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Students, instructors, and policy makers are in need of research-based recommendations for supporting students’ motivation
to pursue STEM fields. The present study addressed this need by examining relations between perceived motivational sup-
ports, year-long trajectories of expectancy for success and three task values, and grades among students (N = 1,021) in a
large, gateway engineering course. Results indicated that students with higher motivation at the beginning of the year tended
to perceive their class as more motivationally supportive. Controlling for relations between initial motivation and percep-
tions, perceived instructional supports for mastery goals, autonomy, and competence predicted more positive trajectories of
all three task values. Conversely, higher perceived instructor performance goals negatively predicted grades and the slopes
of self-efficacy and interest value. Results contribute key understanding about the interconnectedness of individual motivation
and climate perceptions, while indicating the importance students place on certain motivationally supportive practices in

promoting students’ STEM motivation trajectories.

Keywords:

MorTivaTiONAL beliefs are essential precursors of achieve-
ment-related behaviors and are particularly important during
postsecondary education, when students are making career
decisions that will shape their future trajectories. However,
competitive climates and difficult coursework in university
science, technology, engineering, and mathematics (STEM)
fields can dampen motivation (Hunter, 2019). Indeed,
declines in motivation (Musu-Gillette et al., 2015; Robinson,
Lee, et al., 2019) and suboptimal retention rates in postsec-
ondary STEM fields (Chen & Soldner, 2013) suggest that
there is a need for greater understanding of how to support
motivation in college.

Fortunately, theory and research indicate that instruc-
tional contexts can support student motivation and thus
boostachievement and retentionin STEM fields (Rosenzweig
& Wigfield, 2016). Theoretically guided field studies exam-
ining mechanisms of motivational change are needed to pro-
vide essential empirical evidence for concrete instructional
design and policymaking recommendations in real-world
STEM classrooms. To this end, we examined longitudinal
trajectories of expectancy for success and three task values
among first-year engineering students, with motivational
climate perceptions as predictors of changes in each
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motivation construct. Because students’ perceptions of the
motivational climate can be quite heterogencous and reflect
their own motivational orientations in addition to contextual
factors (Lam et al., 2015; Schenke et al., 2017), we also
examined students’ baseline motivational beliefs as predic-
tors of their climate perceptions. By so doing, we tested
theoretically integrative principles for supporting key moti-
vational beliefs among students in a formative period for
their developing career goals.

Theoretical Framework

In the situated expectancy-value theory (SEVT), Eccles
and colleagues (1983; Eccles & Wigfield, 2020) posit that
expectancy for success and task value are the most impor-
tant, proximal predictors of achievement and achievement-
related choices. Expectancy for success is a student’s
perception of how successful they will be, whereas task
value reflects students’ reasons for engaging in academic
tasks. Task values are differentiated into multiple compo-
nents: utility value, or students’ appraisal of the usefulness
of the task to their current or future goals; attainment value,
or the importance of the task to students’ identities; and
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interest value, or the inherent enjoyableness of the task. A
fourth aspect of task value, perceived cost, reflects the per-
ceived drawbacks of engaging in the task. There is growing
research on costs, and it represents an important aspect of
SEVT; however, costs were not measured in this study given
our focus on supporting positive aspects of motivation.
Considerable research supports the importance of expec-
tancy and values for predicting academic achievement and
behavior (Wigfield & Eccles, 2020).

Longitudinal research also shows that on average, expec-
tancy and values decline throughout childhood and
adolescence (Benden & Lauermann, 2021; Fredricks &
Eccles, 2002; Jacobs et al., 2002), undergraduate education
(Robinson et al., 2018; Robinson, Lee, et al., 2019), and
even within a single semester (Kosovich et al.,, 2017).
Further, each construct shows somewhat unique develop-
mental patterns and relations to correlates (Gaspard et al.,
2015; Wigfield, 1994), with varying malleability and respon-
siveness to external forces (Gaspard et al., 2018; Wigfield &
Eccles, 1992). Specifically, within engineering, our prior
research has documented average declines in expectancy for
success and all three task values during the first 2 years of
undergraduate studies, the relative stability of attainment
value compared to other forms of motivation, and the impor-
tance of each of these constructs for achievement and reten-
tion outcomes (Robinson, Lee, et al., 2019). The beginning
of college is a key time when the majority of major dropout
occurs (Griffith, 2010); thus, it is imperative to understand
how instructors can support positive trajectories of motiva-
tion, particularly in introductory courses that serve as key
gateways for further academic and career pursuits.

Supporting Motivation Trajectories: An Integrative
Perspective

Theory and research indicate that instructors’ behaviors
in class can support student motivation, and thus boost sub-
sequent achievement and retention in STEM fields. However,
theoretically guided research on longitudinal, motivational
impacts of specific teaching practices is a developing area of
research in need of greater examination (Eccles & Wigfield,
2020; Rosenzweig et al., 2021; Rosenzweig & Wigfield,
2016), particularly in higher education STEM settings.
Indeed, citing promising findings from research on brief,
student-focused interventions, Eccles and Wigfield (2020)
recently highlighted the need for research unpacking the
roles of teachers and classrooms in support students’ expec-
tancies and values.

Drawing on broader social-cognitive and situated mod-
els, Eccles and Wigfield (2020) described the importance of
motivational strategies that crosscut theoretical perspec-
tives. In alignment with recommendations for instructional
practice to support motivation using combined evidence
from multiple theoretical traditions (Pintrich, 2003; Turner

et al., 2014), we focus on three instructional design princi-
ples distilled from the motivation literature by Linnenbrink-
Garcia and her colleagues (2016), each describing how
instructors can optimize opportunities for students to main-
tain high motivation.

Supporting competence. First, as supported by empirical
evidence from a variety of theoretical traditions (e.g., Feng
& Tuan, 2005; Usher & Pajares, 2008), students’ expectan-
cies for success can be supported through “well-designed
instruction, challenging work, and informational and encour-
aging feedback” (Linnenbrink-Garcia et al., 2016, pp. 233—
234; Turner et al., 2014). This principle highlights the
common sociocognitive origins of SEVT and achievement
goal theory, as well as self-determination theory’s proposi-
tion that challenge and capabilities must be in balance for
optimal motivation.

