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MOTIVATIONAL beliefs are essential precursors of achieve-

ment-related behaviors and are particularly important during 

postsecondary education, when students are making career 

decisions that will shape their future trajectories. However, 

competitive climates and difficult coursework in university 

science, technology, engineering, and mathematics (STEM) 

fields can dampen motivation (Hunter, 2019). Indeed, 

declines in motivation (Musu-Gillette et al., 2015; Robinson, 

Lee, et al., 2019) and suboptimal retention rates in postsec-

ondary STEM fields (Chen & Soldner, 2013) suggest that 

there is a need for greater understanding of how to support 

motivation in college.

Fortunately, theory and research indicate that instruc-

tional contexts can support student motivation and thus 

boost achievement and retention in STEM fields (Rosenzweig 

& Wigfield, 2016). Theoretically guided field studies exam-

ining mechanisms of motivational change are needed to pro-

vide essential empirical evidence for concrete instructional 

design and policymaking recommendations in real-world 

STEM classrooms. To this end, we examined longitudinal 

trajectories of expectancy for success and three task values 

among first-year engineering students, with motivational 

climate perceptions as predictors of changes in each 

motivation construct. Because students’ perceptions of the 

motivational climate can be quite heterogeneous and reflect 

their own motivational orientations in addition to contextual 

factors (Lam et al., 2015; Schenke et al., 2017), we also 

examined students’ baseline motivational beliefs as predic-

tors of their climate perceptions. By so doing, we tested 

theoretically integrative principles for supporting key moti-

vational beliefs among students in a formative period for 

their developing career goals.

Theoretical Framework

In the situated expectancy-value theory (SEVT), Eccles 

and colleagues (1983; Eccles & Wigfield, 2020) posit that 

expectancy for success and task value are the most impor-

tant, proximal predictors of achievement and achievement-

related choices. Expectancy for success is a student’s 

perception of how successful they will be, whereas task 

value reflects students’ reasons for engaging in academic 

tasks. Task values are differentiated into multiple compo-

nents: utility value, or students’ appraisal of the usefulness 

of the task to their current or future goals; attainment value, 

or the importance of the task to students’ identities; and 
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interest value, or the inherent enjoyableness of the task. A 

fourth aspect of task value, perceived cost, reflects the per-

ceived drawbacks of engaging in the task. There is growing 

research on costs, and it represents an important aspect of 

SEVT; however, costs were not measured in this study given 

our focus on supporting positive aspects of motivation. 

Considerable research supports the importance of expec-

tancy and values for predicting academic achievement and 

behavior (Wigfield & Eccles, 2020).

Longitudinal research also shows that on average, expec-

tancy and values decline throughout childhood and  

adolescence (Benden & Lauermann, 2021; Fredricks & 

Eccles, 2002; Jacobs et al., 2002), undergraduate education 

(Robinson et al., 2018; Robinson, Lee, et al., 2019), and 

even within a single semester (Kosovich et al., 2017). 

Further, each construct shows somewhat unique develop-

mental patterns and relations to correlates (Gaspard et al., 

2015; Wigfield, 1994), with varying malleability and respon-

siveness to external forces (Gaspard et al., 2018; Wigfield & 

Eccles, 1992). Specifically, within engineering, our prior 

research has documented average declines in expectancy for 

success and all three task values during the first 2 years of 

undergraduate studies, the relative stability of attainment 

value compared to other forms of motivation, and the impor-

tance of each of these constructs for achievement and reten-

tion outcomes (Robinson, Lee, et al., 2019). The beginning 

of college is a key time when the majority of major dropout 

occurs (Griffith, 2010); thus, it is imperative to understand 

how instructors can support positive trajectories of motiva-

tion, particularly in introductory courses that serve as key 

gateways for further academic and career pursuits.

Supporting Motivation Trajectories: An Integrative 

Perspective

Theory and research indicate that instructors’ behaviors 

in class can support student motivation, and thus boost sub-

sequent achievement and retention in STEM fields. However, 

theoretically guided research on longitudinal, motivational 

impacts of specific teaching practices is a developing area of 

research in need of greater examination (Eccles & Wigfield, 

2020; Rosenzweig et al., 2021; Rosenzweig & Wigfield, 

2016), particularly in higher education STEM settings. 

Indeed, citing promising findings from research on brief, 

student-focused interventions, Eccles and Wigfield (2020) 

recently highlighted the need for research unpacking the 

roles of teachers and classrooms in support students’ expec-

tancies and values.

Drawing on broader social-cognitive and situated mod-

els, Eccles and Wigfield (2020) described the importance of 

motivational strategies that crosscut theoretical perspec-

tives. In alignment with recommendations for instructional 

practice to support motivation using combined evidence 

from multiple theoretical traditions (Pintrich, 2003; Turner 

et al., 2014), we focus on three instructional design princi-

ples distilled from the motivation literature by Linnenbrink-

Garcia and her colleagues (2016), each describing how 

instructors can optimize opportunities for students to main-

tain high motivation.

Supporting competence. First, as supported by empirical 

evidence from a variety of theoretical traditions (e.g., Feng 

& Tuan, 2005; Usher & Pajares, 2008), students’ expectan-

cies for success can be supported through “well-designed 

instruction, challenging work, and informational and encour-

aging feedback” (Linnenbrink-Garcia et al., 2016, pp. 233–

234; Turner et al., 2014). This principle highlights the 

common sociocognitive origins of SEVT and achievement 

goal theory, as well as self-determination theory’s proposi-

tion that challenge and capabilities must be in balance for 

optimal motivation.

Supporting autonomy. Next, instructors should support 

autonomy by giving students opportunities for choice and 

self-direction (Linnenbrink-Garcia et al., 2016). This recom-

mendation arises from the role of autonomy as a necessary 

condition for intrinsic motivation (similar to interest or 

intrinsic value) from self-determination theory and from 

achievement goal theory’s proposition that autonomy is a 

key ingredient for promoting mastery goals (Ames, 1992; 

Bardach, Lüftenegger, et al., 2019) and their correlates. In 

addition to providing choice, autonomy-supportive instruc-

tion involves nurturing students’ inner motivational 

resources by connecting content with students’ interests, 

normalizing emotions, and providing meaningful rationales 

that explain why course content is important or useful 

(Reeve, 2009). Considerable evidence shows that autonomy-

supportive instruction promotes competence beliefs (Patall, 

et al., 2018) and intrinsic motivation (Cheon & Reeve, 2015; 

Reeve et al., 2004).

Supporting mastery goals. Lastly, instructors who create 

mastery goal structures, or an environment focused on 

“learning and understanding and de-emphasiz[ing] perfor-

mance, competition, and social comparison” (Linnenbrink-

Garcia et al., 2016, pp. 233–234), promote the beneficial 

effects of mastery goals and minimize the negative effects of 

performance goals (Ames, 1992). To situate these constructs 

within expectancy-value theory, goals may be characterized 

as immediate upstream predictors of expectancies and val-

ues, or part of the “goals and general self-schemata” (Eccles 

& Wigfield, 2020) (Figure 1) that comprise the proximal 

personal mechanisms shaping expectancies and values for a 

particular task (Hulleman et al., 2008; Pintrich, 2003).

