2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE) | 978-1-6654-0337-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/ASE51524.2021.9678778

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

s @

Deep GUI: Black-box GUI Input Generation with
Deep Learning

Faraz YazdaniBanafsheDaragh
School of Information and Computer Sciences
University of California, Irvine, USA
faraz.yazdani@uci.edu

Abstract—Despite the proliferation of Android testing tools,
Google Monkey has remained the de facto standard for prac-
titioners. The popularity of Google Monkey is largely due to
the fact that it is a black-box testing tool, making it widely
applicable to all types of Android apps, regardless of their
underlying implementation details. An important drawback of
Google Monkey, however, is the fact that it uses the most naive
form of test input generation technique, i.e., random testing.
In this work, we present Deep GUI, an approach that aims
to complement the benefits of black-box testing with a more
intelligent form of GUI input generation. Given only screenshots
of apps, Deep GUI first employs deep learning to construct a
model of valid GUI interactions. It then uses this model to
generate effective inputs for an app under test without the
need to probe its implementation details. Moreover, since the
data collection, training, and inference processes are performed
independent of the platform, the model inferred by Deep GUI
has application for testing apps in other platforms as well.
We implemented a prototype of Deep GUI in a tool called
Monkey++ by extending Google Monkey and evaluated it for its
ability to crawl Android apps. We found that Monkey++ achieves
significant improvements over Google Monkey in cases where an
app’s Ul is complex, requiring sophisticated inputs. Furthermore,
our experimental results demonstrate the model inferred using
Deep GUI can be reused for effective GUI input generation across
platforms without the need for retraining.

[. INTRODUCTION

Automatic input generation for Android applications (apps)
has been a hot topic for the past decade in the software
engineering community [1]-[14]. Input generators have a
variety of applications. Among others, they are used for
verifying functional correctness (e.g., [13], [15], [16]), security
(e.g., [17], [18]), energy consumption (e.g., [19], [20]), and
accessibility (e.g., [21]) of apps. Depending on the objective
at hand, input generators can be very generic, and simply crawl
apps to maximize coverage [22]-[24], or can be very specific,
looking for certain criteria to be fulfilled, such as reaching
activities with specific attributes [2].

Common across the majority of existing input generators
is the fact that they are white-box, i.e., require access to
implementation details of the app under test (AUT). For
instance, many tools use static analysis to find the right
combination of interactions with the AUT [1]—[4], while other
tools depend on the XML-based GUI layout of the AUT to
find the GUI widgets and interact with them [5]-[14]. The
underlying implementation details of an AUT provide these

Sam Malek
School of Information and Computer Sciences
University of California, Irvine, USA
malek @uci.edu

tools with insights to produce effective inputs, but also pose
severe limitations that compromise the applicability of these
tools. First, there is a substantial degree of heterogeneity
in the implementation details of apps. Consider for instance
the fact that many Android apps are non-native, e.g., built
out of activities that are just wrappers for web content. In
these situations, the majority of existing tools either fail to
operate or achieve very poor results. Second, the source code
analyses underlying these tools are tightly coupled to the
Android platform, and often to specific versions of it, making
them extremely fragile when used for testing apps in a new
environment.

Black-box input generation tools do not suffer from the
same shortcomings. Google Monkey is the most widely used
black-box testing tool for Android. Despite being a random
input generator, prior studies suggest Google Monkey outper-
forms many of the existing white- and gray-box tools [25].
This can be attributed to the fact that Google Monkey is
significantly more robust than almost all other existing tools,
i.e., it works on all types of apps regardless of how they
are implemented. However, Google Monkey employs the most
basic form of input generation strategy. It blindly interacts with
the screen without knowing if its actions are valid. This might
work well in apps with a simple GUI, where the probability
of randomly choosing a valid action is high, but not in apps
with a complex GUI. For instance, take Figure 1. In Figure
1a, since most of the screen contains buttons, almost all of the
times that Google Monkey decides to generate a touch action,
it touches something valid and therefore tests a functionality.
However, in Figure 1b, it is much less probable for Google
Monkey to successfully touch the one button that exists on the
screen, and therefore it takes much longer than needed for it
to test the app’s functionality.

This article presents Deep GUI, a black-box GUI input
generation technique with deep learning that aims to address
the above-mentioned shortcoming. Deep GUI is able to filter
out the parts of the screen that are irrelevant with respect to
a specific action, such as touch, and therefore increases the
probability of correctly interacting with the AUT. For example,
given the screenshot shown in Figure 1b, Deep GUI first
produces the heatmap in Figure lc, which shows for each
pixel the probability of that pixel belonging to a touchable
widget. It then uses this heatmap to touch the pixels with a

978-1-6654-0337-5/21/$31.00 ©2021 IEEE 905
DOI 10.1109/ASE51524.2021.00084

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

arch (1)

base64 (1)

basename (1)

aal (1)

cat(1)

certtool (1)

cheon (1)

chfn (1)

chgrp (1)

chkdupexe (1)

chmod (1)

(©

(@

No dictionaries

(e)

Fig. 1: Two examples where it is respectively easy (a) and difficult (b) for Google Monkey to find a valid action, as well as
the heatmaps generated by Deep GUI associated with (b) for touch (c), scroll (d), and swipe (e) actions respectively. Note that
in (c) the model correctly identifies both the button and the hyperlink —and not the plain text— as touchable.

probability that is proportionate to their heatmap value, hence
increasing the chance of touching the button in this example.

