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Abstract

Background: Students are more likely to persist when they both perceive

themselves as capable of success (expectancy) and perceive tasks to be inter-

esting, important, and useful (values) or less costly in terms of effort, lost

opportunities, and psychological stress (perceived costs). Prior research has not

examined whether these motivational beliefs synergistically predict

engineering-related outcomes; studying such synergy is critical for under-

standing how multiple forms of motivation combine to support engineering

persistence.

Purpose/Hypothesis: We tested how engineering academic self-efficacy

(expectancy), values/costs, and their interaction predicted engineering-related

outcomes. We hypothesized that there would be significant interactions

between self-efficacy and values/costs in predicting engineering persistence

and academic success.

Design/Method: Structural equation modeling was used to investigate latent

interactions between self-efficacy and values/costs (interest, attainment, and

utility values; opportunity, effort, and psychological costs) in predicting career

intentions, aspirations for engineering graduate school, and engineering reten-

tion, and grades in foundational courses for engineering among first-year engi-

neering undergraduates (n = 2420).

Results: Significant interactions between self-efficacy and values (interest and

utility only) were identified, but not for self-efficacy and attainment value or

costs. Feeling both competent in engineering and highly valuing engineering

were simultaneously related to higher engineering persistence, as compared to

either feeling competent or valuing engineering alone.

Conclusions: The findings contribute to expectancy–value theory by pro-

viding a more precise understanding of the role of each type of value and cost

in predicting distal outcomes, and practicing by highlighting the importance of

supporting both expectancy and values when intervening to support engi-

neering persistence.
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1 | INTRODUCTION

Workforce needs in the United States, particularly the anticipated deficit of college engineering graduates in the next
decade (Sargent, 2017), indicate that it is critical to understand how and why some students choose to persist in pur-
suing engineering, but others do not. Research has documented that, on average, academic motivation decreases over
time (Fredricks & Eccles, 2002). Declining motivation in science, technology, engineering, and mathematics (STEM)
during college is not an exception (Robinson et al., 2018). Yet, motivation is an essential ingredient explaining students'
success and persistence in engineering; in particular, interest appears to be a major factor in STEM persistence
(Seymour & Hewitt, 1997).

Importantly, a single form of motivation may not sufficiently explain differences in engineering persistence
(Matusovich et al., 2010; Wu et al., 2020). Students may need to feel both capable of (expectancy) and interested in
(values) engineering-related tasks for successful performance in engineering (Atkinson, 1957; Eccles, 1983). For
example, engineering college students who feel highly efficacious at engineering work may not necessarily persist in
earning an engineering degree if they do not perceive engineering as interesting. To understand student success, we
must consider how expectancy and values work together synergistically.

To this end, research has begun to examine the interaction effects of expectancy and values on students' choice and
performance (Nagengast et al., 2011; Trautwein et al., 2012). This research suggests that having high expectancy and
values at the same time yields more benefits than the independent effect of either high expectancy or high values.
While prior research has documented the importance of expectancy and values in explaining engineering motivation
and outcomes (Brown et al., 2015), to our knowledge, no research has examined the interaction between expectancy
and values among engineering students.

Expectancy and values are domain-specific (Wigfield & Eccles, 2000), and motivation may function differently in
engineering than other domains (e.g., English, science in general). For instance, people may have different conceptuali-
zations of competence in fields, such as engineering, that rely more on mathematics (e.g., brilliance viewed as necessary
for success in STEM-related fields; Leslie et al., 2015) and often perceive engineering as costly in terms of their effort,
stress, and/or the need to give up other valued pursuits due to heavy courseloads and strict grading policies (Seymour &
Hewitt, 1997). Given these potential differences in how competence is characterized within engineering and the unique
demands of studying engineering in college, it is critical to examine how expectancy and values function synergistically
among engineering undergraduates specifically. Thus, the current study investigates how expectancy and values/costs
combine to predict key outcomes. This research is critical for understanding the psychological mechanisms that help to
support engineering persistence, which helps inform the types of educational interventions that might be most useful
for undergraduate engineering programs.

2 | THEORETICAL BACKGROUND

2.1 | Expectancy, values, and costs

The situated expectancy–value theory posits that expectancies for success and task values play key roles in indi-
viduals' choices, persistence, and performance (Eccles, 1983; Eccles & Wigfield, 2020). Expectancy refers to beliefs
about how one will perform on a future task, and task values refer to students' reasons for doing an activity
(Wigfield & Eccles, 2000), including interest value (enjoyment one derives from performing a task), attainment
value (perceived importance of a task to one's identity), utility value (perceived usefulness of a task for one's cur-
rent or future goals), and perceived costs (perceived negative consequences associated with engaging in a task).
Although the first three task values generally positively predict achievement-related outcomes, they are conceptu-
ally and empirically differentiated from one another and show unique relations to correlates (Gaspard
et al., 2015).
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Research shows that expectancy and values uniquely predict a variety of observed and self-reported outcomes of
interest to educators and policymakers, including academic performance (e.g., school grades), career- and educational-
related choice, and persistence (e.g., intentions, aspirations, retention). In general, expectancy is a stronger predictor of
performance, and task values are stronger predictors of choice and persistence (Wigfield & Eccles, 2000). However, the
unique roles of different types of values for multiple key outcomes are not always examined in a single study, and when
examined in a single study, the patterns appear to differ by age, group, and domain.