Supporting autonomy. Next, instructors should support
autonomy by giving students opportunities for choice and
self-direction (Linnenbrink-Garcia et al., 2016). This recom-
mendation arises from the role of autonomy as a necessary
condition for intrinsic motivation (similar to interest or
intrinsic value) from self-determination theory and from
achievement goal theory’s proposition that autonomy is a
key ingredient for promoting mastery goals (Ames, 1992;
Bardach, Liiftenegger, et al., 2019) and their correlates. In
addition to providing choice, autonomy-supportive instruc-
tion involves nurturing students’ inner motivational
resources by connecting content with students’ interests,
normalizing emotions, and providing meaningful rationales
that explain why course content is important or useful
(Reeve, 2009). Considerable evidence shows that autonomy-
supportive instruction promotes competence beliefs (Patall,
et al., 2018) and intrinsic motivation (Cheon & Reeve, 2015;
Reeve et al., 2004).

Supporting mastery goals. Lastly, instructors who create
mastery goal structures, or an environment focused on
“learning and understanding and de-emphasiz[ing] perfor-
mance, competition, and social comparison” (Linnenbrink-
Garcia et al., 2016, pp. 233-234), promote the beneficial
effects of mastery goals and minimize the negative effects of
performance goals (Ames, 1992). To situate these constructs
within expectancy-value theory, goals may be characterized
as immediate upstream predictors of expectancies and val-
ues, or part of the “goals and general self-schemata” (Eccles
& Wigfield, 2020) (Figure 1) that comprise the proximal
personal mechanisms shaping expectancies and values for a
particular task (Hulleman et al., 2008; Pintrich, 2003).
Mastery goal structures are associated with a variety of
positive outcomes (Kaplan et al., 2002; Wolters, 2004)
including utility value (K. Lau & Lee, 2008), interest (Church
et al., 2001; S. Lau & Nie, 2008; Murayama & Elliot, 2009),
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and perhaps also expectancies for success (Bardach, Popper,
et al., 2019; Murayama & Elliot, 2009; Wolters, 2004). For
example, Maehr and Midgley (1996; Anderman, 1996)
increased students’ self-efficacy using mastery goal struc-
tures, and a few studies demonstrate links between student-
reported mastery-oriented teaching and student task values
(Lazarides et al., 2018; Schiefele, 2017; Schiefele &
Schaffner, 2015). Conversely, some evidence suggests that a
classroom emphasis on demonstrating competence relative to
others in the class (performance goal structures) can under-
mine expectancies for success (self-efficacy; Urdan et al.,
2002) and task value (De Clercq et al., 2020; Skaalvik et al.,
2017). Indeed, competitive climates in STEM courses are
often cited as a particularly demotivating factor leading to
student attrition (Hunter, 2019).

The Role of Motivational Climate Perceptions

Teaching processes are presumed to shape the develop-
ment of expectancies and values for particular tasks via stu-
dents’ interpretations of these experiences as being relevant
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Hypothesized model, modeled separately for self-efficacy, interest value, attainment value, and utility value (GPA not

to their likelihood of future success, interests, goals, or iden-
tities (e.g., Dicke et al., 2021; Jarveld & Niemivirta, 2001;
Radel et al., 2010). For example, a teacher’s encouragement
to students—"“You can do it!”—might not have motivational
effects for a student who feels this statement does not apply
to them, perhaps due to their low confidence, perceived
external barriers to success, or low value for the task.
Indeed, students’ perceptions of motivational climate
within a course are critical for shaping their subsequent
motivation. In alignment with the social-cognitive origins of
expectancy-value theory, students’ perceptions are consid-
ered to be a product of both personal and contextual factors
that lead to students’ situational construal of a given envi-
ronment (Eccles & Wigfield, 2020; Jarveld & Niemivirta,
2001). Indeed, rather than reflecting objective reports of the
classroom, students’ perceptions of motivational climate
appear to be colored by their personal motivational beliefs
(Schenke et al., 2018). Research suggests that student per-
ceptions of instruction cannot be reliably aggregated at the
classroom level but vary considerably within the same class-
room and might be most accurately considered as
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individual-level constructs (Lam et al., 2015; Miller &
Murdock, 2007). Indeed, oftentimes the classroom accounts
for only a small amount of variance in motivational climate
perceptions (Lam et al., 2015; Meece et al., 2006; Tapola &
Niemivirta, 2008).

Nevertheless, students’ perceptions provide key infor-
mation about how the classroom can shape motivational
trajectories, indicating the functional significance (Schenke
et al., 2018) of instructional attempts to support motivation.
Student perceptions are the lens through which classroom
experiences are filtered (Wallace et al., 2016), providing
vital information about how instructors’ strategies are actu-
ally received by students. Indeed, Eccles and Wigfield
(2020) indicate that students’ interpretations of their experi-
ences may act as the vital explanatory link between instruc-
tor behaviors and students’ motivation trajectories. Prior
research has documented the reliability and predictive
power of students’ perceptions (Urdan, 2004; see Wallace
et al., 2016, p. 1836, for a brief review). For example,
Anderman and Midgley (1997) found that students’ declin-
ing competence beliefs and mastery goals across the transi-
tion to middle school corresponded with perceived increases
in classroom performance goal structures. Roeser and col-
leagues (1996) found that mastery goals in sixth grade posi-
tively predicted mastery goal climate perceptions in eighth
grade and that climate perceptions predicted students’ sub-
sequent achievement goals, belonging, and self-efficacy.
However, aside from these studies, the majority of the
research examining personal motivation in relation to cli-
mate perceptions has used cross-sectional data, and so it is
difficult to disentangle whether personal motivation arose
as a product of the instructional climate, or vice versa.
Students’ perceptions of the motivational climate and their
own personal motivations may in fact be related in a cycli-
cal fashion.

As described above, multiple theoretical perspectives
include hypotheses about classroom factors that shape
motivational development; however, little research has
examined these intersecting hypotheses from a theoreti-
cally integrative and longitudinal perspective. Many stud-
ies assess motivational climate and student outcomes at the
same time point (De Clercq et al., 2020; Lazarides et al.,
2018; Skaalvik et al., 2017), a majority of studies assess
only one or two motivational climate dimensions (e.g.,
mastery goals; Lazarides et al., 2018), and most also take
place within K—12 settings (Lazarides et al., 2018; Skaalvik
etal.,2017; Won et al., 2020). Longitudinal research exam-
ining motivational change in relation to key classroom sup-
ports can shed light on how college STEM students’
motivation trajectories, and thus their broader success in
their chosen field of study, may be shaped by classroom
factors.