In order to produce such heatmaps, Deep GUI undertakes
a deep-learning approach. We further show that this approach
is a special case of a more general method known as deep
reinforcement learning, and we discuss how this method can
be used to develop even more intelligent input generation
tools. Moreover, what makes Deep GUI unique is that it uses
a completely black-box and cross-platform method to collect
data, learn from it, and produce the mentioned heatmaps, and
hence supports all situations, applications, and platforms. It
also uses the power of transfer learning to make its training
more data-efficient and faster. Our experimental evaluation
shows that Deep GUI is able to improve Google Monkey’s
performance on apps with complex GUIs, where Google
Monkey struggles to find valid actions. It also shows that we
can take a Deep GUI model that is trained on Android, and
use it on other platforms, specifically web in our experiments,
for efficient input generation.

In summary, this article makes the following contributions:

1) We propose Deep GUI, a black-box approach for gen-
eration of GUI inputs using deep learning. To the best

906

of our knowledge, this is the first approach that uses
a completely black-box and cross-platform approach for
data collection, training, and inference in the generation
of test inputs.

We provide an implementation of Deep GUI for Android,
called Monkey++, by extending Google Monkey. We
make this tool available publicly.!

We present detailed evaluation of Deep GUI using An-
drotest benchmark [25], consisting of 31 real-world mo-
bile apps, as well as the top 15 websites in the US [26].
Our results corroborate Deep GUTI’s ability to improve
both the code coverage and the speed with which this
coverage can be attained.

2)

3)

The remainder of this paper is organized as follows. Sec-
tion II describes the details of our approach. Section III
provides our evaluation results. Section IV reviews the most
relevant prior work. Finally, in Section V, the paper concludes
with a discussion of our contributions, limitations of our work,
and directions for future research.

! https://github.com/Feri73/deep-gui

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

II. APPROACH

We formally provide our definition of the problem for
automatically generating inputs in a test environment. Suppose
that at each timestep ¢, the environment provides us with its
state s;. This can be as simple as the screenshot, or can be a
more complicated content such as the Ul tree. Also, suppose
we define A = {aq,...an} as the set of all possible actions
that can be performed in the environment at all timesteps.
For instance, in Figure 1b, all of the touch events associated
with all pixels on the screen can be included in A. Note
that these actions are not necessarily valid. We define a valid
action as an action that results in triggering a functionality
(like touching the send button) or changing the UI state (like
scrolling down a list). Let us define v, = r(s4,a;) to be 1
if a; is valid when performed on s;, and 0 otherwise. Our
goal is to come up with a function @ that, given s;, produces
the probability of validity for each possible action. That is,
Q(st, at) identifies how probable it is for a; to be a valid action
when performed on s;. Therefore, @ is essentially a binary
classifier (valid vs. non-valid) conditioned on s; independently
for each action in the set A. For simplicity, we also define
Q(s¢) as a function that, given an action «, returns Q(s¢,).
That is, Q(s:)() = Q(s¢,).

In Deep GUI, we consider s; to be the screenshot of AUT
at each timestep. Set A consists of touch, up and down scroll,
and right and left swipe events, on all of the pixels of the
screen. We also define r; as follows:

0
1 otherwise

if 1
(50, 1) = if equals(ss, st41)

That is, if the screenshot undergoes a legitimate change after
an action, we consider that action to be a valid one in that
screen. We define what a legitimate change means later in this
section. Note that we defined s;, A, and r; independent of the
platform on which AUT operates. Therefore, this approach can
be used in almost all existing test environments.

This work consists of four components:

A. Data collection: This component helps in collecting nec-
essary data to learn from.

Model: At the core of this component is a deep neural
network that processes s; and produces a heatmap Q(s:)
for all possible actions a;, such as the ones shown in
Figure 1. The neural network is initialized with weights
learned from large image classification tasks to provide
faster training.

Inference: After training, and at the inference time, there
are multiple readout mechanisms available for using the
produced heatmaps and generating a single action. These
mechanisms are used in a hybrid fashion to provide us
with the advantages of all of them.

Monkey++: This is the only component that is specialized
for Android, and its application is to fairly compare Deep
GUI with Google Monkey. It also provides a convenient
medium to use Deep GUI for testing of Android apps, as

B.

907

it can replace Google Monkey and be used in practically
the same way.

Figure 2 shows an overview of these four components and
how they interact.

A. Data Collection

Since we reduced the problem to a classification problem,
each datapoint in our dataset needs to be in the form of a
three-way tuple (s¢, at,), where our model tries to classify
the pair (s, a:) into one of the two values that r; represents,
i.e. whether performing the action a, on the state s; is valid or
not. Training a deep neural network requires a large amount of
data for training. To that end, we have developed an automatic
method to generate this dataset.

As defined above, r; represents whether the screen has a
legitimate change after an action. We here define legitimate
change as a change that does not involve an animated part
of the screen. In other words, if specific parts of the screen
change even in case of no interaction with the app, we filter
those parts out when computing r;. For instance, in Android,
when focused on a textbox, a cursor keeps appearing and dis-
appearing every second. We filter out the pixels corresponding
to the cursor.

For data collection, we first dedicate a set of apps to be
crawled. Then, for each app, we randomly interact with the
app with the actions in the set A and record the screenshot, the
action, and whether the action resulted in a legitimate change.
In order to filter out animated parts of the screen, before each
action, we first record the screen for 5 seconds and consider
all pixels that change during this period to be animated pixels.
While this method does not fully filter all of the illegitimate
changes?, as our experimental results suggest, it is adequate.

