
57

The Online Knapsack Problem with Departures
BO SUN, The Chinese University of Hong Kong, Hong Kong SAR

LIN YANG∗, Nanjing University, China
MOHAMMAD HAJIESMAILI, University of Massachusetts Amherst, USA

ADAM WIERMAN, California Institute of Technology, USA
JOHN C.S. LUI, The Chinese University of Hong Kong, Hong Kong SAR

DON TOWSLEY, University of Massachusetts Amherst, USA

DANNY H.K. TSANG, The Hong Kong University of Science and Technology (Guangzhou), China and The
Hong Kong University of Science and Technology, Hong Kong SAR

The online knapsack problem is a classic online resource allocation problem in networking and operations

research. Its basic version studies how to pack online arriving items of different sizes and values into a

capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also
consideringmultiple knapsacks andmulti-dimensional item sizes. We design a threshold-based online algorithm

and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance

guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this

goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case

performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other

benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.

CCS Concepts: • Theory of computation → Online algorithms; • Applied computing → Decision

analysis; • Networks → Network economics.

Additional Key Words and Phrases: online knapsack problems; knapsack with departures; data-driven algo-

rithms; competitive ratio; cloud job scheduling

ACM Reference Format:

Bo Sun, Lin Yang, Mohammad Hajiesmaili, AdamWierman, John C.S. Lui, Don Towsley, and Danny H.K. Tsang.

2022. The Online Knapsack Problem with Departures. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 57
(December 2022), 32 pages. https://doi.org/10.1145/3570618

1 INTRODUCTION
The online knapsack problem (OKP) is a classic online algorithms problem that studies how to

pack arriving items of different sizes and values to capacity-limited knapsacks. It models an

online decision-making process where one provider allocates resources (i.e., knapsack capacity)

to sequentially arriving customers (i.e., items) to maximize the total return. OKP has been widely

∗
Corresponding author for this work; the first two authors contribute equally to this work.

Authors’ addresses: Bo Sun, bsun@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR; Lin Yang,

linyang@nju.edu.cn, Nanjing University, China; Mohammad Hajiesmaili, hajiesmaili@cs.umass.edu, University of Mas-

sachusetts Amherst, USA; Adam Wierman, adamw@caltech.edu, California Institute of Technology, USA; John C.S. Lui,

cslui@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR; Don Towsley, towsley@cs.umass.edu,

University of Massachusetts Amherst, USA; Danny H.K. Tsang, eetsang@ust.hk, The Hong Kong University of Science and

Technology (Guangzhou), China and The Hong Kong University of Science and Technology, Hong Kong SAR.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2022/12-ART57 $15.00

https://doi.org/10.1145/3570618

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

https://doi.org/10.1145/3570618
https://doi.org/10.1145/3570618

57:2 Bo Sun et al.

used in networking and operations research applications, such as online job scheduling in cloud

computing [32], online routing of virtual circuits [6], admission control in 5G mobile network

slicing [25], online electric vehicle charging in smart grids [27], online hotel booking in revenue

management [16], online bidding in repeated auctions [5], and beyond.

In the most basic version of OKP, there is only one knapsack, and each item is characterized by its

value and one-dimensional (scalar) size. The problem is to irrevocably decide whether to admit each

item upon its arrival with the goal of maximizing the total values of admitted items while respecting

the capacity of the knapsack. The sequence of items can only be revealed one-by-one and may

even be adversarial. From this basic version, a wide array of generalizations have been considered.

Three important extensions are: (i) the online multiple knapsack (OMK) problem, where there exist

multiple knapsacks and the decision becomes whether to admit each item, and which knapsack the

item should be assigned to if admitted; (ii) the online multi-dimensional knapsack (OMdK) problem,

where each item has a multi-dimensional (vector) size and the decision is whether to admit each

item while simultaneously respecting multi-dimensional capacity limits; (iii) the online knapsack
with departures (OKD) problem, where arriving items depart after finite time duration.

The most general form of OKP includes all three of these extensions: online multiple, multi-

dimensional knapsacks with departures. It is this version that is most applicable to the applications

listed above. For example, in the case of online cloud job scheduling, jobs have multi-dimensional

requirements (e.g., computing, memory), there are multiple knapsacks, i.e., VM servers, and jobs

depart after receiving the desired amount of service. Similarly, the application of online hotel

booking also requires all three extensions. Different hotels correspond to multiple knapsacks, each

with multiple types of rooms (e.g., single/double room). Then a new order requests to book a certain

numbers of different room types (e.g., one single room and one double room for three people)

and stay for a given duration. However, there currently do not exist algorithms with provable

guarantees for this general setting. Providing the first such algorithm is the goal of this paper.

More specifically, OKP has been extensively studied under the framework of competitive anal-

ysis [27–29, 32, 33] with the goal of designing online algorithms that can achieve the minimal

competitive ratio, which is the worst-case ratio of values obtained by the offline algorithm in

hindsight and the online algorithm. It is well-known that even the most basic OKP has unbounded

competitive ratios [23]. Thus, this line of research aims to achieve competitive ratios that depend

on setup information, such as the numbers of knapsacks and dimensions, knapsack capacities, etc.

Optimal online algorithms have been designed for the classic OKP [32, 33] and OMK [27, 33] settings,

both achieving a competitive ratio of Θ(ln𝜃), where 𝜃 is the fluctuation of the item value density

(i.e., the maximum value-to-size ratio). More recently, OMdK was shown to have a competitive ratio

of 𝑂 (𝑀 ln𝜃) that increases linearly in the the number of knapsack dimension𝑀 [32]. This result

has been then improved to 𝑂 (ln(𝑀𝜃)), which matches its lower bound Ω(ln(𝑀𝜃)) and thus is

order-optimal [29].

While optimal algorithms (in terms of competitive ratios) exist for settings with multiple knap-

sacks and multi-dimensional items, handling extensions with departures has proven more difficult.

A recent result from [32] extends OMdK to allow item departures. In particular, it treats each time

slot in a 𝑇 -slot horizon as one dimension of the knapsack and designs an online algorithm that

achieves a competitive ratio of 𝑂 (𝑇 ln𝜃), linearly increasing in the time horizon 𝑇 . Based on this

time-expanded OMdK model, the competitiveness result can be further improved by the theoretical

improvement of OMdK in [29] to 𝑂 (ln(𝑇𝜃)); however, the dependence on 𝑇 remains and limits

practical use. Further, both results focus on a single knapsack.

One may ask if it is possible to eliminate the dependence on 𝑇 in the case of departures. Results

from a related area suggest that this may be possible. Specifically, in another classic problem, online

interval scheduling [16, 22], which can be considered as a special case of OKD with item durations

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:3

Table 1. State-of-the-art results for OKP and its extensions. All papers (except [29]) assume either the sizes of
items are much smaller than the capacity of knapsacks or the item is fractionally admissible. Capacities of all
dimensions are identical. We use Θ(·) to denote a matching upper𝑂 (·) and lower bound Ω(·), which indicates
order optimality. Parameters 𝜃 and 𝛼 are the fluctuation ratios of value density and duration, respectively.

paper knapsack dimension duration value density competitive ratio

[27, 28, 32, 33] 1 1 +∞ [1, 𝜃] Θ(ln𝜃)
[27, 33] 𝐾 1 +∞ [1, 𝜃] Θ(ln𝜃)
[29] 1 𝑀 +∞ [1, 𝜃] Θ(ln(𝑀𝜃))
[32] 1 𝑀 [1, 𝛼] [1, 𝜃] 𝑂 (𝑀𝛼 ln𝜃)
[16] 1 1 [1, 𝛼] 1 Θ(ln𝛼)

Theorem 1 𝐾 1 [1, 𝛼] [1, 𝜃] Θ(ln(𝛼𝜃))
Theorem 4 𝐾 𝑀 [1, 𝛼] [1, 𝜃] Θ(ln(𝑀𝛼𝜃))

bounded within [𝐷, 𝐷] but with fixed value density and item size, the optimal competitive ratio

has been shown to be Θ(ln𝛼), where 𝛼 = 𝐷/𝐷 is the duration fluctuation ratio. Thus, one may

conjecture whether the optimal competitive ratio of OKD in its most general form is 𝑂 (ln(𝑀𝛼𝜃)).
In this paper, the core open question we answer is:

Is there an algorithm for OKD that can achieve a competitive ratio of 𝑂 (ln(𝑀𝛼𝜃))?
We first provide two impossibility results that show the competitive ratios of direct extensions

of prior algorithms [29, 31, 33] are lower bounded by Ω(𝛼) or Ω(ln(𝐷)), which is either linear in

the duration ratio 𝛼 or logarithmic in the maximum duration 𝐷 (See Lemma 1). This motivates us

to develop new algorithms and analysis tools to attain the target competitive ratio in this work.

1.1 Contributions
Our main result shows that the answer to the above question is “yes.” As Table 1 shows, we provide

the first algorithm with a competitive guarantee for the case of multiple knapsacks with multi-

dimensional items and item departures. Further, we achieve an order-optimal competitive ratio.

This result opens the door for a wide array of applications, like online job scheduling, which require

the full generality of multiple knapsacks with multi-dimensional items and item departures.

Our algorithm extends a classic approach in the OKP literature to OKD settings, which decomposes

the algorithm into subroutines that check the admissibility of each item into each single knapsack,

and adopts a threshold-based algorithm to decide the admissibility. The algorithmic challenge lies in

the design of threshold functions, andwe formalize the challenge involved in this via an impossibility

result that shows that two state-of-the-art designs fail to achieve the target ratio𝑂 (ln(𝑀𝛼𝜃)) under
one of two types of hard instances (see Lemma 1). To overcome this challenge, we design a threshold

function that balances the worst-case ratios over the two types of instances that lead to difficulties

for current state-of-the-art approaches. This results in an order-optimal competitive ratio. Further,

our design provides a class of parameterized threshold functions and characterizes the regimes of

the parameters such that all thresholds with properly selected parameters can achieve the target

competitive ratio (see Theorems 1 and 4).

Underlying our competitive analysis is a novel instance partitioning procedure. Because analyzing

the competitive ratio of OKD directly over a 𝑇 -slot horizon has proven difficult, we take advantage

of the weak dependence of items across the horizon, leading to a partitioning of one instance into

sub-instances with a shorter interval. To be more precise, as each item in OKD stays in the knapsack

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:4 Bo Sun et al.

for at most 𝐷 consecutive slots, the items that start at time 𝑡 are only correlated with items in slots

{𝑡 − 𝐷 + 1, . . . , 𝑡 + 𝐷 − 1}. Leveraging this structure, we use a novel partitioning technique that

reduces the competitive analysis over the original instance to sub-instances, each of which is of

length 3𝐷 . This partitioning greatly simplifies the worst-case analysis under two different types

of hard instances, making it possible to design a threshold function that balances the worst-case

performances from the two cases. The partitioning procedure together with the newly-designed

threshold function is essential to improve the dependence of competitive ratios on item duration,

from Ω(𝛼) or Ω(ln𝐷) of prior designs to the optimal order Θ(ln𝛼).
A common critique of competitive analysis is that it leads to algorithms optimized for the worst-

case instances. As a result, such algorithms can under-perform for typical instances from real-world

applications (see comparison in Figures 4 and 5 in §6). Motivated by this, we go beyond worst-case

analysis and use our analysis to derive a data-driven online algorithm that learns to optimize its

average performance based on past data while maintaining a worst-case competitive guarantee.

Theorem 3 bounds the competitive ratio for the data-driven algorithm and then we empirically

demonstrate its performance in §6 using an application to job scheduling in cloud computing. The

results highlight that the data-driven online algorithm provides significant improvement in practice,

while still maintaining bounded worst-case performance.

The remainder of the paper is structured as follows. We begin by studying the online multiple

one-dimensional knapsack problem with departures in §2-4. We first introduce the model and its

application scenarios in §2. Then, we show our algorithms and main results in §3. Proofs of the

main results are deferred to §4. Next we show extensions to the multi-dimensional case in §5. In §6,

we present numerical experiments using real traces from cloud job scheduling. Finally, we review

the related literature in §7 and draw conclusions in §8.

2 ONLINE MULTIPLE KNAPSACKS WITH DEPARTURES
2.1 Problem statement
Consider 𝐾 knapsacks in a slotted time horizon [𝑇] = {1, . . . ,𝑇 }, where each knapsack 𝑘 ∈ [𝐾] has
capacity𝐶𝑘 ∈ R+. A total of 𝑁 items arrive sequentially and each item 𝑛 is characterized by its item

information I𝑛 = {𝑎𝑛, {𝑤𝑛𝑘 , 𝑣𝑛𝑘 ,T𝑛𝑘 }𝑘∈[𝐾]}, where 𝑎𝑛 is the arrival time, and for each knapsack 𝑘 ,

𝑤𝑛𝑘 and 𝑣𝑛𝑘 are the size and value, and T𝑛𝑘 := {𝑠𝑛𝑘 , . . . , 𝑠𝑛𝑘 + 𝑑𝑛𝑘 − 1} is the set of time slots that

item 𝑛 requests to stay in knapsack 𝑘 from its starting time 𝑠𝑛𝑘 to its departure time 𝑠𝑛𝑘 + 𝑑𝑛𝑘 − 1.

The set T𝑛𝑘 contains 𝑑𝑛𝑘 consecutive time slots and we call 𝑑𝑛𝑘 the duration of the item.

Upon arrival of item 𝑛, a decision maker observes its item information I𝑛 and determines (i)

whether to admit this item, and (ii) which knapsack this item should be assigned to if it is admitted.

Let 𝒙𝑛 = {𝑥𝑛𝑘 }𝑘∈[𝐾] denote the decision variable, where 𝑥𝑛𝑘 ∈ {0, 1} indicates whether to admit

item 𝑛 to knapsack 𝑘 and

∑
𝑘∈[𝐾] 𝑥𝑛𝑘 = 0 represents declining the item. The goal is then to design

an online algorithm to causally determine 𝒙𝑛 based on the item information up to 𝑛, i.e., {I𝑛′}𝑛′≤𝑛 ,
that maximizes the total value of all admitted items while ensuring the capacities of all knapsacks

not to be violated over the time horizon.

Let I := {I𝑛}𝑛∈[𝑁] denote an instance of OKD. Given I, the offline problem can be formulated as

(offline OKD) max

𝑥𝑛𝑘

∑︁
𝑛∈[𝑁]

∑︁
𝑘∈[𝐾]

𝑣𝑛𝑘𝑥𝑛𝑘 , (1a)

s.t.
∑︁

𝑛∈[𝑁]:𝑡 ∈T𝑛𝑘
𝑤𝑛𝑘𝑥𝑛𝑘 ≤ 𝐶𝑘 ,∀𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇], (1b)∑︁

𝑘∈[𝐾]
𝑥𝑛𝑘 ≤ 1,∀𝑛 ∈ [𝑁], (1c)

𝑥𝑛𝑘 ∈ {0, 1},∀𝑛 ∈ [𝑁], 𝑘 ∈ [𝐾] . (1d)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:5

Let OPT(I) and ALG(I) denote the values obtained by the offline problem (1) and an online

algorithm under the instance I. The competitive ratio of the online algorithm is defined as the

worst-case performance ratio of the offline and online algorithms, i.e., CR = maxI OPT(I)/ALG(I).
Our goal is to design an online algorithm that can achieve the smallest competitive ratio.

2.2 Application scenarios
In the following, we highlight a few sample application scenarios that could be captured by OKD.
Online job scheduling in cloud computing. A cloud provider allocates cloud resources (e.g., com-

puting, memory) from a pool of 𝐾 VM servers to 𝑁 cloud jobs that arrive sequentially over a time

horizon 𝑇 . Upon the arrival of a job 𝑛 ∈ [𝑁], it submits its request information that includes its

resource requirement𝑤𝑛𝑘 , processing time T𝑛𝑘 , and the corresponding value (willingness-to-pay)

𝑣𝑛𝑘 for each server 𝑘 . Each job can be processed in any server 𝑘 ∈ [𝐾] but it may have different

requests and values across different servers that are located in different regions, configured in

different resource bundles (e.g., a bundle consisting of 2vCPUs and 8GB memory), and run at

different operating costs. Upon receiving each job, the cloud provider then decides whether to

admit this job and if admitted, which server the job should be assigned to.