Present Study

We examined year-long trajectories of expectancy for suc-
cess and three task values among students initially enrolled in
an introductory, gateway engineering course. Our own
research examining prior cohorts in this setting indicated that
this course, when taken in the first semester rather than in
subsequent semesters, served as a buffer for declines in engi-
neering motivation (Robinson, Lee, et al., 2019). To investi-
gate potential mechanisms of these findings, in the present
study we drew on an integrative theoretical framework of
motivational support to examine how students’ perceptions
of the course motivational climate shaped their broader moti-
vational trajectories and academic success in the domain of
engineering, controlling for the relations between students’
initial motivation and motivational climate perceptions.
Building on prior literature, our aim was to build stronger
evidence articulating the mechanisms of motivational change
processes in real-world classrooms by examining longitudi-
nal changes in motivation as a function of heterogeneous
motivational climate perceptions in a key course.

Our first research question was the following: How do
expectancy for success and three task values change through-
out the academic year? In alignment with prior research
(Kosovich et al., 2017; Robinson, Lee, et al., 2019), we
expected to see average declines in all motivation constructs
over time, and we expected attainment value to show a pat-
tern of relative stability compared to the other three con-
structs. Our second research question asked whether initial
motivation would predict motivation climate perceptions.
Based on prior research on achievement goals and goal
structures (Roeser et al., 1996; Schenke et al., 2018), we
expected that students with higher expectancy and values
would perceive the instructor to be more motivationally
supportive.

Third, we examined whether course motivational climate
perceptions would predict year-long changes in engineering
motivation and whether motivation trajectories and climate
perceptions would predict achievement. We expected that
higher perceptions of positive motivational support (e.g.,
support for competence, autonomy, and mastery goal struc-
tures) would predict more positive trajectories of expectancy
and values, even after the course ended. We also expected
that perceptions of performance goal structures would relate
to changes in motivation, with higher perceived instructor
performance goals negatively predicting values and self-effi-
cacy in alignment with theoretical expectations and prior lit-
erature examining cross-sectional relations (De Clercq et al.,
2020; Skaalvik et al., 2017; Urdan et al., 2002). However,
due to the lack of prior research on performance goals and
longitudinal changes in self-efficacy and values, this hypoth-
esis was somewhat exploratory. Overall, we expected that
expectancy for success and utility value would be most likely
to show relations to motivational climate perceptions, as



interest value and attainment value are considered to be less
malleable over time and in response to environmental factors
(Eccles, 2009; Harackiewicz et al., 2016; Robinson, Lee,
et al., 2019; Wigfield & Eccles, 1992). We also expected that
more positive trajectories of all four constructs would predict
higher grades (Kosovich et al., 2017; Musu-Gillette et al.,
2015; Robinson, Lee, et al., 2019).

Method

Participants were undergraduate students enrolled in an
introductory engineering course' during Fall 2017 (N =
1,021). The two-credit course was designed to provide an
overview of various engineering fields and included a focus
on team design, careers, equipment, and project manage-
ment. Students were required to complete this course, along
with a series of other prerequisite courses, before being
admitted to a specific engineering program (e.g., chemical
engineering, computer engineering), and this course aimed
in part to help students decide on a particular engineering
field to pursue. Students were typically enrolled in this
course, along with other prerequisite courses (e.g., calculus,
chemistry), during their first semester of university, and it
was usually their only engineering course during that semes-
ter. Following the first semester, students took varying
sequences of courses specific to the various engineering
majors.

Participants were 24.9% female; 80.6% first-year stu-
dents; 13.9% first-generation college students; and 78.4%
White, 13.4% Asian/Asian American, 1.9% Black/African
American, 3.5% Hispanic/Latino, and 2.8% multiracial. The
large, lecture-based course was taught by an engineering
faculty member and, in addition to the weekly lecture, also
included 24 weekly lab sections of approximately 40 stu-
dents each taught by one of nine graduate student teaching
assistants (TAs). Each graduate TA taught 3 to 4 sections.
Lab activities took place in computer and project labs and
included brief lecture-style summaries of the main ideas
from the previous lecture followed by time for TA-guided
individual and group work on homework, quizzes, and proj-
ects. Because course labs served as the primary mechanism
for assessment, course activities, and students’ interactions
with instructors (TAs), we focused on motivational climate
in the labs rather than the large lecture.

Participants completed three surveys throughout the aca-
demic year (Time 1 [T1]: start of fall semester; T2: end of
fall semester; T3: middle/end of spring semester) assessing
their self-efficacy and three task values (interest, attainment,
and utility) for engineering coursework. At T2, students also
completed survey items about their perceptions of the moti-
vational climate in their engineering lab section. Students
received a small amount of course credit for completing the
first two surveys. The third survey was administered
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the following semester as part of a larger study following
engineering students yearly throughout their university stud-
ies. For this third survey, students were contacted through
engineering program courses and via email. Students who
completed the survey in a course received course credit or
extra credit. Students who were not enrolled in the targeted
engineering courses received $10 for completing the survey.
Across all waves, students who received course credit for
completing the survey were able to indicate whether their
survey data could be used for research purposes. The study
was deemed exempt by the university’s Institutional Review
Board (IRB Nos. x12-375¢ and x17-1070¢).

Measures

All survey measures used a Likert-type scale from 1
(strongly disagree) to 5 (strongly agree). A complete list of
survey measures is included in the Appendix.

Task value. Students responded to items about their value
for engineering. Utility value (four items, o = .78-.90;
“Engineering is practical for me to know”), attainment value
(four items, o = .78-.87; “Being someone who is good at
engineering is important to me”), and interest value (five
items, o = .88-94; “I enjoy doing engineering”) were
assessed using scales adapted from Conley (2012) and previ-
ously used in Robinson, Lee, et al. (2019).

Academic self-efficacy. As an indicator of expectancy for
success, students reported how confident they felt about
their ability to complete academic tasks in engineering
courses (five items, a = .83—.89; “I can learn the content
taught in my engineering-related courses”) using the Pat-
terns of Adaptive Learning Scale (PALS) (Midgley et al.,
2000) adapted from Mamaril and colleagues (2016) for
engineering.

