Once we have the trained model, we would like to be able

to use it to pick an action given a screenshot of an app at a

specific state. Therefore, we require a readout function that

can sample an action from the produced heatmaps. Here, we

propose two readouts, and we explain how we use both in

Deep GUI.

The simplest possible readout is one that samples actions

based on their relative prediction. That is, the more probable

the network thinks it is for the action to be a valid one, the

more probable it is for the action to be sampled. For this to

happen, we need to normalize the heatmaps to a probability

distribution over all actions of all types. Formally:

p(at = α|st) = f(Q(st, α))∑
α′∈A f(Q(st, α′))

where f identifies the kernel function. For instance if f(x) =
exp(x), we have a softmax normalization. In our work, we

4 Please note that we used this existing trained model as the initialization
of the contracting path. In the training step, we do train the weights on the
contracting path.

(a) (b)

Fig. 4: (a) An example of a screen with equally important

widgets of different sizes. (b) The touch channel of the

produced heatmap. The pixels belonging to different clusters

that the cluster_sampling readout detects are colored

with maroon, red, and white, depending on the cluster they

belong to.

chose to use the linear kernel f(x) = x. Using the probability

distribution that the linear kernel produces, we then sample

an action. We call this method the weighted_sampling
readout.

However, humans usually interact with apps differently. We

see widgets rather than pixels, and interact with those widgets

as a whole. The weighted_sampling readout does not

take this into account as it treats each pixel independently.

Take Figure 4a as an example. The “Enable delivery reports”

checkbox is potentially as important as the send button,

because if it is checked a new functionality can be tested.

However, because the button is larger than the checkbox, it

takes the weighted_sampling readout longer to finally

toggle the checkbox and test the new functionality.

To address this issue, we use the cluster_sampling
readout. In this approach, we first filter out all the actions α for

909

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

which the predicted Q(st, α) is less than a certain threshold.

This way, we ensure only the actions that are highly probable

to be valid are considered. In Deep GUI this threshold is 0.99.

Then, for each channel in Q(st), we use agglomerative cluster-

ing as implemented in python library scikit-learn [32] to

cluster the pixels into widgets. Figure 4b shows the clustering

result for the touch channel of the heatmap corresponding

to Figure 4a. After detecting the clusters, we first randomly

choose one of the action types, and then randomly choose one

of the clusters (i.e. widgets) in the channel associated with that

action type. Finally, we choose a random pixel that belongs

to that cluster and generate at.
While configurable, in our experiments we used a hy-

brid readout that uses weighted_sampling in 30% of

the times, and cluster_sampling in 70% of the times.

This way, we exploit the benefits that cluster_sampling
offers, while we make sure we do not completely abandon

certain valid actions because of the imperfections of the tool.
The discussed readouts identify the action type and the

location of it on the screen. However, scroll and swipe also

require other parameters such as direction or length. Deep GUI

chooses these parameters randomly. Also, because swipe and

scroll are mostly used to discover other buttons, while touch is

actually the action that triggers the functionality of the buttons,

we configure the described readouts so that they are more

biased towards choosing the touch action.5

D. Monkey++
While touch, swipe, and scroll are the most used action

types when interacting with an environment, there are other

actions that may affect the ability of a tool to crawl Android

apps. In order to cover those actions as well, and also in order

to be able to compare Google Monkey with our solution fairly

in the Android environment, we introduce Monkey++, which

is an extension to Google Monkey. Monkey++ consists of a

server side, which responds to queries with Deep GUI, and a

client side, which is implemented inside Google Monkey.
Google Monkey works as follows. First, it randomly

chooses an action type (based on the probabilities provided

to it when starting it), and then randomly chooses the param-

eters (such as the location to touch). Monkey++ works the

same as Google Monkey with one exception. If the chosen

action type is touch or gesture (which represents all types of

movement, including scroll and swipe), instead of proceeding

with the standard random procedure in Google Monkey, it

sends a query to the server side. Using the inference procedure

described above, Deep GUI samples an action and returns to

the client, which is then performed on the device. Algorithm

1 shows how Monkey++ works.

III. EVALUATION

We evaluated Deep GUI with respect to the following

research questions:

5 In weighted_sampling, we multiply each heatmap belong-
ing to touch, scroll, and swipe with 1, 0.3, and 0.1 respectively. In
cluster_sampling, when randomly choosing an action type from the
available ones, we use the same three numbers to bias the probability.