As pointed out by [28, 32], OKD also captures the model of dynamic pricing for cloud resource
allocation. In this problem, each job 𝑛 has its own private value 𝑣𝑛𝑘 for server 𝑘 , which will not be

submitted together with its request. The provider’s decision is to post a set of prices for available

servers. Then the job itself decides to take which price to join, or leave the platform. The online job

scheduling and dynamic pricing converge to the same problem when we focus on threshold-based

algorithms, where the threshold values (See equations (2) and (17)) are used to determine the

scheduling or set as the posted prices in the two applications, respectively.

Online reservation problem.Motivated by the emerging online shopping and sharing-economy

platforms such as Expedia (for hotel booking), Turo (for car rental), OpenTable (for restaurant

reservation), etc., the platform service provider often faces an online reservation problem [16],

which can be modeled by the OKD. Take the online hotel booking as an example, booking orders

arrive sequentially, and for each potential hotel 𝑘 (after being filtered based on prices and locations),

each order 𝑛 specifies how many rooms and how many people in each room (modeled by𝑤𝑛𝑘), the

check-in and check-out dates (modeled by T𝑛𝑘) and the value 𝑣𝑛𝑘 . The provider then immediately

decides to accept or decline each order, and which hotel the order should be allocated to if the order

is accepted. Using a similar argument as in the previous example, the setting can be adapted to

include dynamic pricing to cope with the private values of the orders.

Other applications. OKD has similarities with several other online problems in the literature. For

example, the offline formulation of OKD can also be used to model the generalized assignment

problem [20] where bins correspond to knapsacks. OKD is a special case of the online generalized
assignment problem by putting additional assignment restrictions specified in Assumptions 1-3.

Similarly, the problem of electric vehicle charging scheduling with fixed charging rate [15], the

online traffic routing problem [19], the online appointment booking in healthcare [26] can all be

considered as special cases of OKD.

2.3 Additional Notations and Assumptions
Even for the most basic version of OKP, it is impossible to design competitive algorithms without

making additional assumptions [23]. Here, we present three standard technical assumptions that

capture the key features of the abovemotivating applications and allow the derivation of competitive

bounds for the proposed algorithms.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:6 Bo Sun et al.

First, define the value density of item 𝑛 in knapsack 𝑘 as the item value per unit size per unit time,

i.e., 𝑣𝑛𝑘/(𝑤𝑛𝑘𝑑𝑛𝑘). To distinguish low-valued and high-valued items, we assume the value density

varies within a bounded set. This assumption is consistent with those in the literature [29, 32, 33].

Assumption 1 (Value density fluctuation). The value density of each item 𝑛 in knapsack 𝑘 is
bounded, i.e., 𝑣𝑛𝑘/(𝑤𝑛𝑘𝑑𝑛𝑘) ∈ [1, 𝜃𝑘],∀𝑛 ∈ [𝑁] and value density (fluctuation) ratio is defined as 𝜃𝑘 .

Next, since each item only stays in the knapsack for a finite duration that is much smaller than

the time horizon, we assume that the duration 𝑑𝑛𝑘 of the item 𝑛 in knapsack 𝑘 is bounded.

Assumption 2 (Duration fluctuation). The duration of each item 𝑛 in knapsack 𝑘 is bounded,
i.e., 𝑑𝑛𝑘 ∈ [𝐷

𝑘
, 𝐷𝑘], ∀𝑛 ∈ [𝑁] and duration (fluctuation) ratio is defined as 𝛼𝑘 = 𝐷𝑘/𝐷𝑘 .

The duration ratio 𝛼𝑘 is a dimensionless quantity that can model the variation of item duration.

This assumption has been commonly used in the classic online interval scheduling problem [16, 22].

Under this assumption, OKD can be considered a generalized version of the online interval scheduling
problem with varying value density and item sizes.

Last, we assume the size of each item is upper bounded and smaller than the capacities of the

knapsacks. This eliminates the irrelevant items that are inadmissible to knapsacks.

Assumption 3 (Upper bound of item size). The size of each item 𝑛 is upper bounded, i.e.,
𝑤𝑛𝑘 ≤ 𝜀𝑘 ≤ 𝐶𝑘 ,∀𝑘 ∈ [𝐾], 𝑛 ∈ [𝑁].

Finally, we want to emphasize that all three assumptions are consistent with the motivating

applications we have discussed. For example, in the online job scheduling, the value of each job 𝑛 is

proportional to the required resources, e.g., computing, memory (modeled by𝑤𝑛𝑘), and its running

duration (modeled by 𝑑𝑛𝑘) in a server 𝑘 . Each job only occupies the resources for a finite duration

𝑑𝑛𝑘 and then the required resources can be released for future jobs. In addition, the resources

required by each job are smaller than the capacity provided by a server.

3 ALGORITHMS AND MAIN RESULTS
3.1 Algorithms
Our main results consist of two novel algorithms. First, in §3.1.1, we propose an online algorithm

that achieves the order-optimal competitive ratio for OKD. Then, in §3.1.2, we extend this algorithm

to design a data-driven algorithm that can learn to optimize the average-case performance while

ensuring a competitive bound.

3.1.1 A worst-case optimized algorithm for OKD. We propose a simple yet effective online algorithm

(OA-OKD) to solve OKD in Algorithm 1. The algorithm works as follows. Upon the arrival of item 𝑛,

it first determines the admissibility of the item to each knapsack (lines 5-7) by calling an online

threshold-based algorithm (OTA) subroutine in Algorithm 2, which takes a carefully-designed

threshold function 𝜙 and real-time knapsack utilization over concerned time slots as inputs. If item

𝑛 is admissible to at least one knapsack, OA-OKD then admits item 𝑛 and assigns it to the knapsack

𝑘 ′ that provides the maximum value among all admissible knapsacks. Otherwise, item 𝑛 is rejected

(lines 8-13). Finally, the knapsack utilization is updated (line 14), and is used to determine the

admissibility for the next item. The key step is the admission control of items to each knapsack via

OTA in Algorithm 2. To check admissibility, OTA defines a threshold value (line 3) as

Φ =
∑︁

𝑡 ∈T
𝑤𝜙 (𝑧𝑡) , (2)

where 𝜙 (𝑧𝑡) can be interpreted as the marginal cost of the unit item if it stays in the knapsack

in slot 𝑡 , and is a function of the real-time knapsack utilization 𝑧𝑡 . Thus, Φ is the estimated total

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:7

Algorithm 1 Online Algorithms for Online Multiple Knapsacks with Departures (OA-OKD)

1: input: threshold function 𝜙 = {𝜙𝑘 }𝑘∈[𝐾] , knapsack capacities {𝐶𝑘 }𝑘∈[𝐾] ;
2: output: admission and assignment decision 𝒙𝑛 = {𝑥𝑛𝑘 }𝑘∈[𝐾] ;

3: initialization: set initial knapsack utilization 𝑧
(0)
𝑘𝑡

= 0,∀𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇];
4: for each item 𝑛 with item information I𝑛 = {𝑎𝑛, {𝑤𝑛𝑘 , 𝑣𝑛𝑘 ,T𝑛𝑘 }𝑘∈[𝐾]} do
5: for each knapsack 𝑘 ∈ [𝐾] do
6: call Algorithm 2 to check admissibility 𝑥𝑛𝑘 = OTA(I𝑛, 𝜙𝑘 , {𝑧 (𝑛−1)𝑘𝑡

}𝑡 ∈T𝑛𝑘 ,𝐶𝑘);
7: end for

8: if

∑
𝑘∈[𝐾] 𝑥𝑛𝑘 > 0 then

9: admit item 𝑛 and assign it to knapsack 𝑘 ′ = argmax𝑘∈[𝐾]:𝑥𝑛𝑘=1 𝑣𝑛𝑘 ;
10: set 𝑥𝑛𝑘′ = 1 and 𝑥𝑛𝑘 = 0,∀𝑘 ∈ [𝐾] \ {𝑘 ′};
11: else

12: decline item 𝑛 and set 𝑥𝑛𝑘 = 0,∀𝑘 ∈ [𝐾];
13: end if

14: update knapsack utilization 𝑧
(𝑛)
𝑘𝑡

= 𝑧
(𝑛−1)
𝑘𝑡

+𝑤𝑛𝑘𝑥𝑛𝑘 ,∀𝑘 ∈ [𝐾], 𝑡 ∈ T𝑛𝑘 .
15: end for

Algorithm 2 Online Threshold-based Algorithm for Admission Control (OTA)

1: input: item information {𝑣,𝑤,T }, threshold function 𝜙 , utilization {𝑧𝑡 }𝑡 ∈T , capacity 𝐶;
2: output: admission decision 𝑥 ;

3: determine a threshold value Φ =
∑
𝑡 ∈T 𝑤𝜙 (𝑧𝑡);

4: if 𝑣 ≥ Φ and 𝑧𝑡 +𝑤 ≤ 𝐶,∀𝑡 ∈ T then

5: item is admissible and set 𝑥 = 1;

6: else

7: item is inadmissible and set 𝑥 = 0.

8: end if

cost of the item that has size 𝑤 and stays in the knapsack over the time slots in T . An item is

admissible if it passes a threshold check, i.e., item value is greater than or equal to the threshold

value (𝑣 ≥ Φ), and a capacity check, i.e., the knapsack capacity is not violated due to admission of

the item (𝑧𝑡 +𝑤 ≤ 𝐶,∀𝑡 ∈ T). The core of OA-OKD is the design of the threshold function 𝜙 such that

the competitive ratio of OA-OKD can be guaranteed. For notational convenience, let OA(𝜙) denote
OA-OKD with threshold function 𝜙 and CR(OA(𝜙)) denote the corresponding competitive ratio.

OA(𝜙) consists of two parts: decomposing the multiple knapsack problem into the admissibility

check of each individual knapsack and admission control of each individual knapsack via OTA. The
ideas of both parts can date back to the early work [33] for the classic OKP and we extend those

ideas to settings that allow item departures in OA(𝜙). Although extending the algorithm from OKP
to OKD is straightforward and some similar extensions exist in the literature (e.g., the time-expanded

knapsack in [32]), designing a threshold function 𝜙 with the tightest competitiveness guarantee

for OKD is still an open problem. The main algorithmic contribution of this paper is to design 𝜙 to

achieve an order-optimal competitive ratio for OKD, and this is made possible by a careful redesign

of the threshold function and a novel partitioning technique in the analysis of the competitive ratio.

We discuss this more in §3.3.

3.1.2 Beyond the worst case: a data-driven algorithm for OKD. As is typical of optimal competitive

algorithms, OA(𝜙) is conservative in its decisions in order to ensure an order-optimal competitive

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:8 Bo Sun et al.

Algorithm 3 Data-driven online algorithm (DOA)

1: input: bounds of item information {𝜃𝑘 , 𝛼𝑘 , 𝜀𝑘 }𝑘∈[𝐾] , knapsack capacities {𝐶𝑘 }𝑘∈[𝐾] ;
2: output: reward of each round 𝑅ℓ (Iℓ , 𝜙 ℓ);
3: for each round ℓ = 1, . . . , 𝐿 do

4: select the threshold function 𝜙 ℓ using a data-driven approach;

5: run OA(𝜙 ℓ) to execute the instance Iℓ and collect reward 𝑅ℓ (Iℓ , 𝜙 ℓ).
6: end for

ratio. In this section, we propose an algorithm that moves beyond optimizing for the worst-case.

The idea is to adaptively learn a policy that works well on practical instances by using a policy

class that ensures any algorithm selected has a competitive ratio guarantee. In particular, consider

running OA(𝜙) repeatedly for 𝐿 rounds. At the beginning of round ℓ ∈ [𝐿], we select the threshold
function 𝜙 ℓ and then run OA(𝜙 ℓ) to execute the instance Iℓ . Let 𝑅ℓ (Iℓ , 𝜙 ℓ) denote the reward of

round ℓ . The goal of the data-driven online algorithm (DOA) is to maximize the average reward

over 𝐿 rounds. Its pseudo-code is summarized in Algorithm 3. We say DOA achieves good average

performance if its average reward is close to that obtained by a fixed threshold function selected in

hindsight, i.e., 𝜙off = argmax𝜙

∑
ℓ∈[𝐿] 𝑅

ℓ (Iℓ , 𝜙)/𝐿.
This approach has been successfully applied to the basic OKP and online set cover problem in [30].

However, existing results cannot be generalized to cope with the two technical challenges in our

setting: (i) how to restrict the selection of 𝜙 to a feasible set, which not only contains 𝜙 that can

achieve good average performance under typical instances but also has guaranteed worst-case

performance; (ii) given the feasible set, how to design a data-driven algorithm to select𝜙 to achieve a

good average performance. In this paper, we provide theoretical results to tackle the first challenge

(see Theorem 3) and show a viable empirical approach to solve the second challenge (see the

numerical results in §6).

3.2 Main results
We now state our main results, which provide an upper bound on the competitive ratio of OA(𝜙)
(Theorem 1), a lower bound on the competitive ratio of any online algorithm (Theorem 2), and a

competitive ratio bound for the data-driven algorithm (Theorem 3).

Theorem 1. Under Assumptions 1-3, there exists 𝛾𝑘 = 𝑂 (ln(𝛼𝑘𝜃𝑘)),∀𝑘 ∈ [𝐾], if the item size is
upper bounded by 𝜀𝑘 ≤ 𝐶𝑘 ln 2/𝛾𝑘 ,∀𝑘 ∈ [𝐾], and the threshold function is 𝜙𝛾 := {𝜙𝛾𝑘

𝑘
}𝑘∈[𝐾] , where

𝜙
𝛾𝑘
𝑘
(𝑧) = exp (𝑧𝛾𝑘/𝐶𝑘) − 1, 𝑧 ∈ [0,𝐶𝑘],∀𝑘 ∈ [𝐾], (3)

then the competitive ratio of OA(𝜙𝛾) is 𝑂 (ln(𝛼𝜃)), where 𝜃 = max𝑘∈[𝐾] 𝜃𝑘 and 𝛼 = max𝑘∈[𝐾] 𝛼𝑘 .

Theorem 2. There is no online algorithm that can achieve a competitive ratio smaller than
Ω(ln(𝛼𝜃)) for the online multiple one-dimensional knapsacks with departures.

Combining the upper bound result in Theorem 1 and the lower bound result in Theorem 2, we

conclude that our proposed OA(𝜙𝛾) achieves an order-optimal competitive ratio for OKD. Before
proceeding to the detailed proofs (§4 for Theorem 1 and §5 for Theorem 2), we first provide

intuitions underlying the design and analysis of OA(𝜙𝛾). In fact, Theorem 1 provides a class of

threshold functions in (3) parameterized by 𝛾 := {𝛾𝑘 }𝑘∈[𝐾] . When 𝛾 and the upper bound of item

size (i.e., {𝜀𝑘 }𝑘∈[𝐾]) are both in the proper regimes, we have CR(OA(𝜙𝛾)) = 𝑂 (ln(𝛼𝜃)).
Besides the optimal competitiveness guarantee, Theorem 1 also provides two additional new

results compared to the competitive algorithms for OKP in the literature.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:9

utilization

Design-II

Design-I

Our design

(a) Plots of different designs

Designs Threshold functions

Design-I [32, 33] 𝜙𝐼 (𝑧) =
{
1 𝑧 ∈

[
0, 𝐶

1+ln𝜃

)
𝑒 (1+ln𝜃)𝑧/𝐶−1 𝑧 ∈

[
𝐶

1+ln𝜃 ,𝐶
]

Design-II [29] 𝜙 II (𝑧) = 2
⌊𝑧 log(𝐷𝜃)/𝐶⌋ − 1, 𝑧 ∈ [0,𝐶]

Our design 𝜙wco (𝑧) = 𝑒𝑧 ln(𝛼𝜃+1) − 1, 𝑧 ∈ [0,𝐶]

(b) Formulas of different designs

Fig. 1. Illustrating threshold functions of two benchmark designs and our proposed design. Design-I consists of
a flat segment and an exponential segment. Design-II is a discretized version of an exponential function (i.e., the
dashed line). Our proposed design is a continuous exponential function in Equation (3) with 𝛾wco = ln(𝛼𝜃 +1).

First, to design online algorithms for OKP [28, 29, 31, 33], 𝜀𝑘 is commonly assumed to be infinites-

imal compared to the knapsack capacity, i.e., 𝜀𝑘 ≪ 𝐶𝑘 ,∀𝑘 ∈ [𝐾], since the infinitesimal setting can

eliminate challenges from the size variations of items and simplify the algorithms to focus on the

key challenge from the varying value density. Our result removes the infinitesimal assumption and

characterizes the regime of item size to achieve an order-optimal competitive result.

