This article was downloaded by: [131.215.142.166] On: 03 January 2023, At: 13:27
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

E . Operations Research

OPERATIONS
RESEAH':H Publication details, including instructions for authors and subscription information:
i :-H http://pubsonline.informs.org

Black-Box Acceleration of Monotone Convex Program

rf i | E i Solvers
1 Ll ™ Palma London, Shai Vardi, Reza Eghbali, Adam Wierman
' ; e * H P I
[

594

To cite this article:
Palma London, Shai Vardi, Reza Eghbali, Adam Wierman (2022) Black-Box Acceleration of Monotone Convex Program Solvers.
Operations Research

Published online in Articles in Advance 19 Oct 2022
. https://doi.org/10.1287/opre.2022.2352

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2022.2352
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

inferms,

https://pubsonline.informs.org/journal/opre

Methods

OPERATIONS RESEARCH

Articles in Advance, pp. 1-20
ISSN 0030-364X (print), ISSN 1526-5463 (online)

Black-Box Acceleration of Monotone Convex Program Solvers

Palma London,®* Shai Vardi,® Reza

Eghbali,° Adam Wierman?®

2 California Institute of Technology, Pasadena, California 91125; P purdue University, West Lafayette, Indiana 47907; ¢ University of California,

Berkeley, California 94720
*Corresponding author
Contact: plondon@caltech.edu,

https: // orcid.org/0000-0001-6472-8293 (PL); svardi@purdue.edu,

https: // orcid.org/0000-0003-4720-6826

(SV); eghbali@berkeley.edu, reza.eghbali@ucsf.edu (RE); adamw®@caltech.edu (AW)

Received: April 9, 2020

Revised: March 26, 2022

Accepted: May 31, 2022

Published Online in Articles in Advance:
October 19, 2022

Area of Review: Optimization
https://doi.org/10.1287/opre.2022.2352

Copyright: © 2022 INFORMS

Abstract. This paper presents a black-box framework for accelerating packing optimization
solvers. Our method applies to packing linear programming problems and a family of con-
vex programming problems with linear constraints. The framework is designed for high-
dimensional problems, for which the number of variables is much larger than the number
of measurements m. Given an (m X n) problem, we construct a smaller (i X en) problem,
whose solution we use to find an approximation to the optimal solution. Our framework
can accelerate both exact and approximate solvers. If the solver being accelerated produces
an a-approximation, then we produce a (1 — €) /a?-approximation of the optimal solution to
the original problem. We present worst-case guarantees on run time and empirically dem-
onstrate speedups of two orders of magnitude.

Funding: Financial support from the National Science Foundation [Grants AitF-1637598, CNS-151894,
and CPS-154471] and the Linde Institute is gratefully acknowledged.

Keywords: linear programming « convex optimization « dimension reduction

1. Introduction

This paper proposes a black-box framework that can
be used to accelerate both exact and approximate con-
vex programming solvers for packing problems, while
maintaining high-quality solutions.

The need to solve extremely large-scale optimiza-
tion problems is ubiquitous across disciplines. As
problems grow in size, a fundamental bottleneck is
the availability of fast, efficient, accurate convex solv-
ers. Practical applications require solvers to work at
extreme scales, and, despite decades of work, state-
of-the-art solvers do not scale as desired in many
cases.

In this paper, we propose a framework for accelerat-
ing (speeding up) existing convex program (CP) solv-
ers, allowing them to run faster on larger problems. We
exploit characteristics of the problem structure to ena-
ble these solvers to run in a fraction of the original
time. Examples of state-of-the-art solvers include the
Splitting Conic Solver (SCS) (O’'Donoghue et al. 2016),
the Embedded Conic Solver (ECOS) (Domahidi et al.
2013), and commercial linear programing solvers, such
as Gurobi and Cplex.

Our focus is on convex problems with packing con-
straints. Specifically, our framework applies to problems
of the following form:

n

maximize > fj(x), (1a)
j=1

subject to > a;x; < b i€[m], (ib)
=1

0<x<1 jelnl, (1o

where a;; €[0,1] is an element of matrix A of size
(mxmn), beRYy, and f;: [0,1] — R are continuous con-
cave nondecreasing functions differentiable over (0, 1).
We further assume that f;(0) = 0. Note that if this is not
the case, the functions can be appropriately shifted. An
important special case of the above are packing linear
programs (LPs):

n
maximize > cx;, (2a)

=1

n
subject to > ayx; < b; ie[m], (2b)
=1

0<x<1 jelnl, (20

where ¢ € RL,. In this paper, we develop a general algo-
rithm for problems of Form (1) and an algorithm spe-
cific to Packing Linear Programs (2).

Many problems in machine learning, inference, and
resource allocation are packing problems at their

mailto:plondon@caltech.edu
https://orcid.org/0000-0001-6472-8293
mailto:svardi@purdue.edu
https://orcid.org/0000-0003-4720-6826
mailto:eghbali@berkeley.edu
mailto:reza.eghbali@ucsf.edu
mailto:adamw@caltech.edu
https://orcid.org/0000-0001-6472-8293
https://orcid.org/0000-0003-4720-6826
https://pubsonline.informs.org/journal/opre

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

2

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

core, and providing fast solvers for these problems is
crucial. Examples of such problems include the net-
work utility maximization problem and large-scale
wireless networks (Shi et al. 2015), channel transmis-
sion (Johansson and Sternad 2005), inference problems
in biology (Martino and Martino 2018), scheduling and
graph embedding (Plotkin et al. 1995), and associative
Markov networks (Taskar et al. 2004). Packing linear
programs arise in a wide variety of settings, including
the maximum-cut problem (Trevisan 1998), zero-sum
matrix games (Nesterov 2005), flow controls (Bartal
et al. 2004), auction mechanisms (Zurel and Nisan
2001), wireless sensor networks (Byers and Nasser
2000), and many other areas. In machine learning, they
show up in an array of problems—for example, in
applications of graphical models (Ravikumar et al.
2010) and in relaxations of maximum a posteriori esti-
mation problems (Sanghavi et al. 2008), among others.

Our focus in this paper is on a class of packing prob-
lems for which data are either very costly or hard to
obtain. In these situations, m < n; that is, the number
of data points m available is much smaller than the
number of variables, n. In a machine-learning setting,
this regime is increasingly prevalent because it is often
advantageous to consider larger and larger feature
spaces, while not necessarily obtaining proportionally
more data. Such instances are also common in areas
such as genetics, astronomy, and chemistry. There has
been considerable research focusing on this class of
problems in recent years, in the context of LPs (Donoho
and Tanner 2005, Chowdhury et al. 2020) and also more
generally in convex optimization and compressed sens-
ing (Donoho 2006, Sun et al. 2019), low-rank matrix
recovery (Recht et al. 2010, Chi et al. 2019), and graphical
models (Mohan et al. 2014, Kumar et al. 2019).

Because of the increasing size of data sets and the
demands this places on convex solvers like Cplex, Gurobi,
SCS, and ECOS, there has been considerable effort to
develop faster and more efficient algorithms that can scale.

1.1. Contributions

We propose a framework for accelerating exact and
approximate convex programming solvers for packing
problems of Form (1), of which an important special
case is Linear Programing (2). Analytically, we provide
worst-case guarantees on both the run time and the
quality of the solution produced. Empirically, we show
that our framework speeds up Gurobi and SCS by two
orders of magnitude, while maintaining a near-optimal
solution with error less than 4%.

The approach of this paper is not to design a new
algorithm, but to design a black-box acceleration
framework that can speed up existing algorithms.
Given a convex program solver A and a problem of
dimension (m X 1), we select a subset of the variables

of size e;n uniformly at random. We then construct a
sample problem of dimension (m X €;1), defined only on
those selected variables. Thus, the number of variables
in the sample problem is greatly reduced compared with
the original formulation. We then solve the dual of the
sample problem using solver 4, treating it as a black box.
Finally, we set the values of the original primal variables
x; for all j € [n] based on the approximate dual solution.

There are two fundamental trade-offs in the frame-
work. The first is captured by the sample size, €;. Set-
ting €, to be small yields a dramatic speedup of the
algorithm A; however, if €, is set too small, the quality
of the solution suffers. A second trade-off involves feasi-
bility. In order to ensure that the output of the frame-
work is feasible with high probability (and not just that
each constraint is satisfied in expectation), the con-
straints of the sample problem are scaled down by a fac-
tor denoted by €;. Feasibility is guaranteed if € is large
enough; however, if it is too large, the quality of the solu-
tion (as measured by the approximation ratio) suffers.

Our main technical result is a worst-case characteriza-
tion of the impact of €; and €7 on the speedup provided
by the framework and the quality of the solution. Assum-
ing that algorithm A gives an a-approximation to the
optimal solution of the dual, we prove that the accelera-
tion framework guarantees a (1 — €f)/a?-approximation
to the optimal solution of the original problem, under
some assumptions about the input and €;. We formally
state the result in Theorem 1.

The technical requirements for € in Theorem 1
impose some restrictions on both the family of prob-
lems that can be provably solved using our framework
and the algorithms that can be accelerated. In particu-
lar, Theorem 1 requires min;b; to be large and the algo-
rithm A to satisfy approximate complementary slackness
conditions (see Section 2). Although the condition on b;
is restrictive, the condition on the algorithms is satisfied
by most common solvers—for example, exact solvers
and many primal dual approximation algorithms. Fur-
ther, our experimental results demonstrate that these
technical requirements are conservative—the frame-
work produces solutions of comparable quality to the
original solver in settings that are far from satisfying the
theoretical requirements. In addition, the accelerator
works in practice for algorithms that do not satisfy
approximate complementary slackness conditions—for
example, for gradient algorithms, as in Sridhar et al.
(2013). In particular, our experimental results show that
the accelerator obtains solutions that are close in quality
to those obtained by the algorithms being accelerated on
the complete problem and that the solutions are obtained
considerably faster (by up to two orders of magnitude).
The results reported in this paper demonstrate this by
accelerating the state-of-the-art commercial solver Gur-
obi and the SCS solver on a wide array of randomly

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

generated packing LPs and CPs and obtaining solutions
with < 4% relative error and a more than 150 x speedup.

When applied to parallel algorithms, there are added
opportunities for the framework to reduce error while
increasing the speedup through speculative execution: The
framework runs multiple clones of the algorithm specula-
tively. The original algorithm is executed on a separate
sample, and then the thresholding rule is applied by
each clone in parallel, asynchronously. This can improve
both the solution quality and the speed. It improves the
quality of the solution because the best solution across
the multiple samples can be chosen. It improves the
speed because it mitigates the impact of stragglers, tasks
that take much longer than expected due to contention or
other issues. In our experiments, incorporating “cloning”
into the acceleration framework triples the speedup
obtained, while reducing the error by 12%.