In Durik et al.’s (2006) work assessing both attainment/utility and interest values, 10th-grade students' attain-
ment/utility values in English appeared to be most important for literacy-related career aspirations and choice of
language arts courses, whereas interest value only predicted career aspirations. In another study focusing on 9th-
and 10th-grade students, attainment/utility values in mathematics predicted choice of mathematics courses but
not educational and occupational aspirations related to mathematics, and interest value did not predict any out-
comes (Watt et al., 2012). Guo, Marsh, et al. (2015) showed that Grade 8 Hong Kong students' utility value in math-
ematics was more important for mathematics achievement than interest value, but their other study showed that
15-year-old Australian students' interest value in mathematics was more important for the statewide standardized
test scores than utility value (Guo, Parker, et al., 2015), perhaps due to the different age groups, nationalities,
or domains. Overall, attainment and utility values, compared to interest value, tended to predict career- and
academic-related choice behavior, whereas interest value has shown relatively inconsistent patterns. In addition
to domain and age-related differences, findings may have been mixed across studies due to various analytic
approaches; thus, using a new analytic approach (i.e., latent interaction modeling) may provide a new perspective
on these inconsistent findings from prior work.

The fourth type of value, perceived costs, describes students' reasons for not engaging in a task. Prior research sup-
ports the differentiation of three types of perceived costs, including opportunity cost (what one has to give up to com-
plete a task), effort cost (the amount of anticipated effort required to succeed), and psychological cost (negative
emotional states associated with fear of failure in the task; Perez et al., 2014). Situated expectancy–value theory suggests
that perceived costs more strongly predict choice and persistence than does expectancy. Each cost is negatively associ-
ated with expectancy, values, and academic outcomes. However, there is little research examining the similar or differ-
ential roles of these different types of perceived costs for learning-related outcomes.

Although perceived costs are less often examined, consistent with the theoretical expectation, this construct has
been found to negatively predict achievement, as well as academic choices and career intentions (Flake et al., 2015).
Regarding the differential roles of different types of cost, Perez et al. (2014) found that undergraduate students' effort
cost in science was the strongest predictor of intention to leave STEM majors, the opportunity cost was the next stron-
gest predictor, and the psychological cost was not a significant predictor. By contrast, Flake et al. (2015) focused on
college students with a variety of majors and found no differential patterns of the correlations with performance and
long-term interest in a domain related to the class they were taking across these three cost types. Clarification of the
unique patterns of perceived costs in engineering is needed to inform theoretical conceptualizations, as well as the
design of practical interventions that have recently been introduced to reduce students' perceived costs (Cromley
et al., 2020; Rosenzweig et al., 2020).

Relatively limited research has focused on expectancy, values, and costs in engineering. It is important to examine
these constructs within the context of engineering, as one of the key assumptions of a situated expectancy–value theory
is that expectancy and task values are formed based on a combination of students' past experiences, identities, and the
sociocultural and historical meanings they attach to their participation in the domain (Eccles & Wigfield, 2020). Only a
few studies have confirmed the applicability of situated expectancy–value theory to the engineering field. For example,
there is evidence that expectancy more strongly predicted achievement, whereas values more strongly predicted career
plans or retention in engineering majors (Jones et al., 2010), consistent with research in other domains. Further, in one
study, interest, attainment, and career utility values were identified among engineering graduate students, largely con-
sistent with value types in situated expectancy–value theory (Mosyjowski et al., 2017). However, these prior studies
did not directly examine engineering students' cost perceptions suggested by situated expectancy–value theory; the
researchers instead categorized several types of costs, including financial, balance, intellectual, and environmental costs
(Mosyjowski et al., 2017; Peters & Daly, 2013). With regard to the function of each type of task value in engineering,
qualitative evidence suggests that utility value is a primary factor in students' decisions to complete graduate degrees in
engineering (Peters & Daly, 2013) and that attainment value was the most important factor in students' decisions to
complete an undergraduate engineering degree (Matusovich et al., 2010). Quantitative studies are needed to test the
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comparative strength of these proposed relations between specific task values and several key engineering outcomes on
a larger scale.