Second, Theorem 1 empowers us to design a data-driven online algorithm, which cannot only

have worst-case performance guarantees but also learn from past data to optimize average-case

performance of typical instances in real-world applications. In particular, for a given target compet-

itive ratio 𝛽 , we can characterize a parameter set Γ(𝛽) such that CR(OA(𝜙𝛾)) ≤ 𝛽,∀𝛾 ∈ Γ(𝛽), which
is formally presented as follows.

Theorem 3. Given 𝛽 ≥ ˆ𝛽 := 10 + 12

ln 2
ln(𝛼𝜃 + 1), OA(𝜙𝛾) is 𝛽-competitive if the parameter

𝛾 := {𝛾𝑘 }𝑘∈[𝐾] is chosen from Γ(𝛽), where the parameter set Γ(𝛽) ⊆ R𝐾 is given by

Γ(𝛽) =
{
𝛾 : (𝛽 − 1)𝜁𝑘 − 2𝑊

((𝛽 − 1)𝜁𝑘
2

√
2

exp

((𝛽 − 1)𝜁𝑘
2

))
≤ 𝛾𝑘 ≤ ln 2 ·min

{ (𝛽 − 4)
6

,
𝐶𝑘

𝜀𝑘

}}
, (4)

where 𝜁𝑘 := − ln 2/(6𝛼𝑘𝜃𝑘) and𝑊 (·) is the Lambert𝑊 function.

Theorem 3 essentially specifies a class of parameterized online algorithms for OKD that can

provide the same competitiveness guarantee. Note that although those algorithms provide the same

guarantee in the worst-case, their performances can be distinguished in practice since “typical

instances” from real-world applications can be far from the worst-case instances. Theorem 3 further

gives us the design space to choose the parameter of 𝜙𝛾 with worst-case guarantees. Thus, in

Algorithm 3, we can use a data-driven approach to adaptively select 𝛾 (equivalently 𝜙𝛾) from Γ(𝛽)
to learn the best choice of 𝛾 in an online manner and, in the meantime, ensure the overall worst-case

performance 𝛽 . We evaluate the performance of data-driven algorithms in §6.1.

3.3 Discussion
We end this section with a discussion of the design decisions in our algorithm, and provide a

contrast to the design of prior algorithms. In particular, Figure 1 compares our proposed design 𝜙𝛾

with two important state-of-the-art designs 𝜙 I
and 𝜙 II

. 𝜙 I
is most widely used (e.g., [32, 33]) and

has been proven optimal for the basic OKP and OMK. 𝜙 II
has recently been proposed for OMdK in [29],

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:10 Bo Sun et al.

where it can achieve the order-optimal competitive ratio. Although these benchmark designs are

the best possible designs for the classic OKP, OMK, and OMdK, applying them directly in OA(𝜙) cannot
achieve the desired competitive results for OKD. We formalize this in the following lemma.

Lemma 1. Under Assumptions 1-3,

(1) if the threshold function is given by Design-I, then CR(OA(𝜙 𝐼)) = Ω(𝛼 ln𝜃);
(2) if the threshold function is given by Design-II, then CR(OA(𝜙 𝐼 𝐼)) = Ω(ln(𝐷𝜃)).

The above lemma gives impossibility results for applying the benchmark designs to achieve an

order-optimal competitive ratioΘ(ln(𝛼𝜃)). We provide a complete proof of Lemma 1 in Appendix A.

In what follows we give insights on why both designs fail to achieve order-optimal performances.

In fact, Design-I and Design-II fail due to two different types of worst-case instances. To be more

precise, given a threshold function, the input instances that satisfy Assumptions 1-3 can be divided

into two types: capacity-free instances where the final utilization values of all knapsacks lie below

the capacity limits and hence the admission control in OTA is purely determined by the threshold

check; and capacity-limited instances where the utilization of at least one knapsack in one slot

approaches the capacity limit and thus admission control depends on both threshold and capacity

checks. The lower bounds of Design-I and Design-II result from their poor performances compared

to offline algorithms under capacity-limited and capacity-free instances, respectively.

In particular, 𝜙 I
neglects the item duration and thus any item with value density 𝜃 regardless

of its duration can pass the threshold check in OTA. Then, the knapsack capacity can be quickly

fully filled by short-duration items, while long-duration items that arrive later are declined due to

capacity check. In contrast, the offline algorithm admits the long items declined by OTA and this

leads to a unavoidable worst-case ratio that increases linearly in the duration ratio 𝛼 .

To make order improvement in competitive ratios, 𝜙 II
proactively prohibits the occurrence

of capacity-limited cases, by setting the terminal value 𝜙 II (𝐶) approximately equal to 𝐷𝜃 . If an

item has size 𝑤 and its duration has overlap with any nearly full slots, then the item faces a

threshold value of at least Φ ≈ 𝑤𝐷𝜃 , which is the largest possible value of a𝑤-sized item. Thus,

the item will be declined due to the threshold check, and in this way, 𝜙 II
essentially avoids the

occurrence of capacity-limited cases. However,𝜙 II
is over-conservative, reserving too much capacity

for future high-valued items that may never come, and this results in a lower bound Ω(ln(𝐷𝜃))
under capacity-free instances.

We note that the threshold functions of existing designs in the literature are generally of the form

𝜙𝛾 (𝑧) = 𝑂 (exp(𝑧𝛾/𝐶)), where 𝛾 is a critical parameter. A larger 𝛾 leads to a steeper exponential

function and accordingly a more conservative algorithm since more capacity will be reserved for

high-valued items that may arrive later. 𝜙 𝐼 and 𝜙 𝐼 𝐼 can be considered as two special cases by setting

𝛾 = 𝑂 (ln𝜃) and 𝛾 = 𝑂 (ln(𝐷𝜃)), respectively. To overcome the limitations of 𝜙 𝐼 and 𝜙 𝐼 𝐼 , we directly

analyze the competitive performance of the algorithm with the general parameterized threshold

function 𝜙𝛾 . We can show that its competitive ratio is 𝑂 (𝛾) under capacity-free instances and

𝑂 (𝛼𝜃𝛾/(exp((𝛾 − ln 2)/2) − 1)) under capacity-limited instances (see §4.2 for more details). Thus,

we choose 𝛾 = 𝑂 (ln(𝛼𝜃)) to tradeoff the performances under the two types of hard instances.

The key challenge in the competitive analysis is how to attain the optimal dependence on item

duration ratio 𝛼 . Since an instance for OKD is defined over a long time horizon [𝑇], the values
of the online items may not be comparable with the offline values over the whole time horizon.

Fortunately, as the maximum duration of each item is 𝐷 , the items in OKD are only correlated

over a much shorter interval, i.e., the items that start in slot 𝑡 are only correlated with items that

start in slot {𝑡 − 𝐷 + 1, . . . , 𝑡 + 𝐷 − 1}, and this motivates us to partition an instance into smaller

sub-instances based on item’s starting time and analyze the performance for each sub-instance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:11

Combining the new design of the threshold function with the corresponding new analysis, we

show that our design achieves an optimal order competitive ratio.

Remark 1. We focus on threshold-based algorithms in this paper. In the literature, a class of
online primal-dual algorithms (OPD) [6, 7] has also been proposed to solve online knapsack problems.
However, it is still challenging to extend OPD in [6] to the setting of OKD (See details in §7). In addition,
to attain the optimal competitive ratio, we explicitly take advantage of the structural property of OKD.
For example, the weak dependence of items across time horizon is utilized to partition the original
instance into sub-instances with smaller intervals in our analysis. Such problem structure is crucial
in our algorithm design and analysis. However, it is unclear how to take into account such structural
information when designing OPD yet. Therefore, it is non-trivial to design OPD to achieve the optimal
competitive ratio of OKD, but it is a promising future direction to explore.

4 COMPETITIVE ANALYSIS
In this section, we analyze the competitive ratio of the online algorithm OA(𝜙𝛾) and formally prove

Theorem 1 and Theorem 3. We first sketch the proofs of both theorems based on two technical

lemmas and then prove the lemmas in §4.1 and §4.2, respectively.

To facilitate the competitive analysis of OA(𝜙𝛾), we first define 𝐾 ancillary problems for OKD
with 𝐾 knapsacks. Let OKD𝑘 denote the 𝑘-th ancillary problem, which only allows items assigned to

the 𝑘-th knapsack. The online decision of OKD𝑘 only depends on the item information related to

knapsack 𝑘 and is purely determined by the OTA with threshold function 𝜙
𝛾𝑘
𝑘
, which is called OTA𝑘 .

With the 𝐾 ancillary problems, we decompose the analysis of OA(𝜙𝛾) into two lemmas.

Lemma 2. Given OTA𝑘 is CR𝑘 -competitive for 𝑘 ∈ [𝐾], then CR(OA(𝜙𝛾)) = 1 +max𝑘∈[𝐾] CR𝑘 .

Lemma 2 decomposes the analysis of OA-OKD into analysis of 𝐾 ancillary algorithms {OTA𝑘 }𝑘∈[𝐾] ,
where each is the OTA for a single OKD. Based on Lemma 2, the competitiveness of OA-OKD is no worse
than the worst CR𝑘 among {OKD𝑘 }𝑘∈[𝐾] plus 1. Therefore, based on OA-OKD, multiple-knapsack OKD
is not much harder than single OKD and we can focus on the analysis of OTA𝑘 ,∀𝑘 ∈ [𝐾]. Lemma 3

provides the competitive ratio of OTA𝑘 .

Lemma 3. Under Assumptions 1-3, if the threshold function 𝜙𝛾𝑘
𝑘

is given by Equation (3) with
𝛾𝑘 ∈ (ln 2, +∞) and the item size is upper bounded by 𝜀𝑘 ≤ 𝐶𝑘 ln 2/𝛾𝑘 , the competitive ratio of OTA𝑘 is

CR𝑘 (𝛾𝑘) = 3max

{
1 + 2

ln 2

𝛾𝑘 ,
2

ln 2

· 𝛼𝑘𝜃𝑘𝛾𝑘

exp(𝛾𝑘 − ln 2)/2) − 1

}
. (5)

The competitive ratio CR𝑘 (𝛾𝑘) consists of two terms, which capture the worst-case ratios under

the capacity-free and capacity-limited instances, respectively. We choose to set 𝛾𝑘 = 𝑂 (ln(𝛼𝑘𝜃𝑘))
that best balances these two worst-case ratios. Particularly, with 𝛾𝑘 = 2 ln(𝛼𝑘𝜃𝑘 + 1) + ln 2, we have

CR𝑘 (𝛾𝑘) := max

{
9 + 12

ln 2

ln(𝛼𝑘𝜃𝑘 + 1), 6 + 12

ln 2

ln(𝛼𝑘𝜃𝑘 + 1)
}
= 𝑂 (ln(𝛼𝑘𝜃𝑘)).

Therefore, there exist 𝛾𝑘 = 𝑂 (ln(𝛼𝑘𝜃𝑘)) such that CR𝑘 = 𝑂 (ln(𝛼𝑘𝜃𝑘)). Combining with the

decomposition in Lemma 2, there exist 𝛾 := {𝛾𝑘 }𝑘∈[𝐾] such that

CR(OA(𝜙𝛾)) = 1 + max

𝑘∈[𝐾]
CR𝑘 (𝛾𝑘) = 10 + 12

ln 2

ln(𝛼𝜃 + 1) = 𝑂 (ln(𝛼𝜃)),

which gives the main result in Theorem 1.

The proof of Theorem 3 also leverages the results in Lemma 2 and Lemma 3. Define
ˆ𝛽 :=

CR(OA(𝜙𝛾)) as the reference competitive ratio. To ensure CR(OA(𝜙𝛾)) ≤ 𝛽,∀𝛾 ∈ Γ(𝛽), we need to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:12 Bo Sun et al.

choose 𝛾 := {𝛾𝑘 }𝑘∈[𝐾] such that 1 + CR𝑘 (𝛾𝑘) ≤ 𝛽,∀𝑘 ∈ [𝐾]. In addition, the results of Lemma 3

requires 𝛾𝑘 ≤ 𝐶𝑘 ln 2/𝜀𝑘 . Combining above results gives us the parameter set Γ(𝛽) in Theorem 3.

4.1 Proof of Lemma 2: Decomposition
Denote by S𝑘 and S∗

𝑘
the sets of items assigned to knapsack 𝑘 by OA-OKD and an offline algorithm

that achieves an optimal solution, respectively. Then the total values of online and offline algorithms

under instance I are ALG(I) = ∑
𝑘∈[𝐾]

∑
𝑛∈S𝑘 𝑣𝑛𝑘 and OPT(I) = ∑

𝑘∈[𝐾]
∑
𝑛∈S∗

𝑘
𝑣𝑛𝑘 .

For each knapsack 𝑘 , let S∗
𝑘
\ S𝑘 denote the set of items that are admitted to knapsack 𝑘 by

the offline algorithm but not by OA-OKD. There can be two reasons why an item 𝑛 in S∗
𝑘
\ S𝑘 is

not admitted by the OA-OKD: (i) the item is inadmissible to knapsack 𝑘 (i.e., 𝑥𝑛𝑘 = 0 in Line 6 in

Algorithm 1); or (ii) the item is admissible to 𝑘 but it is finally assigned to knapsack 𝑘 ′ since the

item value in 𝑘 ′ is larger than that in 𝑘 , i.e., 𝑣𝑛𝑘′ ≥ 𝑣𝑛𝑘 (Line 9 in Algorithm 1). Let
ˆS𝑘 denote the

set of items due to the second reason, which are the coupling items across knapsacks. Since items

in
ˆS𝑘 are admitted by OA-OKD, we have { ˆS𝑘 }𝑘∈[𝐾] ⊆ {S𝑘 }𝑘∈[𝐾] , and thus∑︁

𝑘∈[𝐾]

∑︁
𝑛∈ ˆS𝑘

𝑣𝑛𝑘 ≤
∑︁

𝑘∈[𝐾]

∑︁
𝑛∈S𝑘

𝑣𝑛𝑘 = ALG(I). (6)

We divide S∗
𝑘
to two subsets S∗

𝑘
\ ˆS𝑘 and ˆS𝑘 , and we have

OPT(I)
ALG(I) =

∑
𝑘∈[𝐾]

∑
𝑛∈S∗

𝑘
𝑣𝑛𝑘∑

𝑘∈[𝐾]
∑
𝑛∈S𝑘 𝑣𝑛𝑘

=

∑
𝑘∈[𝐾]

∑
𝑛∈S∗

𝑘
\ ˆS𝑘 𝑣𝑛𝑘 +

∑
𝑘∈[𝐾]

∑
𝑛∈ ˆS𝑘 𝑣𝑛𝑘∑

𝑘∈[𝐾]
∑
𝑛∈S𝑘 𝑣𝑛𝑘

≤ 1 +

∑
𝑘∈[𝐾]

∑
𝑛∈S∗

𝑘
\ ˆS𝑘 𝑣𝑛𝑘∑

𝑘∈[𝐾]
∑
𝑛∈S𝑘 𝑣𝑛𝑘

≤ 1 + max

𝑘∈[𝐾]

∑
𝑛∈S∗

𝑘
\ ˆS𝑘 𝑣𝑛𝑘∑

𝑛∈S𝑘 𝑣𝑛𝑘
, (7)

where the first inequality in (7) is due to Equation (6).

For each knapsack 𝑘 , we construct an instance 𝐼𝑘 by extracting the items belonging to the set

S𝑘 ∪ (S∗
𝑘
\ ˆS𝑘) from the original instance I and keeping the item sequence. Note that in the

instance 𝐼𝑘 , the set S𝑘 includes all items that are admissible to knapsack 𝑘 via OTA because other

admissible items in
ˆS𝑘 have been excluded in the construction. If we present 𝐼𝑘 to the ancillary

problem OKD𝑘 , the online algorithm OTA𝑘 also admits items S𝑘 as does OA-OKD under instance I,
and achieves value

∑
𝑛∈S𝑘 𝑣𝑛𝑘 . In addition, the offline value of OKD𝑘 under instance 𝐼𝑘 is no less

than

∑
𝑛∈S∗

𝑘
\ ˆS𝑘 𝑣𝑛𝑘 since admitting items in S∗

𝑘
\ ˆS𝑘 is a feasible admission decision. Let CR𝑘 denote

the competitive ratio of OTA𝑘 for OKD𝑘 . By the definition of CR𝑘 , we have∑
𝑛∈S∗

𝑘
\ ˆS𝑘 𝑣𝑛𝑘∑

𝑛∈S𝑘 𝑣𝑛𝑘
≤ CR𝑘 ,∀𝑘 ∈ [𝐾] . (8)

Thus, the competitive ratio of OA-OKD is CR = 1 +max𝑘∈[𝐾] CR𝑘 .