Mastery goal structures are associated with a variety of 

positive outcomes (Kaplan et al., 2002; Wolters, 2004) 

including utility value (K. Lau & Lee, 2008), interest (Church 

et al., 2001; S. Lau & Nie, 2008; Murayama & Elliot, 2009), 
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and perhaps also expectancies for success (Bardach, Popper, 

et al., 2019; Murayama & Elliot, 2009; Wolters, 2004). For 

example, Maehr and Midgley (1996; Anderman, 1996) 

increased students’ self-efficacy using mastery goal struc-

tures, and a few studies demonstrate links between student-

reported mastery-oriented teaching and student task values 

(Lazarides et al., 2018; Schiefele, 2017; Schiefele & 

Schaffner, 2015). Conversely, some evidence suggests that a 

classroom emphasis on demonstrating competence relative to 

others in the class (performance goal structures) can under-

mine expectancies for success (self-efficacy; Urdan et al., 

2002) and task value (De Clercq et al., 2020; Skaalvik et al., 

2017). Indeed, competitive climates in STEM courses are 

often cited as a particularly demotivating factor leading to 

student attrition (Hunter, 2019).

The Role of Motivational Climate Perceptions

Teaching processes are presumed to shape the develop-

ment of expectancies and values for particular tasks via stu-

dents’ interpretations of these experiences as being relevant 

to their likelihood of future success, interests, goals, or iden-

tities (e.g., Dicke et al., 2021; Järvelä & Niemivirta, 2001; 

Radel et al., 2010). For example, a teacher’s encouragement 

to students—“You can do it!”—might not have motivational 

effects for a student who feels this statement does not apply 

to them, perhaps due to their low confidence, perceived 

external barriers to success, or low value for the task.

Indeed, students’ perceptions of motivational climate 

within a course are critical for shaping their subsequent 

motivation. In alignment with the social-cognitive origins of 

expectancy-value theory, students’ perceptions are consid-

ered to be a product of both personal and contextual factors 

that lead to students’ situational construal of a given envi-

ronment (Eccles & Wigfield, 2020; Järvelä & Niemivirta, 

2001). Indeed, rather than reflecting objective reports of the 

classroom, students’ perceptions of motivational climate 

appear to be colored by their personal motivational beliefs 

(Schenke et al., 2018). Research suggests that student per-

ceptions of instruction cannot be reliably aggregated at the 

classroom level but vary considerably within the same class-

room and might be most accurately considered as 

FIGURE 1. Hypothesized model, modeled separately for self-efficacy, interest value, attainment value, and utility value (GPA not 

included for self-efficacy).
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individual-level constructs (Lam et al., 2015; Miller & 

Murdock, 2007). Indeed, oftentimes the classroom accounts 

for only a small amount of variance in motivational climate 

perceptions (Lam et al., 2015; Meece et al., 2006; Tapola & 

Niemivirta, 2008).

Nevertheless, students’ perceptions provide key infor-

mation about how the classroom can shape motivational 

trajectories, indicating the functional significance (Schenke 

et al., 2018) of instructional attempts to support motivation. 

Student perceptions are the lens through which classroom 

experiences are filtered (Wallace et al., 2016), providing 

vital information about how instructors’ strategies are actu-

ally received by students. Indeed, Eccles and Wigfield 

(2020) indicate that students’ interpretations of their experi-

ences may act as the vital explanatory link between instruc-

tor behaviors and students’ motivation trajectories. Prior 

research has documented the reliability and predictive 

power of students’ perceptions (Urdan, 2004; see Wallace 

et al., 2016, p. 1836, for a brief review). For example, 

Anderman and Midgley (1997) found that students’ declin-

ing competence beliefs and mastery goals across the transi-

tion to middle school corresponded with perceived increases 

in classroom performance goal structures. Roeser and col-

leagues (1996) found that mastery goals in sixth grade posi-

tively predicted mastery goal climate perceptions in eighth 

grade and that climate perceptions predicted students’ sub-

sequent achievement goals, belonging, and self-efficacy. 

However, aside from these studies, the majority of the 

research examining personal motivation in relation to cli-

mate perceptions has used cross-sectional data, and so it is 

difficult to disentangle whether personal motivation arose 

as a product of the instructional climate, or vice versa. 

Students’ perceptions of the motivational climate and their 

own personal motivations may in fact be related in a cycli-

cal fashion.

As described above, multiple theoretical perspectives 

include hypotheses about classroom factors that shape 

motivational development; however, little research has 

examined these intersecting hypotheses from a theoreti-

cally integrative and longitudinal perspective. Many stud-

ies assess motivational climate and student outcomes at the 

same time point (De Clercq et al., 2020; Lazarides et al., 

2018; Skaalvik et al., 2017), a majority of studies assess 

only one or two motivational climate dimensions (e.g., 

mastery goals; Lazarides et al., 2018), and most also take 

place within K–12 settings (Lazarides et al., 2018; Skaalvik 

et al., 2017; Won et al., 2020). Longitudinal research exam-

ining motivational change in relation to key classroom sup-

ports can shed light on how college STEM students’ 

motivation trajectories, and thus their broader success in 

their chosen field of study, may be shaped by classroom 

factors.

Present Study

We examined year-long trajectories of expectancy for suc-

cess and three task values among students initially enrolled in 

an introductory, gateway engineering course. Our own 

research examining prior cohorts in this setting indicated that 

this course, when taken in the first semester rather than in 

subsequent semesters, served as a buffer for declines in engi-

neering motivation (Robinson, Lee, et al., 2019). To investi-

gate potential mechanisms of these findings, in the present 

study we drew on an integrative theoretical framework of 

motivational support to examine how students’ perceptions 

of the course motivational climate shaped their broader moti-

vational trajectories and academic success in the domain of 

engineering, controlling for the relations between students’ 

initial motivation and motivational climate perceptions. 

Building on prior literature, our aim was to build stronger 

evidence articulating the mechanisms of motivational change 

processes in real-world classrooms by examining longitudi-

nal changes in motivation as a function of heterogeneous 

motivational climate perceptions in a key course.

Our first research question was the following: How do 

expectancy for success and three task values change through-

out the academic year? In alignment with prior research 

(Kosovich et al., 2017; Robinson, Lee, et al., 2019), we 

expected to see average declines in all motivation constructs 

over time, and we expected attainment value to show a pat-

tern of relative stability compared to the other three con-

structs. Our second research question asked whether initial 

motivation would predict motivation climate perceptions. 