2.2 | Interaction between expectancy and values/costs

Although there has been a great deal of evidence for the additive and independent effects of expectancy and values on
achievement-related outcomes, the classic expectancy–value theory model (Atkinson, 1957) assumed that achievement-
related behavior was a result of the multiplicative function between expectancy and values. In other words, by this
model, the positive effect of expectancy on engineering persistence would be stronger when students simultaneously
hold a greater value on engineering coursework. Thus, testing the synergistic effect of expectancy and values, as com-
pared to testing the independent effect of each variable, is necessary to more accurately understand how these two
forms of motivation contribute to student success. For testing this synergistic effect, an interaction term is needed in a
statistical model (e.g., multiple regression model). Typically, when using the multiple regression model, observed indi-
cators that contain measurement error are multiplied to create a product term, thereby multiplying the measurement
error. This enlarged error usually limits the ability to detect a significant interaction effect, and researchers considered
this underestimation of the interaction effect size as one of the reasons for failing to observe the significant interaction
of expectancy and values (Nagengast et al., 2011). Therefore, researchers have begun to employ latent interaction
modeling, in which latent variables that are corrected for measurement error are used to generate product terms
(Marsh et al., 2004) as an alternative to generating unbiased estimates of interaction effects proposed in the classic
expectancy–value theory.

Prior studies on the latent interaction of expectancy and values have exclusively focused on secondary school stu-
dents' motivation in specific domains, including science, mathematics, and English. Initially, these studies addressed
only one or two types of value. For instance, across 57 countries, Nagengast et al. (2011) found that 15-year-old students'
engagement in science activities and science-related career intentions were high when science expectancy and interest
value were both high. In two subsequent studies, Guo, Marsh, et al. (2015); Guo, Parker, et al. (2015) included both
interest and utility values in mathematics in the same model. In each study, a different value showed a significant inter-
action effect on mathematics achievement. These differences may be due to the different samples (8th graders in Hong
Kong vs. 15-year-olds in Australia) or the statistically sensitive nature of including two highly correlated constructs in
the same model. In a later study focusing on German high school students, multiple types of values and costs in mathe-
matics were included in the same model (Guo et al., 2016); the researchers found a significant interaction between the
global task value and expectancy, but interactions with each type of value were not significant, perhaps due to the dif-
ferent statistical approach (i.e., bi-factor models).

Other researchers have tested the expectancy � value interaction in separate models for each type of value and cost
in a single study. For instance, Trautwein et al. (2012) found significant interaction effects on German secondary school
students' mathematics and English achievement for all types of values and overall cost; this pattern of the findings was
replicated in the Meyer et al. (2019) study, which also focused on German secondary school students. Taken together,
when multiple types of values were included in the same model, the patterns of expectancy � value interaction were
inconsistent (Guo et al., 2016; Guo, Marsh, et al., 2015; Guo, Parker, et al., 2015), and one of the possible reasons is
high correlations among value types. In contrast, there were quite consistent patterns of the significant expectancy �
value interaction when each type of value was included in separate models (Meyer et al., 2019; Nagengast et al., 2011;
Trautwein et al., 2012). These empirical results of expectancy � value interaction studies highlight the usefulness of set-
ting separate models for each type of value/cost in order to compare different types of value/cost in a single study to
facilitate comparison.

Nonetheless, no prior research on the expectancy � value interaction has focused on engineering and how different
types of costs (i.e., effort, psychological, and opportunity costs) interact with expectancy. However, the development
and function of individuals' expectancy and values are influenced by the situation and sociocultural background where
they are involved (Eccles & Wigfield, 2020), and the role of perceived costs may be particularly important in engi-
neering (Mosyjowski et al., 2017; Peters & Daly, 2013). Furthermore, the prior work on the latent interaction between
expectancy and values has focused on secondary school students. The interaction pattern could be distinct for students
further along their educational paths as values may be increasingly important in college students' career-related choices
and persistence (Eccles, 2009). Therefore, the current study seeks to address this gap by examining how each type of
cost, as well as each type of value, interacts with expectancy in predicting undergraduates' engineering outcomes.
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3 | THE CURRENT STUDY

3.1 | The purpose of the study

We examined how first-year undergraduate students' expectancy for success interacted with task values or perceived
costs to predict engineering outcomes at the end of their first year. Of note, we assessed engineering academic self-efficacy,
specifically students' evaluative perceptions of their capabilities in engineering-related courses (Mamaril et al., 2016), as a
proxy for expectancy beliefs. Considering the conceptual similarities (Wigfield & Eccles, 2000) and consistent evidence that
students empirically do not differentiate constructs related to competence beliefs, many researchers have used various com-
petence perceptions as a proxy for expectancy. For instance, in prior research, Guo, Marsh, et al. (2015); Guo, Parker,
et al. (2015); Guo et al. (2016) used self-concept (i.e., perceptions of ability) as a proxy for expectancy. In this study, we used
self-efficacy as a proxy for expectancy based on the conceptual similarities between self-efficacy and expectancy (Eccles &
Wigfield, 2020). Specifically, both expectancy (e.g., “How well do you expect to do in mathematics?”) and self-efficacy
(e.g., “I will be able to master the content in even the most challenging mathematics course if I try”) are future-oriented per-
ceptions in comparison to self-concept (e.g., “How good in mathematics are you?”), which reflects judgments based on past
performance. The use of the future-oriented self-efficacy rather than self-concept as a proxy for expectancies is especially
appropriate for this study, as participants were just beginning their engineering studies in college and thus were less likely to
have prior performance experience on which to make self-concept judgments.