4.2 Proof of Lemma 3: Single Online Knapsack with Departures
We next analyze the competitive ratio of OTA𝑘 for OKD𝑘 . For convenience of notation, we omit the

index 𝑘 . Let N denote the instance for a single OKD and 𝑁 = |N | denote the number of items in N .

Partitioning of the time horizon into small segments. The first key step in our proof is to

reduce the dependence of the competitiveness of the algorithm from the entire time horizon to

smaller segments that are in the order of item duration. Let {𝑧 (𝑁)
𝑡 }𝑡 ∈[𝑇] denote the final utilization

of all time slots after OTA executes all items inN . Assume the time horizon𝑇 is an integer multiple

of 𝐷 and divide the time horizon into 𝐻 = 𝑇 /𝐷 segments. Let Tℎ
:= {𝑡 ∈ [𝑇] : (ℎ − 1)𝐷 + 1 ≤

𝑡 ≤ ℎ𝐷} denote the set of time slots in the ℎ-th segment and Nℎ
denote a sub-instance of N that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:13

contains items whose starting times are in Tℎ
. We further denote a 3-segment sub-instance by

˜Nℎ = Nℎ−1 ∪ Nℎ ∪ Nℎ+1, ℎ ∈ [𝐻], where N 0 = N𝐻+1 = ∅. The order of the items in
˜Nℎ

is based

on their arrival times.

Let OPT(N) and ALG(N) denote the value of items admitted fromN by the offline algorithm and

OTA, respectively. The competitive ratio of OTA is

OPT(N)
ALG(N) =

∑
ℎ∈[𝐻] OPT(Nℎ)∑
ℎ∈[𝐻] ALG(Nℎ)

=
3

∑
ℎ∈[𝐻] OPT(Nℎ)

ALG(N 1) + ∑
ℎ∈[𝐻] ALG(˜Nℎ) + ALG(N𝐻)

≤ 3 max

ℎ∈[𝐻]

OPT(Nℎ)
ALG(˜Nℎ)

.

By partitioning the instance based on the items’ starting time, the competitive analysis of OTA can

be turned to the analysis of OPT(Nℎ)/ALG(˜Nℎ), which is the ratio of the offline value from the

sub-instance Nℎ
and the online value from the 3-segment sub-instance

˜Nℎ
. In the following, we

focus on analyzing the upper bound of OPT(Nℎ)/ALG(˜Nℎ) in two cases.

Case I: capacity-free case: The final utilizations of all time slots in
ˆTℎ

:= Tℎ ∪ Tℎ+1
are below

the capacity, i.e., 𝑧
(𝑁)
𝑡 ≤ 𝐶 − 𝜀,∀𝑡 ∈ ˆTℎ

.

In this case, the only reason why one item is rejected by OTA is that it fails to pass the threshold
check, i.e., 𝑣 < Φ in Line 4 in Algorithm 2. Then OPT(Nℎ) and ALG(˜Nℎ) can be connected via the

final utilization {𝑧 (𝑁)
𝑡 }

𝑡 ∈ ˆTℎ . We first show that ALG(˜Nℎ) is lower bounded.

Proposition 1. In Case I, the value of items in ˜Nℎ admitted by OTA is lower bounded by

ALG(˜Nℎ) ≥ ln 2

2𝛾

∑︁
𝑡 ∈ ˆTℎ

𝜙 (𝑧 (𝑁)
𝑡)𝐶. (9)

Proof. Since 𝜙 (0) = 0, we can apply 𝜙 (𝑧 (𝑁)
𝑡) = ∑

𝑛∈N [𝜙 (𝑧 (𝑛)𝑡) − 𝜙 (𝑧 (𝑛−1)𝑡)] and have∑︁
𝑡 ∈ ˆTℎ

𝜙 (𝑧 (𝑁)
𝑡)𝐶 =

∑︁
𝑡 ∈ ˆTℎ

∑︁
𝑛∈N

𝐶 [𝜙 (𝑧 (𝑛)𝑡) − 𝜙 (𝑧 (𝑛−1)𝑡)]

=
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑛∈ ˜Nℎ :𝑡 ∈T𝑛

𝐶 [𝜙 (𝑧 (𝑛)𝑡) − 𝜙 (𝑧 (𝑛−1)𝑡)]

≤
∑︁

𝑛∈ ˜Nℎ

∑︁
𝑡 ∈T𝑛

𝐶 [𝜙 (𝑧 (𝑛)𝑡) − 𝜙 (𝑧 (𝑛−1)𝑡)], (10)

where T𝑛 is the stay duration of item 𝑛. The second equality holds because the maximum duration

of each item is 𝐷 and hence the items that can stay in
ˆTℎ

must be from
˜Nℎ
. The last inequality

holds since the items in
˜Nℎ

can stay up to segment ℎ + 2, which is outside
ˆTℎ

.

Let ΔALG𝑛 denote the increment of OTA due to processing item 𝑛. ΔALG𝑛 = 0 if item 𝑛 is declined

andΔALG𝑛 = 𝑣𝑛 if it is admitted.We next show

∑
𝑡 ∈T𝑛 𝐶 [𝜙 (𝑧

(𝑛)
𝑡)−𝜙 (𝑧 (𝑛−1)𝑡)] ≤ (2𝛾/ln 2)ΔALG𝑛,∀𝑛 ∈

˜Nℎ
in the following two sub-cases.

Case I(a). When item 𝑛 is declined by OTA, we have 𝑧 (𝑛)𝑡 = 𝑧
(𝑛−1)
𝑡 ,∀𝑡 ∈ T𝑛 , and thus this gives∑

𝑡 ∈T𝑛 𝐶 [𝜙 (𝑧
(𝑛)
𝑡) − 𝜙 (𝑧 (𝑛−1)𝑡)] = 0 ≤ 2𝛾

ln 2
ΔALG𝑛 .

Case I(b). When item 𝑛 is admitted by OTA, we have 𝑧 (𝑛)𝑡 = 𝑧
(𝑛−1)
𝑡 +𝑤𝑛,∀𝑡 ∈ T𝑛 , and then∑︁

𝑡 ∈T𝑛
𝐶 [𝜙 (𝑧 (𝑛)𝑡) − 𝜙 (𝑧 (𝑛−1)𝑡)] = 𝐶

∑︁
𝑡 ∈T𝑛

exp(𝑧 (𝑛−1)𝑡 𝛾/𝐶) [exp(𝑤𝑛𝛾/𝐶) − 1] (11a)

≤ 𝐶
∑︁

𝑡 ∈T𝑛
exp(𝑧 (𝑛−1)𝑡 𝛾/𝐶) · 𝑤𝑛𝛾

𝐶 ln 2

(11b)

=
𝛾

ln 2

∑︁
𝑡 ∈T𝑛

𝑤𝑛𝜙 (𝑧 (𝑛−1)𝑡) + 𝛾

ln 2

𝑤𝑛𝑑𝑛 (11c)

≤ 𝛾

ln 2

𝑣𝑛 +
𝛾

ln 2

𝑣𝑛 =
2𝛾

ln 2

ΔALG𝑛 . (11d)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:14 Bo Sun et al.

Equation (11a) is obtained by substituting threshold function (3). Inequality (11b) holds since

exp(𝑥 ln 2) − 1 ≤ 𝑥 if 0 ≤ 𝑥 ≤ 1, and 𝑤𝑛𝛾/(𝐶 ln 2) ≤ 𝜀𝛾/(𝐶 ln 2) ≤ 1 based on the additional

condition on the item size in Theorem 1. The last inequality (11d) holds since

∑
𝑡 ∈T𝑛 𝑤𝑛𝜙 (𝑧

(𝑛−1)
𝑡) ≤

𝑣𝑛 when item 𝑛 can pass the threshold check, and𝑤𝑛𝑑𝑛 ≤ 𝑣𝑛 based on Assumption 1.

Combining Equations (10)-(11) gives∑︁
𝑡 ∈ ˆTℎ

𝜙 (𝑧 (𝑁)
𝑡)𝐶 ≤

∑︁
𝑛∈ ˜Nℎ

2𝛾

ln 2

ΔALG𝑛 =
2𝛾

ln 2

ALG(˜Nℎ),

which completes the proof. □

Next, we show the offline optimal value of items in Nℎ
is upper bounded.

Proposition 2. In Case I, the value of items in Nℎ admitted by the offline algorithm is

OPT(Nℎ) ≤ ALG(Nℎ) +
∑︁

𝑡 ∈ ˆTℎ
𝜙 (𝑧 (𝑁)

𝑡)𝐶. (12)

Proof. Let Sℎ ∩ Sℎ∗ denote the set of items in Nℎ
that are admitted by both online algorithm

OTA and the offline algorithm, and Sℎ∗ \ Sℎ denote the set of items that are declined by OTA but
admitted by the offline algorithm. We have∑︁

𝑛∈Sℎ∩Sℎ∗
𝑣𝑛 ≤ ALG(Nℎ), (13)∑︁

𝑛∈Sℎ∗\Sℎ
𝑣𝑛 ≤

∑︁
𝑛∈Sℎ∗\Sℎ

∑︁
𝑡 ∈T𝑛

𝑤𝑛𝜙 (𝑧 (𝑛−1)𝑡) ≤
∑︁

𝑛∈Sℎ∗\Sℎ

∑︁
𝑡 ∈T𝑛

𝑤𝑛𝜙 (𝑧 (𝑁)
𝑡) (14)

=
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑛∈Sℎ∗\Sℎ :𝑡 ∈T𝑛

𝑤𝑛𝜙 (𝑧 (𝑁)
𝑡) ≤

∑︁
𝑡 ∈ ˆTℎ

𝜙 (𝑧 (𝑁)
𝑡)𝐶,

where the first inequality in (14) holds since the item fails to pass the threshold check, and the

last inequality holds since the items admitted by the offline algorithm cannot exceed the knapsack

capacity, i.e.,

∑
𝑛∈Sℎ∗\Sℎ :𝑡 ∈T𝑛 𝑤𝑛 ≤ 𝐶 . Thus, we have

OPT(Nℎ) =
∑︁

𝑛∈Sℎ∩Sℎ∗
𝑣𝑛 +

∑︁
𝑛∈Sℎ∗\Sℎ

𝑣𝑛 ≤ ALG(Nℎ) +
∑︁

𝑡 ∈ ˆTℎ
𝜙 (𝑧 (𝑁)

𝑡)𝐶,

which completes the proof. □

Combining Proposition 1 and Proposition 2 gives
OPT(Nℎ)
ALG(˜Nℎ) ≤ ALG(Nℎ)+∑

𝑡∈ ˆTℎ 𝜙 (𝑧
(𝑁)
𝑡)𝐶

ALG(˜Nℎ) ≤ 1 + 2

ln 2
𝛾 .

Case II: capacity-limited case: There exists at least one time slot 𝑡 ′ ∈ ˆTℎ
whose utilization

approaches the knapsack capacity, i.e., 𝐶 − 𝜀 < 𝑧 (𝑁)
𝑡 ′ ≤ 𝐶 .

In this case, if one item is rejected, the reason can be the failure of passing either threshold check

(the item value is smaller than the threshold) or capacity check (admitting this item violates the

capacity constraint). A key observation is that if there exists one slot (say 𝑡 ′) whose utilization
approaches the capacity, then the final utilization of the knapsack around this fully utilized slot

will be above a certain value due to the minimum duration assumption. In the following result, we

leverage this observation to obtain a lower bound for ALG(˜Nℎ).

Proposition 3. In Case II, the value of items in ˜Nℎ admitted by OTA is lower bounded by

ALG(˜Nℎ) ≥
ln 2𝐶𝐷

𝛾
[exp((𝛾 − ln 2)/2) − 1] . (15)

Proof. In Case II, there exists at least one time slot 𝑡 ′ ∈ ˆTℎ
, in which the final utilization by

OTA approaches the capacity. Also, each item stays in the knapsack for at least 𝐷 successive slots.

In Figure 2, we show the final utilization of the capacity-limited case in the worst case, where there

are two groups of items. Group-1 items start at the slot 𝑡 ′ − 𝐷 + 1 and Group-2 items start at slot 𝑡 ′.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:15

Segment Segment Segment

Capacity
,

Start time of

group-1 items

Start time of

group-2 items

Group 1

Group 2

Segment

……

Total size

Total size

Fig. 2. Illustration of the worst-case final utilization in capacity-limited case.

All items stay in the knapsack for 𝐷 slots, and the total sizes of both groups are (𝐶 − 𝜀)/2. These
two groups of items result in the nearly full capacity at slot 𝑡 ′, i.e., 𝑧 (𝑁)

𝑡 ′ = 𝐶 − 𝜀, and around half

utilization in surrounding slots, i.e., 𝑧
(𝑁)
𝑡 = (𝐶 − 𝜀)/2 for 𝑡 = 𝑡 ′ − 𝐷 + 1, . . . , 𝑡 ′ − 1, 𝑡 ′ + 1, 𝑡 ′ + 𝐷 − 1.

Then based on Proposition 1, ALG(˜Nℎ) is lower bounded by

ALG(˜Nℎ) ≥ ln 2

2𝛾
[(2𝐷 − 2)𝜙 ((𝐶 − 𝜀)/2) + 𝜙 (𝐶 − 𝜀)]𝐶 ≥

ln 2𝐶𝐷

𝛾
[exp((𝛾 − ln 2)/2) − 1] .

This completes the proof. □

In Case II, the offline value can only be trivially bounded by OPT(Nℎ) ≤ 2𝐶𝜃𝐷 , which is the

maximal possible value for items in 2𝐷 slots. Thus, we have
OPT(Nℎ)
ALG(˜Nℎ) ≤ 2

ln 2
· 𝛼𝜃𝛾

exp((𝛾−ln 2)/2)−1 .

Summarizing the results from the two cases, the competitive ratio of OTA is

CR(𝛾) = 3max

{
1 + 2

ln 2

𝛾,
2

ln 2

· 𝛼𝜃𝛾

exp((𝛾 − ln 2)/2) − 1

}
. (16)

This completes the proof of Lemma 3.

5 MULTI-DIMENSIONAL ONLINE MULTIPLE KNAPSACKS WITH DEPARTURES
We now move to the general OKD, which additionally considers multi-dimensional items. In particu-

lar, the size of item 𝑛 in knapsack 𝑘 is modeled as an 𝑀𝑘 -dimension vector𝒘𝑛𝑘 = {𝑤𝑛𝑘𝑚}𝑚∈[𝑀𝑘] .
Accordingly, the capacity of each knapsack 𝑘 is also a multi-dimensional vector 𝑪𝑘 := {𝐶𝑘𝑚}𝑚∈[𝑀𝑘] .

Before stating our main result in this setting, we first extend the assumptions on the value density

and item size to the multi-dimensional setting.

Assumption 4 (Value density fluctuation in multi-dimensional setting). The value
density of each item 𝑛 in knapsack 𝑘 is bounded by 𝑣𝑛𝑘/(𝑑𝑛𝑘

∑
𝑚∈[𝑀𝑘] 𝑤𝑛𝑘𝑚) ∈ [1, 𝜃𝑘],∀𝑛 ∈ [𝑁].

Compared to the one-dimensional setting, the size of item in the value density is replaced by the

aggregate size over all dimensions in the multi-dimensional setting. Similar definitions have been

used by previous works [29, 32] in studying online multi-dimensional knapsack problems.

Assumption 5 (Upper bound of item size in multi-dimensional setting). The item size of
each item 𝑛 in dimension𝑚 in knapsack 𝑘 is bounded by𝑤𝑛𝑘𝑚 ≤ 𝜀𝑘𝑚 ≤ 𝐶𝑘𝑚,∀𝑛 ∈ [𝑁].