Based on prior research on achievement goals and goal 

structures (Roeser et al., 1996; Schenke et al., 2018), we 

expected that students with higher expectancy and values 

would perceive the instructor to be more motivationally 

supportive.

Third, we examined whether course motivational climate 

perceptions would predict year-long changes in engineering 

motivation and whether motivation trajectories and climate 

perceptions would predict achievement. We expected that 

higher perceptions of positive motivational support (e.g., 

support for competence, autonomy, and mastery goal struc-

tures) would predict more positive trajectories of expectancy 

and values, even after the course ended. We also expected 

that perceptions of performance goal structures would relate 

to changes in motivation, with higher perceived instructor 

performance goals negatively predicting values and self-effi-

cacy in alignment with theoretical expectations and prior lit-

erature examining cross-sectional relations (De Clercq et al., 

2020; Skaalvik et al., 2017; Urdan et al., 2002). However, 

due to the lack of prior research on performance goals and 

longitudinal changes in self-efficacy and values, this hypoth-

esis was somewhat exploratory. Overall, we expected that 

expectancy for success and utility value would be most likely 

to show relations to motivational climate perceptions, as 
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interest value and attainment value are considered to be less 

malleable over time and in response to environmental factors 

(Eccles, 2009; Harackiewicz et al., 2016; Robinson, Lee, 

et al., 2019; Wigfield & Eccles, 1992). We also expected that 

more positive trajectories of all four constructs would predict 

higher grades (Kosovich et al., 2017; Musu-Gillette et al., 

2015; Robinson, Lee, et al., 2019).

Method

Participants were undergraduate students enrolled in an 

introductory engineering course1 during Fall 2017 (N = 

1,021). The two-credit course was designed to provide an 

overview of various engineering fields and included a focus 

on team design, careers, equipment, and project manage-

ment. Students were required to complete this course, along 

with a series of other prerequisite courses, before being 

admitted to a specific engineering program (e.g., chemical 

engineering, computer engineering), and this course aimed 

in part to help students decide on a particular engineering 

field to pursue. Students were typically enrolled in this 

course, along with other prerequisite courses (e.g., calculus, 

chemistry), during their first semester of university, and it 

was usually their only engineering course during that semes-

ter. Following the first semester, students took varying 

sequences of courses specific to the various engineering 

majors.

Participants were 24.9% female; 80.6% first-year stu-

dents; 13.9% first-generation college students; and 78.4% 

White, 13.4% Asian/Asian American, 1.9% Black/African 

American, 3.5% Hispanic/Latino, and 2.8% multiracial. The 

large, lecture-based course was taught by an engineering 

faculty member and, in addition to the weekly lecture, also 

included 24 weekly lab sections of approximately 40 stu-

dents each taught by one of nine graduate student teaching 

assistants (TAs). Each graduate TA taught 3 to 4 sections. 

Lab activities took place in computer and project labs and 

included brief lecture-style summaries of the main ideas 

from the previous lecture followed by time for TA-guided 

individual and group work on homework, quizzes, and proj-

ects. Because course labs served as the primary mechanism 

for assessment, course activities, and students’ interactions 

with instructors (TAs), we focused on motivational climate 

in the labs rather than the large lecture.

Participants completed three surveys throughout the aca-

demic year (Time 1 [T1]: start of fall semester; T2: end of 

fall semester; T3: middle/end of spring semester) assessing 

their self-efficacy and three task values (interest, attainment, 

and utility) for engineering coursework. At T2, students also 

completed survey items about their perceptions of the moti-

vational climate in their engineering lab section. Students 

received a small amount of course credit for completing the 

first two surveys. The third survey was administered 

the following semester as part of a larger study following 

engineering students yearly throughout their university stud-

ies. For this third survey, students were contacted through 

engineering program courses and via email. Students who 

completed the survey in a course received course credit or 

extra credit. Students who were not enrolled in the targeted 

engineering courses received $10 for completing the survey. 

Across all waves, students who received course credit for 

completing the survey were able to indicate whether their 

survey data could be used for research purposes. The study 

was deemed exempt by the university’s Institutional Review 

Board (IRB Nos. x12-375e and x17-1070e).

Measures

All survey measures used a Likert-type scale from 1 

(strongly disagree) to 5 (strongly agree). A complete list of 

survey measures is included in the Appendix.

Task value. Students responded to items about their value 

for engineering. Utility value (four items, α = .78–.90; 

“Engineering is practical for me to know”), attainment value 

(four items, α = .78–.87; “Being someone who is good at 

engineering is important to me”), and interest value (five 

items, α = .88–.94; “I enjoy doing engineering”) were 

assessed using scales adapted from Conley (2012) and previ-

ously used in Robinson, Lee, et al. (2019).

Academic self-efficacy. As an indicator of expectancy for 

success, students reported how confident they felt about 

their ability to complete academic tasks in engineering 

courses (five items, α = .83–.89; “I can learn the content 

taught in my engineering-related courses”) using the Pat-

terns of Adaptive Learning Scale (PALS) (Midgley et al., 

2000) adapted from Mamaril and colleagues (2016) for 

engineering.

Motivational climate.2 Perceived autonomy support (six 

items; “My [course] TA provides me with choices and 

options”) and perceived competence support (three items; 

“My [course] TA praises my efforts and strategies”) were 

measured near the end of the semester (T2) using scales 

adapted from Jang and colleagues (2016). Students’ percep-

tions of TA mastery goals (six items; “My [course] TA thinks 

trying hard is very important”), performance-approach goals 

(three items; “My [course] TA tells us how we compare to 

other students”), and performance-avoidance goals (four 

items; “My [course] TA tells us that it is important that we 

don’t look stupid in class”) were also assessed near the end 

of the semester (T2) using measures adapted from PALS 

(Midgley et al., 2000) and Koskey et al. (2010). Reliability 

estimates for the motivational climate measures are reported 

below in the factor analysis section.
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Achievement. Spring semester grades were obtained from 

the university registrar.

Analyses

To examine changes in task values and self-efficacy 

across the academic year, we used second-order latent 

growth curve modeling (see Figure 1), comparing no-growth 

(intercept-only) models to linear growth models with root 

mean square error of approximation (RMSEA), confirma-

tory fit index (CFI), and Tucker-Lewis index (TLI) as the 

main criteria for model fit (Hu & Bentler, 1999). To address 

the second and third research questions, we added latent 

motivation climate variables to the models as predictors of 

slope, with intercepts of student motivation (T1 levels) pre-

dicting motivation climate perceptions. We also added 

grades to the model, with latent slope, intercept, and motiva-

tion climate perceptions predicting grades. Our handling of 

the nested data structure is explained in detail below. Missing 

data analyses, correlations, and intraclass correlations were 

conducted in SPSS version 22, and all remaining analyses 

were conducted in Mplus version 8 (Muthén & Muthén, 

1998–2017).