Motivational climate.* Perceived autonomy support (six
items; “My [course] TA provides me with choices and
options”) and perceived competence support (three items;
“My [course] TA praises my efforts and strategies”) were
measured near the end of the semester (T2) using scales
adapted from Jang and colleagues (2016). Students’ percep-
tions of TA mastery goals (six items; “My [course] TA thinks
trying hard is very important”), performance-approach goals
(three items; “My [course] TA tells us how we compare to
other students”), and performance-avoidance goals (four
items; “My [course] TA tells us that it is important that we
don’t look stupid in class”) were also assessed near the end
of the semester (T2) using measures adapted from PALS
(Midgley et al., 2000) and Koskey et al. (2010). Reliability
estimates for the motivational climate measures are reported
below in the factor analysis section.



Achievement. Spring semester grades were obtained from
the university registrar.

Analyses

To examine changes in task values and self-efficacy
across the academic year, we used second-order latent
growth curve modeling (see Figure 1), comparing no-growth
(intercept-only) models to linear growth models with root
mean square error of approximation (RMSEA), confirma-
tory fit index (CFI), and Tucker-Lewis index (TLI) as the
main criteria for model fit (Hu & Bentler, 1999). To address
the second and third research questions, we added latent
motivation climate variables to the models as predictors of
slope, with intercepts of student motivation (T1 levels) pre-
dicting motivation climate perceptions. We also added
grades to the model, with latent slope, intercept, and motiva-
tion climate perceptions predicting grades. Our handling of
the nested data structure is explained in detail below. Missing
data analyses, correlations, and intraclass correlations were
conducted in SPSS version 22, and all remaining analyses
were conducted in Mplus version 8 (Muthén & Muthén,
1998-2017).

Results
Preliminary Analyses

Missing data analyses. Students who completed any of the
three surveys and consented to participate in the study were
included in the study. Of the 1,107 students enrolled in the
course, 1,021 (92%) took at least one of the three surveys
and consented to participate in the study. In total, 927 stu-
dents completed the first survey, 752 students completed the
second survey, and 701 students completed the final survey.
Overall, 516 students took all three surveys, 328 students
took two of the three surveys, and 177 took only one of the
three surveys.

Missing data rates at the item level ranged from 9% to
33%, with T3 variables typically showing the highest miss-
ing rates. To examine whether there were systematic patterns
of missing data, we created a variable indicating whether
each participant had complete data or any missing items and
conducted subsequent analyses examining relations of this
variable to demographic characteristics, survey mechanisms,
and initial levels of motivation variables. Missing data was
not associated with gender, ¥*(1) = 1.51, p = .219; or with
first-generation college student status, x*(1) = 0.04, p =
.843; however, missing data was associated with students’
racial/ethnic group, y*(5) = 13.29, p = .02; White students
were more likely to have complete data, whereas Black stu-
dents were more likely to have missing data. Students who
completed the T3 survey for a course were also less likely to
have missing data compared to students who were paid to
complete the survey, x°(1) = 4.55, p = .03. A multiple

analysis of variance (MANOVA) examining levels of T1
motivation variables as a function of missing versus com-
plete data was not significant, Wilks” A (915, 4) = .99, p =
.23, indicating that students with lower versus higher initial
motivation were not more or less likely to have missing data
on subsequent waves.

Measurement invariance. Longitudinal measurement invari-
ance tests (reported in Table 1) enable attribution of
observed changes to true change rather than to participants
interpreting survey items differently over time (Widaman &
Riese, 1997). For each of the four constructs modeled across
time (self-efficacy, attainment value, utility value, and
interest value), we compared four models. First, the config-
ural model examined whether the same overall factor struc-
ture held over all three timepoints. Next, the weak invariance
model constrained factor loadings to be equal over time.
The strong invariance model assumed item intercepts to be
equal over time, and the final, strict invariance model con-
strained residual variances for observed items over time.
Following Cheung and Rensvold (2002), a change in CFI
of less than or equal to .01 when comparing successive
models was used as evidence for measurement invariance.
Results supported strict measurement invariance over time
for all four motivation constructs. These invariance con-
straints (factor loadings, intercepts, and residual variances
held equal over time) were used in the subsequent latent
growth models.

Factor analyses. For the student motivation variables, a
four-factor model of engineering academic self-efficacy and
three task values (interest, attainment, and utility) for engi-
neering fit the data acceptably to well at T1, ¥*(129) =
565.48, RMSEA = .06, CFI = .94, TLI = .93; at T2, *(129)
= 790.39, RMSEA = .08, CFI = .94, TLI = .92; and at T3,
%*(129) = 528.89, RMSEA = .07, CFI = .96, TLI = .95.
Factor analyses for the motivational climate variables
were somewhat exploratory, as factor structures of many of
these variables remain unexamined alone or together in prior
research. For example, students may not separately perceive
supports for competence and mastery goals, but rather may
perceive some instructional practices as part of a broader
and connected pattern of motivationally supportive teach-
ing. A confirmatory factor analysis of an initial five-factor
model including perceived autonomy support, perceived
competence support, TA mastery goals, TA performance-
approach goals, and TA performance-avoidance goals fac-
tors resulted in a nonpositive definite covariance matrix,
with estimated correlations among some variables being
close to or higher than one. Follow-up exploratory factor
analyses indicated two primary factors. First, it appeared
that students viewed TA mastery goals and need support
(autonomy and competence support) as nondistinct. Thus,
we combined these indicators of climate into a single factor,



TABLE 1
Results of Measurement Invariance Tests

2

Construct and model X df RMSEA CFI A CFI TLI SRMR
Attainment value
Configural 372.544 51 .079 932 912 .050
Weak 390.703 57 .076 930 —.002 919 .058
Strong 411.773 63 .074 .927 —.003 923 .065
Strict 439.129 71 .071 922 —.005 928 .074
Utility value
Configural 232.978 51 .059 .962 951 .042
Weak 253.330 57 .058 .959 —-.003 952 .066
Strong 282.662 63 .058 954 —.005 952 .074
Strict 334.383 71 .060 .945 —.009 949 126
Self-efficacy
Configural 226.028 87 .040 976 971 .030
Weak 242.329 95 .039 975 —.001 972 .044
Strong 270.728 103 .040 971 —.004 971 .051
Strict 327.900 113 .043 963 —.008 .966 .055
Interest value
Configural 311.306 87 .050 974 .969 .031
Weak 323.023 95 .048 974 .000 971 .041
Strong 366.313 103 .050 970 —.004 .969 .046
Strict 416.068 113 .051 965 —.005 968 .049

Note. RMSEA = root mean square error of approximation; CFI = confirmatory fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square

residual.

labeled “TA mastery goals and need support,” which we also
refer to below as positive motivational support (ov = .97).
Second, students did not appear to differentiate between TA
performance-approach and performance-avoidance goals.
Thus, we combined these two types of perceived perfor-
mance goal structures into a single factor (o = .93). The
resulting two-factor model showed acceptable fit to the data,
v*(242) = 1,125.13, p < .001, RMSEA = .07, CFI = .94,
TLI = .93.