To generalize our algorithms to this setting, we take into account the multi-dimensional item

size by modifying the definition of threshold value in Line 3 in Algorithm 2 as

Φ̃ =
∑︁

𝑡 ∈T

∑︁
𝑚∈[𝑀]

𝑤𝑚𝜙𝑚 (𝑧𝑚𝑡), (17)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:16 Bo Sun et al.

where 𝑧𝑚𝑡 is the utilization of dimension𝑚 in slot 𝑡 and 𝜙𝑚 is the threshold function for dimension

𝑚. By carefully designing the threshold function, we can further show the modified algorithm can

achieve the order-optimal competitive ratio.

In the multi-dimensional setting, the worst-case performance depends on the capacities of the

different dimensions. For knapsack 𝑘 , define a new parameter 𝜂𝑘 =
∑
𝑚∈[𝑀𝑘] 𝐶𝑘𝑚/(min𝑚∈[𝑀𝑘] 𝐶𝑘𝑚)

as the ratio of the aggregate knapsack capacities over all dimensions and the minimum capacity of

a single dimension. Let 𝜂 = max𝑘∈[𝐾] 𝜂𝑘 .
We can now state a generalization of Theorem 1 to the multi-dimensional setting as follows.

Theorem 4. Under Assumptions 2, 4, and 5, there exists 𝛾𝑘 = 𝑂 (ln(𝜂𝑘𝛼𝑘𝜃𝑘)), if the item size
is upper bounded by 𝜀𝑘𝑚 ≤ 𝐶𝑘𝑚 ln 2/𝛾𝑘 ,∀𝑘 ∈ [𝐾],𝑚 ∈ [𝑀𝑘], and the threshold function 𝜙𝛾 :=

{𝜙𝛾𝑘
𝑘𝑚

}𝑘∈[𝐾],𝑚∈[𝑀𝑘] is given by

𝜙
𝛾𝑘
𝑘𝑚

(𝑧) = exp (𝑧𝛾𝑘/𝐶𝑚𝑘) − 1,∀𝑘 ∈ [𝐾],𝑚 ∈ [𝑀𝑘], (18)

then the competitive ratio of OA(𝜙𝛾) is 𝑂 (ln(𝜂𝛼𝜃)).
A special case that is often discussed is when all dimensions have identical capacities. Then,

the capacity ratio 𝜂𝑘 = 𝑀𝑘 ,∀𝑘 ∈ [𝐾], and OA(𝜙𝛾) achieves a competitive ratio 𝑂 (ln(𝑀𝛼𝜃)) with
𝑀 = max𝑘∈[𝐾] 𝑀𝑘 . Our proof of Theorem 4 is involved, but uses standard techniques to build on

Theorem 1. It is given in Appendix B. We can also obtain the following lower bound in this setting.

Theorem 5. There exists no online algorithm that can achieve a competitive ratio smaller than
Ω(ln(𝜂𝛼𝜃)) for online multiple multi-dimensional knapsacks with departures.

Theorem 5 includes Theorem 2 as a special case and can be proved based on existing lower bound

results in the literature. In particular, the lower bounds of competitive ratios for two special cases

of the general OKD have been proven: Ω(ln(𝜂𝜃)) (Theorem 2 in [29]) for online multi-dimensional

knapsack and Ω(ln𝛼) (Theorem 2 in [16]) for online interval scheduling. Thus, the competitive

ratio of OKD is lower bounded by

CR ≥ max{Ω(ln𝛼),Ω(ln(𝜂𝜃))} ≥ 1

2

Ω(ln𝛼) + 1

2

Ω(ln(𝜂𝜃)) = Ω(ln(𝜂𝛼𝜃)). (19)

6 EXPERIMENTAL RESULTS
We focus our experimental results on evaluating the empirical performance of the data-driven

online algorithm (DOA) in Algorithm 3. The worst-case optimized algorithm can be considered as a

special case of DOA by choosing the same optimized threshold function over all instances.

We start our evaluation by demonstrating the essential trade-offs between average and worst-case

performance in DOA. To do this, we first compare the algorithm with multiple baseline algorithms

under a set of hard instances for OKD in §6.1. Then we show the performance of the algorithms

under typical instances from real traces of the online cloud job scheduling in §6.2. Compared

with benchmark algorithms in prior works and our worst-case optimized algorithm, DOA achieves

significant improvement in the average performance at a moderate sacrifice of its worst-case

guarantees under both hard and typical instances, and thus is of most practical use.

Experimental setup. We set a time horizon of 𝑇 = 3000 slots. In each experiment, we test a total

of 𝐿 = 1000 instances, which are generated by 50 traces of item sequences (that include item arrival

times, start times, and stay durations) and 20 random trials of item sizes and value densities for each

trace. Each trace is either generated to capture hard instances for OKD in the worst case or sampled

from real application traces. We refer to them as hard instances and typical instances, and detail

how to generate them at the beginning of §6.1 and §6.2, respectively. We evaluate the performance

of an online algorithm by its empirical ratio, which is defined as the ratio of rewards from the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:17

(a) Parameter sets Γ (𝛽)

1 1.5 2 2.5 3 3.5 4

Empirical ratio

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

d
en

si
ty

 f
u

n
ct

io
n

(b) CDFs for different target ratios 𝛽

E
m

p
ir

ic
al

 r
at

io

average ratio

99 percentile

(c) Average vs. worst performances

Fig. 3. Empirical performance of data-driven algorithms with different guaranteed competitive ratios.

offline algorithm to those of the online algorithm under a given instance. In each experiment,

we sequentially compute the empirical ratios of 𝐿 instances of different online algorithms, and

report the average and 99 percentile of the empirical ratios to evaluate the average and worst-case

performances of those algorithms.

Implementation of DOA. Given a target competitive ratio guarantee 𝛽 , we first determine the

feasible parameter set Γ(𝛽) based on Theorem 3. The target ratio is set as a multiple of the reference

value
ˆ𝛽 = 10 + 12

ln 2
ln(𝛼𝜃 + 1). In the experiments, we implement a discretized version of DOA. In

particular, we discretize Γ(𝛽) into Γ̃(𝛽) with a step size of 0.1 and let 𝑑 denote the cardinality

of Γ̃(𝛽). We refer to each 𝑖 ∈ [𝑑] as an expert advice (which is equivalent to the selection of a

threshold function). DOA can then be restated as a learning with expert advice problem. At the

beginning of each round ℓ ∈ [𝐿], we select an advice 𝑖ℓ ∈ [𝑑] and execute the instance using the

selected threshold-based algorithm. After observing the whole instance, the rewards of all advices

𝒓ℓ := {𝑟ℓ,𝑖 }𝑖∈[𝑑] can be evaluated and used to determine the selection of the advice in next round.

In our experiments, the Hedge algorithm [14, 22] is used to determine the advice selection and

it guarantees the regret E
[
max𝑖∈[𝑑]

∑
ℓ∈[𝐿] 𝑟ℓ,𝑖 −

∑
ℓ∈[𝐿] 𝑟ℓ,𝑖ℓ

]
≤ 𝑂 (

√
𝐿 ln𝑑), which is sublinear in

the number of rounds. In Appendix D, we provide the details of DOA, including its implementation,

regret guarantee, and limitations. In the rest of the paper, this DOA is denoted by OA(𝛾on).

6.1 Performance of data-driven online algorithms
Hard instances for OKD. The hard instance has repeated patterns every𝐷 +𝐷 slots. In each pattern,

the hard instance consists of two batches of items. The first batch contains 50 items that have the

shortest duration 𝐷 , fixed (normalized) item size 0.05 and value density randomly drawn from

[1, 𝜃]. Then the second batch arrives and it has 50 items that have duration uniformly drawn from

[𝐷, 𝐷], fixed item size 0.05, fixed value density 𝜃 , and starting time that overlaps with the ending

slot of the first batch of items. The value density ratio is set 𝜃 = 5. The maximum duration is set

𝐷 = 500 and we test hard instances with varying 𝛼 . Note that such instances are hard for OKD
since any algorithm that aggressively admits items in the first batch can easily fill up the knapsack

capacity in the first 𝐷 slots of each pattern and declines the more valuable second batch of items.

This hardness leads to the lower bound performance of Design-I as shown in Lemma 1. Our first

set of empirical results are based on the hard instances that our algorithms are designed for.

6.1.1 Trade-offs between average and worst-case performances. We start by investigating the impact

of the target ratio 𝛽 on the performance of OA(𝛾on). Note that 𝛽 is an important hyper-parameter

for OA(𝛾on). Figure 3(a) illustrates the parameter sets when target ratios are set to 1.2 ˆ𝛽 , 1.4 ˆ𝛽 , and 2
ˆ𝛽

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:18 Bo Sun et al.

1 1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

OA

OA

OA

(a) CDF when 𝜃 = 5 and 𝛼 = 2

1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4

4.5
OA

OA

OA

(b) Average performance when 𝜃 = 5

1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4

4.5

(c) Worst performance when 𝜃 = 5

Fig. 4. Performance comparison of different algorithms under hard instances.

1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

OA

OA

OA

(a) CDF when 𝜃 = 30 and 𝛼 = 50

10 20 30 40 50

1.5

2

2.5

3

3.5

OA

OA

OA

(b) Average performance when 𝛼 = 50

10 20 30 40 50

1.5

2

2.5

3

3.5

(c) Worst performance when 𝛼 = 50

Fig. 5. Performance comparison of different algorithms under typical instances for cloud job scheduling.

(i.e., solid blue, red, and green lines). As we increase 𝛽 , we tolerate a looser worst-case guarantee,

in the meantime, we have a larger parameter set Γ(𝛽) for selecting 𝛾 , and thus a better chance

to find the threshold function that can achieve a better average performance. Figure 3(b) shows

the cumulative density functions (CDFs) of empirical ratios for different 𝛽 that correspond to the

parameter sets in Figure 3(a). We observe that a looser worst-case guarantee (𝛽 = 2
ˆ𝛽) can give

better empirical ratios for most of instances (more than 90%) but has a longer tail in the worst case

as the cost. Figure 3(c) further compares the average and 99 percentile of the empirical ratios with

varying 𝛽 . The trade-off between average and worst-case performances can be clearly observed.

In addition, we cannot always achieve a better average performance with a large 𝛽 . As shown in

Figure 3(c), the average ratio when 𝛽 = 1.8 ˆ𝛽 is smaller than that when 𝛽 = 2
ˆ𝛽 . This is because

the best parameter 𝛾 has already been included in Γ(1.8 ˆ𝛽) and a further enlarged parameter set

increases the difficulty of learning the best parameter, leading to a worse performance on average.

6.1.2 Performance comparisons with benchmark algorithms. Based on how𝛾 is chosen, our proposed
algorithm takes three forms: (i) OA(𝛾on), the DOA that selects 𝛾 based on the data-driven approach; (ii)

OA(𝛾wco), the worst-case optimized algorithm that sets𝛾wco = ln(𝛼𝜃+1) for all instances; (iii) OA(𝛾off),
the average-case optimized algorithm that selects best possible static 𝛾off to minimize the average

reward. Online determination of 𝛾off is impossible since it requires knowledge of all instances

and thus this algorithm is just considered as a reference algorithm for OA(𝛾on). We compare our

proposed algorithms with three other benchmark algorithms. All of them correspond to OA(𝜙) with

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:19

different threshold functions: (i)Greedy is a first-come-first-served algorithm that equivalently sets

the threshold function to the smallest value density, i.e., 𝜙 (𝑧) = 1,∀𝑧 ∈ [0,𝐶]; (ii) Design-I adopts
𝜙 𝐼 in Figure 1 and it is equivalent to the algorithm in [32] for the time-expanded OKP; (iii) Design-II
adopts 𝜙 𝐼 𝐼 in Figure 1 that is used for OMdK in [29]. Generally speaking, these three algorithms are

increasingly conservative due to their choice of threshold functions. The conservativeness of our

worst-case optimized algorithm OA(𝛾wco) lies between Design-I and Design-II.
Figure 4(a) compares the CDFs of empirical performances of different algorithms when 𝜃 = 5

and 𝛼 = 2. Under the hard instances, a more conservative algorithm works better among the

three benchmarks since such algorithms prohibit short-duration items from quickly occupying the

knapsack capacities and blocking the followed long items. And the conservative design becomes

increasingly more important as the duration ratio 𝛼 increases, which is shown in Figures 4(b)

and 4(c). Our worst-case optimized algorithm OA(𝛾wco) outperforms all the benchmarks in both

average and worst-case performances. Moreover, as 𝛼 increases, the empirical ratio of Design-I
grows linearly in 𝛼 while that of OA(𝛾wco) grows logarithmically, which is consistent with the lower

bound results in Lemma 1 and Theorem 2. Compared with those algorithms with fixed threshold

functions, our proposed data-driven algorithm OA(𝛾on) achieves the best average performance,

which is also close to that of the static offline benchmark OA(𝛾off). This improvement in average

performance is at the sacrifice of the worst-case performance as shown in Figure 4(c).

6.2 Trace-driven evaluation in online cloud job scheduling
To further validate the benefit of our proposed algorithms in real-world applications, we evaluate

and compare the performances under typical instances for online cloud job scheduling.

Typical instances from cloud job traces. We extract traces of item sequences from the Google

cluster traces [24]. One key feature from the cloud job traces is that there exist many short jobs

and very few long jobs. To better show the comparisons, we set each time slot to be 10 seconds

and restrict the duration of each job between 10 to 500 slots, i.e., any jobs that are shorter (longer)

than 10 (500) are rounded to 10 (500). In this way, the duration ratio is fixed to 𝛼 = 50 for all

typical instances. We consider a single server with one-dimension resource (e.g., CPU) and set its

capacity to one. The resource requirement of each job is uniformly drawn from three possible values

𝑤𝑛 ∈ [0.01, 0.03, 0, 05] and the value of each job is set to 𝑣𝑛 = 𝜉𝑛𝑑𝑛𝑤𝑛 , where 𝜉𝑛 is a uniform random

variable within [1, 𝜃]. Then we evaluate the algorithms’ average and worst-case performances

when the value density ratio 𝜃 varies from 10 to 50.

Figure 5 illustrates the empirical performances of different algorithms under the typical instances.

The behaviors of the algorithms with fixed threshold functions are very different from those under

the hard instances. A more aggressive algorithm generally performs better except Greedy, while our
worst-case optimized algorithm OA(𝛾wco) is even worse than Greedy. This result is not unexpected
since, even though the few elephant jobs are blocked due to capacity limitation, many mouse

jobs can fill up the unused capacity, indicating an aggressive algorithm is already a good choice.

Those typical instances are far from the hard instances and thus the algorithms optimized for the

worst case cannot work well. In contrast, our data-driven algorithm OA(𝛾on) adaptively adjusts the

threshold function based on the instances and still outperforms all other benchmarks in the average

performance at a moderate sacrifice of the worst-case performance.

7 RELATEDWORK
The online knapsack problem. The fundamental difficulty of OKP is first shown by [23], which

highlights that without additional assumptions on setup information, no competitive online al-

gorithms can be designed. By assuming the value-to-size ratio of items is bounded within [1, 𝜃]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:20 Bo Sun et al.

and the item size is infinitesimal, [33] first designs an online threshold-based algorithm for the

(multiple) one-dimensional knapsack and shows it achieves an optimal competitive ratio Θ(ln𝜃).
The follow-up work [32] extends the algorithm in [33] to the online multi-dimensional knapsack

(OMdK) using the same threshold function and shows the competitive ratio is𝑂 (𝑀 ln𝜃), where𝑀 is

the number of dimensions. Then recent paper [29] redesigns the threshold function and obtains an

order-optimal online algorithm for OMdK with a competitive ratio Θ(ln(𝑀𝜃)). The online knapsack
with departures (OKD) problem is first approached by [32]. It treats each time slot in a𝑇 -slot horizon

as one dimension of a knapsack and applies the result from OMdK that gives a competitive ratio

𝑂 (𝑇 ln𝜃). Based on the recent OMdK result in [29], this result can be further improved to𝑂 (ln(𝑇𝜃)).
However, all these results depend on the time horizon 𝑇 , which can be a undesirable large value.