Results

Preliminary Analyses

Missing data analyses. Students who completed any of the 

three surveys and consented to participate in the study were 

included in the study. Of the 1,107 students enrolled in the 

course, 1,021 (92%) took at least one of the three surveys 

and consented to participate in the study. In total, 927 stu-

dents completed the first survey, 752 students completed the 

second survey, and 701 students completed the final survey. 

Overall, 516 students took all three surveys, 328 students 

took two of the three surveys, and 177 took only one of the 

three surveys.

Missing data rates at the item level ranged from 9% to 

33%, with T3 variables typically showing the highest miss-

ing rates. To examine whether there were systematic patterns 

of missing data, we created a variable indicating whether 

each participant had complete data or any missing items and 

conducted subsequent analyses examining relations of this 

variable to demographic characteristics, survey mechanisms, 

and initial levels of motivation variables. Missing data was 

not associated with gender, χ2(1) = 1.51, p = .219; or with 

first-generation college student status, χ2(1) = 0.04, p = 

.843; however, missing data was associated with students’ 

racial/ethnic group, χ2(5) = 13.29, p = .02; White students 

were more likely to have complete data, whereas Black stu-

dents were more likely to have missing data. Students who 

completed the T3 survey for a course were also less likely to 

have missing data compared to students who were paid to 

complete the survey, χ2(1) = 4.55, p = .03. A multiple 

analysis of variance (MANOVA) examining levels of T1 

motivation variables as a function of missing versus com-

plete data was not significant, Wilks’ Λ (915, 4) = .99, p = 

.23, indicating that students with lower versus higher initial 

motivation were not more or less likely to have missing data 

on subsequent waves.

Measurement invariance. Longitudinal measurement invari-

ance tests (reported in Table 1) enable attribution of 

observed changes to true change rather than to participants 

interpreting survey items differently over time (Widaman & 

Riese, 1997). For each of the four constructs modeled across 

time (self-efficacy, attainment value, utility value, and 

interest value), we compared four models. First, the config-

ural model examined whether the same overall factor struc-

ture held over all three timepoints. Next, the weak invariance 

model constrained factor loadings to be equal over time. 

The strong invariance model assumed item intercepts to be 

equal over time, and the final, strict invariance model con-

strained residual variances for observed items over time. 

Following Cheung and Rensvold (2002), a change in CFI 

of less than or equal to .01 when comparing successive 

models was used as evidence for measurement invariance. 

Results supported strict measurement invariance over time 

for all four motivation constructs. These invariance con-

straints (factor loadings, intercepts, and residual variances 

held equal over time) were used in the subsequent latent 

growth models.

Factor analyses. For the student motivation variables, a 

four-factor model of engineering academic self-efficacy and 

three task values (interest, attainment, and utility) for engi-

neering fit the data acceptably to well at T1, χ2(129) = 

565.48, RMSEA = .06, CFI = .94, TLI = .93; at T2, χ2(129) 

= 790.39, RMSEA = .08, CFI = .94, TLI = .92; and at T3, 

χ2(129) = 528.89, RMSEA = .07, CFI = .96, TLI = .95.

Factor analyses for the motivational climate variables 

were somewhat exploratory, as factor structures of many of 

these variables remain unexamined alone or together in prior 

research. For example, students may not separately perceive 

supports for competence and mastery goals, but rather may 

perceive some instructional practices as part of a broader 

and connected pattern of motivationally supportive teach-

ing. A confirmatory factor analysis of an initial five-factor 

model including perceived autonomy support, perceived 

competence support, TA mastery goals, TA performance-

approach goals, and TA performance-avoidance goals fac-

tors resulted in a nonpositive definite covariance matrix, 

with estimated correlations among some variables being 

close to or higher than one. Follow-up exploratory factor 

analyses indicated two primary factors. First, it appeared 

that students viewed TA mastery goals and need support 

(autonomy and competence support) as nondistinct. Thus, 

we combined these indicators of climate into a single factor, 
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labeled “TA mastery goals and need support,” which we also 

refer to below as positive motivational support (α = .97). 

Second, students did not appear to differentiate between TA 

performance-approach and performance-avoidance goals. 

Thus, we combined these two types of perceived perfor-

mance goal structures into a single factor (α = .93). The 

resulting two-factor model showed acceptable fit to the data, 

χ2(242) = 1,125.13, p < .001, RMSEA = .07, CFI = .94, 

TLI = .93.

Correlations and descriptive statistics. Correlations and 

descriptive statistics for the study variables are displayed 

in Table 2. As expected, all motivation variables were pos-

itively correlated with one another, as were repeated mea-

sures over time. Motivation variables were also positively 

correlated with TA mastery goals and need support, espe-

cially when assessed at the same time point (T2). Aside 

from utility value, which was negatively correlated with 

TA performance goals, motivation variables were not sig-

nificantly correlated with TA performance goals. Per-

ceived TA performance goals and TA mastery/need support 

were moderately positively correlated with one another.

Intraclass correlations. Intraclass correlations (ICCs, see 

Table 2) indicated that for the most part, the course section 

(N = 24 sections) accounted for very little variance in moti-

vation and perceived motivational climate variables. TA 

mastery goals and need support exhibited by far the largest 

ICC at 8%, with the next largest ICC being 1%, and four 

variables had ICCs lower than .001. Thus, there was not suf-

ficient variability at the course section or TA level to account 

for nesting within course sections through multilevel model-

ing or robust standard errors. Instead, dummy variables for 

TAs were included in the models as predictors of motivation 

climate perceptions and to account for variance explained by 

students’ shared experiences of each TA.

Unconditional Latent Growth Models

For all four constructs, linear models fit the data well (see 

Table 3) and significantly better than the intercept-only 

models based on changes in CFI > .01. Parameter estimates 

of the selected models (Table 4, Figure 2) indicated that, on 

average, students began the academic year with moderate to 

high expectancy and values for engineering (M
intercept

 = 3.65 

to 4.54), and all constructs slightly but significantly declined 

across the year (M
slope

 = –0.11 to –0.17, p < .001). The 

slope of self-efficacy had a nonsignificant variance, but all 

other models showed significant variation in the intercept 

and slope estimates.

TABLE 1

Results of Measurement Invariance Tests

Construct and model χ2 df RMSEA CFI Δ CFI TLI SRMR

Attainment value

 Configural 372.544 51 .079 .932 .912 .050

 Weak 390.703 57 .076 .930 −.002 .919 .058

 Strong 411.773 63 .074 .927 −.003 .923 .065

 Strict 439.129 71 .071 .922 −.005 .928 .074

Utility value

 Configural 232.978 51 .059 .962 .951 .042

 Weak 253.330 57 .058 .959 −.003 .952 .066

 Strong 282.662 63 .058 .954 −.005 .952 .074

 Strict 334.383 71 .060 .945 −.009 .949 .126

Self-efficacy

 Configural 226.028 87 .040 .976 .971 .030

 Weak 242.329 95 .039 .975 −.001 .972 .044

 Strong 270.728 103 .040 .971 −.004 .971 .051

 Strict 327.900 113 .043 .963 −.008 .966 .055

Interest value

 Configural 311.306 87 .050 .974 .969 .031

 Weak 323.023 95 .048 .974 .000 .971 .041

 Strong 366.313 103 .050 .970 −.004 .969 .046

 Strict 416.068 113 .051 .965 −.005 .968 .049

Note. RMSEA = root mean square error of approximation; CFI = confirmatory fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square 

residual.