Correlations and descriptive statistics. Correlations and
descriptive statistics for the study variables are displayed
in Table 2. As expected, all motivation variables were pos-
itively correlated with one another, as were repeated mea-
sures over time. Motivation variables were also positively
correlated with TA mastery goals and need support, espe-
cially when assessed at the same time point (T2). Aside
from utility value, which was negatively correlated with
TA performance goals, motivation variables were not sig-
nificantly correlated with TA performance goals. Per-
ceived TA performance goals and TA mastery/need support
were moderately positively correlated with one another.

Intraclass correlations. Intraclass correlations (ICCs, see
Table 2) indicated that for the most part, the course section

(N = 24 sections) accounted for very little variance in moti-
vation and perceived motivational climate variables. TA
mastery goals and need support exhibited by far the largest
ICC at 8%, with the next largest ICC being 1%, and four
variables had ICCs lower than .001. Thus, there was not suf-
ficient variability at the course section or TA level to account
for nesting within course sections through multilevel model-
ing or robust standard errors. Instead, dummy variables for
TAs were included in the models as predictors of motivation
climate perceptions and to account for variance explained by
students’ shared experiences of each TA.

Unconditional Latent Growth Models

For all four constructs, linear models fit the data well (see
Table 3) and significantly better than the intercept-only
models based on changes in CFI > .01. Parameter estimates
of the selected models (Table 4, Figure 2) indicated that, on
average, students began the academic year with moderate to
high expectancy and values for engineering (M, wercept 3.65
to 4.54), and all constructs slightly but significantly declined
across the year (Mslope —0.11 to —-0.17, p < .001). The
slope of self-efficacy had a nonsignificant variance, but all
other models showed significant variation in the intercept
and slope estimates.



TABLE 2
Correlations and Descriptive Statistics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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TABLE 3
Fit Indices for Latent Growth Models
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Construct and model b df RMSEA CFI ACFI TLI
Attainment value
No growth 522.15 75 .076 906 — 917
Linear 444.85 72 071 921 015 928
Utility value
No growth 583.27 75 .081 .894 — 906
Linear 346.27 72 061 943 .049 947
Self-efficacy
No growth 45497 117 .053 942 — 948
Linear 389.53 114 .049 953 011 956
Interest value
No growth 656.45 117 .067 938 — .944
Linear_b 418.09 115 051 965 .027 968

Note. The initial linear interest value model resulted in a nonpositive definite covariance matrix due to a negative residual variance for T3 latent interest. As this variance was small
and nonsignificant (var = —.04, p = .211), we fixed it to 0 and this resolved the issue. Bolded rows indicate selected models.

Motivational Climate, Motivation Trajectories,
and Grades

Next, perceived motivational climate variables were
added to the model as outcomes of initial motivation (latent
intercepts) and predictors of changes in motivation (latent
slope); grades were also regressed on intercept, slope, and
climate perceptions (see Figure 1 for conceptual model).
The self-efficacy model including grades encountered

convergence errors due to a negative residual variance for the
grade variable. Thus, we present the self-efficacy model with
only the motivational climate variables and no grade out-
come. Conditional model fit indices are presented in Table 5.

In all four models, students’ motivation for engineering
at the beginning of the semester predicted their midsemes-
ter motivational climate perceptions (see Table 6). Students
beginning the course with higher attainment value for engi-
neering perceived higher levels of both TA mastery goals/



TABLE 4
Model Parameters for Unconditional Latent Growth Models

Intercept

Slope Intercept-slope

M SE 95%CILB95%CIUB Var SE M

SE  95%CILB 95% CIUB Var SE )4 r SE V4

AV 3.65 0.03 3.60 3.70 0.40 0.04 —0.09 0.02
UV 454 0.02 4.51 4.57 0.13 0.02 —0.17 0.01
IV 416 0.02 4.12 4.20 0.24 0.03 —0.15 0.01
SE 4.00 0.02 3.96 4.04 0.16 0.03 —0.11 0.02

—0.12 —0.06 0.10 0.02 <.001 —.144 .09 .13
—0.20 —0.15 0.08 0.02 <.001 —015 .14 .92
—0.17 —0.12 0.09 0.01 <.001 —.057 .09 .50
—0.13 —0.08 0.03 0.02 .08 275 34 42

Note. AV = attainment value; UV = utility value; IV = interest value; SE = self-efficacy; CI = confidence interval; LB = lower bound; UB = upper
bound. Unreported p values are all p < .001. All parameters are unstandardized except for the intercept-slope covariances, which are presented as standard-

ized estimates to aid in interpretation.
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need support and TA performance goals. Students with
higher self-efficacy and interest value also perceived
higher TA mastery goals/need support, but initial self-effi-
cacy and interest value were not significant predictors of
perceived TA performance goals. Lastly, students’ initial
utility value positively predicted perceptions of TA mastery
goals/need support and negatively predicted perceptions of
TA performance goals. Variance in perceived motivational
climate variables explained by the model predictors ranged
from R* = .10 to .17 (all p < .001) for TA mastery goals/
need support and R* = .014 to .042 (p = .022—.123) for TA
performance goals, indicating small to medium effect sizes.
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Trajectory plots. Att = attainment value; Util = utility value; Int = interest value; SE = self-efficacy.

Taken together, these findings indicate that students who
value engineering as being important for their identities
may be predisposed to perceive both positive motivational
support and performance goals, whereas students who
value engineering as being useful for their goals may be
more likely perceive higher positive motivational support
but lower levels of instructors’ performance goals. Students
with high self-efficacy and interest may be more likely to
perceive only positive motivational support; in other
words, higher or lower levels of self-efficacy and interest
at the beginning of the semester do not appear to color stu-
dents’ perceptions of performance goals at midsemester.



TABLE 5
Model Fit Indices for Conditional Linear Latent Growth Models

Construct and model x df RMSEA CFI TLI

Attainment value 2,453.73 944 .040 926 922

Utility value 2,421.75 944 .039 928 924
Self-efficacy” 2,421.05 1,044 .036 935 933
Interest value 2,507.32 1,089 .036 941 939

*The self-efficacy model including grades encountered convergence errors,
and thus grades were excluded from this model.