1.2. Related Literature

The approach underlying our framework is motivated
by recent work that uses ideas from online algorithms
to make offline algorithms more scalable—for exam-
ple, Mansour et al. (2012) and London et al. (2017;
2019)—and builds on our preliminary work (London
et al. 2018). A specific inspiration for this work is an
online algorithm (Agrawal et al. 2014) that uses a two-
step procedure: It solves an LP based on a subsampled
constraint matrix, acquired during the first stages of
the online algorithm. It then uses the LP solution as the
basis of a rounding scheme in later stages. The algo-
rithm only works when the arrival order is random,
which is analogous to sampling in the offline setting.
However, Agrawal et al. (2014) rely on exactly solving
the sample LP acquired in the first stages; considering
approximate solutions of the sampled problem, as we
do, adds complexity to the algorithm and analysis.
Also, unlike their approach, we leverage the offline set-
ting to fine-tune €; in order to optimize our solution
while ensuring feasibility, which is not possible in the
online setting. Additionally, we extend these ideas
about LPs to convex problems of Form (1).

In general, our work is related to the literature on
online algorithms for packing LPs and convex prob-
lems under the random permutation model. As dis-
cussed above, Agrawal et al. (2014) present an online
algorithm for packing LPs. Subsequently, algorithms
for online packing LPs and various generalizations to
the convex case have been studied by Agrawal and
Devanur (2015), Kesselheim et al. (2014), Gupta and
Molinaro (2016), and Vera and Banerjee (2021). How-
ever, these algorithms either require an update of the
dual variable at each online step or solve the primal
problem to optimality at each step. Neither of those
approaches can be adapted to design an acceleration
framework for the convex case in the way that we
adapt the work of Agrawal et al. (2014) to design an

algorithm for LPs, as discussed above. Hence, the
design presented for the convex case deviates signifi-
cantly from the online algorithms literature.

The sampling phase of our framework is reminiscent
of the method of sketching; see Woodruff (2014) and
references therein. To construct a sketch of a matrix,
the matrix is premultiplied by a random matrix, essen-
tially selecting a subset of the measurements, or rows
of the matrix. We, however, have a different goal: to
select a subset of the variables, or columns of the
matrix. Although sketching is designed for solving
overdetermined regression problems for which m > n,
we consider the m < n setting, where there are rela-
tively few measurements, and we would like to con-
sider a subset of the variables.

Additionally, the second step of our algorithm is a
departure from the sketching approach. In sketching,
the smaller problem associated with the sketched
matrix is solved, producing an approximate primal sol-
ution. The guarantees produced are often in the form
of bounds on norms of the sketched matrix, which
translate directly to results about the optimality of the
solution. This is possible because the objective function
depends only on norms involving the data to be
sketched: A and b. For example, in linear regression,
the objective function is [JAx —b|j3. Sketching results
typically produce bounds on ||S(Ax — b)ll%, where S is
the sketching matrix. These bounds translate directly
to the quality of the approximation of the solution.
However, in more general problems, the objective
function does not conveniently depend on a norm of
the sketched matrix. For example, in linear programs,
the objective function is ¢’ x; new analysis is needed to
account for how the ¢ vector affects the quality of the
solution, independently from the subsampled data
matrix. In our approach, we develop a second step, in
which we assign the primal variables of the original
problem based on the dual solution to the sampled
problem. This assignment is dependent on the objec-
tive function. No such analogy is present in sketching
methods. Thus, despite the similarity to sketching in
our first step, sketching results do not apply here.

The sampling phase of the framework is also remi-
niscent of the experiment design problem, in which the
goal is to solve the least-squares problem using only a
subset of available data, while minimizing the error
covariance of the estimated parameters—see, for exam-
ple, Boyd and Vandenberghe (2004). Recent work by
Riquelme et al. (2017) applies these ideas to online
algorithms when collecting data for regression model-
ing. Like sketching, experiment design is applied in the
overdetermined setting, whereas we consider the
underdetermined scenario. Additionally, instead of
sampling constraints, we sample variables.

The second step of our algorithm is a thresholding
step, which is related to the rich literature of LP

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

4

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

rounding; see Bertsimas and Vohra (1998) for a survey.
Typically, rounding is used to arrive at a solution to an
integer LP (ILP); however, we use thresholding to
“extend” the solution of a sampled problem to the orig-
inal problem. The scheme we use is a deterministic
threshold based on complementary slackness condi-
tions. It is inspired by Agrawal et al. (2014) in the LP case,
but adapted here for more general problems and
extended to handle approximate solvers, rather than
exact solvers. Within the rounding LP literature, the most
related recent work is that of Sridhar et al. (2013), which
proposes a scheme for rounding an approximate LP solu-
tion. However, Sridhar et al. (2013) use all of the problem
data during the approximation step, whereas we show
that it is enough to use a (small) sample of the data.

A key feature of our framework is that it can be par-
allelized easily when used to accelerate a distributed or
parallel algorithm. There is a rich literature on distrib-
uted and parallel LP solvers—for example, Yarmish
and Slyke (2009), Richert and Cortés (2015), and Nedic¢
et al. (2018). More specifically, there is significant inter-
est in distributed strategies for approximately solving
covering and packing linear problems, such as the
problems we consider here—for example, Luby and
Nisan (1993), Young (2001), Bartal et al. (2004), Allen-
Zhu and Orecchia (2015), and Kyng et al. (2020).

Our algorithm is related to column generation, a heu-
ristic technique developed for LPs with an extremely
large number of variables; see Desaulniers et al. (2005)
and Nemhauser (2012) for a survey. In column gen-
eration, a series of smaller problems, all defined on a
subset of the variables, are solved cyclically. More spe-
cifically, in column generation, a subset of the variables
is used to define a smaller master problem. The dual
solution of the master problem is used to define a new
subproblem, the solution to which will help identify a
new variable to be added to the master problem. The
master problem is then resolved, and this process is
repeated. In contrast, in our approach, we solve a sin-
gle smaller problem based on one subset of the varia-
bles. To make a direct connection with our approach, it
is as if we solve the master problem only once—a sort
of one-shot column generation.

Column generation has made it possible to find
nearly optimal solutions to huge LPs, which would
otherwise be considered intractable to solve, and has
made a significant impact in, for example, airline crew
scheduling problems (Barnhart et al. 2002, Gopalak-
rishnan and Johnson 2005), transportation routing
problems, and scheduling problems. In general, col-
umn generation is a heuristic approach; see, for exam-
ple, Pesnea et al. (2012) and Sadykov and Vanderbeck
(2013). Theoretical bounds on the solution quality exist
only for problem-specific applications regarding ILPs;
for example, the classical cutting stock problem has
been studied in this context (Gilmore and Gomory

1963). For solving ILPs in general, column generation
along with branch-and-bound rounding techniques have
been developed to produce the so called branch-and-
price algorithm (Barnhart et al. 2000). In the context of
column generation, the results in our paper can be
thought of as theoretical groundwork for a one-shot
column generation for packing problems, where, in
order to ensure feasibility, we require an assumption
on the maximum value of the b vector (recall that we
scale a;; € [0,1] without loss of generality).

Another related algorithmic idea that has been
applied to LPs is constraint sampling, in which a subpro-
blem is formed from a subset of the constraints; for
example, Ho-Nguyen and Kilinc-Karzan (2018). We
note that subsampling the constraints differs from sub-
sampling variables (as in column generation), in that in
constraint sampling a complete x € R"” solution is ac-
quired after solving the subproblem, whereas in col-
umn generation, additional work is required to recover
the primal solution. More recently, neural networks
have been used to speed up subroutines of mixed inte-
ger programming solvers (Nair et al. 2020), enabling
them to solve larger problems quicker. There has been
recent work in the area of dimensionality-reduction
techniques that focuses on identifying a subset of rela-
tively important variables or features. In the context of
regularized loss minimization, Jalali (2020) proposes a
dimensionality-reduction technique that identifies a sub-
set of features that are guaranteed to have zero coeffi-
cients in the optimal solution. There is also recent work
on coresets, a data-summarization technique related to
importance sampling, where a small weighted subset of
input points or variables is identified. Recent work on
coresets includes Tukan et al. (2020) and Borsos et al.
(2021) and applications of coresets to neural networks
(Borsos et al. 2020, Shim et al. 2021).

In the general context of convex solvers, there has
been considerable work over the past decade. Convex
solvers are typically either interior-point methods or
first-order methods,. Interior-point methods are used
in most off-the-shelf public software packages, like
SDPT3 (Toh et al. 1999) and SeDuMi (Sturm 1999); the
commercial software package MOSEK (Andersen and
Andersen 2000); and the more recent embedded conic
solver ECOS (Domahidi et al. 2013). However, the
computational cost of the second-order methods used
in interior-point methods is often prohibitive for high-
dimensional problems. In comparison, first-order
methods tend to scale well for very large problems. For
a survey on large-scale optimization methods and first-
order methods, see Esser et al. (2010) and Cevher et al.
(2014). SCS (O’Donoghue et al. 2016) is a widely used
first-order method. It employs an operator-splitting
approach, or, specifically, an alternating-directions
method of multipliers (Gabay and Mercier 1976, Boyd
et al. 2011). Given the popularity of SCS, we use it in

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

this paper to illustrate the acceleration provided by our
framework in the convex case.

2. A Black-Box Acceleration Framework
In this section, we introduce our acceleration frame-
work. At a high level, the framework works by using
an existing solver in a black-box fashion to solve a
small problem, defined on a subset of the variables.
This approximate solution is then incorporated in a
deterministic thresholding scheme to assign the varia-
bles in the original problem.

The framework applies to solvers that are either
exact or approximate. In the approximate case, the sol-
ution satisfies the approximate complementary slack-
ness if the following holds. Let x1,...,x, be a feasible
solution to the primal and v, .. .,y,, be a feasible solu-
tion to the dual.

o Primal Approximate Complementary Slackness: For
ap>1andje€[n], if x; >0, thenc; < T, azy; < ap - ;.

o Dual Approximate Complementary Slackness: For oy >
landie [m],ify; >0, then b;/a; < Zle a;;x; < b;.

We call an algorithm A whose solution is guaranteed
to satisfy the above conditions an (e, ag)-approximation
algorithm. This terminology is nonstandard, but is instruc-
tive when describing our results. It stems from a founda-
tional result for LPs that an algorithm A that satisfies the
above conditions is an a-approximation algorithm, where
a = apa;—for example, Buchbinder and Naor (2009).

The framework we present can be used to accelerate
any (1, ay)-approximation algorithm. Although thisis a
stronger condition than simply requiring that A is an
ag-approximation algorithm, many common dual
ascent algorithms satisfy this condition—for example,
Agrawal et al. (1995), Balakrishnan et al. (1989), Bar-
Yehuda and Even (1981), Erlenkotter (1978), and Goe-
mans and Williamson (1995). For example, the vertex
cover and Steiner tree approximation algorithms of
Agrawal et al. (1995) and Bar-Yehuda and Even (1981),
respectively, are both (1, 2)-approximation algorithms.

2.1. Setup
We define the dual problem to (1). Let ¢ € R be the
dual variables corresponding to the Constraints (1a),
and let ¢ € R" correspond to Constraints (1b). The dual
problem is

minimize b'¢ — if]*(tlfqﬁ +i)+ 1"y,
=

eR", YeR!

where 1 is the vector of ones, and f* is the concave con-
jugate function defined as

fi (v) = Inf vx; - f(x;). 3)

The Lagrangian for Problem (1) is,
L(x, ¢,)= > filx) = (Ax=b) =9 (1 -x), (@)
=1

where x > 0, from which we derive the following opti-
mality condition:
xj €argmax f;(x;) — (aqub + 1/;].)x]- Vje[n]. (5)

x>0
Note that
) =afo+y, Vjeln]. (6)

The complementary slackness conditions (1 —x;) =0
for all j € [n] imply that if ll’j > (, then X = 1, where *
denotes optimality. However, if i, =0, then f/(xj) =
aﬁp*. We use these facts to motivate our algorithm.