8

Motivational Climate, Motivation Trajectories,  

and Grades

Next, perceived motivational climate variables were 

added to the model as outcomes of initial motivation (latent 

intercepts) and predictors of changes in motivation (latent 

slope); grades were also regressed on intercept, slope, and 

climate perceptions (see Figure 1 for conceptual model).  

The self-efficacy model including grades encountered 

convergence errors due to a negative residual variance for the 

grade variable. Thus, we present the self-efficacy model with 

only the motivational climate variables and no grade out-

come. Conditional model fit indices are presented in Table 5.

In all four models, students’ motivation for engineering 

at the beginning of the semester predicted their midsemes-

ter motivational climate perceptions (see Table 6). Students 

beginning the course with higher attainment value for engi-

neering perceived higher levels of both TA mastery goals/

TABLE 2

Correlations and Descriptive Statistics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. T1SE  

2. T2SE .46***  

3. T3SE .42*** .53***  

4. T1Att .43*** .31*** .22***  

5. T2Att .31*** .62*** .33*** .55***  

6. T3Att .27*** .39*** .58*** .49*** .61***  

7. T1Util .35*** .26*** .21*** .54*** .41*** .31***  

8. T2Util .22*** .61*** .37*** .36*** .74*** .49*** .41***  

9. T3Util .19*** .35*** .58*** .30*** .44*** .75*** .34*** .55***  

10. T1Int .48*** .34*** .28*** .55*** .42*** .40*** .52*** .33*** .27***  

11. T2Int .29*** .63*** .42*** .41*** .76*** .56*** .37*** .76*** .48*** .55***  

12. T3Int .29*** .43*** .67*** .34*** .50*** .75*** .31*** .49*** .71*** .49*** .69***  

13. T2MNS .11** .26*** .13** .11** .21*** .16*** .08* .21*** .11* .12** .25*** .18***  

14. T2Perf .05 −.04 −.05 .03 .06 .05 −.10** −.11** −.10* .03 .01 −.04 .23***  

15. GPA −.01 .04 .20** −.09** −.04 .03 −.05 .04 .10* −.02 −.05 .05 −.06 −.15**  

 n 920 747 688 926 751 689 927 746 701 923 749 693 742 744 1004

 M 4.03 4.07 3.80 4.01 3.91 3.74 4.51 4.28 4.20 4.22 4.05 3.93 3.75 2.25 3.08

 SD 0.55 0.62 0.72 0.56 0.73 0.73 0.46 0.65 0.72 0.55 0.74 0.74 0.76 0.97 0.88

Min 2.20 1.00 1.00 1.50 1.00 1.00 2.00 1.00 1.00 1.60 1.00 1.00 1.00 1.00 0.00

Max 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.00

ICC .01 .01 <.001 .01 <.001 <.001 .01 .01 .005 .001 .01 <.001 .08 .01 <.001

Note. Correlations were computed using observed composite scores in SPSS. SE = engineering self-efficacy; Att = engineering attainment value; Util = engineering utility value; 

Int = engineering interest value; MNS = perceived TA mastery goals and need support; Perf = perceived TA performance goals.

*p < .05. **p < .01. ***p < .001.

TABLE 3

Fit Indices for Latent Growth Models

Construct and model χ2 df RMSEA CFI ΔCFI TLI

Attainment value

 No growth 522.15 75 .076 .906 — .917

 Linear 444.85 72 .071 .921 .015 .928

Utility value

 No growth 583.27 75 .081 .894 — .906

 Linear 346.27 72 .061 .943 .049 .947

Self-efficacy

 No growth 454.97 117 .053 .942 — .948

 Linear 389.53 114 .049 .953 .011 .956

Interest value

 No growth 656.45 117 .067 .938 — .944

 Linear_b 418.09 115 .051 .965 .027 .968

Note. The initial linear interest value model resulted in a nonpositive definite covariance matrix due to a negative residual variance for T3 latent interest. As this variance was small 

and nonsignificant (var = –.04, p = .211), we fixed it to 0 and this resolved the issue. Bolded rows indicate selected models.
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need support and TA performance goals. Students with 

higher self-efficacy and interest value also perceived 

higher TA mastery goals/need support, but initial self-effi-

cacy and interest value were not significant predictors of 

perceived TA performance goals. Lastly, students’ initial 

utility value positively predicted perceptions of TA mastery 

goals/need support and negatively predicted perceptions of 

TA performance goals. Variance in perceived motivational 

climate variables explained by the model predictors ranged 

from R2 = .10 to .17 (all p < .001) for TA mastery goals/

need support and R2 = .014 to .042 (p = .022–.123) for TA 

performance goals, indicating small to medium effect sizes. 

Taken together, these findings indicate that students who 

value engineering as being important for their identities 

may be predisposed to perceive both positive motivational 

support and performance goals, whereas students who 

value engineering as being useful for their goals may be 

more likely perceive higher positive motivational support 

but lower levels of instructors’ performance goals. Students 

with high self-efficacy and interest may be more likely to 

perceive only positive motivational support; in other 

words, higher or lower levels of self-efficacy and interest 

at the beginning of the semester do not appear to color stu-

dents’ perceptions of performance goals at midsemester.

TABLE 4

Model Parameters for Unconditional Latent Growth Models

Intercept Slope Intercept-slope

 M SE 95% CI LB 95% CI UB Var SE M SE 95% CI LB 95% CI UB Var SE p r SE p

AV 3.65 0.03 3.60 3.70 0.40 0.04 −0.09 0.02 −0.12 −0.06 0.10 0.02 <.001 −.144 .09 .13

UV 4.54 0.02 4.51 4.57 0.13 0.02 −0.17 0.01 −0.20 −0.15 0.08 0.02 <.001 −.015 .14 .92

IV 4.16 0.02 4.12 4.20 0.24 0.03 −0.15 0.01 −0.17 −0.12 0.09 0.01 <.001 −.057 .09 .50

SE 4.00 0.02 3.96 4.04 0.16 0.03 −0.11 0.02 −0.13 −0.08 0.03 0.02 .08 .275 .34 .42

Note. AV = attainment value; UV = utility value; IV = interest value; SE = self-efficacy; CI = confidence interval; LB = lower bound; UB = upper 

bound. Unreported p values are all p < .001. All parameters are unstandardized except for the intercept-slope covariances, which are presented as standard-

ized estimates to aid in interpretation.
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FIGURE 2. Trajectory plots. Att = attainment value; Util = utility value; Int = interest value; SE = self-efficacy.
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Perceived motivational climate also predicted changes in 

motivation (see Table 7): perceived TA mastery goals/need 

support significantly predicted more positive slopes (stabil-

ity or steeper increases) in all three task values, but not self-

efficacy. Higher perceptions of instructors’ performance 

goals predicted steeper declines in interest value and self-

efficacy.3 This means that controlling for students’ initial 

motivation and relations between initial motivation and cli-

mate perceptions, students’ differing perceptions of TAs’ 

motivational practices predicted differences in how their 

task values and their self-efficacy changed throughout the 

first year of college, with positive motivational supports 

positively predicting task value trajectories and performance 

goals negatively predicting trajectories of interest value and 

self-efficacy.