Online interval scheduling problem. The online interval scheduling (OIS) problem [22], (a.k.a.,

online reservation problem [16] in the operations research community) aims to schedule 𝑁 jobs

to 𝑆 processors. Each job arrives at a random time and requires occupying one processor for a

predetermined interval. Two jobs with overlapped intervals conflict with each other and must be

placed on different processors. Upon arrival, each job informs the scheduler about its start time

and stay duration, and the scheduler immediately assigns the job to one of the processors with no

conflicts or declines it. The goal is to maximize the aggregate occupation of all processors over

the time horizon. We note that OIS can be considered as a special case of OKD that has a single

knapsack with capacity 1, fixed item size 1/𝑆 , and unit value density. Based on the state-of-the-art

result of OIS [16], if the duration of all jobs is bounded within [𝐷, 𝐷] and the number of processors

is large (𝑆 → ∞), a randomized algorithm can achieve the optimal competitive ratio Θ(ln𝛼), where
𝛼 = 𝐷/𝐷 is the duration (fluctuation) ratio. This result basically provides a lower bound Ω(ln𝛼)
for OKD. However, it is unclear how to extend the algorithm in [16] to the general OKD problem. If

we add the bounded duration assumption to the online threshold-based algorithms in [32] and [29],

we can show their competitive ratios are lower bounded by Ω(𝛼 ln𝜃) and Ω(ln(𝐷𝜃)), respectively
(see Lemma 1 for more details). Thus, there still exist no online algorithms in the literature that can

achieve a competitive ratio 𝑂 (ln(𝑀𝛼𝜃)) for OKD.

Other variants to online knapsack problem. There exist many variants of the online knapsack

problems for practical use. To capture the supply cost of using knapsack capacity (e.g., electricity

cost), [18, 28] consider the online knapsack with supply cost, which is a convex function in the

utilization of the knapsack. Some applications essentially have continuous decision variables (e.g.,

the online electric vehicle charging problem). The algorithms and results in OKP can be extended to

continuous decisions under the infinitesimal item size assumption. Particularly, the classic one-way

trading problem [12] can be considered as a continuous version of the basic OKP, and this connection
has been extended to online fractional multiple knapsacks in [27].

Online primal-dual algorithms. Besides the online threshold-based algorithm (OTA), there exists
an alternative class of online primal-dual algorithms (OPD) [7] that can potentially solve the online

knapsack problems. The most relevant work is Buchbinder and Naor’s paper [6] that designs OPD
for a general online packing problem, which is equivalent to OMdK in the knapsack literature [29, 31].

However, there still exist algorithmic challenges in extending OPD to solve OKD. In particular, the key

step of OPD is to design the dual variable update such that the increment ratio of dual and primal

objectives is bounded, and both primal and (scaled) dual solutions are feasible. In addition, OPD
produces a fractional solution and it needs a randomized rounding procedure to achieve the integral

solution. It is unclear how to design the dual variable update and the randomized rounding in the

setting of OKD with item departures and multiple knapsacks. Further, OPD in [6] replies on different

assumptions and achieves different results compared to OTA (See the difference and connections in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:21

Appendix C for more detail). This difference creates difficulties in extending OPD to solve OKD. Thus,
it is non-trivial to extend OKD to the setting of OKD, but it is a promising future direction to explore.

Beyond the worst-case algorithms. Since the online algorithms that are designed for the worst

case are usually too conservative for typical instances in practice, many works design beyond the

worst-case algorithms for OKP and they usually make additional statistical assumptions on the

input instance and present the problems as general resource allocation problems. For example,

some works [1, 10] assume that items arrive in uniformly random order (i.e., random permutation

model). Some others [5, 11, 21] assume that the item information is drawn i.i.d. from an unknown

distribution (i.e., stochastic model). The algorithms from these works generally are designed to first
learn the dual variables of the resource constraints by re-solving an optimization problem using

past data [1, 21] or running online learning algorithms [5], and then determine the online allocation

based on the learned dual variables. In addition, some recent works [13, 17] have also considered

item departures in the general context of online allocation with reusable resources. However, the

approaches and results in these works reply on the additional statistical assumptions, and thus are

fundamentally different from our worst-case analysis in this paper.

8 CONCLUSIONS
This paper has designed an online algorithm that achieves order-optimal competitive ratios for the

online multi-dimensional multiple knapsacks with departures problem. Our model and algorithms

have generalized the state-of-the-art results in the online knapsack literature and opened the doors

for real-world applications that require such full generality. From our trace-driven experiments,

we have observed that the online algorithms that are optimized for the worst-case instances can

be too conservative when faced with typical instances from real applications. To go beyond the

worst case, we have further designed a data-driven online algorithm that can achieve the good

performance under both worst-case and typical instances. Future works can further investigate

how to improve the exact competitive ratios for online knapsack problems, instead of focusing only

on the order-optimality. In addition, it is also interesting to explore how to provide a theoretical

guarantee on the average-case performance of the original data-driven online algorithm.

ACKNOWLEDGMENTS
Bo Sun and Danny H.K. Tsang acknowledge the support received from the Hong Kong Research

Grant Council (RGC) General Research Fund (Project 16202619 and Project 16211220). Adam Wier-

man acknowledges the support received fromNSF grants (CNS-2146814, CPS-2136197, CNS-2106403,

and NGSDI-210564) and the additional support from Amazon AWS. Mohammad Hajiesmaili’s re-

search is supported by NSF grants (CNS-2106299, CNS-2102963, CPS-2136199, NGSDI-2105494, and

CAREER-2045641). The work of John C.S. Lui is supported in part by the RGC’s SRFS2122-4S02.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:22 Bo Sun et al.

REFERENCES
[1] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. 2014. A dynamic near-optimal algorithm for online linear programming.

Operations Research 62, 4 (2014), 876–890.

[2] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The nonstochastic multiarmed bandit

problem. SIAM journal on computing 32, 1 (2002), 48–77.

[3] Maria-Florina Balcan. 2020. Data-driven algorithm design. arXiv preprint arXiv:2011.07177 (2020).

[4] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. 2018. Dispersion for data-driven algorithm design, online

learning, and private optimization. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 603–614.

[5] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. 2021. The Best of Many Worlds: Dual Mirror Descent for Online

Allocation Problems. Operations Research (2021), forthcoming.

[6] Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for covering and packing. Mathematics of
Operations Research 34, 2 (2009), 270–286.

[7] Niv Buchbinder, Joseph Seffi Naor, et al. 2009. The design of competitive online algorithms via a primal–dual approach.

Foundations and Trends® in Theoretical Computer Science 3, 2–3 (2009), 93–263.
[8] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games. Cambridge university press.

[9] Vincent Cohen-Addad and Varun Kanade. 2017. Online optimization of smoothed piecewise constant functions. In

Artificial Intelligence and Statistics. PMLR, 412–420.

[10] Nikhil R Devanur and Thomas P Hayes. 2009. The adwords problem: online keyword matching with budgeted bidders

under random permutations. In Proceedings of the 10th ACM conference on Electronic commerce. 71–78.
[11] Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A Wilkens. 2019. Near optimal online

algorithms and fast approximation algorithms for resource allocation problems. Journal of the ACM (JACM) 66, 1
(2019), 1–41.

[12] Ran El-Yaniv, Amos Fiat, Richard M Karp, and Gordon Turpin. 2001. Optimal search and one-way trading online

algorithms. Algorithmica 30, 1 (2001), 101–139.
[13] Matthew Faw, Orestis Papadigenopoulos, Constantine Caramanis, and Sanjay Shakkottai. 2022. Learning To Maximize

Welfare with a Reusable Resource. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 2
(2022), 1–30.

[14] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to

boosting. Journal of computer and system sciences 55, 1 (1997), 119–139.
[15] Lingwen Gan, Ufuk Topcu, and Steven H Low. 2012. Stochastic distributed protocol for electric vehicle charging with

discrete charging rate. In 2012 IEEE Power and Energy Society General Meeting. IEEE, 1–8.
[16] Shashank Goyal and Diwakar Gupta. 2020. The Online Reservation Problem. Algorithms 13, 10 (2020), 241.
[17] Vineet Goyal, Garud Iyengar, and Rajan Udwani. 2021. Asymptotically Optimal Competitive Ratio for Online Allocation

of Reusable Resources. InWeb and Internet Economics - 17th International Conference, WINE 2021, Potsdam, Germany,
December 14-17, 2021, Proceedings, Vol. 13112. Springer, 543.

[18] Zhiyi Huang and Anthony Kim. 2019. Welfare maximization with production costs: A primal dual approach. Games
and Economic Behavior 118 (2019), 648–667.

[19] Devansh Jalota, Dario Paccagnan, Maximilian Schiffer, and Marco Pavone. 2021. Online Traffic Routing: Deterministic

Limits and Data-driven Enhancements. arXiv preprint arXiv:2109.08706 (2021).
[20] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Multiple knapsack problems. In Knapsack Problems. Springer,

285–316.

[21] Xiaocheng Li and Yinyu Ye. 2021. Online linear programming: Dual convergence, new algorithms, and regret bounds.

Operations Research (2021).

[22] Richard J Lipton and Andrew Tomkins. 1994. Online Interval Scheduling. In SODA, Vol. 94. 302–311.
[23] Alberto Marchetti-Spaccamela and Carlo Vercellis. 1995. Stochastic on-line knapsack problems. Mathematical

Programming 68, 1 (1995), 73–104.

[24] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A Kozuch. 2012. Heterogeneity and

dynamicity of clouds at scale: Google trace analysis. In Proceedings of the third ACM symposium on cloud computing.
1–13.

[25] Vincenzo Sciancalepore, Konstantinos Samdanis, Xavier Costa-Perez, Dario Bega, Marco Gramaglia, and Albert Banchs.

2017. Mobile traffic forecasting for maximizing 5G network slicing resource utilization. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE, 1–9.

[26] Clifford Stein, Van-Anh Truong, and Xinshang Wang. 2020. Advance service reservations with heterogeneous

customers. Management Science 66, 7 (2020), 2929–2950.
[27] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K. Tsang. 2020. Competitive

Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging. Proc. ACM Meas.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:23

Anal. Comput. Syst. 4, 3, Article 51 (Nov. 2020), 32 pages.
[28] Xiaoqi Tan, Bo Sun, Alberto Leon-Garcia, Yuan Wu, and Danny HK Tsang. 2020. Mechanism design for online resource

allocation: A unified approach. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 2 (2020),
1–46.

[29] Lin Yang, Ali Zeynali, Mohammad HHajiesmaili, Ramesh K Sitaraman, and Don Towsley. 2021. Competitive Algorithms

for Online Multidimensional Knapsack Problems. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 5, 3 (2021), 1–30.

[30] Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, and AdamWierman. 2021. Data-driven competitive algorithms for online

knapsack and set cover. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 10833–10841.
[31] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis CM Lau. 2015. Online auctions in IaaS clouds:

Welfare and profit maximization with server costs. In Proceedings of the 2015 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. 3–15.

[32] Zijun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal Posted Prices for Online Cloud Resource Allocation. Proc.
ACM Meas. Anal. Comput. Syst. 1, 1 (June 2017), 26 pages.

[33] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget constrained bidding in keyword auctions

and online knapsack problems. In International Workshop on Internet and Network Economics. Springer, 566–576.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:24 Bo Sun et al.

A PROOF OF LEMMA 1
To show the lower bounds of OA(𝜙 𝐼) and OA(𝜙 𝐼 𝐼), we construct two instances (one capacity-limited

instance for Design-I and one capacity-free instance for Design-II), and show that CR(OA(𝜙 𝐼)) and
CR(OA(𝜙 𝐼 𝐼)) are at least Ω(𝛼 ln𝜃) and Ω(ln𝐷𝜃) under the two instances, respectively.

Lower bound of OA(𝜙 𝐼). Consider a capacity-limited instance that consists of two groups of items.

Items in both groups have the same infinitesimal size𝑤 and starting time (e.g., slot 1). Each group

has 𝑁 items such that the capacity can be fully filled by either group, i.e., 𝑁𝑤 = 𝐶 . Group-1 items

arrive first. Each item 𝑛 requests to stay for 𝐷 slots and its item value is equal to the threshold value

of OA(𝜙 𝐼) upon its arrival, i.e., 𝑣𝑛 = 𝑤
∑
𝑡 ∈[𝐷] 𝜙

𝐼 (𝑧 (𝑛−1)𝑡) = 𝑤𝐷𝜙 𝐼 (𝑧 (𝑛−1)
1

). Group-2 items arrive after

Group-1, and each of its items requests to stay for 𝐷 slots and has the same value𝑤𝐷𝜃 .

Under above instance, OA(𝜙 𝐼) admits all items in Group-1 that can fill up the capacity of the

knapsack in the first 𝐷 slots and declines all Group-2 items due to capacity limits. Then the online

values obtained by OA(𝜙 𝐼) is

ALG𝐼 =
𝑁∑︁
𝑛=1

𝑣𝑛 = 𝐷

𝑁∑︁
𝑛=1

𝑤𝜙 𝐼 (𝑧 (𝑛−1)
1

) ≈ 𝐷
∫ 𝐶

0

𝜙 𝐼 (𝑢)𝑑𝑢 =
𝐷𝐶𝜃

1 + ln𝜃
. (20)

The offline algorithm will only admit Group-2 items and achieve the optimal value OPT𝐼 = 𝐷𝐶𝜃 .
Thus, the competitive ratio of OA(𝜙 𝐼) is at least

CR(OA(𝜙 𝐼)) ≥ OPT𝐼

ALG𝐼
= 𝛼 (1 + ln𝜃) = Ω(𝛼 ln𝜃). (21)

Lower bound of OA(𝜙 𝐼 𝐼). Consider a capacity-free instance that has 𝑁 identical items. Each item

has unit value density 1, fixed infinitesimal size𝑤 , starting time in slot 1, and stay duration 𝐷 . The

total size of all items can fill up the capacity 𝐶 , i.e., 𝑁𝑤 = 𝐶 .

Under above instance, OA(𝜙 𝐼 𝐼) admits items up to utilization

𝑧 ′ = argmax

𝑧∈[0,𝐶]:𝜙𝐼 𝐼 (𝑧) ≤1
𝑧 =

2𝐶

log(𝐷𝜃)
, (22)

and achieves a total value ALG𝐼 𝐼 = 𝐷𝑧 ′ = 2𝐶𝐷/(log(𝐷𝜃)). The offline algorithm will admit all items

and achieve the optimal value OPT𝐼 𝐼 = 𝐶𝐷 . Thus, the competitive ratio of OA(𝜙 𝐼 𝐼) is at least

CR(OA(𝜙 𝐼 𝐼)) ≥ OPT𝐼 𝐼

ALG𝐼 𝐼
=
log(𝐷𝜃)

2

= Ω(ln𝐷𝜃). (23)

B PROOF OF THEOREM 4
Compared to the proof of Theorem 1, we note Lemma 2 still holds in the multi-dimensional

setting. Therefore, to prove Theorem 4, we only need to prove the multi-dimensional counterpart

of Lemma 3, which bounds the competitive ratio C̃R𝑘 of each ancillary problem OKD𝑘 , which is a

single multi-dimensional knapsack with departures. Thus, we next prove the following lemma.

Lemma 4. Under Assumptions 2, 4, and 5, if the threshold function 𝜙𝛾𝑘
𝑘𝑚

is given by Equation (18)

with 𝛾𝑘 ∈ (ln 2, +∞) and the item size is upper bounded by 𝜀𝑘𝑚 ≤ 𝐶𝑘𝑚 ln 2/𝛾𝑘 ,∀𝑘 ∈ [𝐾],𝑚 ∈ [𝑀𝑘],
the competitive ratio of OTA𝑘 is

C̃R𝑘 (𝛾𝑘) = 3 ·max

{
1 + 2

ln 2

𝛾𝑘 ,
2

ln 2

· 𝛼𝑘𝜂𝑘𝜃𝑘𝛾𝑘

exp((𝛾𝑘 − ln 2)/2) − 1

}
. (24)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:25

We can apply the same partitioning procedure and then focus on analyzing the worst-case ratio

of OPT(Nℎ)/ALG(˜Nℎ),∀ℎ ∈ [𝐻]. Consider the following two cases.

Case I: capacity-free case. The final utilizations of all dimensions in [𝑀] across all time slots in

ˆTℎ
:= Tℎ ∪ Tℎ+1

are far from reaching the capacity, i.e., 𝑧
(𝑁)
𝑚𝑡 ≤ 𝐶𝑚 − 𝜀𝑚,∀𝑚 ∈ [𝑀], 𝑡 ∈ ˆTℎ

.

In this case, the only reason why one item is rejected by OTA is that it fails to pass the threshold
check. Then OPT(Nℎ) and ALG(˜Nℎ) can be connected via the final utilization {𝑧 (𝑁)

𝑚𝑡 }
𝑚∈[𝑀],𝑡 ∈ ˆTℎ . We

first show that ALG(˜Nℎ) is lower bounded.