2.2. Acceleration Algorithm

Given a (1, ay)-approximation algorithm A, the acceler-
ation framework comprises the following two steps.
The approach is summarized in Algorithm 1.

Step 1. Uniformly, at random, select a subset of the
variables, S C[n], |S| =s=[esn]. Relabel the sampled
variables by 1,...,s for clarity, and define the sample
problem on these s variables as follows:

maximize ;f} (x7), 72)
s 1-— s
subject to > a;x; < ﬂbi i€[m], (7b)
=1 d
0<x<1 jelsl. (7o)

Here, a; is the parameter of the dual approximate
complementary slackness guarantee of A, ef>0 is a
parameter set to ensure feasibility during the thresh-
olding step, and €, >0 is the parameter that deter-
mines the fraction of the primal variables that are be
sampled. Our analytic results give insights for setting
€r and €; see Section 4.3.

Next, use solver A to solve the dual of the Sample
Problem (7). Let ¢° € R" be the dual variables corre-
sponding to the Constraints (7b), and let ° € R® corre-
spond to Constraints (7c). Then, the sample dual

problem is:

. (1_€f)€s
minimize ———
GeRY, YeR, Qg

b - Eslf].*(ajT¢> +9) +17y,
j=
®)

where 1 is the vector of ones, and f* is the concave
conjugate function, as defined in (3). Finally, retrieve
the sample dual solution (¢°,¢°), which is an ap-

proximation to the dual solution of the original
Problem (1).

Step 2. The second step in our acceleration fra-
mework uses the dual solution from the sample prob-
lem to define a deterministic thresholding procedure,
which is used to construct the solution of Problem (1).

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

This procedure is motivated by the Optimality Condi-
tion (5).

Evaluating (5) when f” is noninvertible (equivalently,
f* is nondifferentiable; ! = f*'), we find, for j € [s],

x € (9f(a qb +¢)= argmax(a ®° +1,Z))x —f](xs)

0<x5<1

©)

The set of subgradients Jf* (uTq) + 1/1) is not necessa-
rily a singleton set. We assign our approxnnatlon of
the primal solution, which we denote as x](¢> 1;)), to
be the smallest element in Jf* (aTcp +17?). Such an ele-
ment exists because the set is a closedl convex subset
of [0,1]. We define the allocation rule, xj((;‘)s,lps), in
which we set the primal variables for all j € [n] as a
function of the dual solution:

1 if al¢® <f/(1)
argmin 8]7(11]-T¢)5 +1°) otherwise.
(10)

In both the strictly concave and linear cases, 1»° does
not play a role in the allocation, and it is omitted from
the notation. If f is strictly concave, (10) reduces to the
following:

xj(gz)s)::{

xi(¢°,¢°) ¢={

1 if al¢® <f/(1)
-1
£ @¢%)
For an example of (11), consider the followmg: If

filxj) —cjlog(x,) then x](¢)=1 if ade) <c¢j, and
xj(qb)= s ¢S otherwise. If f is linear, (10) reduces to the

followmg binary thresholding procedure:
1
56 = {3

The allocation rule (10) reduces to (12) in the linear
case because the derivative of f; is ¢; for all x. In (10),

(11)
otherwise.

if al¢®<¢;
J] 12
otherwise. (12)

we take the smallest value in the set of subgradients
Bf*(a].Td)S + 4)].5), which, in this case, is x = 0.

Algorithm 1 (Acceleration Framework)
Input: Convex Program C, solver A, €5 >0, €f >0
Output: £ € R"

1. Select s = [e,n] primal variables uniformly at ran-
dom. Solve the Sample Dual Problem (8) using .A
to find an (approximate) dual solution y° = [¢°,
¢°] € [R™,R°].

2.Set X; = xj(d)s, 4}5) as defined in (10), for all j € [n].

2.2.1. Setting es and €;. The parameters €; and €r must
be chosen when using the framework. In general,
parameter €; is chosen based on the user’s requirement
for accuracy versus speed; it directly controls the size of
the sample problem. The parameter ¢ is related to the
feasibility and nearness to optimality of the solution.

Concretely, we suggest choosing €; and €7 using the
following approach. First, choose €; based on the user’s
requirement for speed versus accuracy. This trade-off
is illustrated in the experiments section in Figures 1
and 4. Given a fixed €, a concrete approach for choos-
ing €7 is given in Algorithm 2. Here, we set ¢; =0 and
increase €; iteratively, solving the sample problem
with different values of the parameter. Solving multi-
ple problems in order to identify the best € is generally
not time-prohibitive, because the sample problems are
very small compared with the original. One can also
simply set € in accordance with the theoretical
bounds. Our analytic results in the next section provide
guarantees on the largest ¢; that guarantees feasibility.
However, we find, in practice, that we can often use a
smaller €7 and get a closer-to-optimal solution without
violating feasibility. Thus, it is useful to search for the
minimal € that provides feasibility for a given prob-
lem. A practical discussion of setting both €; and ¢ is
found in Section 4.3.

Figure 1. (Color online) Illustration of the Relative Error and Speedup Across Sample Sizes, €;

Relative Error(%)

o N M OO @

—_
o
—_
o

(b)

Relative Error(%)
o N B~ OO

-t
o
-
o

Notes. The shaded area depicts a reasonable setting range for €; the speedup is significant, while the relative error is low. Two levels of sparsity,

p, are shown. (a) p = 0.8. (b) p = 0.4.

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

7

Algorithm 2 (An Approach for Setting)
Input: Convex Program L, solver A, €; >0, € > 0
Output: X e R"
Setef = 0.
while ¢, <1 do
* = Algorithm 1(L, A, ¢, €f).
if X is a feasible solution to L then
L Return %.
else
LIncrease €f-

2.2.2. Discussion. Before moving to the analysis, we
provide some context about why the Allocation Rule
(10) works. Recall that (6) states that fj’(x]») = a]T(]b +1;
for all je[n]. Hence, if ¢, >0, the complementary
slackness conditions 1),(1-x;) =0 imply that xj =1.
However, if 1j;j =0, then X = fi”l(aqub*). Thus, in the
allocation rule, we set x;(¢) based on these optimality
conditions. Notice that we do not have access to the
optimal dual solution ¢ to Problem (1), but, rather, to
an approximation ¢°, the solutions to the Sample Dual
Problem (8). Thus, we cannot satisfy the complemen-
tary slackness conditions exactly. The key argument
we need to make is that, despite having only an
approximate ¢°, the solution x;(¢°) is nearly optimal.
To account for the fact that an approximate dual solu-
tion is produced in the first step, we preemptively scale

0=9) in Constraints (1(a)).

aq

the b vector by the factor

Given this rescaling, the solution xj(zps) is feasible and
nearly optimal with high probability.

3. Feasibility and Optimality Guarantees
In this section, we present our main technical results,
which provide worst-case guarantees on the feasibility
and optimality of the solution provided by our acceler-
ation framework.

Let C be a packing problem with #n variables and m
constraints, as in (1), and define B:=min,e,{b;}. The
following theorem bounds the quality of the solution
provided by the acceleration framework.

Theorem 1. Let C be a packing problem of Form (1) or (2),
with n wvariables and m constraints, and define B:=
minep,{bi}. Let A be a (1,a4)-approximation algorithm
for C, with run time f(n, m). For any €;,€¢ > 0, if,

y ZO(m logn +log (eﬂ))

B p
- efz €s

(13)

then Algorithm 1 runs in time f (esn, m) + O(n), and obtains

a feasible (t—?)—approximation to the optimal solution for C
d

with probability at least 1 — 2e.

The key trade-off in the acceleration framework is
between the size of the sample problem, determined by

€;, and the resulting quality of the solution, determined
by the feasibility parameter, 7. The accelerator provides
a large speedup if €; can be made small without causing
€r to be too large. Theorem 1 quantifies the trade-off
between ¢ and €, along with the relation to B. The
bound on B in Theorem 1 defines the class of problems
for which the accelerator is guaranteed to perform well:
problems for which m < 1 and B is not too small. Never-
theless, our experimental results successfully apply the
framework well outside of these parameters; the theoret-
ical analysis provides a very conservative view on the
applicability of the framework.

We note that the result does not depend on the form of
the concave function f. In addition, we can obtain a
slightly tighter bound for the linear case, but we omit it
for conciseness. The bounds we obtain for the linear cases

are of the same order; Q(eleé log (n)). Thus, despite apply-

ing to general convex programs in this work, we achieve
the same order of bound as for linear programs.

As discussed in the introduction, our work is related
to the literature on online algorithms for packing linear
programs with optimal competitive ratio under a ran-
dom permutation model. In this context, B is often
referred to as the bid-to-budget ratio. In the case of
Agrawal et al. (2014), the one-time learning algorithm
achieves a competitive ratio of 1 — € if the bid-to-budget

ratio is Q(;%log (g)), which is similar to the assumption

on B in Theorem 1. However, Molinaro and Ravi (2013)
present a different analysis for the algorithm by Agrawal
et al. (2014), in which they require a bid-to-budget ratio

of Q('g—; log (%)) Removing the dependency on 1, which

is the time horizon of the online problem, is of theoretical
importance in the online setting. However, in our set-
ting, even though m < n, typically, m is comfortably
larger than log(n); hence, a result similar to that of
Agrawal et al. (2014) is more desirable.

In addition to exact and approximate LP solvers, our
framework can be used solve integer linear programs.
These are linear programs with binary decision variables:

n
maximize > ¢x;, (14a)
j=1

n
subject to > a;x; < b;
=

X;j S {O, 1}

ie[m], (14b)

jen]. (140

The Allocation Rule (12) produces binary solutions,
and so naturally the solutions satisfy ILP integrality
constraints. This gives rise to the following corollary to
Theorem 1.

Corollary 1. Let C be a packing ILP problem of Form (14),
with n variables and m constraints, and define B :=min;e[,,
{bi}. Let A be a (1,a,)-approximation algorithm for C, with

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

run time f(n, m). For any €;,€¢ > 0, if

B> O(m logn + log (Eﬂs))

7

e}es
then Algorithm 1 runs in time f (esn, m) + O(n), and obtains
a feasible *— (g)-approxzmatzon to the optimal solution for C
with probabzllty at least 1 — 2.

Our framework can be parallelized; Step 2 of Algo-
rithm 1 can be done in parallel. Additionally, if the
solver A that is being accelerated is parallelizable, fur-
ther parallelization can be achieved, giving the follow-
ing corollary to Theorem 1. We only give the corollary
for convex programs; the corollaries for LPs and ILPs
are analogous.

Corollary 2. Let C be a packing convex problem of Form

(1), with n variables and m constraints, and define B:=

minep,{bi}. Let A be a parallel (1,a4)-approximation

algorithm for C, with run time f(n, m). For any €, > 0, if
ZO(m logn + log())

B> ’
efes

then executing Algorithm 1 on p processors in parallel

(f)

tion with probabzllty at least 1—2e, and has run time
folesn,m)+O(n/p), where f,(e;n, m) denotes A’s run time
for the sample program on p processors.

obtains a feasible approximation to the optimal solu-

4. Experiments

We illustrate the speedup provided by our acceleration
framework by using it to accelerate state-of-the-art
commercial solvers. We first run our acceleration
framework on synthetic randomly generated problems
and then provide a real data example. Additionally,
we demonstrate the benefits of cloning.