With regard to spring semester grades, perceived TA per-

formance goals negatively and significantly predicted grades 

in all three task value models (see Table 8). In the utility 

value model, the linear slope of utility value also positively 

predicted grades. In the attainment value model, the inter-

cept negatively predicted GPA and the slope positively pre-

dicted GPA. In the interest value model, no other variables 

predicted grades.

Discussion

This study investigated motivational climate perceptions 

as correlates of year-long trajectories of expectancy for suc-

cess and task values for engineering. In addition to adding 

unique knowledge about how motivation changes during a 

key time for students’ evolving career pursuits, this study 

highlights important interrelations among initial motivation, 

perceptions, and changing motivation. This empirical evi-

dence about the role of perception in mediating motivational 

support is a vital step toward increasing the efficacy of inter-

ventions and instructional design to maximize opportunities 

for student success.

First, we identified average declines in all four constructs 

in alignment with prior research across multiple domains 

and time periods (Kosovich et al., 2017; Robinson et al., 

2018; Robinson, Lee, et al., 2019; Robinson, Perez, et al., 

2019). Self-efficacy and attainment value showed the small-

est slope estimates. The slow average rate of decline in 

attainment value aligns with theory and research indicating 

that identity-related value may be more internally deter-

mined and thus slower to change (Eccles, 2009; Robinson, 

Lee, et al., 2019). The slow decline in self-efficacy was 

somewhat surprising, as it is considered to be fairly mallea-

ble in the short term (Bong & Skaalvik, 2003), and prior 

research has documented comparatively faster rates of 

decline across 2 years (Robinson, Lee, et al., 2019). It could 

be that the supportive gateway course in fact buffered stu-

dents from declines in self-efficacy during the first year, per-

haps because students tended to receive high grades in the 

class. In accordance with our expectations, utility value and 

interest value appeared to decline more rapidly, with signifi-

cantly larger slopes as evidenced by nonoverlapping confi-

dence intervals. As expected, changes in motivation were 

important for grades, such that more positive trajectories of 

attainment and utility value (i.e., slower declines or steeper 

increases) predicted higher grades. However, in alignment 

with prior research (e.g., Robinson, Lee, et al., 2019), attain-

ment value at the beginning of the academic year actually 

negatively predicted grades, suggesting students may have 

poorly calibrated levels of their own motivation when begin-

ning a new academic program.

Further, as hypothesized and aligning with some prior 

research (e.g., Lam et al., 2015; Roeser et al., 1996), our 

findings contributed unique, longitudinal evidence that stu-

dents’ initial motivations appear to color their perceptions of 

motivational climate. Very few studies have documented 

this phenomenon to date, and only one study to our knowl-

edge has examined this longitudinally (Roeser et al., 1996). 

Students with initially high expectancy and values for engi-

neering were more likely to view their instructors as sup-

portive of mastery goals, autonomy, and competence. 

Interestingly, students with higher attainment value also per-

ceived their instructors as being more performance goal ori-

ented, whereas students with higher utility value indicated 

lower perceptions of performance goal structures. This is a 

novel finding that may reflect the different ways that stu-

dents attend and react to contextual features based on their 

differing motivational profiles. Thus, students who highly 

identify with engineering may be more likely to notice social 

comparisons within their environment, and students who 

view engineering as useful to their goals may be more likely 

to disregard social comparisons, whereas differences in self-

efficacy or enjoyment of engineering may not matter for stu-

dents’ attentiveness to such comparisons.

It may also be that instructors behave differently toward 

students with various levels and qualities of motivation, 

and this must be considered as an alternative or additional 

explanation for these findings. Indeed, although our own 

observations of instruction indicated that individual TAs 

TABLE 5

Model Fit Indices for Conditional Linear Latent Growth Models

Construct and model χ2 df RMSEA CFI TLI

Attainment value 2,453.73 944 .040 .926 .922

Utility value 2,421.75 944 .039 .928 .924

Self-efficacya 2,421.05 1,044 .036 .935 .933

Interest value 2,507.32 1,089 .036 .941 .939

aThe self-efficacy model including grades encountered convergence errors, 

and thus grades were excluded from this model.

Note. RMSEA = root mean square error of approximation; CFI = confirma-

tory fit index; TLI = Tucker-Lewis index.
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appeared to interact with their students fairly equitably, 

students who were highly motivated may have simply 

interacted with the TAs more often and thereby had more 

opportunities to receive motivational support. Further, stu-

dents’ prior motivation explained only some of the varia-

tion in their perceptions of their TAs, and thus it is 

important to remember that other factors, including TAs’ 

actual behaviors, may be responsible for students’ ratings 

on these measures. Indeed, students’ perceptions at least 

partially tend to reflect real teaching behaviors (Dicke 

et al., 2021), including qualities of the unique dyadic rela-

tionships between individual students and teachers 

(Göllner et al., 2018).

Not only did students’ initial motivations predict their 

perceptions of the course motivational climate, but even 

when controlling for these relations, the perceived motiva-

tional climate predicted students’ motivational development 

and grades. Though essentially in line with expectations 

from theory and prior research, findings extend and add 

nuance to the largely cross-sectional literature examining 

similar constructs (e.g., De Clercq et al., 2020; K. Lau & 

Lee, 2008; Lazarides et al., 2018; Murayama & Elliot, 2009; 

Skaalvik et al., 2017) and broaden the existing literature in 

K-12 settings to higher education contexts (Lazarides et al., 

2018; Skaalvik et al., 2017; Won et al., 2020). Changes in 

interest value were related to both perceived TA performance 

TABLE 6

Estimates of Motivation Intercepts Predicting Motivation Climate Perceptions

Mastery/need support Performance goals

 Coef. SE p Coef. SE p

Attainment value intercept predicting climate perceptions

 Unstandardized (b) .149 .052 .004 .233 .071 .001

 Standardized (β) .126 .042 .003 .150 .044 .001

Interest value intercept predicting climate perceptions

 Unstandardized (b) .267 .072 <.001 .066 .091 .467

 Standardized (β) .176 .044 <.001 .033 .045 .467

Utility value intercept predicting climate perceptions

 Unstandardized (b) .334 .133 .012 –.474 .177 .007

 Standardized (β) .152 .054 .005 –.164 .055 .003

Self-efficacy intercept predicting climate perceptions

 Unstandardized (b) .506 .142 <.001 .156 .155 .315

 Standardized (β) .256 .058 <.001 .060 .059 .310

Note. Statistically significant parameters are bolded. Coef. = regression estimate.