Four key outcomes were included to provide a more complete picture in explaining engineering students' choice, persis-
tence, and achievement: engineering career intentions, aspirations for engineering graduate school, retention in an engi-
neering major, and grades in foundational courses for engineering. Students' actual major at the end of the first year would
be a strong indicator of persistence. However, since it is an early indicator of persistence and is thus subject to change, it is
necessary to include other indicators of persistence. Grade point average (GPA) may be the most critical predictor of students'
ultimate persistence in engineering. At the university where this study was conducted, a student's GPA upon completing pre-
requisite course requirements is the primary consideration for admission into the College of Engineering. Admission to the
College of Engineering is required for students to access junior and senior-level courses. However, students who have the
required GPA may still leave engineering, and major attrition may only be reflected later on in university records, so self-
reported intentions and aspirations of persistence provide a more proximal indicator to shed light on students' plans.

We focused on first-year undergraduate students because the first year is a critical period when students assess their fit
with their academic community and their major, with key implications for their educational and career pathways (Kuh
et al., 2008). In addition, dropout or transfer to other majors occurs the most within the first year of college (Adamuti-
Trache & Andres, 2008); thus, understanding how first-year engineering students' entering motivation functions to predict
their success during their first exposure to engineering content is vitally important. Prior research has also highlighted the
importance of first-year engineering students' expectancies and values/costs in predicting long-term outcomes such as aca-
demic achievement and career intentions in engineering (Jones et al., 2010).

Prior research suggested that three types of values (interest, attainment, and utility values) and costs (opportunity, effort,
and psychological costs) distinctively predict outcomes both independently and by interacting with expectancy, supporting
the necessity of examining the interaction for separate values and costs in the present study. Investigating separate models
allows us to detect specific effects for each variable, as each has unique developmental origins and outcomes (Wigfield
et al., 2016; Wigfield & Eccles, 1992), and to consider whether there were similar or unique patterns of main and interaction
effects between engineering academic self-efficacy (closely related to expectancy) and each type of value and cost across the
models. A similar approach can be found in prior work (e.g., Durik et al., 2006; Perez et al., 2014). Therefore, we created six
different models, one for each type of value and cost, to examine the main effects of engineering academic self-efficacy
(expectancy) and one type of value/cost, as well as the expectancy � value interaction effects on the outcomes (Figure 1)
using latent interaction modeling. We developed the hypotheses based on situated expectancy–value theory's propositions
but also considered the relevant empirical findings to predict the unique roles of different types of values and costs. Our spe-
cific research questions and hypotheses are as follows:

Research question: What are the main effects of engineering academic self-efficacy and each type of task value and per-
ceived cost in predicting the four outcomes?

Hypothesis 1. Engineering academic self-efficacy will more strongly predict grades (GPA), whereas values
and costs will more strongly predict career intentions, aspirations, and engineering retention.

LEE ET AL. 535



Hypothesis 2. Among the values, we hypothesize that attainment and utility values will be more strongly
related to career intentions, aspirations, and engineering retention than will interest values.

Hypothesis 3. Among the perceived costs, we hypothesize that effort costs will be more strongly associated
with career intentions, aspirations, and engineering retention than opportunity and psychological costs.

Research question: What are the interaction effects of engineering academic self-efficacy and each type of task value and
perceived cost in predicting the four outcomes?

Hypothesis 4. Engineering academic self-efficacy will positively interact with values to predict career inten-
tions, aspirations, engineering retention, and GPA; students with high values will have higher levels of outcomes
when they also have high engineering academic self-efficacy.

Hypothesis 5. Engineering academic self-efficacy will negatively interact with costs to predict career inten-
tions, aspirations, engineering retention, and GPA; students with low costs will have higher levels of outcomes
when they also have high engineering academic self-efficacy.

3.2 | Researchers' positionality

The first author's research interest in students' motivation emerges from her own experiences in South Korea. The first
author grew up in South Korea and completed her formal education in the country except for her doctoral training,
which was completed in the United States. In South Korea, there is a great emphasis on education as a means to social
and economic status, and students often report feeling a great deal of pressure to perform well in school. Her experi-
ences as a Korean student in the past have led her to study how to support students' adaptive motivation and

FIGURE 1 Structural equation model depicting the hypothesized relations among the key variables. The proposed model with a latent

interaction variable, modeled separately for interest value (Model 1), attainment value (Model 2), utility value (Model 3), opportunity cost

(Model 4), effort cost (Model 5), and psychological cost (Model 6). The paths of Men (women = 0; men = 1), Non-URM (non-

underrepresented racial minority; URM = 0; non-URM = 1), Non-FG (nonfirst-generation; FG = 0; non-FG = 1), and Math ACT scores

predicted both motivational (i.e., engineering academic self-efficacy, value/cost, and EAS� value/cost) and outcome (career intentions,

aspirations for engineering graduate school, engineering retention, grades in foundational courses for engineering) variables. The

motivational variables were measured at Time 1, and the outcome variables were measured at Time 2, except for grades in foundational

courses for engineering (details are presented in Measures)
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persistence in academic work. She is interested in issues of high attrition in STEM fields, as one of the potential reasons
for high attrition is lack of motivation among students.