Note. RMSEA = root mean square error of approximation; CFI = confirma-
tory fit index; TLI = Tucker-Lewis index.

Perceived motivational climate also predicted changes in
motivation (see Table 7): perceived TA mastery goals/need
support significantly predicted more positive slopes (stabil-
ity or steeper increases) in all three task values, but not self-
efficacy. Higher perceptions of instructors’ performance
goals predicted steeper declines in interest value and self-
efficacy.’” This means that controlling for students’ initial
motivation and relations between initial motivation and cli-
mate perceptions, students’ differing perceptions of TAs’
motivational practices predicted differences in how their
task values and their self-efficacy changed throughout the
first year of college, with positive motivational supports
positively predicting task value trajectories and performance
goals negatively predicting trajectories of interest value and
self-efficacy.

With regard to spring semester grades, perceived TA per-
formance goals negatively and significantly predicted grades
in all three task value models (see Table 8). In the utility
value model, the linear slope of utility value also positively
predicted grades. In the attainment value model, the inter-
cept negatively predicted GPA and the slope positively pre-
dicted GPA. In the interest value model, no other variables
predicted grades.

Discussion

This study investigated motivational climate perceptions
as correlates of year-long trajectories of expectancy for suc-
cess and task values for engineering. In addition to adding
unique knowledge about how motivation changes during a
key time for students’ evolving career pursuits, this study
highlights important interrelations among initial motivation,
perceptions, and changing motivation. This empirical evi-
dence about the role of perception in mediating motivational
support is a vital step toward increasing the efficacy of inter-
ventions and instructional design to maximize opportunities
for student success.

First, we identified average declines in all four constructs
in alignment with prior research across multiple domains
and time periods (Kosovich et al., 2017; Robinson et al.,
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2018; Robinson, Lee, et al., 2019; Robinson, Perez, et al.,
2019). Self-efficacy and attainment value showed the small-
est slope estimates. The slow average rate of decline in
attainment value aligns with theory and research indicating
that identity-related value may be more internally deter-
mined and thus slower to change (Eccles, 2009; Robinson,
Lee, et al., 2019). The slow decline in self-efficacy was
somewhat surprising, as it is considered to be fairly mallea-
ble in the short term (Bong & Skaalvik, 2003), and prior
research has documented comparatively faster rates of
decline across 2 years (Robinson, Lee, et al., 2019). It could
be that the supportive gateway course in fact buffered stu-
dents from declines in self-efficacy during the first year, per-
haps because students tended to receive high grades in the
class. In accordance with our expectations, utility value and
interest value appeared to decline more rapidly, with signifi-
cantly larger slopes as evidenced by nonoverlapping confi-
dence intervals. As expected, changes in motivation were
important for grades, such that more positive trajectories of
attainment and utility value (i.e., slower declines or steeper
increases) predicted higher grades. However, in alignment
with prior research (e.g., Robinson, Lee, et al., 2019), attain-
ment value at the beginning of the academic year actually
negatively predicted grades, suggesting students may have
poorly calibrated levels of their own motivation when begin-
ning a new academic program.

Further, as hypothesized and aligning with some prior
research (e.g., Lam et al., 2015; Roeser et al., 1996), our
findings contributed unique, longitudinal evidence that stu-
dents’ initial motivations appear to color their perceptions of
motivational climate. Very few studies have documented
this phenomenon to date, and only one study to our knowl-
edge has examined this longitudinally (Roeser et al., 1996).
Students with initially high expectancy and values for engi-
neering were more likely to view their instructors as sup-
portive of mastery goals, autonomy, and competence.
Interestingly, students with higher attainment value also per-
ceived their instructors as being more performance goal ori-
ented, whereas students with higher utility value indicated
lower perceptions of performance goal structures. This is a
novel finding that may reflect the different ways that stu-
dents attend and react to contextual features based on their
differing motivational profiles. Thus, students who highly
identify with engineering may be more likely to notice social
comparisons within their environment, and students who
view engineering as useful to their goals may be more likely
to disregard social comparisons, whereas differences in self-
efficacy or enjoyment of engineering may not matter for stu-
dents’ attentiveness to such comparisons.

It may also be that instructors behave differently toward
students with various levels and qualities of motivation,
and this must be considered as an alternative or additional
explanation for these findings. Indeed, although our own
observations of instruction indicated that individual TAs



TABLE 6

Estimates of Motivation Intercepts Predicting Motivation Climate Perceptions

Mastery/need support Performance goals
Coef. SE p Coef. SE p

Attainment value intercept predicting climate perceptions

Unstandardized (b) 149 .052 .004 233 071 .001

Standardized (B) 126 .042 .003 150 .044 .001
Interest value intercept predicting climate perceptions

Unstandardized (b) 267 072 <.001 .066 .091 467

Standardized (B) 176 .044 <.001 .033 .045 467
Utility value intercept predicting climate perceptions

Unstandardized (b) 334 133 012 —474 177 .007

Standardized (B) 152 .054 .005 —-.164 .055 .003
Self-efficacy intercept predicting climate perceptions

Unstandardized (b) 506 142 <.001 156 155 315

Standardized (B) 256 .058 <.001 .060 .059 310

Note. Statistically significant parameters are bolded. Coef. = regression estimate.

TABLE 7

Estimates of Motivation Climate Perceptions Predicting Slopes of Motivation

Mastery/need support Performance goals
Coef. SE P Coef. SE P

Climate predicting slope of attainment value

Unstandardized (b) 057 .023 015 —.005 .018 772

Standardized (B) 137 055 013 -.017 .059 173
Climate predicting slope of interest value

Unstandardized (b) 059 022 .008 —.040 016 012

Standardized (B) 152 .052 .003 -.129 .052 012
Climate predicting slope of utility value

Unstandardized (b) .058 .026 .026 —.033 .021 11

Standardized (3) .163 .068 017 -.120 .071 .092
Climate predicting slope of self-efficacy

Unstandardized (b) .034 .035 331 —-.056 .020 .005

Standardized (B) .200 167 230 —.440 288 127

Note. Statistically significant parameters are bolded. Coef. = regression estimate.

appeared to interact with their students fairly equitably,
students who were highly motivated may have simply
interacted with the TAs more often and thereby had more
opportunities to receive motivational support. Further, stu-
dents’ prior motivation explained only some of the varia-
tion in their perceptions of their TAs, and thus it is
important to remember that other factors, including TAs’
actual behaviors, may be responsible for students’ ratings
on these measures. Indeed, students’ perceptions at least
partially tend to reflect real teaching behaviors (Dicke
etal., 2021), including qualities of the unique dyadic rela-
tionships between individual students and teachers
(Gollner et al., 2018).