TABLE 7

Estimates of Motivation Climate Perceptions Predicting Slopes of Motivation

Mastery/need support Performance goals

 Coef. SE p Coef. SE p

Climate predicting slope of attainment value

 Unstandardized (b) .057 .023 .015 −.005 .018 .772

 Standardized (β) .137 .055 .013 −.017 .059 .773

Climate predicting slope of interest value

 Unstandardized (b) .059 .022 .008 −.040 .016 .012

 Standardized (β) .152 .052 .003 −.129 .052 .012

Climate predicting slope of utility value

 Unstandardized (b) .058 .026 .026 −.033 .021 .111

 Standardized (β) .163 .068 .017 −.120 .071 .092

Climate predicting slope of self-efficacy

 Unstandardized (b) .034 .035 .331 −.056 .020 .005

 Standardized (β) .200 .167 .230 −.440 .288 .127

Note. Statistically significant parameters are bolded. Coef. = regression estimate.
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goals and mastery goals/need supportive teaching; attain-

ment and utility value were responsive to perceived TA mas-

tery goals/need support only. In other words, students 

perceiving their TA as being supportive of mastery goals, 

autonomy, and competence were more likely to exhibit 

growth (or stability) in all three forms of task value, while 

perceptions that the TA focused on social comparisons and 

demonstrating competence were associated with lower 

grades and with declines in interest value.

Lastly and somewhat contrary to our expectations (e.g., 

Urdan et al., 2002), only perceived instructor performance 

goals predicted changes in self-efficacy, and this significant 

relationship was true only for the unstandardized coefficient. 

The relatively large standardized coefficient for TA perfor-

mance goals predicting changes in self-efficacy lends addi-

tional, although tentative, evidence that TA performance 

goals indeed appear to be detrimental to students’ self-effi-

cacy trajectories. Perceived mastery goals/need support did 

not significantly predict changes in self-efficacy. The non-

significant relations between positive climate and self-effi-

cacy trajectories were surprising, although perhaps 

attributable to the relatively uniform pattern of slight decline 

in the sample (rather than a large variety of trajectories to be 

explained by predictors) or the fact that we assessed higher-

order self-efficacy for academic tasks across all engineering 

coursework rather than self-efficacy for a specific task or 

course. The differing points of reference from predictor to 

outcome, such that TA mastery goals/autonomy support in 

one supportive course did not shift self-efficacy for all engi-

neering coursework, may explain this result, particularly as 

other engineering courses may differ substantially from this 

supportive course. Indeed, it is quite remarkable that stu-

dents’ perceptions of TA actions in this one course related to 

longer-term trajectories of the three values, and that per-

ceived TA performance goals in particular appeared to 

dampen longer-term trajectories of self-efficacy.

Overall, four motivation constructs showed unique pat-

terns of relations to perceived motivational climate, suggest-

ing the need for careful consideration of students’ unique 

motivational needs including a diverse range of motivational 

factors in designing interventions to support STEM persis-

tence. For example, students endorsing high attainment 

value for the subject matter may be especially vulnerable to 

performance goal messages from their instructor, and thus 

instructional design for these students should involve mini-

mizing social comparisons as much as possible. In fact, 

TABLE 8

Estimates of Motivation Trajectories and Motivation Climate Perceptions Predicting Grades

Intercept predictor Slope predictor

 Coef. SE p Coef. SE p

Attainment value predicting grades

 Unstandardized (b) −.151 .060 .012 .430 .194 .027

 Standardized (β) −.108 .040 .008 .149 .059 .011

Interest value predicting grades

 Unstandardized (b) −.067 .072 .352 .254 .146 .083

 Standardized (β) −.037 .039 .347 .086 .049 .078

Utility value predicting grades

 Unstandardized (b) −.226 .188 .158 .677 .276 .014

 Standardized (β) −.102 .066 .121 .204 .070 .004

 Mastery/need support predictor Perceived performance goals predictor

 Coef. SE p Coef. SE p

AV model climate perceptions predicting grades

 Unstandardized (b) −.076 .050 .132 −.119 .039 .003

 Standardized (β) −.064 .042 .132 −.131 .043 .002

IV model climate perceptions predicting grades

 Unstandardized (b) −.069 .051 .173 −.129 .039 .001

 Standardized (β) −.058 .043 .173 −.142 .043 .001

UV model climate perceptions predicting grades

 Unstandardized (b) −.092 .052 .080 −.128 .041 .002

 Standardized (β) −.077 .044 .080 −.141 .046 .002

Note. Statistically significant parameters are bolded. Coef. = regression estimate; AV = attainment value; IV = interest value; UV = utility value.
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considering the negative relations between utility value and 

perceptions of TA performance goals, teachers may consider 

focusing on boosting utility value for students already 

endorsing high attainment value, perhaps via relevance 

interventions (e.g., Hecht et al., 2019). Students endorsing 

high levels of both utility and attainment value may be less 

attentive to performance goal messages as compared to stu-

dents endorsing high attainment value only; however, addi-

tional research is needed to test this proposition as well as 

the proposed intervention approaches outlined above.

Limitations and Future Directions

Student perceptions can be limited as indicators of moti-

vational climate, as considerable evidence suggests that stu-

dents’ perceptions only partially reflect actual practices in 

the classroom. However, student perceptions also uniquely 

contribute to predicting student outcomes over and above 

actual classroom practices (Lam et al., 2015; Meece et al., 

2006). Indeed, in our own study, very little variance in stu-

dents’ perceptions could be attributed to differences in 

instructors, suggesting these perceptions had more to do 

with individual differences rather than instructional differ-

ences. Nevertheless, we cannot rule out the possibility that 

instructors interacted with individual students in different 

ways, even within the same classroom. To further articulate 

theorized change processes and make concrete recommen-

dations for practice, it is important for future research to 

directly examine instructors’ actual practices in addition to 

students’ perceptions. Such research is needed to trace the 

specific practices that reliably lead to positive shifts in stu-

dent motivation via their perceptions and the mechanisms of 

such effects.

A second limitation concerns the measurement properties 

of the motivational climate measures, with implications for 

theoretical integration in studies of motivational supports. 