Proposition 4. In Case I, the value of items in ˜Nℎ admitted by OTA is lower bounded by

ALG(˜Nℎ) ≥ ln 2

2𝛾

∑︁
𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)𝐶𝑚 . (25)

Proof. Since 𝜙𝑚 (0) = 0, we can have∑︁
𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)𝐶𝑚 =

∑︁
𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

∑︁
𝑛∈N

𝐶𝑚 [𝜙𝑚 (𝑧 (𝑛)𝑚𝑡) − 𝜙 (𝑧
(𝑛−1)
𝑚𝑡)]

=
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

∑︁
𝑛∈ ˜Nℎ

𝐶𝑚 [𝜙𝑚 (𝑧 (𝑛)𝑚𝑡) − 𝜙 (𝑧
(𝑛−1)
𝑚𝑡)]

≤
∑︁

𝑛∈ ˜Nℎ

∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝐶𝑚 [𝜙𝑚 (𝑧 (𝑛)𝑚𝑡) − 𝜙 (𝑧
(𝑛−1)
𝑚𝑡)] . (26)

Let ΔALG𝑛 denote the increment of OTA due to processing item 𝑛. Thus, ΔALG𝑛 = 0 if item 𝑛 is

declined and ΔALG𝑛 = 𝑣𝑛 if it is admitted. We next show

∑
𝑡 ∈T𝑛

∑
𝑚∈[𝑀] 𝐶𝑚 [𝜙𝑚 (𝑧 (𝑛)𝑚𝑡) −𝜙 (𝑧

(𝑛−1)
𝑚𝑡)] ≤

(2𝛾/ln 2)ΔALG𝑛,∀𝑛 ∈ ˜Nℎ
in the following two sub-cases.

Case I(a). When item 𝑛 is declined by OTA, we have 𝑧 (𝑛)𝑚𝑡 = 𝑧
(𝑛−1)
𝑚𝑡 ,∀𝑡 ∈ T𝑛,𝑚 ∈ [𝑀] and thus∑︁

𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝐶𝑚 [𝜙𝑚 (𝑧 (𝑛)𝑚𝑡) − 𝜙𝑚 (𝑧 (𝑛−1)𝑚𝑡)] = 0 ≤ 2𝛾

ln 2

ΔALG𝑛 . (27)

Case I(b). When item 𝑛 is admitted by OTA, we have 𝑧 (𝑛)𝑚𝑡 = 𝑧
(𝑛−1)
𝑚𝑡 +𝑤𝑛𝑚,∀𝑡 ∈ T𝑛,𝑚 ∈ [𝑀], and∑︁

𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝐶𝑚 [𝜙𝑚 (𝑧 (𝑛)𝑚𝑡) − 𝜙𝑚 (𝑧 (𝑛−1)𝑚𝑡)]

=
∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝐶𝑚

[
exp

(
(𝑧 (𝑛−1)𝑚𝑡 +𝑤𝑛𝑚)𝛾

𝐶𝑚

)
− exp

(
𝑧
(𝑛−1)
𝑚𝑡 𝛾

𝐶𝑚

)]
(28a)

=
∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝐶𝑚 exp

(
𝑧
(𝑛−1)
𝑚𝑡 𝛾

𝐶𝑚

) [
exp

(
𝑤𝑛𝑚𝛾

𝐶𝑚

)
− 1

]
(28b)

≤
∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝐶𝑚 exp

(
𝑧
(𝑛−1)
𝑚𝑡 𝛾

𝐶𝑚

)
· 𝑤𝑛𝑚𝛾
ln 2𝐶𝑚

(28c)

=
𝛾

ln 2

∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚 exp

[(
𝑧
(𝑛−1)
𝑚𝑡 𝛾

𝐶𝑚

)
− 1

]
+ 𝛾

ln 2

∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚 (28d)

=
𝛾

ln 2

∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚𝑡) + 𝛾

ln 2

𝑑𝑛

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚 (28e)

≤ 𝛾

ln 2

𝑣𝑛 +
𝛾

ln 2

𝑣𝑛 =
2𝛾

ln 2

ΔALG𝑛 . (28f)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:26 Bo Sun et al.

Inequality (28c) holds since
𝑤𝑛𝑚𝛾

𝐶𝑚 ln 2
≤ 𝜀𝑚𝛾

𝐶𝑚 ln 2
≤ 1 based on the additional condition on the item

size in Theorem 4. The last inequality (28f) is due to the decision rule in themulti-dimensional setting∑
𝑡 ∈T𝑛

∑
𝑚∈[𝑀] 𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚𝑡) ≤ 𝑣𝑛 when item𝑛 can pass the threshold check, and𝑑𝑛

∑
𝑚∈[𝑀] 𝑤𝑛𝑚 ≤

𝑣𝑛 is based on Assumption 4.

Combining above equations gives∑︁
𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)𝐶𝑚 ≤

∑︁
𝑛∈ ˜Nℎ

2𝛾

ln 2

ΔALG𝑛 =
2𝛾

ln 2

ALG(˜Nℎ),

which completes the proof. □

Next, we show the offline optimal value of items in Nℎ
is upper bounded.

Proposition 5. In Case I, the value of items in Nℎ admitted by the offline algorithm is upper
bounded by

OPT(Nℎ) ≤ ALG(Nℎ) +
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)𝐶𝑚 . (29)

Proof. Let Sℎ ∩ Sℎ∗ denote the set of items in Nℎ
that are admitted by both online algorithm

OTA and the offline algorithm and Sℎ∗ \ Sℎ denote the set of items that are declined by OTA but

admitted by the offline algorithm. We have∑︁
𝑛∈Sℎ∩Sℎ∗

𝑣𝑛 ≤ ALG(Nℎ), (30)∑︁
𝑛∈Sℎ∗\Sℎ

𝑣𝑛 ≤
∑︁

𝑛∈Sℎ∗\Sℎ

∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚𝑡) (31)

≤
∑︁

𝑛∈Sℎ∗\Sℎ

∑︁
𝑡 ∈T𝑛

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)

=
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)

∑︁
𝑛∈Sℎ∗\Sℎ :𝑡 ∈T𝑛

𝑤𝑛𝑚

≤
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)𝐶𝑚,

where the first inequality in (31) holds since the item fails to pass the threshold check, and the

last inequality holds since the items admitted by the offline algorithm cannot exceed the knapsack

capacity in any dimension, i.e.,

∑
𝑛∈Sℎ∗\Sℎ :𝑡 ∈T𝑛 𝑤𝑛𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ [𝑀].

Thus, we have

OPT(Nℎ) =
∑︁

𝑛∈Sℎ∩Sℎ∗
𝑣𝑛 +

∑︁
𝑛∈Sℎ∗\Sℎ

𝑣𝑛 ≤ ALG(Nℎ) +
∑︁

𝑡 ∈ ˆTℎ

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚𝑡)𝐶𝑚, (32)

which completes the proof. □

Combining Proposition 4 and Proposition 5 gives

OPT(Nℎ)
ALG(˜Nℎ)

≤
ALG(Nℎ) + ∑

𝑡 ∈ ˆTℎ
∑
𝑚∈[𝑀] 𝜙𝑚 (𝑧 (𝑁)

𝑚𝑡)𝐶𝑚
ALG(˜Nℎ)

≤ 1 + 2

ln 2

𝛾 . (33)

Case II: capacity-limited case. There exists at least one time slot 𝑡 ′ ∈ ˆTℎ
whose utilization in

one dimension𝑚′ ∈ [𝑀] approaches the knapsack capacity, i.e., 𝐶𝑚′ − 𝜀𝑚′ < 𝑧
(𝑁)
𝑚′𝑡 ′ ≤ 𝐶𝑚′ .

Proposition 6. In Case II, the value of items in ˜Nℎ admitted by OTA is lower bounded by

ALG(˜Nℎ) ≥
ln 2𝐶𝑚′𝐷

𝛾

[
exp

(
𝛾 − ln 2

2

)
− 1

]
, (34)

where𝑚′ = argmin𝑚∈[𝑀] 𝐶𝑚 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:27

Proof. In this case, if there exists one slot (say 𝑡 ′) whose utilization in one dimension (say𝑚′
)

approaches the capacity, then the final utilization of dimension𝑚′
in the worst-case is also in the

pattern illustrated in Figure 2. Then based on Proposition 4, ALG(˜Nℎ) is lower bounded by

ALG(˜Nℎ) ≥ ln 2

2𝛾

[
(2𝐷 − 2)𝜙𝑚′

(
𝐶𝑚′ − 𝜀𝑚′

2

)
+ 𝜙𝑚′ (𝐶𝑚′ − 𝜀𝑚′)

]
𝐶𝑚′ (35a)

≥
ln 2𝐶𝑚′𝐷

𝛾
𝜙𝑚′

(
𝐶𝑚′ − 𝜀𝑚′

2

)
(35b)

≥
ln 2𝐶𝑚′𝐷

𝛾

[
exp

(
𝛾 − ln 2

2

)
− 1

]
, (35c)

which is minimized when𝑚′ = argmin𝑚∈[𝑀] 𝐶𝑚 . This completes the proof. □

In Case II, since the value density is upper bounded by 𝜃 . The total value of 2𝐷 slots with total

size of items

∑
𝑚∈[𝑀] 𝐶𝑚 is thus upper bounded by

OPT(Nℎ) ≤ 2𝜃𝐷
∑︁

𝑚∈[𝑀]
𝐶𝑚 . (36)

Thus, in Case II, we have

OPT(Nℎ)
ALG(˜Nℎ)

≤ 2

ln 2

· 𝜂𝛼𝜃𝛾

exp((𝛾 − ln 2)/2) − 1

, (37)

where 𝜂 =
∑
𝑚∈[𝑀] 𝐶𝑚/(min𝑚∈[𝑀] 𝐶𝑚).

Summarizing the results from the two cases, the competitive ratio of OTA is

C̃R(𝛾) = 3max

{
1 + 2

ln 2

𝛾,
2𝜂𝛼𝜃

ln 2

· 𝛾

exp((𝛾 − ln 2)/2) − 1

}
. (38)

This completes the proof of Lemma 4.

Based on Lemma 4, we can choose 𝛾𝑘 = 2 ln(𝜂𝑘𝛼𝑘𝜃𝑘 + 1) + ln 2,∀𝑘 ∈ [𝐾] and this gives

C̃R𝑘 (𝛾𝑘) = max

{
9 + 12

ln 2

ln(𝜂𝑘𝛼𝑘𝜃𝑘 + 1), 6 + 12

ln 2

ln(𝜂𝑘𝛼𝑘𝜃𝑘 + 1)
}
= 𝑂 (ln(𝛼𝑘𝜃𝑘)),∀𝑘 ∈ [𝐾] . (39)

Then the competitive ratio of OA(𝜙𝛾) is C̃R = 1 +max𝑘∈[𝐾] C̃R𝑘 (𝛾𝑘) = 𝑂 (ln(𝜂𝛼𝜃)).

C THRESHOLD-BASED ALGORITHMS VS. ONLINE PRIMAL-DUAL ALGORITHMS
The online primal-dual algorithm (OPD) and the online threshold-based algorithm (OTA) rely on

different assumptions and achieve different competitive results. In the following, we show the

differences and connections between the two algorithms.

The online packing problem, or the online multi-dimensional knapsack problem (OMdK), solved
by OPD in [6] is a special case of OKD and can be formulated as a linear program

max

𝑥𝑛

∑︁
𝑛∈[𝑁]

𝑣𝑛𝑥𝑛, (40a)

s.t.
∑︁

𝑛∈[𝑁]
𝑤𝑛𝑚𝑥𝑛 ≤ 𝐶𝑚,∀𝑚 ∈ [𝑀], (40b)

𝑥𝑛 ∈ {0, 1},∀𝑛 ∈ [𝑁], (40c)

where𝑚 ∈ [𝑀] is the index for knapsack dimension and𝑛 ∈ [𝑁] is the index for items. In the online

knapsack literature [29, 31], we commonly assume the value density is bounded 𝑣𝑛/(
∑
𝑚∈[𝑀] 𝑤𝑛𝑚) ∈

[1, 𝜃] since the value density is usually the most critical parameter in knapsack problems regardless

of online or offline settings. 𝜃 can be considered as the ratio of the maximum to minimum value

density. For clear comparison, we present the threshold-based algorithm for the OMdK in Algorithm 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:28 Bo Sun et al.

Algorithm 4 Online Threshold-based Algorithm for Online Multi-dimensional Knapsack

1: input: threshold function 𝜙 := {𝜙𝑚 (·)}𝑚∈[𝑀] , capacity {𝐶𝑚}𝑚∈[𝑀] ;
2: output: admission decision 𝑥𝑛 ;

3: initialization: utilization 𝑧
(0)
𝑚 = 0,∀𝑚 ∈ [𝑀];

4: for item 𝑛 = 1, . . . , 𝑁 do

5: observe item value 𝑣𝑛 and size {𝑤𝑛𝑚}𝑚∈[𝑀] ;

6: determine a threshold value Φ =
∑
𝑚∈[𝑀] 𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚);

7: if 𝑣𝑛 > Φ and 𝑧
(𝑛−1)
𝑚 +𝑤𝑛𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ [𝑀] then

8: admit the item and set 𝑥𝑛 = 1;

9: else

10: decline the item and set 𝑥𝑛 = 0.

11: end if

12: update utilization 𝑧
(𝑛)
𝑚 = 𝑧

(𝑛−1)
𝑚 +𝑤𝑛𝑚𝑥𝑛,∀𝑚 ∈ [𝑀].

13: end for

This algorithm can achieve the competitive ratio 𝑂 (ln(𝜂𝜃)), where 𝜂 =
∑
𝑚∈[𝑀] 𝐶𝑚/min𝑚∈[𝑀] 𝐶𝑚

is the capacity variation. Its proof is similar to that of Theorem 4 by omitting the partitioning

procedure. For completeness, the result can be summarized as the following lemma.

Lemma 5. Under Assumptions 4 and 5, there exists 𝛾 = 𝑂 (ln(𝜂𝜃)), if the item size is upper bounded
by 𝜀𝑚 ≤ 𝐶𝑚 ln 2/𝛾,∀𝑚 ∈ [𝑀], and the threshold function 𝜙𝛾 = {𝜙𝛾𝑚}𝑚∈[𝑀] is given by

𝜙𝑚 (𝑧) = exp(𝑧𝛾/𝐶𝑚) − 1,∀𝑚 ∈ [𝑀], (41)

then the competitive ratio of Algorithm 4 is 𝑂 (ln(𝜂𝜃)).

In the online packing problem, the value of each item is usually set to be identical. For example,

in the online virtual circuits routing problem (See §5.2 in [6]), the value of each virtual circuit

is identical and equal to 1, i.e., 𝑣𝑛 = 1,∀𝑛 ∈ [𝑁]. In this problem, the most crucial parameters

are 𝑤max

𝑚 = max𝑛∈[𝑁] 𝑤𝑛𝑚 and 𝑤min

𝑚 = min𝑛∈[𝑁]:𝑤𝑛𝑚≠0𝑤𝑛𝑚 that represent the maximum and

minimal item size in each dimension. The OPD can achieve a competitive ratio of 𝑂 (log𝑀 +
logmax𝑚∈[𝑀]

𝑤max

𝑚

𝑤min

𝑚
) (See Theorem 3.1 in [6]).

Although relying on different assumptions, OPD and OTA can be connected. We can in fact apply

OTA to the setting of the OPD and achieve a slightly better competitive ratio guarantee. First, we

normalize the item size of each dimension by its capacity and consider𝑤𝑛𝑚/𝐶𝑚 as the size of item 𝑛

in dimension𝑚. In this way, the capacities of all dimensions are normalized to 1. Then the capacity

variation becomes 𝜂 = 𝑀 and the value density becomes 𝑣𝑛/(
∑
𝑚∈[𝑀] 𝑤𝑛𝑚/𝐶𝑚). In addition, the

value density is bounded from below and above by

𝑣𝑛∑
𝑚∈[𝑀] 𝑤𝑛𝑚/𝐶𝑚

≤ 𝑣𝑛∑
𝑚∈[𝑀] min𝑛∈[𝑁]:𝑤𝑛𝑚≠0𝑤𝑛𝑚/𝐶𝑚

=
𝑣𝑛∑

𝑚∈[𝑀] 𝑤
min

𝑚 /𝐶𝑚
, (42)

𝑣𝑛∑
𝑚∈[𝑀] 𝑤𝑛𝑚/𝐶𝑚

≥ 𝑣𝑛∑
𝑚∈[𝑀] max𝑛∈[𝑁] 𝑤𝑛𝑚/𝐶𝑚

=
𝑣𝑛∑

𝑚∈[𝑀] 𝑤
max

𝑚 /𝐶𝑚
. (43)

Therefore, the variation of value density is upper bounded by

𝜃 =

𝑣𝑛∑
𝑚∈[𝑀] 𝑤

min

𝑚 /𝐶𝑚
𝑣𝑛∑

𝑚∈[𝑀] 𝑤
max

𝑚 /𝐶𝑚
=

∑
𝑚∈[𝑀] 𝑤

max

𝑚 /𝐶𝑚∑
𝑚∈[𝑀] 𝑤

min

𝑚 /𝐶𝑚
≤ max

𝑚∈[𝑀]

𝑤max

𝑚

𝑤min

𝑚

. (44)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:29

Thus, OTA can achieve a competitive ratio of 𝑂 (ln(𝑀𝜃)) that is better than the ratio 𝑂 (log𝑀 +
logmax𝑚∈[𝑀]

𝑤max

𝑚

𝑤min

𝑚
) achieved by the OPD.