We accelerate Gurobi and SCS in the case of linear
and convex programs, respectively. Because of limited
space, we do not present results for more specialized
solvers; however, the improvements shown here pro-
vide a conservative estimate of the improvements pos-
sible with more specialized solvers. Similarly, the
speedup provided by an exact solver (such as Gurobi)
provides a conservative estimate of the improvements
when applied to approximate solvers or when applied
tosolve ILPs.

Note that our experiments consider situations where
the assumptions in Theorem 1 on B, m, and n do not
hold. Thus, they highlight that the assumptions of the
theorem are conservative, and the accelerator can per-
form well outside of the settings prescribed by the anal-
ysis. This is also true with respect to the assumptions on
the algorithm being accelerated. Although our proof
requires the algorithm to be a (1, ay)-approximation, the

accelerator works well for other types of algorithms,
too. For example, we have applied our framework to
the gradient algorithm, such as Sridhar et al. (2013), in
the linear case, with results that parallel those presented
for Gurobi below. All experiments are run on a server
with Intel E5-2623V3@3.0-GHz eight cores and 64 GB of
RAM.

4.1. Linear Case: Accelerating Gurobi

In this section, we describe experiments done on syn-
thetic randomly generated linear programs. We describe
the speedup provided for Gurobi, a state-of-the-art com-
mercial LP solver.

4.1.1. Experimental Setup. To illustrate the perform-
ance of our accelerator, we run Algorithm 1 on ran-
domly generated LPs. Unless otherwise specified, the
experiments use a matrix A € R™" of size m =107,
n = 10°. Each element of A, denoted as a;;, is first gener-
ated from [0, 1] uniformly at random and then set to
zero with probability 1 —p. Hence, p controls the spar-
sity of matrix A, and we vary p in the experiments. The
vector ¢ € RY; is drawn independent and identically
distributed (i.i.d.) from [1,100] uniformly. Each ele-
ment of the vector b € R, is fixed as 0.1n. (Note that
the results are qualitatively the same for other choices
of b.) By default, the parameters of the accelerator are
set as €; = 0.01 and &7 = 0, though these are varied in
some experiments. Each point in the presented figures
is the average of more than 100 executions under dif-
ferent realizations of A and c.

In order to measure the quality of the solution, we
define the relative error as (1—p/p*), where p* is the
optimal objective value and p is the objective value
produced by our algorithm. To measure the accelera-
tion, we define the speedup of the accelerated algorithm
as the ratio of the run time of the original solver to the
run time of our algorithm.

We implement the accelerator in Matlab and use it to
accelerate Gurobi. We intentionally perform the exp-
eriments with a small degree of parallelism in order to
obtain a conservative estimate of the acceleration pro-
vided by our framework. As the degree of parallelism
increases, the speedup of the accelerator increases, and
the quality of the solution remains unchanged (unless
cloning is used, in which case it improves).

4.1.2. Experimental Results. Our experimental results
highlight that our acceleration framework provides
speedups of two orders of magnitude (over 150 X),
while maintaining high-quality solutions (relative errors
of < 40/0).

4.1.2.1. The Trade-Off Between Relative Error and
Speed. The fundamental trade-off in the design of the
accelerator is between the sample size, €;,, and the

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

quality of the solution. The speedup of the framework
comes from choosing €, small, but if it is chosen too
small, then the quality of the solution suffers. For the
algorithm to provide improvements in practice, it is
important for there to be a sweet spot where € is small
and the quality of the solution is still good, as indicated
in the shaded region of Figure 1.

4.1.2.2. Scalability. In addition to speeding up LP solv-
ers, our acceleration framework provides significantly
improved scalability. Because the LP solver only needs to
be run on a (small) sample LP, rather than the full LP, the
accelerator provides an order-of-magnitude increase in
the size of problems that can be solved. This is illustrated
in Figure 2. The figure shows the run time and relative
error of the accelerator. In these experiments, we have
fixed p = 0.8 and n/m = 10° as we scale m. We have set
€, =0.01 throughout. As Figure 2(a) shows, one can
choose €; more aggressively in large problems because
leaving € fixed leads to improved accuracy for large-
scale problems. Doing this would lead to larger speed-
ups; thus, by keeping ¢, fixed, we provide a conservative
estimate of the improved scalability provided by the accel-
erator. The results in Figure 2(b) illustrate the improve-
ments in scalability provided by the accelerator. Gurobi’s
run time grows quickly until, finally, it runs into memory
errors and cannot arrive at a solution. In contrast, the run
time of the accelerator grows slowly and can (approxi-
mately) solve problems of much larger size. To emphasize
the improvement in scalability, we run an experiment on
a laptop with Intel Core i5 CPU and eight GB of RAM.
For a problem with size m = 10%, n = 107, Gurobi fails due
to memory limits. In contrast, the accelerator produces
a solution in 10 minutes with relative error less than 4%.

4.2. Convex Case: Accelerating SCS

In this section, we empirically demonstrate the speed-
up provided by our acceleration method for convex
problems of Form (1). We accelerate SCS, a state-of-

the-art convex program solver. As in the LP case, the
experiments show that our method provides order-of-
magnitude speedups, while producing near-optimal
solutions. We consider several monotonically increas-
ing objective functions, as described below.

4.2.1. Experimental Setup. We implement the acceler-
ator in python and use CVXPY (Diamond and Boyd
2016) to call SCS. We use randomly generated prob-
lems for our experiments, and each point in the figures
is averaged over 50 executions under different realiza-
tions of A, b, and f; for all j € [n].

To generate random instances, we generate matrices
A eR™" as follows. Each element of A is drawn i.i.d.
from the uniform distribution U[0,1] and then set to
zero with probability 1—p. We vary p in the experi-
ments, which controls the sparsity of matrix. We set
b =Ay+0.1z, where y and z are both random vectors
drawn ii.d. from U[0, 1]. We consider concave objective
functions f;(x;) = cjlog (x;) and f(x;) = ¢;x;'/?, where ¢; is
drawn ii.d. from U[0,1]. We note that the derivative
does not exist at x; = 0 for the function log (x;). Instead, to
satisfy our assumptions, we can solve an equivalent
problem with objective function log (x; + 0) — log (6).

Unless otherwise specified, the problem dimensions
are m = 102,11 = 106, the parameters are set as €; = 0.01
and € =0, and ¢y is increased, as described in Algo-
rithm 2, until feasibility is reached. The parameters are
varied in experiments.

Note that these experiments consider settings in which
the assumptions of Theorem 1 on B do not hold. When
we set b = Ay + 0.1z as described above, these values are
smaller than the bound on B. However, our algorithm
performs well, even in this setting, demonstrating that
the assumptions of the theorem are conservative.

4.2.2. Experimental Results. We see a remarkable
speedup in our experiments, while maintaining high-
quality solutions. Figure 3 demonstrates the relative

Figure 2. (Color online) Illustration of the Relative Error and Run Time as the Problem Size, m, Grows

(a)

Relative Error (%)
o [\ B » (o]

100 200 300
m

(b)

600 K:Gurobi |

== Accelerator

-
-
a
0
U
0
3
p 3

200!

x’x -t

Q¥+ 200
m

Notes. Throughout, 11/m = 10°. In (b), Gurobi ran into memory errors for problems with 1 > 300. However, our accelerator algorithm was able to
solve the problems in a fraction of the time, with low relative error. (a) Relative error. (b) Run time.

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

10

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

Figure 3. (Color online) The Relative Error and Run Time as the Problem Size, 11, Grows, Where We Fix the Ratio 1/m = 10°

(a)

6
S
54
(O]
2
o 2
Jo]
o
500 1,000
m
(c)
9
b
o2
i,
(0]
=
E 1
(O]
o

250 500 750
m

Runtime (s)

Runtime (s)

(b)

—8— SCS
—¥=—=_Accelerator

=
=]
o
o

500

0 500
m

1,000

(d)

1,000 =<3
—¥— Accelerator]

500

0

0 500
m

1,000

Notes. In (a) and (b), f;(x;) = ¢jlog (x}), and in (c) and (d), fi(x;) = cfx}/ 2. (a) Relative error. (b) Run time. (c) Relative error. (d) Run time.

error and speedup as the size of the problems are var-
ied. The ratio n1/m = 10° is fixed as we vary both n and
m. We set p = 0.8 and €; = 0.01. Here, we see a speedup
of multiple orders of magnitude compared with SCS.
Additionally, the line corresponding to SCS stops at
about n = 1M variables. At this point, SCS runs into
memory errors and is unable to proceed. However, our
algorithm is able to solve the same problem in a factor-
0f-100 less time, while achieving a relative error of 1%.
Our accelerator is additionally able to proceed with
larger problems, ones that SCS cannot handle. Thus,
our accelerator provides remarkable scalability: We
can quickly solve problems with orders-of-magnitude
more variables than SCS can handle.

Figure 4 demonstrates the relative error and speedup
as the sample size €, is varied. We see that, as €; decreases,
the speedup is larger, but problems become harder, and,
thus, error increases. For larger €;, the speedup is less
pronounced, but the accuracy is very high.

4.3. Setting ¢; and ¢ in Practice

Although Theorem 1 gives guidance on how to set ¢
and €, to ensure the worst-case guarantees, in practice,
it is possible to be more aggressive. Figure 5 demon-
strates the nature of the solution as €; and ¢ vary. We
plot the optimal solution sorted by magnitude, as well
as our approximate solution sorted in the same order

as the optimal—that is, x; and x(¢); appear on the same
vertical line for the same j. First, we observe the effects
of varying €. In Figure 5, (a) and (c), we experiment
with setting € = 0 and find that the solution produced
is infeasible. However, in Figure 5, (b) and (d), we
increase €f and find a feasible solution. Visually, when
comparing Figure 5, (a) and (b), we can see that our sol-
ution shifts downward in Figure 5(b), which makes
sense; a solution with smaller values is more likely to
be feasible in a packing maximization problem. Sec-
ondly, we observe the effects of varying €,. When com-
paring Figure 5, (b) and (d), we demonstrate that
increasing €; causes the approximate solution to
tighten around the optimal; a larger sample size allows
for a closer-to-optimal solution.

4.4. Comparison with the Online Algorithm of
Agrawal et al. (2014)

Our framework extends the work of Agrawal et al.
(2014) in three main ways: (i) We extend the results to
convex programs; (ii) we allow approximate solvers;
and (iii) we leverage the offline nature of our problem
to introduce another parameter, €, and fine-tune it. In
this section, we illustrate the advantages of the third
point by comparing our algorithm with that of the
algorithm of Agrawal et al. (2014) adapted to the offline
setting.