We had hoped to examine unique relations of specific aspects 

of motivational climate with student motivation. However, in 

alignment with conceptualizations of mastery goal structures 

and autonomy support as inclusive of similar elements 

including competence support (Ames, 1992; Bardach, 

Lüftenegger, et al., 2019; Jang et al., 2016), factor analyses 

yielded evidence that students do not distinguish among sev-

eral theoretically and conceptually distinct aspects of motiva-

tionally supportive instruction. To make stronger inferences 

about motivational instruction and student motivation, there 

is a need for measurement work and validity studies on moti-

vational climate measures, similar to work on broader student 

perceptions by Wallace and colleagues (2016).

Further building on this prior point, measurement con-

straints prevented us from considering two important pro-

cesses considered to be part of motivationally supportive 

instruction (Reeve, 2009). Specifically, personal relevance 

(Hulleman & Harackiewicz, 2009; Schmidt et al., 2019) and 

instructors’ warmth and enthusiasm may be key ingredients 

for fostering task value and competence via a supportive, 

personalized, and encouraging environment (Frenzel et al., 

2009; Linnenbrink-Garcia et al., 2013). Future research con-

sidering all of these processes side by side might uncover a 

more holistic picture of the motivational supports necessary 

to foster optimally beneficial patterns of motivation within 

students.

Considering the timing of measurements and the correla-

tional nature of our research design, we cannot make strong 

inferences about the causal directions of the observed rela-

tions. It is also important to consider the limitations of our 

modeling approach in that the average trajectory described 

by each model might not describe any particular student 

within the sample. As such, these results may be most infor-

mative when combined with future research using experi-

mental designs, mixed methods, and mixture modeling (e.g., 

latent profile analysis, growth mixture modeling) approaches. 

Such approaches can be used to examine heterogeneity in 

students’ experiences, documenting specific and general 

principles for supporting beneficial trajectories of motiva-

tion among postsecondary STEM students.

Conclusion

Our study examined relations between undergraduates’ 

engineering motivation trajectories and their perceptions of 

the motivational climate in a supportive introductory engi-

neering course. Results provide key evidence that students’ 

perceptions of instructors vary systematically based on their 

own motivation, such that students with higher initial moti-

vation perceive their instructor to be more motivationally 

supportive. Students’ different reasons for valuing engi-

neering might also lead them to differentially attend to per-

formance-focused messages in instruction. Importantly, 

because it is assumed that students are more likely to view 

instruction as motivational when it is indeed supportive of 

autonomy and mastery goals, this work also provides new 

longitudinal evidence that motivationally supportive 

instruction may be able to “move the needle” on students’ 

motivational development, even after the conclusion of the 

course. Whereas instructors’ perceived performance goals 

appeared to reduce students’ interest and self-efficacy in 

engineering, perceived supports for students’ mastery goals, 

autonomy, and competence were beneficial for longer-term 

valuing of engineering. Results highlight the utility of 

examining motivational supports from an integrative theo-

retical perspective as well as the important role of students’ 

perceptions in the links between context and student 

motivation.
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Appendix: Full List of Scale Items

Attainment Value

1. Being someone who is good at engineering is impor-

tant to me.

2. Being good in engineering is an important part of 

who I am.

3. Being involved in engineering is a key part of who I 

am.

4. I consider myself an engineering person.

Interest Value

1. I enjoy the subject of engineering.

2. I enjoy doing engineering.

3. Engineering is exciting to me.

4. I am fascinated by engineering.

5. I like engineering.

Utility Value

1. Engineering is valuable because it will help me in the 

future.

2. Engineering will be useful for me later in life.

3. Engineering is practical for me to know.

4. Being good in engineering will be important for my 

future (like when I get a job or go to graduate 

school).

Academic Self-Efficacy in Engineering

1. I’m certain I can master the content in the engineer-

ing-related courses I am taking this semester.

2. I will be able to master the content in even the most 

challenging engineering course if I try.

3. I will be able to do a good job on almost all my engi-

neering coursework if I do not give up.

4. I’m confident that I can learn the content taught in 

my engineering-related courses.

5. I’m certain I can earn a good grade in my engineer-

ing-related courses.

TA Mastery Goals and Need Support (Autonomy Support, 

Competence Support, & TA Mastery Goals)

1. My lab TA provides me with choices and options.

2. My lab TA makes me feel understood.

3. My TA conveys confidence in my ability to do well 

in this course.

4. My TA encourages me to ask questions.

5. My TA listens to how I would like to do things.

6. My TA tries to understand how I see things before 

suggesting a new way to do things.

7. My TA provides feedback that helps me improve my 

skills and knowledge.

8. My TA helps me develop skills for success.

9. My TA praises my efforts and strategies.

10. My TA thinks it’s okay to make mistakes as long as 

you are learning.

11. My TA thinks it’s important to understand the work, 

not just memorize it.

12. My lab TA recognizes us for trying hard.

13. My lab TA wants us to understand the material, not 

just memorize it.

14. My lab TA thinks learning new ideas and concepts is 

very important.

15. My lab TA thinks how much you improve is really 

important.

16. My lab TA gives us the time to really explore and 

understand new ideas.

TA Performance Goals

1. My [course] TA points out those students who get 

good grades as an example to all of us.

2. My [course] TA lets us know which students get the 

highest scores on a test or assignment.

3. My [course] TA tells us how we compare to other 

students.

4. My [course] TA tells us that it is important that we 

don’t look stupid in class.

5. My [course] TA says that showing others that we are 

not bad at class work should be our goal.

6. My [course] TA tells us it’s important to join in dis-

cussions and answer questions so it doesn’t look like 

we can’t do the work.

7. My [course] TA tells us it’s important to answer 

questions in class, so it doesn’t look like we can’t do 

the work.
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Notes

1. This data was originally collected as part of a motivation 

intervention study. Students were randomly assigned to a growth 

mindset intervention, a belonging intervention, a utility value inter-

vention, or a control, along with various combinations of these 

interventions together. In addition, TAs were randomly assigned to 

participate in brief workshops about how to support students’ moti-

vation. As reported in Robinson (2019), none of the experimental 

manipulations resulted in significant effects to instructor or student 

variables, including those in this study. Including the experimen-

tal conditions as control variables for the present study resulted in 

no changes to the significance of model parameters or substantive 

interpretations of the models; thus, they were not included in the 

final models.

2. Our original measures also included items assessing per-

ceived connections to real life and instructor warmth. Factor anal-

yses supported these as separate factors rather than one overall 

perceived autonomy support factor, but connections to real life and 

instructor warmth factors were so highly correlated with autonomy 

support (r > .80) that we were unable to include them in our mod-

els. Thus, we dropped the connections to real life and instructor 

warmth items, focusing in this study on the choice and perspective-

taking elements of autonomy-supportive instruction.

3. The regression estimate for TA performance goals predict-

ing the slope of self-efficacy was significant in the unstandardized 

model but not in the standardized model. However, the standard-

ized estimate showed the largest effect size of all climate variables 

predicting slopes or intercepts.
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