A keen observer would realize that this method of data
collection is a very natural choice in the realm of Android. For
years, Google Monkey has been used to crawl Android apps
for different purposes, but the valuable data that it produces
has never been leveraged to improve its effectiveness. That is,
even if a particular app has already been crawled by Google
Monkey thousands of times before, when Google Monkey is
used to crawl that app, it still crawls randomly and makes all
of the mistakes that it has already made thousands of times
before. The collection method described here is an attempt to
share these experiences by training a model and exploiting
such model to improve the effectiveness of testing, as we
discuss next.

B. Model

While, as discussed above, the problem is to classify the
validity of a single action a; when performed on s, it does
not mean that each datapoint (s, a+,) cannot be informative
about actions other than a;. For instance, if touching a point
results in a valid action, touching its adjacent points may
also result in a valid action with a high probability. This can

2 For instance, if an accumulative progress bar is being shown, this method
may not work.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

Deep GUI

Android Device

Data Collection

Offline Training

Inference

of
The Model

random
crawler

" | Monkey++
T4

| Monkey I

Fig. 2: Overview of the components comprising Deep GUI & Monkey++.

make our training process much faster and more data-efficient.
Therefore, we need a model that can capture such logic.

1) Input and Output: As the first step toward this goal, in
our model, we define input and output as follows. Input is a
3-channel image that represents sy, the screenshot of the AUT
at time ¢. For output, we require our model to perform the
classification task for all the actions of all types (i.e., touch,
scroll, swipe, etc.), and not just a;. While we do not directly
use the prediction for other actions to generate gradients when
training, this enables us to (1) use a more intuitive model, and
(2) use the model at inference time by choosing the action that
is most confidently classified to be valid. We use a T-channel
heatmap to represent our output; 7" being the number of action
types, i.e. touch, scroll, swipe. Note that we do not differentiate
between up/down scroll or left/right swipe at this stage. Each
channel is a heatmap for the action type it represents. For
each action type, the value at (4, j) of the heatmap associated
with that action type represents the probability that the model
assigns to the validity of performing that action type at location
(4, 7). For instance, in Figure 1, the three heatmaps lc, 1d, and
le show the model’s confidence in performing touch, scroll,
and swipe, respectively, at different locations on the screen.

2) UNet: We also would need a model that can intuitively
relate the input and output, as defined above. We use a UNet
architecture, since it has shown to be effective in applications
such as image segmentation, where the output is an altered
version of the input image [27]. In this architecture, the input
image is first processed in a sequence of convolutional layers
known as the contracting path. Each of these layers reduces
the dimensionality of the data while potentially encoding
different parts of the information relevant to the task at hand.
The contracting path is followed by the expansive path, where
various pieces of information at different layers are combined
using transposed convolutional layers® to expand the dimen-
sionality to the suitable format required by the problem. In our
case, the output would be a 3-channel heatmap. In order for
this heatmap to produce values between 0 and 1 (as explained
above), it is processed by a sigmoid function in the last step
of the model. As one can notice, because of the nature of
convolutional and transposed convolutional layers, adjacent
coordinate pairs are processed more similarly than other pairs.

3 In some references these are referred to as deconvolutional layers.

908

This makes it easier for the network to make deductions
about all actions, and not just a;. Moreover, the entire model
seems to have an intuitive design: First, the relevant parts of
information are extracted and grouped in different layers, and
then combined to form the output. This is similar to how the
UI elements are usually represented in software applications
as a GUI tree.

3) Transfer Learning: While Google Monkey might strug-
gle in finding valid actions when crawling an app, and other
tools might need to use other information such as GUI tree
or source code to detect such actions, humans find the logic
behind a valid action to be pretty intuitive, and can learn it
within minutes of encountering a new environment. The reason
behind this “intuition” lies in the much more elaborate visual
experience that humans have that goes beyond the Android
environments. Since birth, we see a myriad of objects in
a myriad of contexts, and we learn to distinguish objects
from their backgrounds. This information helps us a lot to
distinguish a button in the background of an app, even if the
background itself is a complicated image. Because of this, we
humans do not need thousands of examples to learn to interact
with an environment.

How can we use this fact to get the same training perfor-
mance with fewer data in our tool? Research in machine learn-
ing has shown the possibility of achieving this through transfer
learning [29]. In transfer learning, instead of a randomly
initialized network, an existing model previously trained on a
dataset for a potentially different but related problem is used
as the starting point of all or some part of the network. This
way, we “transfer” all the experience related to that dataset (as
summarized in the trained weights), without having invested
time to actually process it. Therefore, training is more data-
efficient. This is in particular important for us because, as
discussed, the data collection process is very time-consuming
given that the tool needs to monitor the screen for animations
before collecting each datapoint.

The contracting path of the UNet seems like a perfect
candidate for transfer learning because, unlike the expansive
path, it is more related to how the network processes the input,
rather than how it produces the output. This means that any
trained model that exists for processing an image can be a
candidate for us to use its weights.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

MobileNetV2 - Contracting Path

_." block_6_expand_relu: 28x28x96

A ConvT
*

- direct input

56x56x3

layers hidden

Concat RIS 3 for clarity

28x28x111

22ax224x3]

o}

' block_13_expand._relu: 14x14x192

14x14x222

& -

for

block_16_project: 7x7x112

14x14x30

Expansive Path

Fig. 3: The deep neural network architecture used in Deep GUI. The layers’ names shown in MobileNetV2 are from Tensorflow
[28] implementation of the architecture. ConvT is a transpose convolutional layer.

In this work, as the contracting path, we used part of
the network architecture MobileNetV2 [30] trained on the
ImageNet dataset [31].* We chose MobileNetV2 because it
is powerful and yet lightweight enough to be used inside
mobile phones if necessary. Figure 3 shows how MobileNetV2
interacts with our expansive path to build the model used
in Deep GUI Note that in order for the screenshot to be
compatible with the already trained MobileNetV2 model, we
first resize it to 224 x 224. Also, because of computational
reasons, the produced output is 56 x 56, and is later upsampled
linearly to the true screen size.