The authors of this work are within and outside of engineering education. The sixth and seventh authors have
worked in the Department of Chemical Engineering and Materials Science as professors, and they have long made an
effort to reduce dropout rates in the department. Their strong motivation to address the dropout issue aligns with the
research interests of the rest of the authors within the discipline of educational psychology, which led us to collaborate
to investigate engineering students' motivation in the current study. Our goal was to better understand engineering stu-
dents' motivation through a lens of educational psychology, ultimately drawing implications for engineering education.

We are aware of potential biases as researchers who have collected a sample from the university where some of us
have worked as a student, a researcher, or a professor. However, we believe our understanding of the university context
helps us to more thoroughly and accurately uncover insights from our findings.

4 | METHOD

4.1 | Participants and procedure

Participants were engineering students at a large, public university in the United States. Students were eligible to participate
in the study if they were first-year students enrolled as engineering majors. We recruited two cohorts of participants via
email and at a freshman orientation program in the College of Engineering in Fall 2015 (Cohort 1) and Fall 2016 (Cohort 2).
Across two cohorts, 2788 students were recruited, and 2420 students provided consent and enrolled in this study. At Time
1 (T1) in August just before students' first semester of college, of 2420 students, 1565 students (response rate: 60.9%) com-
pleted the T1 survey. At Time 2 (T2) 8 months after T1 and at the end of students' first year, 2420 students who enrolled in
this study were all invited again via email and through their engineering courses regardless of whether they responded to
the T1 survey, and 1803 students (response rate: 70.5%) completed the T2 survey. The T2 response rate, based on those who
completed the T1 survey, was 67.3% (n = 1054). In total, the final data included 2420 participants who enrolled in this study
from Cohorts 1 (n = 1229) and 2 (n = 1191), and their institutional data were collected.

The information on the sample characteristics by cohort is provided in Table 1. For the race/ethnicity responses, we
grouped non-White or non-Asian students as underrepresented racial/ethnic minority (URM) students. Recently, to
indicate racial/ethnic groups, it is encouraged to use the specific name of specific racial/ethnic groups rather than
aggregating these groups. While acknowledging the importance of describing particular racial/ethnic groups, we chose
to use the term URM to indicate non-White and non-Asian participants in this study for the following reasons. First,
our purpose of including the variable of URM as a covariate was to account for the general sociocultural background
characteristics known to be traditionally influenced motivational processes in STEM attrition, rather than identifying
racial/ethnic group differences in motivation and outcomes per se. Second, the proportions of non-White and non-
Asian groups in the dataset were small for analysis (<15.5%), and aggregating these groups as a URM maximizes the
statistical power for our analysis.

According to aggregate statistics obtained from the College of Engineering, gender, URM status, first-generation
(FG) college students status, and average math ACT score distributions for the study sample were comparable to those
in the overall population of first-year engineering students during Fall 2015 and Fall 2016. Specifically, the population
of first-year engineering majors was 21.9% women (compared with 24.7% women in the present study), 19.8% FG stu-
dents (18.6% in the present study), and 12.4% URM students (11.7% in the present study). The overall engineering popu-
lation had an average math ACT score of 27.21 (28.28 in the present study). The study, which was reviewed by the
university's Institutional Review Board, was deemed exempt (IRB No. X12-375e).

4.2 | Measures

Data included survey responses and institutional records. The motivation items (engineering academic self-efficacy,
values, and costs) were assessed at T1 before students encountered any coursework or programming provided by the
College of Engineering. Students' motivational beliefs were measured before they had taken engineering courses in col-
lege, but their beliefs about self-efficacy, values, or costs in pursuing engineering could have been learned indirectly
from others (e.g., teachers, parents, or counselors). Importantly, aside from how accurate or inaccurate they are, initial
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motivation beliefs are crucial in shaping students' perceptions of such experiences during college. Also, although moti-
vation beliefs change over time, these are assumed to be only somewhat malleable over time in response to normal
experiences (Robinson et al., 2018). Focusing on students' entering motivation in engineering can provide a baseline
understanding of which type of motivation belief might be most essential for intervention in their first year of college.
Aspirations for engineering graduate school and engineering career intentions were assessed at T2. Retention in an
engineering major and grades in foundational courses for engineering were collected directly from the institutional
records at the end of the first year of college.

4.2.1 | Engineering academic self-efficacy, values, and costs

Engineering academic self-efficacy, values, and costs were all assessed on a five-point Likert scale (all items are pres-
ented in the Appendix), with 1 = “strongly disagree” and 5 = “strongly agree.” For engineering academic self-efficacy,
five items were used based on Mamaril et al.’s (2016) general engineering self-efficacy scale (α = .83). To assess three
types of task values in engineering, we used Conley's (2012) scales, modified to replace mathematics with engineering:
interest (5 items; α = .87), attainment (4 items; α = .75), and utility (3 items; α = .76) values.