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

11

Figure 4. (Color online) The Relative Error and Run-Time Ratios as the Sample Size, €;, Varies, Where We Fixn =5 x 10°,

m =100
()
;520 50 .
‘515 40
; 2
x g5 10

1074 103 1072

/

Relative Error (%)
I
= N
ul o
Runtime Ratio

=
o

2

1074 1073 107
&s

Notes. In (a) and (b), f;(x;) = ¢jlog (x}), and in (c) and (d), fi(x}) = cfx}/z. (@p

The algorithm of Agrawal et al. (2014) can be sum-
marized as follows: Observe s columns of A: aq,...,4s,
and set x; =---=x;=0. Set the remaining variables
sequentially, as follows. For t € {s +1,...,n}, if there is
some i€ [m] such that a;x; + 2]?;% a;x; > b, set x; = 0;
otherwise, set xt(qbs) according to Allocation Rule (12).
We adapt this algorithm to the offline setting by allow-
ing it tosetxy,...,x; according to the above rule as well
and denote the modified algorithm by ors. We use a
similar experimental setup to that of Section 4.1, with
m=10%n=10° and p =0.4, and the element of the vec-
tor b is fixed as 0.05n. The vector c is drawn i.i.d. from
the exponential distribution with mean 10. We fine-
tune ¢ using binary search.

Figure 6(a) shows the ratio of the solution output by
our algorithm and that of oLs, where €, is varied
between 0.01 and 0.2. We can see that when ¢ ~ 0.07,
oLs performs almost as well as ours, but its perform-
ance degrades as €, increases or decreases. This is due
to the inherent trade-off in the choice of €;: When ¢ is
small, there is an increased probability that the result-
ing solution will be infeasible if all of the primal varia-
bles are assigned according to the Allocation Rule (12).
If this is the case, many of the primal variables are set
to zero, which adversely affects the solution (especially

(b)

Relative Error (%)
Runtime Ratio

)
?4 A 50
e o
23 \ 40§
Ll (0]
30
22 “\‘\‘ £
5 205
3 &
<l 10
104 103 102
£

=04.(b)p=08.(c)p=04.(d)p=08.

if their coefficient in the objective function is large).
Figure 6(b) validates this observation. We can see that
as €, decreases, a larger percentage of the primal varia-
bles are not assigned due to constraint violations. When
€ is large, there is more slack in the constraints of the
sample LP, which, again, leads to inefficiencies. In this
case, an insufficient number of primal variables are
assigned a positive value. The ability to fine-tune the
value of € allows us to maintain a high solution quality
for alarge range of €;.

We note that these results are not a criticism of the
algorithm of Agrawal et al. (2014). That algorithm was
designed for the online case, and the parameters used
in our simulations do not necessarily satisfy their
requirements. We include this comparison in order to
illustrate the advantages afforded by our framework,
which applies to the offline setting, rather than the
online setting studied by Agrawal et al. (2014).

4.5. The Benefits of Cloning

Speculative execution is an important tool that parallel
analytics frameworks use to combat the impact of
stragglers. Our acceleration framework can implement
speculative execution seamlessly by running multiple
clones (samples) in parallel and choosing the ones that

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

12

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

Figure 5. (Color online) Illustration of How the Optimal Solution x* and our Approximate x(qg) Solution Differ

1.0
0.8
0.6

olution

n 0.4

Xj

0.2

0.01

0 200 400 600
Indices of sorted x*

(©)

olution

wn

Xj

0 200 400 600
Indices of sorted x*

1.0
0.8
0.6

olution

n 0.4

Xj

0.2

0.01

0 200 400 600
Indices of sorted x*

(d)

1.04
0.8
0.6

olution

n 0.4

Xj

0.2

0.0

0 200 400 600
Indices of sorted x*

Notes. In particular, increasing ¢ affects the feasibility of our solution: Comparing (a) and (b), as € is increased, the approximate solution x((ﬁ)
shifts downward; in (a), the approximate solution is infeasible, but setting ¢; = 0.1 produces a feasible x(¢). Here, m=100 and n = 600 and
fi(xp) = cjlog (x)). (a) s =0, & = 0.5. (b) € = 0.1, €, = 0.5. (c) ¢ = 0, €, = 0.8. (d) &5 = 0.05, €, = 0.8.

finish the quickest. We illustrate the benefits associated
with cloning in Figure 7. This figure shows the percent-
age gain in relative error and speedup associated with
using different numbers of clones. In these experi-
ments, we consider LPs generated as described in Sec-
tion 4.1.1. We fix € =0.002 and p = 0.8. We vary the
number of clones run, and the accelerator outputs a
solution after the fastest four clones have finished.
Note that the first four clones do not impact the

speedup as long as they can be run in parallel. How-
ever, for larger numbers of clones, our experiments
provide a conservative estimate of the value of cloning
because our server only has eight cores. The improve-
ments would be larger than shown in Figure 7 in a sys-
tem with more parallelism. Despite this conservative
comparison, the improvements illustrated in Figure 7
are dramatic. Cloning reduces the relative error of the
solution by 12% and triples the speedup. Note that

Figure 6. (Color online) Comparison with the Algorithm of Agrawal et al. (2014) for €, € [0.01,0.2]

(a)

0.95

Ratio of Solution

0 0.1 0.2

s

(b)
10

% Unallocated
(4]

0 0.1 0.2

S

Notes. (a) Ratio of the value of our solution and that of the algorithm of Agrawal et al. (2014). (b) Percent of primal variables whose allocation

would violate a constraint in ors.

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

13

Figure 7. (Color online) Illustration of the Impact of Cloning on Solution Quality as the Number of Clones Grows

(a)

—_ —
o a1

[¢)]

Relative Error Gain(%)

(@)

o

20 40
Number of Clones

Notes. (a) Relative error. (b) Speedup.

these improvements are significant, even though the
solver we are accelerating is not a parallel solver.

4.6. Case Study: California Road Network
Data Set

To illustrate the performance in a specific practical set-
ting, we consider an example focused on optimal
resource allocation in a network. We consider an LP
that represents a multiconstraint knapsack problem
associated with placing resources at intersections in a
city transportation network. For example, we can place
medical testing facilities, advertisements, or emer-
gency supplies at intersections in order to maximize
social welfare, but such that there never is a particu-
larly high concentration of resources in any area.

Specifically, we consider a subset of the California
road network data set (Leskovec and Krevl 2014), con-
sisting of 100,000 connected traffic intersections. We
consider only a subset of a total of 1,965,206 intersec-
tions because Gurobi is unable to handle such a large
data set when run on a laptop with Intel Core i5 CPU
and eight GB of RAM. We choose 1,000 of the 100,000
intersections uniformly at random and defined for
each of them a local vicinity of 20,000 neighboring
intersections, allowing overlap between the vicinities.

(b)

80 .
S60
©
(0]
()
&40

2% 20 40

Number of Clones

The goal is to place resources strategically at intersec-
tions, such that the allocation is not too dense within
each local vicinity. Each intersection is associated with
a binary variable, which represents a yes or no decision
to place resources there. Resources are constrained
such that the sum of the number of resource units
placed in each local vicinity does not exceed 10,000.

Thus, the data set is as follows. Each element Aij in the
data matrix is a binary value representing whether the i-
th intersection is part of the j-th local vicinity. There are
1,000 local vicinities and 100,000 intersections; hence, A
is a (1,000 x 100,000) matrix. Within each local vicinity,
there are no more than bj =10, 000 resource units.

The placement of resources at particular locations
has an associated utility, which is a quantifier of how
beneficial it is to place resources at various locations. For
example, the benefit of placing medical test supplies,
advertisements, or emergency supplies at certain locations
may be proportional to the population of the surrounding
area. In this problem, we randomly draw the utilities from
Unif[1, 10]. The objective value is the sum of the utilities at
whose associated nodes resources are placed.

Figure 8 demonstrates the relative error and run
time of the accelerator compared with Gurobi, as we
vary the sample size €,. There is a speedup by a factor

Figure 8. (Color online) Illustration of the Relative Error and Run Time Across Sample Sizes, €, for the Real Data Experiment

on the California Road Network Data Set

(a)
15

2

S 10

i

(O]

25

K

(O]

o

% 0.05 0.1

€

S

Notes. (a) Relative error. (b) Run time.

(b)

150 L
9C =3¢ = D6 = D= 3= = 96 = = N =3¢ =
(2]

100

% Gurobi
=k=Accelator

50

0 Mb

0 0.05 0.1
€s

Runtime

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

14

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

of more than 30 when the approximation ratio is 0.9 or
a speedup by a factor of about nine when the approxi-
mation ratio is 0.95.

5. Proofs

In this section, we present a proof of Theorem 1. The
proof approach has two main steps: (1) show that the
solution provided by Algorithm 1 is feasible with high
probability (Lemma 5); and (2) show that the value of
the solution is sufficiently close to optimal with high
probability (Lemma 7). First, we present some prelimi-
nary results.

5.1. Preliminary Results

We make use of the following concentration bound—
for example, as found in van der Vaart and Wellner
(1996).

Theorem 2 (Hoeffding-Bernstein Inequality). Let uq,us
., us be random samples without replacement from the
real numbers ry,...,1r,, where r;€[0,1]. For t>0, Pr

[|Z] (U I 11’]|>t‘]<2exp(2 2+t) where o* :12

(rj - 27 /n)2'

Throughout this section, we use the following
definition.

Definition 1. Denote the solution produced by Algo-
rithm 1 by x(qb) € R", the solution to the Sample Prob-
lem (7) by x° € R®, and the dual sample solutions by
¢° € R™ and y° € R°. Let the algorithm A being accel-
erated be a (1,a,)-approximation algorithm. Define a
sample S C[n], |S| =¢esn. Let S be the set of all sam-
ples, and N = [n]. Define events, associated with each
constraint i € [m],

{563 Za,]

j€s A4

(1 €f)€5 }

Ei= {s €8 X ay¢) < (1- ef)esbf}

j€S

Pl = {S esS: Zaijx]-(qbs) < bl}
jeN
For brevity, we drop S from our notation hereafter.
The following claim describes the relation between
the sample solution x° to Problem (7) and the solution
x(¢°) produced by Algorithm 1.

We restate the dual complementary slackness con-
dition as it applies to our setting:

o Dual Approximate Complementary Slackness: For az > 1
and i€ [m], if ¢,>0, then b;/a; < Z}Ll a;x; < b;; for
je[n], if 1,0], >0,then1/ay <x;<1.

Claim 1. Let x° be the sample solution to (7) and x(qbs)
be the approximate solution to (1). If Algorithm A is a

(1,a4)-approximate solver, then a,x? Zx,-((j)s) for all
jels]

Proof. Recall that in the Allocation Rule (10), we set
x/(¢°) based on the optimality conditions of the sam-
ple problem. Specifically, we consider (6), repro-
duced below,

) =ao" + 7 Viels), 1

and the value of 7 to motivate the two branches of the
General Allocation Rule (10) and its special cases, (11)
and (12). Consider the following cases.

o 1,0]5 > 0: Evaluating (15), we see that f/(x?) > af o°.
This is the condition in the first branch of each of the
allocation rules, in which we set x;(¢°) = 1. The approx-
imate complementary slackness conditions imply that
oz,;lx]S > 1. Recalling that ay > 1, we see that adx]-s > x(qbS).
Note also that in the case of an exact solver (ay = 1), the
exact complementary slackness conditions 1/1] (1- xs)=
0 imply thatx =1,and so x =x/(¢°)=1.

. gb] =0: Evaluatmg (15) we see that f/(x7) = achps ,
which corresponds to the second branch of the Alloca-
tion Rules (10), (11), and (12), which differ. Consider
the following cases.