4) Training: At the training time, for each datapoint
(st,a,rt), the network first produces Q(s:) as the described
heatmaps. Then, using the information about the performed
action ay, it indexes the network’s prediction for the action to
get Q(s¢)(at) = Q(s¢, aq). Finally, since this is a classification
task, we use a binary crossentropy loss between r; and
Q(st, at) to generate gradients and train the network.

C. Inference

Once we have the trained model, we would like to be able
to use it to pick an action given a screenshot of an app at a
specific state. Therefore, we require a readout function that
can sample an action from the produced heatmaps. Here, we
propose two readouts, and we explain how we use both in
Deep GUIL

The simplest possible readout is one that samples actions
based on their relative prediction. That is, the more probable
the network thinks it is for the action to be a valid one, the
more probable it is for the action to be sampled. For this to
happen, we need to normalize the heatmaps to a probability
distribution over all actions of all types. Formally:

f(Q(st, @)
plar = als)) =
Larea f(Q(st, 7))
where f identifies the kernel function. For instance if f(z) =
exp(z), we have a softmax normalization. In our work, we

4 Please note that we used this existing trained model as the initialization
of the contracting path. In the training step, we do train the weights on the
contracting path.

909

—

(a)

Fig. 4: (a) An example of a screen with equally important
widgets of different sizes. (b) The touch channel of the
produced heatmap. The pixels belonging to different clusters
that the cluster_sampling readout detects are colored
with maroon, red, and white, depending on the cluster they
belong to.

(b)

chose to use the linear kernel f(x) = . Using the probability
distribution that the linear kernel produces, we then sample
an action. We call this method the weighted_sampling
readout.

However, humans usually interact with apps differently. We
see widgets rather than pixels, and interact with those widgets
as a whole. The weighted_sampling readout does not
take this into account as it treats each pixel independently.
Take Figure 4a as an example. The “Enable delivery reports”
checkbox is potentially as important as the send button,
because if it is checked a new functionality can be tested.
However, because the button is larger than the checkbox, it
takes the weighted_sampling readout longer to finally
toggle the checkbox and test the new functionality.

To address this issue, we use the cluster_sampling
readout. In this approach, we first filter out all the actions « for

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

which the predicted Q(s;, «) is less than a certain threshold.
This way, we ensure only the actions that are highly probable
to be valid are considered. In Deep GUI this threshold is 0.99.
Then, for each channel in Q(s;), we use agglomerative cluster-
ing as implemented in python library scikit—-learn [32] to
cluster the pixels into widgets. Figure 4b shows the clustering
result for the touch channel of the heatmap corresponding
to Figure 4a. After detecting the clusters, we first randomly
choose one of the action types, and then randomly choose one
of the clusters (i.e. widgets) in the channel associated with that
action type. Finally, we choose a random pixel that belongs
to that cluster and generate a;.

While configurable, in our experiments we used a hy-
brid readout that uses weighted_sampling in 30% of
the times, and cluster_sampling in 70% of the times.
This way, we exploit the benefits that cluster_sampling
offers, while we make sure we do not completely abandon
certain valid actions because of the imperfections of the tool.

The discussed readouts identify the action type and the
location of it on the screen. However, scroll and swipe also
require other parameters such as direction or length. Deep GUI
chooses these parameters randomly. Also, because swipe and
scroll are mostly used to discover other buttons, while touch is
actually the action that triggers the functionality of the buttons,
we configure the described readouts so that they are more
biased towards choosing the touch action.’

D. Monkey++

While touch, swipe, and scroll are the most used action
types when interacting with an environment, there are other
actions that may affect the ability of a tool to crawl Android
apps. In order to cover those actions as well, and also in order
to be able to compare Google Monkey with our solution fairly
in the Android environment, we introduce Monkey++, which
is an extension to Google Monkey. Monkey++ consists of a
server side, which responds to queries with Deep GUI, and a
client side, which is implemented inside Google Monkey.

Google Monkey works as follows. First, it randomly
chooses an action type (based on the probabilities provided
to it when starting it), and then randomly chooses the param-
eters (such as the location to touch). Monkey++ works the
same as Google Monkey with one exception. If the chosen
action type is touch or gesture (which represents all types of
movement, including scroll and swipe), instead of proceeding
with the standard random procedure in Google Monkey, it
sends a query to the server side. Using the inference procedure
described above, Deep GUI samples an action and returns to
the client, which is then performed on the device. Algorithm
1 shows how Monkey++ works.

III. EVALUATION

We evaluated Deep GUI with respect to the following
research questions:

5 In weighted_sampling, we multiply each heatmap belong-
ing to touch, scroll, and swipe with 1, 0.3, and 0.1 respectively. In
cluster_sampling, when randomly choosing an action type from the
available ones, we use the same three numbers to bias the probability.

910

Algorithm 1: Monkey++ algorithm

while Google Monkey is running do
get action type ¢ from Google Monkey;
if ¢ is touch or gesture then
| get action a from Deep GUI server
else
| continue with Google Monkey and get action a
end

perform a
end

RQI.
RQ2.

How does Monkey++ compare to Google Monkey?

Can Deep GUI be used to generate effective test inputs
across platforms?

How much is transfer learning helping Deep GUI in
learning better and faster?

RQ3.

We used the apps in the Androtest benchmark [25] as our
pool of apps. Out of 66 apps available®, we randomly chose 28
for training, 6 for validation, and 31 for testing purposes. We
also eliminated one of the apps because of its incompatibility
with our data collection procedure.’