We adapted items from Perez et al.’s (2014) scales to assess perceived costs in engineering. In Perez et al.’s (2014)
factor analyses, students appeared to distinguish the three types of costs (opportunity, effort, and psychological costs)
from one another, and each cost subscale was negatively associated with expectancy and values, as well as with college
students' final grade, providing validity evidence for the measure. This measure was also originally validated with
undergraduate students from a chemistry course for STEM majors. This can strengthen the validity of the cost subscales
used in an engineering education setting in the current study due to the similar ages of the participants and the shared
characteristics of chemistry and engineering as STEM domains. The reliabilities based on our data were adequate,
including opportunity (3 items; α = .80), effort (4 items; α = .76), and psychological (5 items; α = .82) costs. The scale
for the opportunity cost originally comprised four items, but one item (“I would rather leave more time for fun than for
something as intense as engineering”) was excluded from analyses due to its relatively low factor loading (λ = 0.46; all
factor loadings in the Appendix).

TABLE 1 Demographic characteristics by cohort

Cohort 1 Cohort 2

Gender

Men 915 (74.5%) 907 (76.2%)

Women 314 (25.5%) 284 (23.8%)

Race

African American or Black 88 (7.2%) 59 (5.0%)

Asian 251 (20.4%) 265 (22.3%)

White 788 (64.1%) 755 (63.4%)

Hispanic or Latino/a 60 (4.9%) 31 (2.6%)

Multiracial or other 27 (2.0%) 65 (5.5%)

Multiracial—URM 8 (0.7%) 32 (2.7%)

Multiracial—non-URM 12 (1.0%) 22 (1.8%)

URM

URM 160 (13.0%) 124 (1.04%)

Non-URM 1051 (85.5%) 1042 (87.5%)

First-generation status

First-generation 229 (18.6%) 221 (18.6%)

Nonfirst-generation 1000 (81.4%) 970 (81.4%)

Math ACT 28.16 28.41

Abbreviation: URM, underrepresented racial/ethnic minority (i.e., non-White and non-Asian participants).
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We conducted a confirmatory factor analysis (CFA) with seven latent variables, including engineering academic
self-efficacy and all types of task values and perceived costs, suggesting their conceptual and empirical distinctions:
χ 2(356) = 1328.23, p< .001, Comparative Fit Index (CFI) = 0.933, Tucker-Lewis-Index = 0.924, Standardized Root
Mean Square Residual = 0.045, Root Mean Square Error of Approximation (RMSEA) = 0.042 [90% Confidential
Interval = 0.039, 0.044]. Of note, the chi-square (χ 2) test was not used in this case due to the large sample size. A larger
sample size is more likely to obtain a significant chi-square (Hu & Bentler, 1999).

4.2.2 | Outcomes

As outcomes related to persistence in engineering, students' engineering career intentions, aspirations for engineering
graduate school, retention in an engineering major, and grades in foundational courses for engineering (GPA) were
included. We measured the distal outcomes 8 months after the first semester of college started, which was close to the
end of the first year but prior to the final week. We administered the T2 surveys before end-of-the-semester events
(e.g., final exams, project assignments) to help the reduce potential influences of these events on the quantity and
quality of survey responses. Furthermore, measuring multiple outcomes 8 months later and controlling for prior
achievement (mathematics ACT scores) and demographic factors (gender, URM status, and FG college student status)
allows us to make stronger claims regarding the directionality of relations between motivation and outcomes. Exam-
ining distal outcomes is an important extension of prior latent interaction research that focused on concurrent
outcomes.

Career intentions
A single item was used to measure career intentions in engineering (Estrada et al., 2011): “To what extent do you
intend to pursue a career in engineering?” (1 = definitely will not, 10 = definitely will). For relatively clear and straight-
forward constructs such as career intentions, a simple item is less likely to introduce unnecessary error compared to a
multi-item measure. Prior research has indicated that a single-item measure may be most appropriate for the clear and
single-faceted nature of this construct (Gogol et al., 2014). Indeed, researchers have often measured career intentions
with a single item and shown adequate validity based on the expected correlations with motivation and science career
pursuit (Estrada et al., 2011; Woodcock et al., 2012).

Aspirations for engineering graduate school
A single item was used to measure aspirations for engineering graduate school to pursue graduate-level training in engi-
neering (Jodl et al., 2001): “How far would you like to go in school? Mark all that apply.” As we aimed to assess the spe-
cific education level that students wish to gain, the question is quite straightforward and does not require multiple
items. Indeed, this single-item scale introduced by Eccles (1983) has often been used, and prior research has shown
strong predictive validity through its relations with different student outcomes (Hill et al., 2004; Jodl et al., 2001). The
responses were collapsed into a dichotomous variable to focus on aspirations for going to graduate school in an
engineering-related field (coded as 1) versus aspirations for graduating college and/or pursuing a graduate degree in a
nonengineering field (coded as 0).