Case 1 (Concave f/ Noninvertible). As described in the
General Allocation Rule (10), we set x](qb) equal to
the smallest value that satisfies f] (xs) —aT¢ Thus,

x >x](¢).

Case 2 (Strictly Concave). The sample solution and the
result of the Strictly Concave Allocation Rule (11) are
equal: x? = xi(¢°) :f]."l(a].T(pS).

Case 3 (Linear). The Linear Allocation Rule (12) sets
x{(¢°) = 0, and so x> x(¢°). O

The following lemma relates the sample solution x°

to the solution x(¢°) produced by Algorithm 1.
Lemma 1. Let D; and E; be as in Definition 1. For all
ie[m], D; CE;.

Proof. We show that S € D; — S € E;. For any S € D;, it
holds that

Za,]x](¢)) < Z adu,]x < ad(€f)€s

j€s j€S

bi = (1-¢p)eshi,

implying that S € E;. The first inequality is due to Claim
1, and the second inequality is due to the definition of
D, O

Finally, the following lemma will be used in the fea-
sibility argument.

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

15

Lemma 2. For all constraints i € [m],

Pr[D; NF;] <Pr[E;NF;]

<Pr

Z llz‘jxj(fPS) - GsZ aijxj(¢s)

jes jeN

> Gfesbil.

Proof. The first inequality is immediate from Lemma
1. We evaluate Pr[E; N F;]:

Pr [E, N F_i] =Pr Zﬂinj((PS) < (1 - €f)€5b,' N Zﬂ{ij((Ps) > b,‘
jes jeN
<Pr ESZ aijxj((f)s) - Z aijxj(¢5) > Efesbj
jeN j€s
<Pr|>] aijxj(qbs) = aijxj(¢s) > epeshy|. O
jeN

j€s

5.2. Quantizing the Solution Space

We bound the number of possible solutions x(¢°).
Naively, it may seem that there are an infinite number
of possible solutions, as x; € [0,1]. However, we can
bound the number of possible solutions by considering
classes of dual variables that result in approximately
equivalent primal realizations xj(¢5). We discretize the
primal solution space, [0,1], with a grid size of g, and
define the following:

Definition 2. Consider a discretization of the primal
solution space [0,1], with grid size g <1. Denote the
value of f/ evaluated at discrete values as T; = {]3’(0+),

F@), - f/GL1/aly UL A0},

Definition 3. Consider two dual solutions ¢!, €
RY to Problem (7). Discretize the primal solution
space as in Definition 2. Let G;={(a;,&)[£ € T;} and
G = U;G;. We say ¢ and ¢ are in the same equiva-
lence class and write ¢°' ~ ¢°2 when:

Vi, V(a,&) €Gyral o 2 Eal T 2 E (16

We show that two dual variables in the same equiva-
lence class, when applied to the Allocation Rule (10),
result in two primal solutions, which are element-
wise within a distance of g from each other.

Lemma 3. Consider two dual variables in the same equiva-
lence class. The corresponding primal solutions satisfy

() — x;(¢°)| < q for all j € [n].

Proof. Suppose that the interval [0,1] is discretized
with a grid size of g, as in Definition 2. Consider two
dual variables in the same equivalence class as speci-
fied in Definition 3. Equation (16) and the Allocation
Rule (10) together imply that if ¢p°' ~ $*2, then one of
the following cases occurs:

e When ade)S‘ <f/(17) and a]-Tq)SZ <f{(17), then
(™) =x(p™) =1,

o sWhen ngqZ)Sl >f/(0%) and a]-TcpS2 >£/(07), then
xi(p™) = xi(¢>*) =0,

e When f/(17) <al¢* <f/(0%) and f/(17) <al > <
£(07), then [x(¢") = x,(¢™)| < g.

o Thus, in general, |xj(¢51) - xj(¢52)| <gforallj. O

We employ a classical result of combinatorial geom-
etry (Orlik and Terao 1992) to bound the number of
possible primal solutions.

Lemma 4. There are at most (n(l +%))m possible primal
solutions x(¢°).

Proof. We employ a classical result of combinatorial
geometry (Orlik and Terao 1992). This result says that,
given k points in m-dimensional space, the number of
possible separations, or regions, created by an m-
dimensional plane is k.

We characterize each primal solution by a separa-
tion of k points in an m-dimensional plane by a hyper-
plane. In this context, each point corresponds to a
value that the primal solution can take on. The num-
ber of values that the primal solution x;(¢°) can take
on is described by the size of the set T}, as defined in
Definition 2. Thus, k = X, T

In the linear case, note that |T;| =1, Vj; thus, k = n.
However, in general, the size of set T; is determined
by the number of quantized values on the [0, 1] inter-
val, which is dependent on the grid size 4. Recalling

Definition 2, |T;| < (1 +%), Vj. There are n such sets,

and so k < n(l +%)
Applying Orlik and Terao (1992), we find that the

number of possible primal solutions is equal to the
maximum number of regions created by the hyper-

plane, which is at most (n(l + %))m |

5.3. Feasibility

Now ,we turn to the feasibility portion of the proof; we
show that the solution provided by Algorithm 1 is fea-
sible with high probability.

Lemma 5. Let A be a (1,a,)-approximation algorithm for
packing problems of the Form (1) or (2), ag > 1. For any
€s,€r > 0, if the Condition (13) on B holds, then the solution

Algorithm 1 produces is feasible with probability at least
1-—2e.

Proof. We bound the probability that for a given
sample S, the sample solution x° is feasible for the
Sample Problem (7), whereas there is some constraint
i for which the complete solution x(¢°) is infeasible
in the original Problem (1). Recall the events de-
fined in Definition 1. Our goal is to bound Pr[D; N F;).
First, we relate the sample solution x° to x(¢p°). By
Lemma 2, Pr[D; N F;] <Pr[E; N F]. Suppose that the

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

16

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

primal solution space [0,1] is discretized with a grid
size of q. Let g = m Consider two equivalent dual
variables, qbsl and qbsz, as defined in Def1n1t1on 3.

Applying Lemma 3, the inequality g < 4—, and recall-
ing that a;; € [0,1], we find:

< Z q < €snq < €serb; /4,
j€s

D a (@) = DS apxi(¢™)

j€s jes

17)

Z aijX; (qbsl) — Z aijX; ((PSZ)

jEN

<> q<ng<ebi/4 (18)

jEN

Now, for each equivalence class C of dual variables,
and for each constraint i, we bound the probability of
Pr[E;nF;n{$° € C}l.

In Line (19), we consider any dual variable ¢° € C in
a fixed equivalence class. In Line (20), we fix a particu-
lar dual variable ®° within the equivalence class C.
Thus, ®° is not a random variable, and so xj((I)C) is
deterministic. This allows us to apply the Hoeffding-
Bernstein Inequality (Theorem 2) in the next Line (21),
where the randomness present is due only to the
choice of samples, indexed by j.

Pr[E;NF;n{¢° €C}]

<Pr Za,-]-x]-(cps) —€) ayxi(°)| > eresh; N {¢° € CY|,

Ll jes jeN
(19)
<Pr||>]ayx (@) — €5 > ayx; (@) > i ll (20)
LI jes jeN
[Sbl
< Pr Zaljx]((b) ES Zaz]x] (DC) Efe ’ (21)
LI jes jeN
212
< Zexp _L
- 2esb; + €pesb;/2
) ej%esbi) e}esbi "
= — < -
P T8u2g | TP TR @)

where Line (19) is due to Lemma 2. Inequality (20)
holds due to the fact that if

Zaz]x]((P)= 652511]99((?)

j€s

> €7€sb; and(p eC, (23)

then

Z aijxj(CI)C) - GSZ ai]-xj((I)C)

jes jeN
Za’]x](¢) - ESZaUx]((I)C) f sbi by (17)
j€s jeN

Zaz]x](ﬂb)— ESZHIJXJ((P)| - f b by (18)

jes jEN
sb i

> % by (23).
In Line (22), we apply the Hoeffding-Bernstein Inequal-
ity (Theorem 2). To complete the proof, we take a union
bound over all possible primal solutions and the values
i of the m constraints. The number of possible primal sol-

utions is described in Lemma 4. Setting g > Zf—,bf, we find,

" 2
4n efesbi
Z(n(efbi)) exp (— 3), (24)
desesn \\" €?€sbi 2€;

In (24), b; appears twice. The assumption on B (13)
implies that b; >"ﬂ§+5€(m. Thus, (25) follows by first
f s

applying this weaker assumption on b; and then the
stronger Assumption (13). Finally, we take a union
bound over all constraints: P(U”,(D; N F;)) Sm%z
2e,. O

5.4. Optimality

The following lemma describes the relation between
the approximate solution x(¢»°) and the approximation
of the primal objective function.

Lemma 6. Given the dual solution (¢°,y°) to the Sample
Problem (7), if the solution produced by Algorithm 1,
% =x(¢%), satisfies the dual approximate complementary
slackness conditions for r < 1:

Vi ¢7>0=rb < (AR), <b;, (26)
Vi ¢l >0=r<#<1, (27)

then % is an r-approximation of the optimal primal solution
x* Original Problem (1).

Proof. Consider any approximate solution (£,$°,1°)
that satisfies the approximate complementary slack-
ness conditions, as stated in (26) and (27).

Recall that (5) motivates the Allocation (10). Thus,
(6) and (10) imply that f/(%;) > a/¢°, Vj € [n]. Taking
into account the concavity of the objective function
and the assumption that £;(0) =0 for all j, we derive
the following;:

Vi fi(®) 2 % (%) = %ja] ¢°. (28)
Recall that the dual to the Sample Problem (7) is:

minimize b'¢ -]:Zlf]*(af(p + 1/)]) +17y,

R, ek,

where fj*(v) = infyer, vx — fj(x;) is the concave conjugate

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

17

function. Thus,

St +u)) =%t -). @9
j=1 =1

So, the dual objective is,
D(¢°):= Db — D f7(a] ¢° +y7) + 17y°
i=1 =1
1 A n . T
< DA = D f @] ¢ + 97) + p° R
i=1 =1
1 sT N ST N ST ~ n N ST ~
2;(;1) AR — ¢ AZ > £+ D filk) + P> £
=1
1 sT A L A
= ;—1 > A%+ D fi(%)).
=1

The second line above follows from (26) and (27) and
the third from (29). Thus, by (28), the primal objective is,

P(£):= Z fi(#) = 0% A%,
t=1

which implies D((PS) < %73(3?), which, in turn, implies
P(x) <1iP(x). D

Next, we make a mild technical assumption.

Assumption 1. For any dual solution ¢°, there are at
most m columns a; of A such that a]-Tqbs =£; (x)).

Assumption 1 does not always hold; however, it can
be enforced by perturbing each f; by a small amount at
random—for example, as described by Devanur and
Hayes (2009) and Agrawal et al. (2014).

Claim 2. Let x° and ¢° be solutions to the Sample
Problem (7). Then, {xj((ps)}jers) and {Jc]S }ets) differ on at
most m values of j.

Proof. When f;(x) is strictly concave, or, equivalently,
f] (x) is invertible, by Allocation Rule (11), the solu-
tions are trivially equivalent x;(¢°) = x]S forallj € [s].