To support a variety of screen sizes, we collected data from
virtual devices of size 240 x 320 and also 480 x 854, and trained
a single model that is used in the experiments explained in
Sections RQ1 and RQ2. We collected an overall amount of
210,000 data points. Virtual devices, both for data collection
and the Android experiments, were equipped with a 2000M B
virtual SD card, as well as 4GB of RAM. For data collection,
training, and the experiments, we used an Ubuntu 18.04 LTS
workstation with 24 Intel Xenon CPUs and 150GB RAM.
We did not use GPUs at any stage of this work. The entire
source code for this work, the experiments, and the analysis
is available at https://github.com/Feri73/deep-gui.

RQI. Line Coverage

In order to test the ability of Monkey++ in exploring
Android apps, we ran both Monkey++ and Google Monkey
on each app in the test set for one hour, and monitored line
coverage of the AUT every 60 seconds using Emma [33]. We
ran 9 instances of this experiment in parallel, and calculated
the average across different executions of each tool. Table
I shows the final line coverage for the apps in the test set.
While in some apps Monkey++ and Google Monkey perform
similarly, in other apps, such as com.kvance.Nectroid,
Monkey++ significantly outperforms Google Monkey. We
believe this is directly related to an attribute of apps, referred
to as Crawling Complexity (CC) in this paper.

CC is a measure of the complexity of exploring an app.
Different factors can affect this value. For instance, if the
majority of the app’s code is executed at the startup, there

6 Three apps caused crashes in the emulators and hence were not used.

7 Application org. jtb.alogcat keeps updating the screen with new
logs from the logcat regardless of the interactions with it, which highly
deviates from the behavior of a normal Android app.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The results of running Monkey++ and Google Monkey on the test set, sorted by Crawling Complexity. The shading

indicates the tool that achieved the best result.

Application Crawling Complexity | Monkey++ Line Coverage G Monkey Line Coverage
es.senselesssolutions.gpl.weightchart 2.8 67% 65%
com.hectorone.multismssender 2.6 64% 67%
com.templaro.opsiz.aka 24 72% 66%
com.kvance.Nectroid 2.3 65% 50%
com.tum.yahtzee 2.3 67% 61%
in.shick.lockpatterngenerator 2.2 86% 84%
net.jagpot.netcounter 2.2 T1% 69%
org.waxworlds.edam.importcontacts 2.0 41% 34%
cri.sanity 1.8 25% 23%
com.chmod0 .manpages 1.7 72% 63%
com.google.android.divideandconquer 1.5 85% 88%
com.example.android.musicplayer 1.3 71% 71%
ch.blinkenlights.battery 1.3 91% 93%
org.smerty.zooborns 1.2 34% 33%
com.android.spritemethodtest 1.2 71% 87%
com.android.keepass 1.1 7% 8%
org.dnag.dialer2 1.0 39% 39%
hu.vsza.adsdroid 1.0 24% 24%
com.example.anycut 0.9 71% 71%
org.scoutant.blokish 0.9 45% 46%
org.beide.bomber 0.8 89% 88%
com.beust.android.translate 0.7 48% 48%
com.addi 0.6 18% 18%
org.wordpress.android 0.5 5% 5%
com.example.amazed 0.3 82% 81%
net.everythingandroid.timer 0.2 65% 65%
com.google.android.opengles.spritetext 0.1 59% 59%
aarddict.android 0.0 14% 14%
com.angrydoughnuts.android.alarmclock 0.0 6% 6%
com.everysoft.autoanswer 0.0 9% 9%
hiof.enigma.android.soundboard 0.0 100% 100%

com. tum.yahtzee: This is a dice game with fairly complicated logic and several buttons, each activating different scenarios over time.

org.waxworlds.edam. importcontacts: This app imports contacts from the SD card. There are multiple steps to reach to the final
activity, and each contains multiple options that change the course of actions that the app finally takes.

hu.vsza.adsdroid: The only functionality of this app is to search for and list the data-sheets of electronic items. The search activity

contains one drop-down list for search criteria, and a search button.

org.wordpress.android: This app is for management of WordPress websites. At the startup, it either requires a login or opens a web

container, which does not affect the line coverage.

is not much code left to be explored. As another example,
consider apps that require signing in to an account to access
their functionality. Unless it is explicitly supported by the tools
(which is not in this study), not much can be explored within
the app.

We hypothesize that Monkey++ outperforms Google Mon-
key in apps with high CC. In order to test this, we define CC as
the uncertainty in coverage when randomly interacting with an
app. That is, if random interactions with an app always result
in a similar trace of coverage, it means that the available parts
of the app are trivial to reach and will always be executed,
and therefore, not much is offered by the app to be explored.
To compute uncertainty (and hence CC) for an app, we use
the concept of entropy.

The entropy of a random variable is a measure of the uncer-
tainty of the values that this variable can get. For instance, if a
random variable only gets one value (i.e., it is not random), the
entropy would be zero. On the other hand, a random variable
that samples its values from a uniform distribution has a large

911

entropy, because it is more difficult to predict its exact value.
The formula for calculating entropy H of a discrete random
variable X is as follows:

n

- Zp(fﬂi) log, (p(x:))

i=1

H(X)

where x; represents the values that X can get, and p(x;) is the
probability distribution for X. To calculate CC of an app using
entropy, we take all line coverage information for that app in
all timesteps of all experiments involving Google Monkey (as
a random interaction tool), and calculate the entropy of the
distribution of these coverage values using the above formula.
The coverage values for two apps with low and high CC are
shown in Figure 5.