Algorithm 1: Monkey++ algorithm

while Google Monkey is running do
get action type t from Google Monkey;

if t is touch or gesture then
get action a from Deep GUI server

else
continue with Google Monkey and get action a

end
perform a

end

RQ1. How does Monkey++ compare to Google Monkey?

RQ2. Can Deep GUI be used to generate effective test inputs

across platforms?

RQ3. How much is transfer learning helping Deep GUI in

learning better and faster?

We used the apps in the Androtest benchmark [25] as our

pool of apps. Out of 66 apps available6, we randomly chose 28

for training, 6 for validation, and 31 for testing purposes. We

also eliminated one of the apps because of its incompatibility

with our data collection procedure.7

To support a variety of screen sizes, we collected data from

virtual devices of size 240×320 and also 480×854, and trained

a single model that is used in the experiments explained in

Sections RQ1 and RQ2. We collected an overall amount of

210, 000 data points. Virtual devices, both for data collection

and the Android experiments, were equipped with a 200MB
virtual SD card, as well as 4GB of RAM. For data collection,

training, and the experiments, we used an Ubuntu 18.04 LTS

workstation with 24 Intel Xenon CPUs and 150GB RAM.

We did not use GPUs at any stage of this work. The entire

source code for this work, the experiments, and the analysis

is available at https://github.com/Feri73/deep-gui.

RQ1. Line Coverage

In order to test the ability of Monkey++ in exploring

Android apps, we ran both Monkey++ and Google Monkey

on each app in the test set for one hour, and monitored line

coverage of the AUT every 60 seconds using Emma [33]. We

ran 9 instances of this experiment in parallel, and calculated

the average across different executions of each tool. Table

I shows the final line coverage for the apps in the test set.

While in some apps Monkey++ and Google Monkey perform

similarly, in other apps, such as com.kvance.Nectroid,

Monkey++ significantly outperforms Google Monkey. We

believe this is directly related to an attribute of apps, referred

to as Crawling Complexity (CC) in this paper.

CC is a measure of the complexity of exploring an app.

Different factors can affect this value. For instance, if the

majority of the app’s code is executed at the startup, there

6 Three apps caused crashes in the emulators and hence were not used.
7 Application org.jtb.alogcat keeps updating the screen with new

logs from the logcat regardless of the interactions with it, which highly
deviates from the behavior of a normal Android app.

910

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The results of running Monkey++ and Google Monkey on the test set, sorted by Crawling Complexity. The shading

indicates the tool that achieved the best result.

Application Crawling Complexity Monkey++ Line Coverage G Monkey Line Coverage
es.senselesssolutions.gpl.weightchart 2.8 67% 65%
com.hectorone.multismssender 2.6 64% 67%
com.templaro.opsiz.aka 2.4 72% 66%
com.kvance.Nectroid 2.3 65% 50%
com.tum.yahtzee 2.3 67% 61%
in.shick.lockpatterngenerator 2.2 86% 84%
net.jaqpot.netcounter 2.2 71% 69%
org.waxworlds.edam.importcontacts 2.0 41% 34%
cri.sanity 1.8 25% 23%
com.chmod0.manpages 1.7 72% 63%
com.google.android.divideandconquer 1.5 85% 88%
com.example.android.musicplayer 1.3 71% 71%
ch.blinkenlights.battery 1.3 91% 93%
org.smerty.zooborns 1.2 34% 33%
com.android.spritemethodtest 1.2 71% 87%
com.android.keepass 1.1 7% 8%
org.dnaq.dialer2 1.0 39% 39%
hu.vsza.adsdroid 1.0 24% 24%
com.example.anycut 0.9 71% 71%
org.scoutant.blokish 0.9 45% 46%
org.beide.bomber 0.8 89% 88%
com.beust.android.translate 0.7 48% 48%
com.addi 0.6 18% 18%
org.wordpress.android 0.5 5% 5%
com.example.amazed 0.3 82% 81%
net.everythingandroid.timer 0.2 65% 65%
com.google.android.opengles.spritetext 0.1 59% 59%
aarddict.android 0.0 14% 14%
com.angrydoughnuts.android.alarmclock 0.0 6% 6%
com.everysoft.autoanswer 0.0 9% 9%
hiof.enigma.android.soundboard 0.0 100% 100%

com.tum.yahtzee: This is a dice game with fairly complicated logic and several buttons, each activating different scenarios over time.
org.waxworlds.edam.importcontacts: This app imports contacts from the SD card. There are multiple steps to reach to the final
activity, and each contains multiple options that change the course of actions that the app finally takes.
hu.vsza.adsdroid: The only functionality of this app is to search for and list the data-sheets of electronic items. The search activity
contains one drop-down list for search criteria, and a search button.
org.wordpress.android: This app is for management of WordPress websites. At the startup, it either requires a login or opens a web
container, which does not affect the line coverage.

is not much code left to be explored. As another example,

consider apps that require signing in to an account to access

their functionality. Unless it is explicitly supported by the tools

(which is not in this study), not much can be explored within

the app.