Not only did students’ initial motivations predict their
perceptions of the course motivational climate, but even
when controlling for these relations, the perceived motiva-
tional climate predicted students’ motivational development
and grades. Though essentially in line with expectations
from theory and prior research, findings extend and add
nuance to the largely cross-sectional literature examining
similar constructs (e.g., De Clercq et al., 2020; K. Lau &
Lee, 2008; Lazarides et al., 2018; Murayama & Elliot, 2009;
Skaalvik et al., 2017) and broaden the existing literature in
K-12 settings to higher education contexts (Lazarides et al.,
2018; Skaalvik et al., 2017; Won et al., 2020). Changes in
interest value were related to both perceived TA performance
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TABLE 8

Estimates of Motivation Trajectories and Motivation Climate Perceptions Predicting Grades

Intercept predictor Slope predictor
Coef. SE p Coef. SE p

Attainment value predicting grades

Unstandardized (b) -.151 .060 012 430 .194 027

Standardized (B) —-.108 .040 .008 .149 .059 011
Interest value predicting grades

Unstandardized (b) —.067 .072 352 254 .146 .083

Standardized (B) —.037 .039 347 .086 .049 .078
Utility value predicting grades

Unstandardized (b) -.226 .188 158 677 276 014

Standardized (B) -.102 .066 121 204 .070 .004

Mastery/need support predictor

Perceived performance goals predictor

Coef. SE p Coef. SE p

AV model climate perceptions predicting grades

Unstandardized (b) -.076 .050 132 -119 .039 .003

Standardized (B) —.064 .042 132 -.131 .043 .002
IV model climate perceptions predicting grades

Unstandardized (b) —.069 .051 173 -.129 .039 .001

Standardized (B) —.058 .043 173 —.142 043 .001
UV model climate perceptions predicting grades

Unstandardized (b) —.092 .052 .080 -.128 041 .002

Standardized (B) -.077 .044 .080 -.141 046 .002

Note. Statistically significant parameters are bolded. Coef. = regression estimate; AV = attainment value; [V = interest value; UV = utility value.

goals and mastery goals/need supportive teaching; attain-
ment and utility value were responsive to perceived TA mas-
tery goals/need support only. In other words, students
perceiving their TA as being supportive of mastery goals,
autonomy, and competence were more likely to exhibit
growth (or stability) in all three forms of task value, while
perceptions that the TA focused on social comparisons and
demonstrating competence were associated with lower
grades and with declines in interest value.

Lastly and somewhat contrary to our expectations (e.g.,
Urdan et al., 2002), only perceived instructor performance
goals predicted changes in self-efficacy, and this significant
relationship was true only for the unstandardized coefficient.
The relatively large standardized coefficient for TA perfor-
mance goals predicting changes in self-efficacy lends addi-
tional, although tentative, evidence that TA performance
goals indeed appear to be detrimental to students’ self-effi-
cacy trajectories. Perceived mastery goals/need support did
not significantly predict changes in self-efficacy. The non-
significant relations between positive climate and self-effi-
cacy trajectories were surprising, although perhaps
attributable to the relatively uniform pattern of slight decline
in the sample (rather than a large variety of trajectories to be
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explained by predictors) or the fact that we assessed higher-
order self-efficacy for academic tasks across all engineering
coursework rather than self-efficacy for a specific task or
course. The differing points of reference from predictor to
outcome, such that TA mastery goals/autonomy support in
one supportive course did not shift self-efficacy for all engi-
neering coursework, may explain this result, particularly as
other engineering courses may differ substantially from this
supportive course. Indeed, it is quite remarkable that stu-
dents’ perceptions of TA actions in this one course related to
longer-term trajectories of the three values, and that per-
ceived TA performance goals in particular appeared to
dampen longer-term trajectories of self-efficacy.

Overall, four motivation constructs showed unique pat-
terns of relations to perceived motivational climate, suggest-
ing the need for careful consideration of students’ unique
motivational needs including a diverse range of motivational
factors in designing interventions to support STEM persis-
tence. For example, students endorsing high attainment
value for the subject matter may be especially vulnerable to
performance goal messages from their instructor, and thus
instructional design for these students should involve mini-
mizing social comparisons as much as possible. In fact,



considering the negative relations between utility value and
perceptions of TA performance goals, teachers may consider
focusing on boosting utility value for students already
endorsing high attainment value, perhaps via relevance
interventions (e.g., Hecht et al., 2019). Students endorsing
high levels of both utility and attainment value may be less
attentive to performance goal messages as compared to stu-
dents endorsing high attainment value only; however, addi-
tional research is needed to test this proposition as well as
the proposed intervention approaches outlined above.

Limitations and Future Directions

Student perceptions can be limited as indicators of moti-
vational climate, as considerable evidence suggests that stu-
dents’ perceptions only partially reflect actual practices in
the classroom. However, student perceptions also uniquely
contribute to predicting student outcomes over and above
actual classroom practices (Lam et al., 2015; Meece et al.,
20006). Indeed, in our own study, very little variance in stu-
dents’ perceptions could be attributed to differences in
instructors, suggesting these perceptions had more to do
with individual differences rather than instructional differ-
ences. Nevertheless, we cannot rule out the possibility that
instructors interacted with individual students in different
ways, even within the same classroom. To further articulate
theorized change processes and make concrete recommen-
dations for practice, it is important for future research to
directly examine instructors’ actual practices in addition to
students’ perceptions. Such research is needed to trace the
specific practices that reliably lead to positive shifts in stu-
dent motivation via their perceptions and the mechanisms of
such effects.

A second limitation concerns the measurement properties
of the motivational climate measures, with implications for
theoretical integration in studies of motivational supports.
We had hoped to examine unique relations of specific aspects
of motivational climate with student motivation. However, in
alignment with conceptualizations of mastery goal structures
and autonomy support as inclusive of similar elements
including competence support (Ames, 1992; Bardach,
Liiftenegger, et al., 2019; Jang et al., 2016), factor analyses
yielded evidence that students do not distinguish among sev-
eral theoretically and conceptually distinct aspects of motiva-
tionally supportive instruction. To make stronger inferences
about motivational instruction and student motivation, there
is a need for measurement work and validity studies on moti-
vational climate measures, similar to work on broader student
perceptions by Wallace and colleagues (2016).