Table I shows the CC value for each app, and discusses
some examples of apps with high and low CC, including the
examples in Figure 5. As one can notice, most of the apps in
which Monkey++ achieves better coverage have higher CC.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

Included -

search by part name

()

Player 1

srake.

Fullbouse.

Save Move & Cortinue

(©

o =] o e
IS «n o 9

4
w

Line Coverage

o
o

|54
=) -
OQ\

20 25 30

Minutes

35 40 45 50 55

4 —5 6 =7 =8 e—9

Line Coverage
= o
w S

o
N

e
a

10

15 20 25 30

Minutes

35 40 45 50 55

4 =5 —mf =] =——8 =9

(d

Fig. 5: The results of exploring two apps randomly in 9 independent runs: (a) An example of an app with low CC
(hu.vsza.adsdroid). (b) We obtain only 3 distinct coverage values for the entire 60 minutes of randomly testing the
adsdroid app across all 9 agents. This means the portion of the app that is accessible to be explored is very limited. (c) An
example of an app with high CC (com.tum.yahtzee). (d) Here, the coverage values that we obtain by randomly exploring
the yahtzee app span a much more uncertain space than the adsdroid app, which means more is offered by the app to
be explored and therefore it is more meaningful to compare the testing tools on this app.

To further evaluate the ability of Monkey++ in crawling
complex apps with high CC, we analyzed the progressive
coverage of the top 10 apps with the highest CC. Figure
6 shows that Monkey++ achieves better results compared
to Google Monkey, and does so faster. This superiority is
statistically significant in all timesteps, as calculated by a one-
tail Kolmogorov—Smirnov (KS) test (p-value < 0.05).8

The improvement over Google Monkey is valuable, since
it is currently the most widely used testing tool that does not
require the AUT to implement any specific API. For instance,
most of the mainstream white-box testing tools fail on non-
native applications, because these applications are essentially

8 To calculate the error bars in Figure 6 and the p-value for KS-test, first for
each app, the mean performance of Google Monkey on that app is subtracted
from the performance of both Google Monkey and Monkey++, and then the
error bars and the significance are computed with regards to this value across
all apps.

912

web content wrapped in an android web viewer, and lack
standard Ul elements that white-box tools depend on. In
these scenarios, practitioners are bound to use random testing
tools such as Google Monkey. Monkey++ provides a more
intelligent alternative in these situations that, as the results
suggest, provide better coverage faster.

RQ2. Cross-Platform Ability

Since Deep GUI is completely blind with regards to the
app’s implementation or the platform it runs on, we hypothe-
size it is applicable not only in Android but in other platforms
such as web or i0S. Moreover, we claim that since Ul design
across different platforms is very similar (e.g. buttons are very
similar in Android and web), we can take a model trained on
one platform and use it in other platforms. This is particularly
useful when developers want to test different implementations
of the same app in different platforms.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

0.7
0.65
0.6
0.55
0.5
0.45
0.4

Line Coverage

0.35
0.3

0.25

0.2
0 5

10 15 20 25 30 35 40 45 50 55
Minutes

=Monkey++ Google Monkey

Fig. 6: The progressive line coverage of Monkey++ and
Google Monkey on the top 10 Android apps with the highest
CC. Error bars indicate standard error of the mean.

25

20

URL Count
=
@

=
1)

0
0 50 100 150 200 250 300 350 400 450 500 550

==Deep-GUI Random e===Deep-GUI without Transfer Lerning

Fig. 7: The progressive performance of Deep GUI and random
agent in web crawling. The difference between the three tools
is statistically significant in all timesteps, as calculated by
one tail KS-tests between all pairs (similar to the procedure
described in footnote 8).

To test whether our approach is truly cross-platform, we
implemented an interface to use Deep GUI for interacting with
Mozilla Firefox browser® using Selenium web driver [34], and
compared it against a random agent'?. Note that we did not
re-train our model, and used the exact same hyper-parameters
and weights we used for the experiments in RQ1, which are
learned from Android apps.

For the web experiments, we used the top 15 websites in
the United States [26] as our test set, and ran each tool on
each website 20 times, each time for 600 steps. To measure
the performance, we counted the number of distinct URLSs
visited in each website, and averaged this value for each tool.

9 We used Responsive Design Mode in Mozilla Firefox with the resolution
of 480 x 640.

10 The random agent uses the same bias for action types that is explained
in footnote 5 of Section II.

913

TABLE II: The performance of Deep GUI and random agent
on each web site

Website Deep GUI Random
google.com 17.4 12.9
youtube.com 94.3 12.1
amazon.com 13.2 15.2
yahoo.com 154 21.8
facebook.com 3.2 7.1
reddit.com 5.3 5.1
zZoom.us 4.6 6.9
wikipedia.org 41.1 40.6
myshopify.com 3.6 6.0
ebay.com 134 114
netflix.com 5.1 4.8
bing.com 32.5 25.5
office.com 16.9 15
live.com 2.7 2.5
twitch.tv 65.6 30.1
average 222 14.4

(®)

Fig. 8: A screenshot and its corresponding heatmap generated
by the model before training.

Figure 7 and table II show that our model outperforms random
agent, and confirms that our model has learned the rules of
UI design, which is indeed independent of the platform.

The results of the web experiment demonstrate the power of
a black-box technique capable of understanding the dynamics
of GUI-based applications without relying on any sort of
platform-dependent information. Such techniques infer gener-
alized rules about GUI-based environments instead of relying
on specific APIs or implementation-choices in the construction
of an application, and hence enable users to apply the tools on
different applications and on different platforms without being
constrained by the compatibility issues.