We hypothesize that Monkey++ outperforms Google Mon-

key in apps with high CC. In order to test this, we define CC as

the uncertainty in coverage when randomly interacting with an

app. That is, if random interactions with an app always result

in a similar trace of coverage, it means that the available parts

of the app are trivial to reach and will always be executed,

and therefore, not much is offered by the app to be explored.

To compute uncertainty (and hence CC) for an app, we use

the concept of entropy.

The entropy of a random variable is a measure of the uncer-

tainty of the values that this variable can get. For instance, if a

random variable only gets one value (i.e., it is not random), the

entropy would be zero. On the other hand, a random variable

that samples its values from a uniform distribution has a large

entropy, because it is more difficult to predict its exact value.

The formula for calculating entropy H of a discrete random

variable X is as follows:

H(X) = −
n∑

i=1

p(xi) log2(p(xi))

where xi represents the values that X can get, and p(xi) is the

probability distribution for X . To calculate CC of an app using

entropy, we take all line coverage information for that app in

all timesteps of all experiments involving Google Monkey (as

a random interaction tool), and calculate the entropy of the

distribution of these coverage values using the above formula.

The coverage values for two apps with low and high CC are

shown in Figure 5.

Table I shows the CC value for each app, and discusses

some examples of apps with high and low CC, including the

examples in Figure 5. As one can notice, most of the apps in

which Monkey++ achieves better coverage have higher CC.

911

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c)
(d)

Fig. 5: The results of exploring two apps randomly in 9 independent runs: (a) An example of an app with low CC

(hu.vsza.adsdroid). (b) We obtain only 3 distinct coverage values for the entire 60 minutes of randomly testing the

adsdroid app across all 9 agents. This means the portion of the app that is accessible to be explored is very limited. (c) An

example of an app with high CC (com.tum.yahtzee). (d) Here, the coverage values that we obtain by randomly exploring

the yahtzee app span a much more uncertain space than the adsdroid app, which means more is offered by the app to

be explored and therefore it is more meaningful to compare the testing tools on this app.

To further evaluate the ability of Monkey++ in crawling

complex apps with high CC, we analyzed the progressive

coverage of the top 10 apps with the highest CC. Figure

6 shows that Monkey++ achieves better results compared

to Google Monkey, and does so faster. This superiority is

statistically significant in all timesteps, as calculated by a one-

tail Kolmogorov–Smirnov (KS) test (p-value < 0.05).8

The improvement over Google Monkey is valuable, since

it is currently the most widely used testing tool that does not

require the AUT to implement any specific API. For instance,

most of the mainstream white-box testing tools fail on non-

native applications, because these applications are essentially

8 To calculate the error bars in Figure 6 and the p-value for KS-test, first for
each app, the mean performance of Google Monkey on that app is subtracted
from the performance of both Google Monkey and Monkey++, and then the
error bars and the significance are computed with regards to this value across
all apps.

web content wrapped in an android web viewer, and lack

standard UI elements that white-box tools depend on. In

these scenarios, practitioners are bound to use random testing

tools such as Google Monkey. Monkey++ provides a more

intelligent alternative in these situations that, as the results

suggest, provide better coverage faster.

RQ2. Cross-Platform Ability

Since Deep GUI is completely blind with regards to the

app’s implementation or the platform it runs on, we hypothe-

size it is applicable not only in Android but in other platforms

such as web or iOS. Moreover, we claim that since UI design

across different platforms is very similar (e.g. buttons are very

similar in Android and web), we can take a model trained on

one platform and use it in other platforms. This is particularly

useful when developers want to test different implementations

of the same app in different platforms.