In addition, OTA can achieve the same result as the OPD in a special case of the online packing

problem with sparse demand requests. In the special case, the values of all items are identical, i.e.,

𝑣𝑛 = 𝑣,∀𝑛 ∈ [𝑁] and all item sizes are binary, i.e., 𝑤𝑛𝑚 ∈ {0, 1}. Let Λ = max𝑛∈[𝑁]
∑
𝑚∈[𝑀] 𝑤𝑛𝑚

denote the sparsity parameter, i.e., maximum number of dimensions used by each item. The OPD
in [6] achieves a competitive ratio of𝑂 (lnΛ) when the capacity is large enough𝐶𝑚 ≥ 𝑂 (lnΛ),∀𝑚 ∈
[𝑀] based on the results of Theorem 3.2 and Lemma 5.4 in [6] for the integral version of the online

packing. We can show that Algorithm 4 can also achieve a competitive ratio of 𝑂 (lnΛ).

Lemma 6. If all item sizes are binary 𝑤𝑛𝑚 ∈ {0, 1} and item size is small compared to capacity
with 𝐶𝑚 ≥ 𝛾/ln 2, the competitive ratio of Algorithm 4 is 𝑂 (lnΛ) when the threshold function is

𝜙𝑚 (𝑧) = 𝑣

Λ
[exp(𝑧𝛾/𝐶𝑚) − 1],∀𝑚 ∈ [𝑀], (45)

where 𝛾 = ln(Λ + 1).

Proof of Lemma 6. The proof is similar to that of the capacity-free case in Lemma 3. There is

no capacity-limited case because the threshold check in Algorithm 4 can already guarantee no

violations of the capacity constraints. To be precise, suppose one dimension𝑚′
reaches the capacity

𝐶𝑚 after processing item 𝑛′. Then any item 𝑛 that comes after 𝑛′ and requests dimension𝑚′
(i.e.,

𝑤𝑛𝑚′ = 1) will face a threshold value in Algorithm 4

Φ =
∑︁

𝑚∈[𝑀]
𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚) ≥ 𝑤𝑛𝑚′𝜙𝑚′ (𝑧 (𝑛−1)

𝑚′) = 𝜙𝑚′ (𝐶𝑚′) = 𝑣 . (46)

Therefore, the item 𝑛 cannot pass the threshold check and the capacity violation is avoided. We

next show that values obtained by Algorithm 4 and offline algorithm under the same instance I
are lower bounded and upper bounded, respectively.

The value of admitted items by Algorithm 4 is lower bounded by

ALG(I) ≥ ln 2

2𝛾

∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚)𝐶𝑚, (47)

where 𝑧
(𝑁)
𝑚 is the final utilization of dimension𝑚 after processing the 𝑁 items in I.

Since 𝜙𝑚 (0) = 0,∀𝑚 ∈ [𝑀], we have∑︁
𝑚∈[𝑀]

𝜙𝑚 (𝑧 (𝑁)
𝑚)𝐶𝑚 =

∑︁
𝑛∈[𝑁]

∑︁
𝑚∈[𝑀]

[𝜙𝑚 (𝑧 (𝑛)𝑚) − 𝜙𝑚 (𝑧 (𝑛−1)𝑚)]𝐶𝑚 . (48)

Next we show that

∑
𝑚∈[𝑀] [𝜙𝑚 (𝑧 (𝑛)𝑚) −𝜙𝑚 (𝑧 (𝑛−1)𝑚)]𝐶𝑚 ≤ 2𝛾

ln 2
ΔALG𝑛 , where ΔALG𝑛 is the increment

of Algorithm 4 by processing item 𝑛. ΔALG𝑛 = 𝑣 if item 𝑛 is admitted and ΔALG𝑛 = 0 otherwise.

Case I. When item 𝑛 is declined, we have 𝑧
(𝑛)
𝑚 = 𝑧

(𝑛−1)
𝑚 ,∀𝑚 ∈ [𝑀], and thus∑︁

𝑚∈[𝑀]
[𝜙𝑚 (𝑧 (𝑛)𝑚) − 𝜙𝑚 (𝑧 (𝑛−1)𝑚)]𝐶𝑚 = 0 ≤ 2𝛾

ln 2

ΔALG𝑛 . (49)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:30 Bo Sun et al.

Case II. When item 𝑛 is admitted, we have 𝑧
(𝑛)
𝑚 = 𝑧

(𝑛−1)
𝑚 +𝑤𝑛𝑚,∀𝑚 ∈ [𝑀], and thus∑︁

𝑚∈[𝑀]
[𝜙𝑚 (𝑧 (𝑛)𝑚) − 𝜙𝑚 (𝑧 (𝑛−1)𝑚)]𝐶𝑚 =

∑︁
𝑚∈[𝑀]

𝑣𝐶𝑚

Λ
exp(𝑧 (𝑛−1)𝑚 𝛾/𝐶𝑚) [exp(𝑤𝑛𝑚𝛾/𝐶𝑚) − 1] (50a)

≤
∑︁

𝑚∈[𝑀]

𝑣𝐶𝑚

Λ
exp(𝑧 (𝑛−1)𝑚 𝛾/𝐶𝑚)

𝑤𝑛𝑚𝛾

𝐶𝑚 ln 2

(50b)

=
𝛾

ln 2

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚) + 𝑣𝛾

Λ ln 2

∑︁
𝑚∈[𝑀]

𝑤𝑛𝑚 (50c)

≤ 𝛾

ln 2

· 𝑣 + 𝑣𝛾

Λ ln 2

· Λ =
2𝛾

ln 2

ΔALG𝑛, (50d)

where Equation (50b) holds since𝑤𝑛𝑚𝛾/(𝐶𝑚 ln 2) ≤ 1 based on the assumption, and Equation (50d)

holds because

∑
𝑚∈[𝑀] 𝑤𝑛𝑚𝜙𝑚 (𝑧 (𝑛−1)𝑚) ≤ 𝑣 if item 𝑛 is admitted, and the maximum number of

non-zero dimension is Λ, i.e.,
∑
𝑚∈[𝑀] 𝑤𝑛𝑚 ≤ Λ.

Thus, we can have ALG(I) = ∑
𝑛∈[𝑁] ΔALG𝑛 ≥ ln 2

2𝛾

∑
𝑚∈[𝑀] 𝜙𝑚 (𝑧 (𝑁)

𝑚)𝐶𝑚 .
Based on the same arguments as Proposition 2, we can also show the value of offline algorithm

is upper bounded by

OPT(I) ≤ ALG(I) +
∑︁

𝑚∈[𝑀]
𝜙𝑚 (𝑧 (𝑁)

𝑚)𝐶𝑚 . (51)

Finally, by combining Equations (47) and (51), the competitive ratio of Algorithm 4 is

OPT(I)
ALG(I) ≤

ALG(I) + ∑
𝑚∈[𝑀] 𝜙𝑚 (𝑧 (𝑁)

𝑚)𝐶𝑚
ALG(I) ≤ 1 + 2𝛾

ln 2

= 𝑂 (lnΛ) . (52)

□

D IMPLEMENTATION OF DISCRETIZED DATA-DRIVEN ONLINE ALGORITHMS
Classical online algorithms are optimized for the worst-case instance; however, in practice, the

worst-case rarely occurs and the average-case performance of online algorithms is often even

worse than simple heuristics (e.g., greedy algorithms). Thus, this paper aims to propose a viable

data-driven online algorithm (DOA) to improve the average-case performance while still providing

worst-case guarantees. This approach generally consists of two steps: (i) constructing a class of

parameterized online algorithms, each of which has a bounded competitive ratio; and (ii) adaptively

selecting the online algorithm from the constructed algorithm class to optimize the average-case

performance. In this paper, the first step has been completed in Theorem 3. The threshold-based

algorithms have bounded competitive ratio 𝛽 as long as the parameter of the threshold function is

selected from the parameter set Γ(𝛽). In the following, we provide a viable approach for the second

step by discretization and show the average-case performance. Finally, we discuss the limitations

of this discretized DOA.

Algorithm implementation. In the experiments, we implement a discretized version of the DOA.
In particular, we discretize Γ(𝛽) into Γ̃(𝛽) with step size of 0.1. Let 𝑑 denote the cardinality of the

discretized parameter set Γ̃(𝛽) and [𝑑] := {1, . . . , 𝑑} denote the set of indices. In this discretized

problem, we can alternatively use index 𝑖 ∈ [𝑑] to represent the selected threshold function instead

of parameter 𝛾 ∈ Γ̃(𝛽), and refer to 𝑖 as an expert advice. Thus, we can restate the DOA as an

exponential weights algorithm (or Hedge algorithm) [14] in Algorithm 5. This algorithm selects

expert advice 𝑖ℓ (that is equivalent to the selection of a threshold function) at the beginning of each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:31

Algorithm 5 Data-driven online algorithm (DOA) via Hedge algorithm

1: input: parameter set Γ̃(𝛽) indexed by [𝑑], learning rate 𝜈 ;
2: output: parameter selection {𝑖ℓ }ℓ∈[𝐿] ;
3: initialization: initial selection probability 𝒑1 := {𝑝1,𝑖 }𝑖∈[𝑑] = [1/𝑑, . . . , 1/𝑑];
4: for round ℓ = 1, . . . , 𝐿 do

5: draw parameter 𝑖ℓ from probability distribution 𝒑ℓ ;
6: observe reward 𝒓ℓ := {𝑟ℓ,𝑖 }𝑖∈[𝑑] and collect the reward 𝑟ℓ,𝑖ℓ ;

7: update 𝒑ℓ by 𝑝ℓ+1,𝑖 =
𝑝ℓ,𝑖 exp(𝜈𝑟ℓ,𝑖)∑

𝑗∈[𝑑] 𝑝ℓ,𝑗 exp(𝜈𝑟ℓ,𝑗) ,∀𝑖 ∈ [𝑑].
8: end for

round ℓ ∈ [𝐿]. Then the rewards of all expert advices can be observed 𝒓ℓ := {𝑟ℓ,𝑖 }𝑖∈[𝑑] but only the

reward of advice 𝑖ℓ is collected by the algorithm.

Average-case performance. Following the classic results of the expert problem (e.g., Corollary 2.2

in [8]), the average-case performance of the DOA can be evaluated by the regret as follows.

Lemma 7. Assume the per-round reward is bounded 0 ≤ 𝑟ℓ,𝑖 ≤ 𝑟,∀ℓ ∈ [𝐿], 𝑖 ∈ [𝑑] and the learning
rate is set to 𝜈 =

√︁
2 ln𝑑/(𝑟 2𝐿), the regret of Algorithm 5 is

E

max

𝑖∈[𝑑]

∑︁
ℓ∈[𝐿]

𝑟ℓ,𝑖 −
∑︁
ℓ∈[𝐿]

𝑟ℓ,𝑖ℓ

 ≤ 𝑟
√
2𝐿 ln𝑑. (53)

Since the regret is sublinear in the number of rounds 𝐿, the average reward of Algorithm 5

approaches the reward obtained by the algorithm with a fixed threshold function selected in

hindsight as 𝐿 → ∞.

Note that the regret is logarithmic in 𝑑 and depends on the granularity of discretization and

system parameters. In more detail, 𝑑 = ⌈ ˆ𝑑1
𝛿
⌉ × · · · × ⌈ ˆ𝑑𝐾

𝛿
⌉, where 𝛿 is the step size of discretization

and
ˆ𝑑𝑘 is the length of the 𝑘-th coordinate of the original parameter set Γ(𝛽). Based on Theorem 3,

ˆ𝑑𝑘 can be upper bounded by

ˆ𝑑𝑘 = ln 2 ·min

{
(𝛽 − 4)

6

,
𝐶𝑘

𝜀𝑘

}
− (𝛽 − 1)𝜁𝑘 + 2𝑊

(
(𝛽 − 1)𝜁𝑘

2

√
2

exp

(
(𝛽 − 1)𝜁𝑘

2

))
≤ ln 2(𝛽 − 1)

6

[
1 + 1

𝛼𝑘𝜃𝑘

]
,

where 𝜁𝑘 := − ln 2/(6𝛼𝑘𝜃𝑘) and𝑊 (·) is the Lambert𝑊 function. This upper bound increases

linearly in the target competitive ratio 𝛽 and decreases in the knapsack parameter 𝛼𝑘𝜃𝑘 since the

knapsack with large 𝛼𝑘𝜃𝑘 dominates the worst-case ratio and thus gives less flexibility for parameter

tuning. Let
¯𝑑 = max𝑘∈[𝐾] ˆ𝑑𝑘 . Then the cardinality of the discretized set Γ̃(𝛽) is upper bounded by

𝑑 ≤ (¯𝑑/𝛿)𝐾 . Therefore, the regret of the DOA can also be upper bounded by 𝑟
√︁
2𝐿𝐾 ln(¯𝑑/𝛿), which

is sublinear in the number of knapsacks 𝐾 but increases when a finer grained step size 𝛿 is chosen.

Limitations of implementing the discretized problem. Algorithm 5 is based on the discretization

of the original parameter set Γ(𝛽). The discretized problem can more accurately approximate the

original problem by adopting a smaller step size 𝛿 while this will result in a larger parameter set

𝑑 and thus a slower speed of learning the threshold function based on the regret bound (53). In

this paper, we choose to set 𝛿 = 0.1 to balance the approximation accuracy and learning speed in

our numerical tests. In the problems with large 𝑑 , it may become even computationally difficult to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:32 Bo Sun et al.

obtain the full information feedback (i.e., the reward of all possible expert advice 𝒓ℓ) in each round.

We can resort to the EXP3 algorithm [2] that only requires bandit information feedback (i.e., the

reward of the selected parameter 𝑟ℓ,𝑖ℓ) in such settings.

An alternative implementation of DOA is to design online learning algorithms to directly learn the

parameter 𝛾 from the original continuous parameter set Γ(𝛽). However, it is challenging to provide
theoretical regret bounds in this setting. Particularly, the regret analysis requires understanding the

special properties (e.g., Lipschitz-continuous) of the per-round reward (as a function of the selected

parameter 𝛾). The per-round rewards of our online knapsack problem are in general piecewise

Lipschitz functions, which suffer linear regret bounds without additional conditions [9]. Thus, it

remains an open question to design sublinear regret online learning algorithm from the original

continuous parameter set. A promising direction is to follow recent works on data-driven algorithm

designs via online learning [3, 4] that identify additional properties (e.g., dispersion) of the reward

function to improve the regret analysis.

Received August 2022; revised October 2022; accepted November 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Online Multiple Knapsacks with Departures
	2.1 Problem statement
	2.2 Application scenarios
	2.3 Additional Notations and Assumptions

	3 Algorithms and Main Results
	3.1 Algorithms
	3.2 Main results
	3.3 Discussion

	4 Competitive Analysis
	4.1 Proof of Lemma 2: Decomposition
	4.2 Proof of Lemma 3: Single Online Knapsack with Departures

	5 Multi-dimensional Online Multiple Knapsacks with Departures
	6 Experimental Results
	6.1 Performance of data-driven online algorithms
	6.2 Trace-driven evaluation in online cloud job scheduling

	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Proof of Lemma 1
	B Proof of Theorem 4
	C Threshold-based algorithms vs. online primal-dual algorithms
	D Implementation of Discretized Data-driven online algorithms