RQ3. Transfer Learning Effect

As described, we used transfer learning to make the training
process more data-efficient, i.e. we crawl fewer data and train
faster. To study if using transfer learning was actually helpful,
we repeated the web experiments, with the only difference that
instead of using the model trained with transfer learning, we
trained another model with random initial weights. Figure 7

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

shows that without transfer learning, the model’s performance
significantly decreases.

To gain an intuitive understanding of the reason behind
this, consider Figure 8b. This figure shows the initial output
of the neural network for the screen of Figure 8a before
training, when initialized with the ImageNet weights. As one
can see, even without training, the buttons stand out from
the background in the heatmap, which gives the model a
significant head-start compared to the randomly initialized
model, and makes it possible for us to train it with a small
amount of data.

IV. RELATED WORK

Many different input generation techniques with different
paradigms have been proposed in the past decade. Several
techniques [35], [36] rely on a model of the GUI, usually
constructed dynamically and non-systematically, leading to
unexplored program states. Sapienz [15], EvoDroid [16], and
time-travel testing [37] employ an evolutionary algorithm.
ACTEve [38], and Collider [39] utilize symbolic execution.
AppFlow [40] leverages machine learning to automatically
recognize common screens and widgets and generate tests
accordingly. Dynodroid [23] and Monkey [22] generate test
inputs using random input values. Another group of techniques
focus on testing for specific defects [20], [41], [42].

These approaches can be classified into two broad cate-
gories: context blind and context aware. The tools in the for-
mer category process information in each action independent
of other actions. That is, when choosing a new action, they
do not consider the previous actions performed, and do not
plan for future actions. Tools such as Google Monkey [22]
and DynoDroid [23] are in this category. These tools are fast
and require very simple pre-processing, but may miss entire
activities or functionalities, as this requires maintaining a
model of the app and visited states. Tools in the latter category
incorporate various sources of information to construct a
model of an app, which is then used to plan for context-
aware input generation. Most of the existing input generation
tools are in this category. For instance, Sapienz [15] uses a
genetic algorithm to learn a generic model of app, representing
how certain sequences of actions can be more effective than
others. Tools that use different types of static analysis of the
source code or GUI to model the information flow globally
also belong to this category.

Not many tools have explored black-box and/or cross-
platform options for gathering information to be used for
input generation, either with a context-aware or a context-
blind approach. Google Monkey is the only widely used
tool in Android that does not depend on any app-specific
information. However, it follows the simplest form of testing,
i.e., random testing. Humanoid [43] is an effort towards
becoming less platform-dependent, while also generating more
intelligent inputs. However, it is still largely dependent on
the UI transition graph of AUT and the GUI tree extracted
from the operating system. Moreover, since it depends on an
existing dataset for Android, it would not be easy to train it

914

for a new platform. The study of White et al. [44] is the most
similar to our work. They study the effect of machine-learning-
powered processing of screenshots in generating inputs with
random strategy. However, because they generate artificial
apps for training their model, their data collection method is
limited in expressing the variety of screens that the tool might
encounter. Furthermore, their approach is platform dependent.

Deep GUI uses deep learning to improve context-blind input
generation, while also limiting the processed information to be
black-box and platform independent. This allows it to be as
versatile as Google Monkey in the Android platform, while
being more effective by intelligently generating the inputs for
crawling of apps.

V. DISCUSSION AND FUTURE WORK

Deep GUI is the first attempt towards making a fully black-
box and cross-platform test input generation tool. However,
there are multiple areas in which this tool can be improved.
The first limitation of the approach described here is the time-
consuming nature of its data collection process, which limits
the number of collected data points and may compromise the
dataset’s expressiveness. By using transfer learning, we man-
aged to mitigate this limitation to some degree. In addition,
the complex set of hyperparameters (such as hybrid readout
probabilities) and the time-consuming nature of validating the
model on apps make it difficult to fine-tune all the hyperpa-
rameters systematically, which is required for optimizing the
performance to its maximum potential.

Deep GUI limits itself to context-blind information pro-
cessing, in that it does not consider the previous interactions
with AUT when generating new actions. However, it uses
a paradigm that can easily be extended to take context into
account as well. We believe this paradigm should be explored
more in the future of the field of automated input generation.

Take our definition of the problem. If we call s; the state of
the environment, a; the action performed on the environment
in that state, r, the reward that the environment provides
in response to that action, and ()(s:,a:) the predictions of
the model about the long-term reward that the environment
provides when performing a; in s; (also known as the quality
matrix), then this work can essentially be viewed to propose
a single-step deep Q-Learning [45] solution to the problem
of test input generation. Looking at the problem this way
enables researchers in the area of automatic input generation to
benefit from the rich and active research in the Q-Learning and
reinforcement learning (RL) community, and explore different
directions in the future such as the following:

o Multi-Step Cross-Platform Input Generation. Deep GUI
uses Q-Learning in a context-blind and single-step manner.
However, by redefining s; to include more context (such
as previous screenshots, as tried in Humanoid [43]) and
expanding the definition of r; to express a multi-step sense
of reward, one can use the same idea to utilize the full
power of Q-Learning to train models that not only limit their
actions to only the valid ones (as this tool does), but also

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

plan ahead and perform complex and meaningful sequence
of actions.

« Smarter Processing of Information. Even if a tool does
not want to limit itself to only platform-independent in-
formation, it can still benefit from using a Q-Learning
solution. For instance, one can define s; to include the
GUI tree or the memory content to provide the model with
more information, but also use Q-Learning to process this
information more intelligently.

o Regression Testing and Test Transfer. While this work
presents a trained model that targets all apps, it is not limited
to this. Developers can take a Q-Learning model such as the
one described in this work, collect data from the app (or a
family of related apps) they are developing, and train the
model extensively so that it learns what actions are valid,
what sequences of actions are more probable to test an
important functionality, etc. This way, when new updates
of the app are available, or when the app becomes available
in new platforms, developers can quickly test for any fault
in that update without having to rewrite the tests.