912

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: The progressive line coverage of Monkey++ and

Google Monkey on the top 10 Android apps with the highest

CC. Error bars indicate standard error of the mean.

Fig. 7: The progressive performance of Deep GUI and random

agent in web crawling. The difference between the three tools

is statistically significant in all timesteps, as calculated by

one tail KS-tests between all pairs (similar to the procedure

described in footnote 8).

To test whether our approach is truly cross-platform, we

implemented an interface to use Deep GUI for interacting with

Mozilla Firefox browser9 using Selenium web driver [34], and

compared it against a random agent10. Note that we did not

re-train our model, and used the exact same hyper-parameters

and weights we used for the experiments in RQ1, which are

learned from Android apps.

For the web experiments, we used the top 15 websites in

the United States [26] as our test set, and ran each tool on

each website 20 times, each time for 600 steps. To measure

the performance, we counted the number of distinct URLs

visited in each website, and averaged this value for each tool.

9 We used Responsive Design Mode in Mozilla Firefox with the resolution
of 480× 640.

10 The random agent uses the same bias for action types that is explained
in footnote 5 of Section II.

TABLE II: The performance of Deep GUI and random agent

on each web site

Website Deep GUI Random
google.com 17.4 12.9
youtube.com 94.3 12.1
amazon.com 13.2 15.2
yahoo.com 15.4 21.8
facebook.com 3.2 7.1
reddit.com 5.3 5.1
zoom.us 4.6 6.9
wikipedia.org 41.1 40.6
myshopify.com 3.6 6.0
ebay.com 13.4 11.4
netflix.com 5.1 4.8
bing.com 32.5 25.5
office.com 16.9 15
live.com 2.7 2.5
twitch.tv 65.6 30.1
average 22.2 14.4

(a) (b)

Fig. 8: A screenshot and its corresponding heatmap generated

by the model before training.

Figure 7 and table II show that our model outperforms random

agent, and confirms that our model has learned the rules of

UI design, which is indeed independent of the platform.

The results of the web experiment demonstrate the power of

a black-box technique capable of understanding the dynamics

of GUI-based applications without relying on any sort of

platform-dependent information. Such techniques infer gener-

alized rules about GUI-based environments instead of relying

on specific APIs or implementation-choices in the construction

of an application, and hence enable users to apply the tools on

different applications and on different platforms without being

constrained by the compatibility issues.

RQ3. Transfer Learning Effect

As described, we used transfer learning to make the training

process more data-efficient, i.e. we crawl fewer data and train

faster. To study if using transfer learning was actually helpful,

we repeated the web experiments, with the only difference that

instead of using the model trained with transfer learning, we

trained another model with random initial weights. Figure 7

913

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

shows that without transfer learning, the model’s performance

significantly decreases.

To gain an intuitive understanding of the reason behind

this, consider Figure 8b. This figure shows the initial output

of the neural network for the screen of Figure 8a before

training, when initialized with the ImageNet weights. As one

can see, even without training, the buttons stand out from

the background in the heatmap, which gives the model a

significant head-start compared to the randomly initialized

model, and makes it possible for us to train it with a small

amount of data.

IV. RELATED WORK

Many different input generation techniques with different

paradigms have been proposed in the past decade. Several

techniques [35], [36] rely on a model of the GUI, usually

constructed dynamically and non-systematically, leading to

unexplored program states. Sapienz [15], EvoDroid [16], and

time-travel testing [37] employ an evolutionary algorithm.

ACTEve [38], and Collider [39] utilize symbolic execution.

AppFlow [40] leverages machine learning to automatically

recognize common screens and widgets and generate tests

accordingly. Dynodroid [23] and Monkey [22] generate test

inputs using random input values. Another group of techniques

focus on testing for specific defects [20], [41], [42].

These approaches can be classified into two broad cate-

gories: context blind and context aware. The tools in the for-

mer category process information in each action independent

of other actions. That is, when choosing a new action, they

do not consider the previous actions performed, and do not

plan for future actions. Tools such as Google Monkey [22]

and DynoDroid [23] are in this category. These tools are fast

and require very simple pre-processing, but may miss entire

activities or functionalities, as this requires maintaining a

model of the app and visited states. Tools in the latter category

incorporate various sources of information to construct a

model of an app, which is then used to plan for context-

aware input generation. Most of the existing input generation

tools are in this category. For instance, Sapienz [15] uses a

genetic algorithm to learn a generic model of app, representing

how certain sequences of actions can be more effective than

others. Tools that use different types of static analysis of the

source code or GUI to model the information flow globally

also belong to this category.