Engineering retention
Students' majors were collected from institutional data at the end of the spring semester of their first year. Students
were coded as having persisted in engineering if their major at the end of their second semester was within the College
of Engineering (1 = stayed in engineering; 0 = left engineering).

Grades in foundational courses for engineering
The students' cumulative GPA obtained from engineering and engineering-related courses for the first year was
obtained from institutional records. Grades included those from required courses for any engineering major at the uni-
versity, including courses offered by the College of Engineering, elective courses related to engineering as listed on engi-
neering major elective course lists (e.g., Composite Materials Processing, Chemical Reaction Engineering), and required
prerequisite courses in domains such as mathematics, chemistry, and biology. At this university, all grades used a
numerical system (4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0).
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4.2.3 | Covariates

The students' gender (women = 0; men = 1), URM (i.e., non-White or non-Asian) group membership (URM = 0; Non-
URM = 1), and FG college student status (FG = 0; Non-FG = 1) were collected from institutional records. ACT mathe-
matics scores from the institutional records were used as a measure of academic achievement before entering college.
For enrolling in introductory engineering courses, students were required to achieve a certain level of mathematics per-
formance, and the ACT mathematics scores have provided strong evidence of predictive validity for college outcomes
(Bettinger et al., 2013). Thus, we expected them to be especially informative for engineering students. The internal con-
sistency reliabilities for ACT mathematics scores, reported on the ACT technical manual (ACT, 2017), also showed
high-reliability values (0.90–0.92).

4.3 | Statistical analyses

Within the structural equation modeling framework in Mplus (Version 8), we examined the latent interaction between
engineering academic self-efficacy and interest value (Model 1), attainment value (Model 2), utility value (Model 3),
opportunity cost (Model 4), effort cost (Model 5), and psychological cost (Model 6) in predicting different outcomes,
testing six models in total. To handle potential Type I error that might arise due to multiple hypothesis tests performed
in each model, we computed adjusted p-values using the false discovery rate method (Benjamini & Hochberg, 1995).
We used a robust maximum likelihood estimator (MLR) because it provides standard errors computed with Huber–
White estimator, which corrects for the potential non-normality of the product indicators (Nagengast et al., 2011).
Before the analysis, we standardized all indicators (continuous variables) and then created product indicators for the
latent interactions based on the CFAs, using the unconstrained approach and matched pair-strategy (Marsh et al., 2004;
details are presented in the Supporting Information).

In each of the six models (Models 1–6), we entered the main effects of engineering academic self-efficacy and one
type of value or cost and the self-efficacy � value/cost interaction effect on all four outcomes (Figure 1). We obtained
the collinearity statistics from the regression models estimating each of the four outcomes predicted by (1) engineering
academic self-efficacy, three values, and three interaction terms (self-efficacy � each value) simultaneously, and
(2) engineering academic self-efficacy, three costs, and three interaction terms (self-efficacy � each cost) simulta-
neously. As reported in Table S1, the results indicated that there exists high collinearity in all models. To reduce the
concerns about collinearity and suppression effects due to the high correlations among the types of values and costs, we
opted to test specific effects for each variable and consider whether there were similar or unique patterns of main and
interaction effects between engineering academic self-efficacy and each type of value and cost across the models.

5 | RESULTS

Overall, missing data rates for specific items or indicators ranged from 0% to 40.3%, with an average missing rate of
33.8%, and specific variables ranged from 0% to 39.2%, with an average rate of 22.4% (Table S2). The missing rate of the
institutional data was negligible (1–1.5%), whereas there was a fairly substantial amount of missingness in the survey
data. Our missing analyses indicated that the current data might be more representative of students who achieved
higher ACT math scores or were women or continuing generation (details are presented in the Supporting Informa-
tion). Nonetheless, applying full information maximum likelihood to the current data under Missing At Random can
yield less biased estimates (Enders, 2010). Further, we accounted for the patterns of missingness in main analyses by
including all relevant variables, including gender, FG status, and ACT math scores within the models, reducing the
concern about the potential influence of missing patterns on the final results. Next, we tested measurement invariance
to ensure that each construct was interpreted in the same way across two cohorts (Table S3). The means, standard devi-
ations, and correlations for the study variables for both cohorts are displayed in Table 2. The general patterns of correla-
tions were consistent with our expectations and prior research.

Traditional model fit indices (e.g., χ 2, CFI, RMSEA) are not available when using the MLR estimator and a combi-
nation of continuous and categorical variables. Thus, we tested the appropriate measurement models prior to the main
analyses. After confirming the measurement models (Table S4), we tested six different models examining the main
effects of engineering academic self-efficacy and each type of value (or cost) and the self-efficacy � value/cost
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interaction effect on four outcomes, and the outcomes were all included in each model (Figure 1). The results for the
models without the interaction terms are presented in Tables S5 and S6. Overall, the significant patterns of the main
effects in the final models, including the interaction terms (Tables 3 and 4) remained largely the same as those from the
models without the interaction terms. For the final models, including the interaction terms, the estimates of demo-
graphic variables predicting motivational factors are presented in Table S7, and the indirect effects of demographic pre-
dictors on engineering outcomes via motivational factors are presented in Table S8 (we did not report the estimates
specifically here as the analysis is outside the scope of the research questions). Below, we report the findings from the
final models, including the interaction terms.