For instances in which f;(x) has piece-wise linear
components, then f]-’(x) may be noninvertible. In such
cases, as described in the General Allocation Rule (10),
we set xj(qbs) to be the smallest element such that
fi() >al¢°. Thus, the resulting function, which we
denote fj”l, may have discontinuity points.

When af ¢° falls on a discontinuity point of £/, it is
possible that x7 # x;(¢°). Here, f'~ (x) is a nonincreasing
function, and, thus, we can apply Froda’s Theorem,
which describes the set of discontinuities of a monotone
real valued function. The set of discontinuities is count-
able and is thus of Lebesgue measure zero.

By Assumption 1, there are at most m values of j for
which a].Tng = fj’ (xj). If f}’ is noninvertible in these

instances, then, by the above reasoning, we choose m
values from a countable set of discontinuity pomts
Therefore, there are at most m cases in which aTqb

falls on a discontinuity point, which 1mphes that there
are at most m values of j for which x * x](qb). O

Now, we show that the solution is approximately
optimal with high probability.

Lemma 7. Let A be a (1,a,)-approximation algorithm
for packing problems of the Form (1) or Linear (2), ag > 1.
For any e, e >0, if the Condition (13) on B holds,
then the solution Algorithm 1 produces is a (1-3ef)/
a3-approximation with probability at least 1 — 2¢;.

Proof. To show that the solution is approximately opti-
mal, we bound the probability that for a given sample,
the sample solution x° causes constraints i in the sample
problem to be nearly tight, whereas the complete solu-
tion x(¢p°) does not cause those constraints to be nearly
tight in the original problem. Define events,

(1-2¢r)e
M,'={SES:Zaijxf2%bi

jes d
1-3
Se8: > a(¢%) < —Lb; .
jeEN d

We want to bound Pr[M; N N;]. When (j)l.s >0, the ap-
proximate dual complementary slackness condition as-
sociated with the i-th primal constraint of Problem (7) is:

1—¢€f)es
> al-jxjs > # b;.
jes o
This allows us to bound jesaijxj(gbs) as follows.

D aip(¢°) = D ay —m = a- 2€f)es

j€s j€s ad

bi,

where the first inequality follows from Claim 2, and
the second follows from the fact that B > "iad
We discretize the values that the primal solution

can take, as done in the feasibility argument in

an’l]n b,

Lemma 5. However, we now let g = . Consider

two dual variables ¢°' and ¢* in the same equiva-
lence class, as defined in Definition 3. Similarly to
Inequalities (17) and (18), we apply Lemma 3 to get

€ b
Zal}x](¢ - Zaux](fp <D q<eng < —— f
j€s jes
(30)
Za,]x](cp) — Zal]x](cpSZ) <>lq<ng < 2= (31
jEN jEN jEN

For each equivalence class C of dual variables, and for
each constraint i, we derive the following bound on

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

18

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

the probability of Pr[M; N N; N {¢$ € C}]. We employ
the same approach used in the analogous argument
in the feasibility proof of Lemma 5, Equations (19) and
(20), where we fix a particular dual variable ®¢ within
the equivalence class C. We bound

Z “U

1-2 S
Pr ef)e

bi N> agxi(®)< fefbin{qbec}

jes d jeN
1—2¢r)e 1-3¢

<Pr Zaijx/-(q)c) > %bz N Za,-]»x]-((I)C) < 5 f b;

jes X jeN ay
<Pr Zaqx] q)c) E Za,]x] (DC) i

jes jEN d

(—:J%esb,-
L2expl-z5———|
Sad + Zadef

Now, take a, close to one. Concretely, we assume 10 >

8a2 + 2a4¢7. We apply Lemma 4 for g = < b and find:

dnoy

m 2
4n €f€sbi
2((1+?)) exp(— 0)
deresn \\" €f2€sbi 2¢;
< Z(n(l + (n))) exp (— M < o

mlog(n)

ej% €y

where the last line follows first because b; > ,and

then because of the assumption made on B (13). Taking
the union bound over values of i, we find that
P(U™,(M; N N;)) < 2¢;. Finally, consider Lemma 6, for

=1 ;ff . It follows that if x* is an optimal solution to £,
d

1- 3€f

then with probability at least 1—2e;, P(x(¢°)) >
P(x*). O

Finally, the proof of Theorem 1 follows from the
above results.

Proof of Theorem 1. The solution generated by the
allocation rule is feasible due to Lemma 5. The guar-
antee of a (1—ef)/a3-approximation of the optimal
solution follows from Lemma 7. For simplicity, we
state the result of Lemma 7 with a rescaling of €7 by
1/3. Concerning the run time, A is executed on a
problem with e;n variables, and so it takes that frac-
tion of the original run time. Then, the second step of
the algorithm is 7 simple computations of f;~!(a] ¢°)
forallje[n]. O

6. Conclusion

In this paper, we propose a framework for accelerating
exact and approximate convex programming solvers for
packing linear programming problems and a family
of convex programming problems with linear con-
straints. Analytically, we provide worst-case guarantees
on the run time and the quality of the solution produced.

Numerically, we demonstrate that our framework speeds
up Gurobi and SCS by two orders of magnitude, while
maintaining a near-optimal solution.

Our framework works by subsampling columns of
the data matrix and then defining a smaller sample
problem defined on that subsampled matrix. We solve
the dual of the sample problem using any given convex
program solver in a black-box fashion. Finally, we set
the values of the original primal variables based on the
approximate dual solution of the sample problem.

Possible future areas of research include the follow-
ing. In numerical experiments, we find that our algo-
rithm can handle a larger family of problems than
suggested by our theoretical bounds on B. Understand-
ing this gap and improving the analysis is an area of
interest. Additionally, our analysis relies partly on the
fact that we are concerned with packing problems in
this paper. It would be interesting to see what type of
techniques are useful for more general problems.

Acknowledgments

The authors acknowledge Hanling Yi for work on the sim-
ulation study presented in Section 4.1, as well as Caltech
undergraduates Irene Shen Wang and Maya Josyula for
work on the simulation study presented in Section 4.2.
This work was done in part while P. London was visiting
Purdue University and while R. Eghbali was visiting the
Simons Institute for the Theory of Computing.

References

Agrawal A, Klein P, Ravi R (1995) When trees collide: An approxi-
mation algorithm for the generalized Steiner problem on net-
works. SIAM |. Comput. 24(3):440-456.

Agrawal S, Devanur NR (2015) Fast algorithms for online stochastic
convex programming. SODA’15 Proc. 26th Annu. ACM-SIAM
Sympos. Discrete Algorithms (Society for Industrial and Applied
Mathematics, Philadelphia), 1405-1424.

Agrawal S, Wang Z, Ye Y (2014) A dynamic near-optimal algorithm
for online linear programming. Oper. Res. 62(4):876-890.

Allen-Zhu Z, Orecchia L (2015) Using optimization to break the epsi-
lon barrier: A faster and simpler width-independent algorithm
for solving positive linear programs in parallel. SODA’15 Proc.
26th Annu. ACM-SIAM Sympos. Discrete Algorithms (Society for
Industrial and Applied Mathematics, Philadelphia), 1439-1456.

Andersen ED, Andersen KD (2000) The Mosek interior point opti-
mizer for linear programming: An implementation of the
homogeneous algorithm. Frenk H, Roos K, Terlaky T, Zhang S,
eds. High Performance Optimization, Applied Optimization, vol. 33
(Springer US, Boston), 197-232.

Balakrishnan A, Magnanti TL, Wong RT (1989) A dual-ascent proce-
dure for large-scale uncapacitated network design. Oper. Res.
37(5):716-740.

Bar-Yehuda R, Even S (1981) A linear-time approximation algorithm
for the weighted vertex cover problem. J. Algorithms 2(2):198-203.

Barnhart C, Cohn A, Johnson E, Klabjan D, Nemhauser G, Vance P
(2002) Airline crew scheduling. Hall RW, ed. Handbook in Trans-
portation Science, International Series in Operations Research &
Management Science, vol. 56 (Springer, Boston), 517-560.

Barnhart C, Johnson EL, Nemhauser GL, Savelsberg MWP, Vance P
(2000) Branch-and-price: Column generation for solving huge
integer programs. Oper. Res. 48(3):318-326.

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

19

Bartal Y, Byers JW, Raz D (2004) Fast distributed approximation
algorithms for positive linear programming with applications
to flow control. SIAM]. Comput. 33(6):1261-1279.

Bertsimas D, Vohra R (1998) Rounding algorithms for covering
problems. Math. Program. 80(1):63-89.

Borsos Z, Mutny M, Krause A (2020) Coresets via bilevel optimiza-
tion for continual learning and streaming. Adv. Neural Inform.
Processing Systems 33:34.

Borsos Z, Mutny M, Tagliasacchi M, Krause A (2021) Data summari-
zation via bilevel optimization. Preprint, submitted September
26, https://arxiv.org/abs/2109.12534.

Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge
University Press, Cambridge, UK).

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed
optimization and statistical learning via the alternating direc-
tion method of multipliers. Foundations Trends Machine Learning
3(1):1-122.

Buchbinder N, Naor] (2009) The design of competitive online algo-
rithms via a primal-dual approach. Foundations Trends Theor.
Comput. Sci. 3(2-3):93-263.

Byers], Nasser G (2000) Utility-based decision-making in wireless
sensor networks. First Annu. Workshop Mobile Ad Hoc Network-
ing Comput. Mobihoc (IEEE, Piscataway, NJ), 143-144.

Cevher V, Becker S, Schmidt M (2014) Convex optimization for big
data: Scalable, randomized, and parallel algorithms for big data
analytics. IEEE Signal Processing Magazine 31(5):32—-43.

Chi Y, Lu YM, Chen Y (2019) Nonconvex optimization meets low-
rank matrix factorization: An overview. IEEE Trans. Signal Proc-
essing 67(20):5239-5269.

Chowdhury A, London P, Avron H, Drineas P (2020) Faster random-
ized infeasible interior point methods for tall/wide linear pro-
grams. Adv. Neural Inform. Processing Systems 33:8704-8715.

Desaulniers G, Desrosiers J, Solomon M (2005) Column Generation
(Springer, New York).

Devanur NR, Hayes TP (2009) The adwords problem: Online keyword
matching with budgeted bidders under random permutations.
EC’09 Proc. 10th ACM Conf. Electronic Commerce (Association for
Computing Machinery, New York), 71-78.

Diamond S, Boyd S (2016) CVXPY: A Python-embedded modeling lan-
guage for convex optimization. . Machine Learning Res. 17(83):1-5.

Domahidi A, Chu E, Boyd S (2013) ECOS: An SOCP solver for
embedded systems. 2013 Eur. Control Conf. ECC (IEEE, Piscat-
away, NJ), 3071-3076.

Donoho DL (2006) Compressed sensing. IEEE Trans. Inform. Theory
52:1289-1306.

Donoho DL, Tanner] (2005) Sparse nonnegative solution of under-
determined linear equations by linear programming. Proc. Natl.
Acad. Sci. USA 102(27):9446-9451.

Erlenkotter D (1978) A dual-based procedure for uncapacitated
facility location. Oper. Res. 26(6):992-1009.

Esser E, Zhang X, Chan T (2010) A general framework for a class of
first order primal-dual algorithms for convex optimization in
imaging science. SIAM J. Imaging Sci. 3(4):1015-1046.