Not many tools have explored black-box and/or cross-

platform options for gathering information to be used for

input generation, either with a context-aware or a context-

blind approach. Google Monkey is the only widely used

tool in Android that does not depend on any app-specific

information. However, it follows the simplest form of testing,

i.e., random testing. Humanoid [43] is an effort towards

becoming less platform-dependent, while also generating more

intelligent inputs. However, it is still largely dependent on

the UI transition graph of AUT and the GUI tree extracted

from the operating system. Moreover, since it depends on an

existing dataset for Android, it would not be easy to train it

for a new platform. The study of White et al. [44] is the most

similar to our work. They study the effect of machine-learning-

powered processing of screenshots in generating inputs with

random strategy. However, because they generate artificial

apps for training their model, their data collection method is

limited in expressing the variety of screens that the tool might

encounter. Furthermore, their approach is platform dependent.

Deep GUI uses deep learning to improve context-blind input

generation, while also limiting the processed information to be

black-box and platform independent. This allows it to be as

versatile as Google Monkey in the Android platform, while

being more effective by intelligently generating the inputs for

crawling of apps.

V. DISCUSSION AND FUTURE WORK

Deep GUI is the first attempt towards making a fully black-

box and cross-platform test input generation tool. However,

there are multiple areas in which this tool can be improved.

The first limitation of the approach described here is the time-

consuming nature of its data collection process, which limits

the number of collected data points and may compromise the

dataset’s expressiveness. By using transfer learning, we man-

aged to mitigate this limitation to some degree. In addition,

the complex set of hyperparameters (such as hybrid readout

probabilities) and the time-consuming nature of validating the

model on apps make it difficult to fine-tune all the hyperpa-

rameters systematically, which is required for optimizing the

performance to its maximum potential.

Deep GUI limits itself to context-blind information pro-

cessing, in that it does not consider the previous interactions

with AUT when generating new actions. However, it uses

a paradigm that can easily be extended to take context into

account as well. We believe this paradigm should be explored

more in the future of the field of automated input generation.

Take our definition of the problem. If we call st the state of

the environment, at the action performed on the environment

in that state, rt the reward that the environment provides

in response to that action, and Q(st, at) the predictions of

the model about the long-term reward that the environment

provides when performing at in st (also known as the quality

matrix), then this work can essentially be viewed to propose

a single-step deep Q-Learning [45] solution to the problem

of test input generation. Looking at the problem this way

enables researchers in the area of automatic input generation to

benefit from the rich and active research in the Q-Learning and

reinforcement learning (RL) community, and explore different

directions in the future such as the following:

• Multi-Step Cross-Platform Input Generation. Deep GUI

uses Q-Learning in a context-blind and single-step manner.

However, by redefining st to include more context (such

as previous screenshots, as tried in Humanoid [43]) and

expanding the definition of rt to express a multi-step sense

of reward, one can use the same idea to utilize the full

power of Q-Learning to train models that not only limit their

actions to only the valid ones (as this tool does), but also

914

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

plan ahead and perform complex and meaningful sequence

of actions.

• Smarter Processing of Information. Even if a tool does

not want to limit itself to only platform-independent in-

formation, it can still benefit from using a Q-Learning

solution. For instance, one can define st to include the

GUI tree or the memory content to provide the model with

more information, but also use Q-Learning to process this

information more intelligently.

• Regression Testing and Test Transfer. While this work

presents a trained model that targets all apps, it is not limited

to this. Developers can take a Q-Learning model such as the

one described in this work, collect data from the app (or a

family of related apps) they are developing, and train the

model extensively so that it learns what actions are valid,

what sequences of actions are more probable to test an

important functionality, etc. This way, when new updates

of the app are available, or when the app becomes available

in new platforms, developers can quickly test for any fault

in that update without having to rewrite the tests.

ACKNOWLEDGMENT

This work was supported in part by award numbers 2106306

and 1823262 from the National Science Foundation and a

Google Cloud Platform gift. We would like to thank the

anonymous reviewers of this paper for their detailed feedback,

which helped us improve the work.

REFERENCES

[1] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’13, (New York, NY,
USA), p. 641–660, Association for Computing Machinery, 2013.

[2] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, (USA), p. 1021–1036,
USENIX Association, 2014.

[3] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk, “Mining android app usages for generating actionable
gui-based execution scenarios,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, p. 111–122,
IEEE Press, 2015.