ACKNOWLEDGMENT

This work was supported in part by award numbers 2106306
and 1823262 from the National Science Foundation and a
Google Cloud Platform gift. We would like to thank the
anonymous reviewers of this paper for their detailed feedback,
which helped us improve the work.

REFERENCES

[1] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA *13, (New York, NY,
USA), p. 641-660, Association for Computing Machinery, 2013.

[2] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, (USA), p. 1021-1036,
USENIX Association, 2014.

[3] M. Linares-Vasquez, M. White, C. Bernal-Cardenas, K. Moran, and
D. Poshyvanyk, “Mining android app usages for generating actionable
gui-based execution scenarios,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR 15, p. 111-122,
IEEE Press, 2015.

[4] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
A. Rountev, “Static window transition graphs for android,” Automated
Software Engg., vol. 25, p. 833-873, Dec. 2018.

[5] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-
based technique for android mobile application testing,” in 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, pp. 252-261, 2011.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 258-261, 2012.

[7]1 Y. Baek and D. Bae, “Automated model-based android gui testing
using multi-level gui comparison criteria,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 238-249, 2016.

[8] N.P.Borges, M. Gémez, and A. Zeller, “Guiding app testing with mined
interaction models,” in Proceedings of the 5th International Conference
on Mobile Software Engineering and Systems, MOBILESoft *18, (New
York, NY, USA), p. 133-143, Association for Computing Machinery,
2018.

915

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” SIGPLAN Not., vol. 48,
p. 623-640, Oct. 2013.

S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys 14, (New York,
NY, USA), p. 204-217, Association for Computing Machinery, 2014.
K. Jamrozik and A. Zeller, “Droidmate: A robust and extensible test
generator for android,” in 2016 IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft), pp. 293-294,
2016.

L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest:
Automatic black-box testing of interactive applications,” in 20/2 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, pp. 81-90, 2012.

T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, (New York, NY, USA), p. 245-256,
Association for Computing Machinery, 2017.

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen, “Droidbot:
a lightweight ui-guided test input generator for android,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pp. 23-26, 2017.

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, (New York,
NY, USA), p. 94-105, Association for Computing Machinery, 2016.
R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pp. 599-609, 2014.

J. Garcia, M. Hammad, N. Ghorbani, and S. Malek, “Automatic gen-
eration of inter-component communication exploits for android applica-
tions,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, (New York, NY, USA),
p. 661-671, Association for Computing Machinery, 2017.

C. Cao, N. Gao, P. Liu, and J. Xiang, “Towards analyzing the input
validation vulnerabilities associated with android system services,” in
Proceedings of the 31st Annual Computer Security Applications Con-
ference, ACSAC 2015, (New York, NY, USA), p. 361-370, Association
for Computing Machinery, 2015.

Y. Liu, C. Xu, S. Cheung, and J. Lii, “Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications,” IEEE Transactions
on Software Engineering, vol. 40, no. 9, pp. 911-940, 2014.

R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-based energy testing of
android,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 1119-1130, 2019.

A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in android
apps: State of affairs, sentiments, and ways forward,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE 20, (New York, NY, USA), p. 1323-1334, Association for
Computing Machinery, 2020.

“Ui/application exerciser monkey.” https://developer.android.com/studio/
test/monkey, 2020.

A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, (New York,
NY, USA), p. 224-234, Association for Computing Machinery, 2013.
K. Mao, M. Harman, and Y. Jia, “Crowd intelligence enhances auto-
mated mobile testing,” in Proceedings of the 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2017,
p- 16-26, IEEE Press, 2017.

S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 429-440, 2015.

A. Internet, “Top sites in united states,” 2020.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2015 (N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi, eds.), (Cham), pp. 234-241, Springer
International Publishing, 2015.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16, (USA),
p. 265-283, USENIX Association, 2016.

[29] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-
1359, 2010.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 20/8 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4510—
4520, 2018.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211-252, 2015.

[32] E. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ““Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[33] V. Roubtsov, “Emma: a free java code coverage tool,” 2006.

[34] Selenium, “The selenium browser automation project.” https://www.
selenium.dev/.

[35] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 245-256, 2017.

[36] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 269-280, IEEE, 2019.

[37] Z. Dong, M. Bohme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE’20), pp. 1-12, 2020.

[38] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
pp. 1-11, 2012.

[39] C. S. Jensen, M. R. Prasad, and A. Mgller, “Automated testing with
targeted event sequence generation,” in Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, pp. 67-77, 2013.

[40] G. Hu, L. Zhu, and J. Yang, “Appflow: using machine learning to
synthesize robust, reusable ui tests,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 269-282,
2018.

[41] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-
application communication vulnerabilities in android,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
pp. 118-128, 2015.

[42] L. L. Zhang, C.-J. M. Liang, Y. Liu, and E. Chen, “Systematically
testing background services of mobile apps,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 4-15, IEEE, 2017.

[43] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2079
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 1070-1073, 2019.

[44] T. D. White, G. Fraser, and G. J. Brown, “Improving random gui testing
with image-based widget detection,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, (New York, NY, USA), p. 307-317, Association for
Computing Machinery, 2019.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” ArXiv, vol. abs/1312.5602, 2013.

916

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2023 at 20:42:49 UTC from IEEE Xplore. Restrictions apply.