Further building on this prior point, measurement con-
straints prevented us from considering two important pro-
cesses considered to be part of motivationally supportive

Instructional Supports for Motivation Trajectories

instruction (Reeve, 2009). Specifically, personal relevance
(Hulleman & Harackiewicz, 2009; Schmidt et al., 2019) and
instructors’ warmth and enthusiasm may be key ingredients
for fostering task value and competence via a supportive,
personalized, and encouraging environment (Frenzel et al.,
2009; Linnenbrink-Garcia et al., 2013). Future research con-
sidering all of these processes side by side might uncover a
more holistic picture of the motivational supports necessary
to foster optimally beneficial patterns of motivation within
students.

Considering the timing of measurements and the correla-
tional nature of our research design, we cannot make strong
inferences about the causal directions of the observed rela-
tions. It is also important to consider the limitations of our
modeling approach in that the average trajectory described
by each model might not describe any particular student
within the sample. As such, these results may be most infor-
mative when combined with future research using experi-
mental designs, mixed methods, and mixture modeling (e.g.,
latent profile analysis, growth mixture modeling) approaches.
Such approaches can be used to examine heterogeneity in
students’ experiences, documenting specific and general
principles for supporting beneficial trajectories of motiva-
tion among postsecondary STEM students.

Conclusion

Our study examined relations between undergraduates’
engineering motivation trajectories and their perceptions of
the motivational climate in a supportive introductory engi-
neering course. Results provide key evidence that students’
perceptions of instructors vary systematically based on their
own motivation, such that students with higher initial moti-
vation perceive their instructor to be more motivationally
supportive. Students’ different reasons for valuing engi-
neering might also lead them to differentially attend to per-
formance-focused messages in instruction. Importantly,
because it is assumed that students are more likely to view
instruction as motivational when it is indeed supportive of
autonomy and mastery goals, this work also provides new
longitudinal evidence that motivationally supportive
instruction may be able to “move the needle” on students’
motivational development, even after the conclusion of the
course. Whereas instructors’ perceived performance goals
appeared to reduce students’ interest and self-efficacy in
engineering, perceived supports for students’ mastery goals,
autonomy, and competence were beneficial for longer-term
valuing of engineering. Results highlight the utility of
examining motivational supports from an integrative theo-
retical perspective as well as the important role of students’
perceptions in the links between context and student
motivation.
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Appendix: Full List of Scale Items

Attainment Value

1.

2.

Being someone who is good at engineering is impor-
tant to me.

Being good in engineering is an important part of
who I am.

Being involved in engineering is a key part of who I
am.

I consider myself an engineering person.

Interest Value

1. Ienjoy the subject of engineering.
2. Ienjoy doing engineering.
3. Engineering is exciting to me.
4. 1 am fascinated by engineering.
5. llike engineering.
Utility Value
1. Engineering is valuable because it will help me in the
future.
2. Engineering will be useful for me later in life.
3. Engineering is practical for me to know.
4. Being good in engineering will be important for my

future (like when I get a job or go to graduate
school).

Academic Self-Efficacy in Engineering

1.

2.

I’m certain I can master the content in the engineer-
ing-related courses I am taking this semester.

I will be able to master the content in even the most
challenging engineering course if I try.

I will be able to do a good job on almost all my engi-
neering coursework if I do not give up.

I’m confident that I can learn the content taught in
my engineering-related courses.

I’m certain I can earn a good grade in my engineer-
ing-related courses.

TA Mastery Goals and Need Support (Autonomy Support,
Competence Support, & TA Mastery Goals)

14

1.
2.
3.

W

My lab TA provides me with choices and options.
My lab TA makes me feel understood.

My TA conveys confidence in my ability to do well
in this course.

My TA encourages me to ask questions.

My TA listens to how I would like to do things.

My TA tries to understand how I see things before
suggesting a new way to do things.

My TA provides feedback that helps me improve my
skills and knowledge.

11.

12.
13.

14.

15.

16.

My TA helps me develop skills for success.

My TA praises my efforts and strategies.

My TA thinks it’s okay to make mistakes as long as
you are learning.

My TA thinks it’s important to understand the work,
not just memorize it.

My lab TA recognizes us for trying hard.

My lab TA wants us to understand the material, not
just memorize it.

My lab TA thinks learning new ideas and concepts is
very important.

My lab TA thinks how much you improve is really
important.

My lab TA gives us the time to really explore and
understand new ideas.

TA Performance Goals

1.

2.

My [course] TA points out those students who get
good grades as an example to all of us.

My [course] TA lets us know which students get the
highest scores on a test or assignment.

My [course] TA tells us how we compare to other
students.

My [course] TA tells us that it is important that we
don’t look stupid in class.

My [course] TA says that showing others that we are
not bad at class work should be our goal.

My [course] TA tells us it’s important to join in dis-
cussions and answer questions so it doesn’t look like
we can’t do the work.

My [course] TA tells us it’s important to answer
questions in class, so it doesn’t look like we can’t do
the work.
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Notes

1. This data was originally collected as part of a motivation
intervention study. Students were randomly assigned to a growth
mindset intervention, a belonging intervention, a utility value inter-
vention, or a control, along with various combinations of these
interventions together. In addition, TAs were randomly assigned to
participate in brief workshops about how to support students’ moti-
vation. As reported in Robinson (2019), none of the experimental
manipulations resulted in significant effects to instructor or student
variables, including those in this study. Including the experimen-
tal conditions as control variables for the present study resulted in
no changes to the significance of model parameters or substantive
interpretations of the models; thus, they were not included in the
final models.

2. Our original measures also included items assessing per-
ceived connections to real life and instructor warmth. Factor anal-
yses supported these as separate factors rather than one overall
perceived autonomy support factor, but connections to real life and
instructor warmth factors were so highly correlated with autonomy
support (» > .80) that we were unable to include them in our mod-
els. Thus, we dropped the connections to real life and instructor
warmth items, focusing in this study on the choice and perspective-
taking elements of autonomy-supportive instruction.

3. The regression estimate for TA performance goals predict-
ing the slope of self-efficacy was significant in the unstandardized
model but not in the standardized model. However, the standard-
ized estimate showed the largest effect size of all climate variables
predicting slopes or intercepts.
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