[4] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
A. Rountev, “Static window transition graphs for android,” Automated
Software Engg., vol. 25, p. 833–873, Dec. 2018.

[5] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-
based technique for android mobile application testing,” in 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, pp. 252–261, 2011.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 258–261, 2012.

[7] Y. Baek and D. Bae, “Automated model-based android gui testing
using multi-level gui comparison criteria,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 238–249, 2016.

[8] N. P. Borges, M. Gómez, and A. Zeller, “Guiding app testing with mined
interaction models,” in Proceedings of the 5th International Conference
on Mobile Software Engineering and Systems, MOBILESoft ’18, (New
York, NY, USA), p. 133–143, Association for Computing Machinery,
2018.

[9] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” SIGPLAN Not., vol. 48,
p. 623–640, Oct. 2013.

[10] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’14, (New York,
NY, USA), p. 204–217, Association for Computing Machinery, 2014.

[11] K. Jamrozik and A. Zeller, “Droidmate: A robust and extensible test
generator for android,” in 2016 IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft), pp. 293–294,
2016.

[12] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest:
Automatic black-box testing of interactive applications,” in 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, pp. 81–90, 2012.

[13] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, (New York, NY, USA), p. 245–256,
Association for Computing Machinery, 2017.

[14] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen, “Droidbot:
a lightweight ui-guided test input generator for android,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pp. 23–26, 2017.

[15] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, (New York,
NY, USA), p. 94–105, Association for Computing Machinery, 2016.

[16] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pp. 599–609, 2014.

[17] J. Garcia, M. Hammad, N. Ghorbani, and S. Malek, “Automatic gen-
eration of inter-component communication exploits for android applica-
tions,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, (New York, NY, USA),
p. 661–671, Association for Computing Machinery, 2017.

[18] C. Cao, N. Gao, P. Liu, and J. Xiang, “Towards analyzing the input
validation vulnerabilities associated with android system services,” in
Proceedings of the 31st Annual Computer Security Applications Con-
ference, ACSAC 2015, (New York, NY, USA), p. 361–370, Association
for Computing Machinery, 2015.

[19] Y. Liu, C. Xu, S. Cheung, and J. Lü, “Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications,” IEEE Transactions
on Software Engineering, vol. 40, no. 9, pp. 911–940, 2014.

[20] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-based energy testing of
android,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 1119–1130, 2019.

[21] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in android
apps: State of affairs, sentiments, and ways forward,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, (New York, NY, USA), p. 1323–1334, Association for
Computing Machinery, 2020.

[22] “Ui/application exerciser monkey.” https://developer.android.com/studio/
test/monkey, 2020.

[23] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, (New York,
NY, USA), p. 224–234, Association for Computing Machinery, 2013.

[24] K. Mao, M. Harman, and Y. Jia, “Crowd intelligence enhances auto-
mated mobile testing,” in Proceedings of the 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2017,
p. 16–26, IEEE Press, 2017.

[25] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 429–440, 2015.

[26] A. Internet, “Top sites in united states,” 2020.
[27] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015 (N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi, eds.), (Cham), pp. 234–241, Springer
International Publishing, 2015.

915

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16, (USA),
p. 265–283, USENIX Association, 2016.

[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4510–
4520, 2018.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] V. Roubtsov, “Emma: a free java code coverage tool,” 2006.
[34] Selenium, “The selenium browser automation project.” https://www.

selenium.dev/.
[35] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and

Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 245–256, 2017.

[36] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 269–280, IEEE, 2019.

[37] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE’20), pp. 1–12, 2020.

[38] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
pp. 1–11, 2012.

[39] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, pp. 67–77, 2013.

[40] G. Hu, L. Zhu, and J. Yang, “Appflow: using machine learning to
synthesize robust, reusable ui tests,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 269–282,
2018.

[41] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-
application communication vulnerabilities in android,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
pp. 118–128, 2015.

[42] L. L. Zhang, C.-J. M. Liang, Y. Liu, and E. Chen, “Systematically
testing background services of mobile apps,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 4–15, IEEE, 2017.

[43] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 1070–1073, 2019.

[44] T. D. White, G. Fraser, and G. J. Brown, “Improving random gui testing
with image-based widget detection,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, (New York, NY, USA), p. 307–317, Association for
Computing Machinery, 2019.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” ArXiv, vol. abs/1312.5602, 2013.

916

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