Gabay D, Mercier B (1976) A dual algorithm for the solution of non-
linear variational problems via finite element approximations.
Comput. Math. Appl. 2(1):17-40.

Gilmore P, Gomory R (1963) A linear programming approach to the
cutting-stock problem. Oper. Res. 11(6):863-888.

Goemans MX, Williamson DP (1995) A general approximation tech-
nique for constrained forest problems. SIAM |. Comput. 24(2):
296-317.

Gopalakrishnan B, Johnson E (2005) Airline crew scheduling: State-
of-the-art. Ann. Oper. Res. 140:305-337.

Gupta A, Molinaro M (2016) How the experts algorithm can help
solve LPs online. Math. Oper. Res. 41(4):1404-1431.

Ho-Nguyen N, Kilinc-Karzan F (2018) Online first-order framework
for robust convex optimization. Oper. Res. 66(6):1670-1692.

Jalali A (2020) Persistent reductions in regularized loss minimization
for variable selection. Preprint, submitted November 30, https://
arxiv.org/abs/2011.14549.

Johansson M, Sternad M (2005) Resource allocation under uncer-
tainty using the maximum entropy principle. IEEE Trans.
Inform. Theory 51(12):4103—-4117.

Kesselheim T, Tonnis A, Radke K, Vocking B (2014) Primal beats
dual on online packing LPs in the random-order model.
STOC’14 Proc. 46th Annu. ACM Sympos. Theory Comput. (Associ-
ation for Computing Machinery, New York), 303-312.

Kumar S, Ying J, de Miranda Cardoso JV, Palomar D (2019) Struc-
tured graph learning via Laplacian spectral constraints. Adv. Neural
Inform. Processing Systems 32. https://papers.nips.cc/paper/2019/
hash/90cc440b1b8caa520c562ac4edbbcb51-Abstract.html.

Kyng R, Wang D, Zhang P (2020) Packing LPs are hard to solve
accurately, assuming linear equations are hard. Proc. 14th Annu.
ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial
and Applied Mathematics, Philadelphia), 279-296.

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network
data set collection. Accessed January 20, 2020, http://snap.
stanford.edu/data.

London P, Chen N, Vardi S, Wierman A (2017) Distributed optimi-
zation via local computation algorithms. ACM SIGMETRICS
Performance Evaluation Rev. 45(2):30-32.

London P, Vardi S, Wierman A (2019) Logarithmic communication
for distributed optimization in multi-agent systems. Proc. ACM
Measurement Anal. Comput. Systems 3(3):1-29.

London P, Vardi S, Wierman A, Yi H (2018) A parallelizable acceler-
ation framework for packing linear programs. Mcllraith SA,
Weinberger KQ, eds. AAAI'IS8/IAAI'18/EAAI'1I8 Proc. 32nd
AAAI Conf. Artificial Intelligence 30th Innovative Appl. Artificial
Intelligence Conf. Eighth AAAI Sympos. Ed. Adv. Artificial Intelli-
gence (AAAI Press, Palo Alto, CA), 3706-3713.

Luby M, Nisan N (1993) A parallel approximation algorithm for
positive linear programming. STOC'93 Proc. 25th Annu. ACM
Sympos. Theory Comput. (Association for Computing Machinery,
New York), 448-457.

Mansour Y, Rubinstein A, Vardi S, Xie N (2012) Converting online
algorithms to local computation algorithms. Czumaj A, Mehl-
horn K, Pitts A, Wattenhofer R, eds. ICALP 2012 Automata Lan-
guages Program., Lecture Notes in Computer Science, vol. 7391
(Springer, Berlin), 653-664.

Martino AD, Martino DD (2018) An introduction to the maximum
entropy approach and its application to inference problems in
biology. Heliyon. 4(4): e00596.

Mohan K, London P, Fazel M, Witten D, Lee SI (2014) Node-based
learning of multiple Gaussian graphical models. |. Machine
Learning Res. 15:445-488.

Molinaro M, Ravi R (2013) The geometry of online packing linear
programs. Math. Oper. Res. 39(1):46-59.

Nair V, Bartunov S, Gimeno F, von Glehn I, Lichocki P, Lobov I,
O’Donoghue B, et al (2020) Solving mixed integer programs
using neural networks. Preprint, submitted December 23,
https: //arxiv.org/abs /2012.13349.

Nedi¢ A, Olshevsky A, Rabbat MG (2018) Network topology and
communication-computation tradeoffs in decentralized optimi-
zation. Proc. IEEE 106(5):953-976.

Nemhauser GL (2012) Column generation for linear and inte-
ger programming. Documenta Math. Extra Volume ISMP:
65-73.

Nesterov Y (2005) Smooth minimization of non-smooth functions.
Math. Program. 103(1):127-152.

O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Conic optimization
via operator splitting and homogeneous self-dual embedding. .
Optim. Theory Appl. 169:1042-1068.

Orlik P, Terao H (1992) Arrangements of Hyperplanes, Grundlehren der
Mathematischen Wissenschaften, vol. 300 (Springer-Verlag, Berlin).

https://arxiv.org/abs/2109.12534
https://arxiv.org/abs/2011.14549
https://arxiv.org/abs/2011.14549
https://papers.nips.cc/paper/2019/hash/90cc440b1b8caa520c562ac4e4bbcb51-Abstract.html
https://papers.nips.cc/paper/2019/hash/90cc440b1b8caa520c562ac4e4bbcb51-Abstract.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://arxiv.org/abs/2012.13349

Downloaded from informs.org by [131.215.142.166] on 03 January 2023, at 13:27 . For personal use only, all rights reserved.

20

London et al.: Acceleration of Monotone Convex Program Solvers
Operations Research, Articles in Advance, pp. 1-20, © 2022 INFORMS

Pesnea P, Sadykov R, Vanderbeck F (2012) Feasibility pump heuristics
for column generation approaches. Klasing R, ed. Experimental
Algorithms SEA 2012, Lecture Notes in Computer Science, vol. 7276
(Springer, Berlin), 332-343.

Plotkin SA, Shmoys DB, Tardos E (1995) Fast approximation algo-
rithms for fractional packing and covering problems. Math.
Oper. Res. 20(2):257-301.

Ravikumar P, Agarwal A, Wainwright MJ (2010) Message passing
for graph-structured linear programs: Proximal methods and
rounding schemes. |. Machine Learning Res. 11:1043-1080.

Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank sol-
utions of linear matrix equations via nuclear norm minimiza-
tion. SIAM Rev. 52(3):471-501.

Richert D, Cortés J (2015) Robust distributed linear programming.
IEEE Trans. Automatic Control. 60(10):2567-2582.

Riquelme C, Johari R, Zhang B (2017) Online active linear regression
via thresholding. AAAI'17 Proc. 31st AAAI Conf. Artificial
Intelligence (AAAI Press, Palo Alto, CA), 2506-2512.

Sadykov R, Vanderbeck F (2013) Column generation for extended
formulations. EURO J. Comput. Optim. 1(1-2):81-115.

Sanghavi S, Malioutov D, Willsky AS (2008) Linear programming
analysis of loopy belief propagation for weighted matching.
Platt JC, Koller D, Singer Y, Rowels ST, eds. NIPS'07 Proc. 20th
Internat. Conf. Neural Inform. Processing Systems (Curran Associ-
ates, Red Hook, NY), 1273-1280.

Shi Y, Zhang J, O’'Donoghue B, Letaief KB (2015) Large-scale convex
optimization for dense wireless cooperative networks. IEEE
Trans. Signal Processing 63(18):4729-4743.

Shim Jh, Kong K, Kang SJ (2021) Core-set sampling for efficient neu-
ral architecture search. Proc. of ICML.

Sridhar S, Wright SJ, Ré C, Liu], Bittorf V, Zhang C (2013) An
approximate, efficient LP solver for LP rounding. Burges CJC,
Bottou L, Welling M, Ghahramani Z, Weinberger KQ, eds.
NIPS’13 Proc. 26th Internat. Conf. Neural Inform. Processing Sys-
tems, vol. 2 (Curran Associates, Red Hook, NY), 2895-2903.

Sturm JF (1999) Using Sedumi 1.02, a Matlab toolbox for optimiza-
tion over symmetric cones. Optim. Methods Software 1(1-4):
625-653.

Sun L, Fan Z, Fu X, Huang Y, Ding X, Paisley] (2019) A deep in-
formation sharing network for multi-contrast compressed sensing
MRI reconstruction. IEEE Trans. Image Processing 28(12):6141-6153.

Taskar B, Chatalbashev V, Koller D (2004) Learning associative Mar-
kov networks. ICML'04 Proc. 21st Internat. Conf. Machine Learning
(Association for Computing Machinery, New York), 102-112.

Toh KC, Todd MJ, Tutuncu RH (1999) SDPT3—a MATLAB soft-
ware package for semidefinite programming, version 1.3.
Optim. Methods Software 11(1-4):625-581.

Trevisan L (1998) Parallel approximation algorithms by positive lin-
ear programming. Algorithmica 21(1):72-88.

Tukan M, Maalouf A, Feldman D (2020) Coresets for near-convex
functions. Adv. Neural Inform. Processing Systems 34:997-1009.

van der Vaart A, Wellner] (1996) Weak Convergence and Empirical
Processes with Applications to Statistics, Springer Series in Statis-
tics (Springer-Verlag, New York).

Vera A, Banerjee S (2021) The Bayesian prophet: A low-regret
framework for online decision making. Management Sci. 67(3):
1368-1391.

Woodruff DP (2014) Sketching as a tool for numerical linear algebra.
Foundations Trends Theor. Comput. Sci. 10(1-2):1-157.

Yarmish G, Slyke R (2009) A distributed, scalable simplex method.
J. Supercomputing 49(3):373-381.

Young NE (2001) Sequential and parallel algorithms for mixed pack-
ing and covering. Proc. 42nd IEEE Sympos. Foundations Comput.
Sci. (IEEE, Piscataway, NJ), 538-546.

Zurel E, Nisan N (2001) An efficient approximate allocation algo-
rithm for combinatorial auctions. EC’01 Proc. 3rd ACM Conf.
Electronic Commerce (Association for Computer Machinery,
New York), 125-136.

Palma London received her PhD and MSc in Computer
Science at Caltech. She is currently a postdoctoral researcher
at Cornell. Her research broadly spans convex optimization,
machine learning, and distributed algorithms.

Shai Vardi is an assistant professor of Management Infor-
mation Systems at the Krannert School of Management at
Purdue University. Previously, he was a Linde Postdoctoral
Fellow at SISL at Caltech.

Reza Eghbali is a data science health innovation fellow at
the University of California, San Francisco, and the Univer-
sity of California, Berkeley. He received his PhD in Electrical
Engineering at the University of Washington. His research
interest lies in the intersection of machine learning, neuro-
science, and optimization algorithms.

Adam Wierman is a professor in the Department of Com-
puting and Mathematical Sciences at Caltech. His research
strives to make the networked systems that govern our
world sustainable and resilient. He is best known for his
work on the design of algorithms for sustainable data cen-
ters. He is a recipient of multiple awards, including the
ACM Sigmetrics Rising Star award, the ACM Sigmetrics
Test of Time award, and the IEEE Communications Society
William R. Bennett Prize.