In the interest-value model (Model 1), engineering academic self-efficacy did not significantly predict any outcomes.
Interest value predicted all outcomes (β's = 0.21 to 0.38, p's < .014) except GPA. Interest value significantly interacted
with self-efficacy to predict career intentions (β = 0.16, p< .004) and engineering retentions (β = 0.30, p = .012). The
model-implied regression lines in Figure 2a,b illustrate that career intentions and engineering retentions were particu-
larly high when both self-efficacy and interest value were relatively high. Thus, students who were efficacious at
engineering-related tasks, and were simultaneously interested in the tasks, had stronger intentions to pursue a career
in engineering and were more likely to stay in engineering at the end of their first year of college, compared to those
who were efficacious at engineering-related tasks or interested in the tasks. The primary model, including the
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interaction term, explained more variance in career intentions (R 2 = 0.21) and engineering retention (R 2 = 0.35) rela-
tive to the model without the interaction term (R 2 = 0.18–0.22; Table S5), but there were no differences in variance
explained for the other outcomes.

In the attainment-value model (Model 2), there were no significant main effects of self-efficacy or attainment value
on the outcomes, as well as no significant interaction effect. Despite the nonsignificant interaction effect, the primary
model, including the interaction term, explained more variance in engineering retention (R 2 = 0.26) relative to the
model without the interaction term (R 2 = 0.18), but there were only minimal differences or no differences in variance
explained for the other outcomes.

In the utility-value model (Model 3), similar to Model 1, utility value predicted all outcomes (β's = 0.25 to 0.44,
p's < .014) except GPA. However, self-efficacy did not predict any outcomes. Utility value significantly interacted with
self-efficacy to predict career intentions (β = 0.21, p = .012) and engineering retention (β = 0.30, p = .014), suggesting
career intentions and engineering retention were even higher when both self-efficacy and utility value were high
(Figure 3a,b). The primary model, including the interaction term, explained more variance in career intentions
(R 2 = 0.21) and engineering retention (R 2 = 0.31) relative to the model without the interaction term (R 2 = 0.15–0.19),
but there were only minimal differences or no differences in variance explained for the other outcomes.
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The opportunity-cost (Model 4) and the psychological-cost (Model 6) models showed similar patterns of significant
paths. Whereas self-efficacy predicted all outcomes (Model 4: β's = 0.19 to 0.35, p's < .004; Model 6: β's = 0.22 to 0.39,
p's < .004) except GPA, opportunity cost or psychological cost did not predict any outcomes. No significant interaction
effect was found. There were only minimal differences or no differences in variance explained for all outcomes between
the primary model, including the interaction term (R 2 = 0.05–0.19) and the model without the interaction term
(R 2 = 0.05–0.19; Table S6).

In the effort-cost model (Model 5), self-efficacy did not predict any outcomes, whereas effort costs predicted all out-
comes (β's = �0.33 to �0.19, p's < .028) except GPA. There was no significant interaction effect. There were only min-
imal differences or no differences in variance explained for all outcomes between the primary model, including the
interaction term (R 2 = 0.07–0.22) and the model without the interaction term (R 2 = 0.06–0.21).

Overall, engineering academic self-efficacy did not significantly predict GPA across all models. In the opportunity-
cost and psychological-cost models, self-efficacy predicted other persistence outcomes. Interest value, utility value, and
effort costs independently predicted engineering persistence. The interactions in the interest- and utility-value models
suggest that feeling competent and placing a high value on engineering at the same time may be especially related to
higher levels of career intentions and retention in engineering, as compared to either feeling competent or placing a
high value on engineering alone. Importantly, having high self-efficacy does not relate to career intentions and reten-
tion in an engineering major if students do not view engineering as enjoyable or useful. Additionally, we found no evi-
dence that perceived costs interacted with self-efficacy.

6 | DISCUSSION

This study investigated first-year undergraduate engineering students' self-efficacy, values, costs, and indicators of early
engineering persistence in college. In particular, we assessed multiple dimensions of task values and perceived costs in
a single study, which provides a nuanced understanding of potentially differential roles of value/cost beliefs in
predicting engineering persistence. In addition, this study affirms the importance of supporting both engineering aca-
demic self-efficacy and values, as opposed to supporting only self-efficacy or values. As such, the current findings point
to specific strategies that may be used in engineering education.

6.1 | Roles of different types of values and costs in situated expectancy–value theory

The findings associated with each hypothesis are summarized in Table 5. With respect to main effects, we first hypothe-
sized that self-efficacy would predict grades in all models (Hypothesis 1). This hypothesis was not supported in that the
main effects of self-efficacy on GPA were not significant in any of the models. These nonsignificant main effects, which
mirror the weak bivariate correlation observed between engineering academic self-efficacy and GPA (r = .06) in the
current data, might reflect the fact that in the first year of college, engineering students take a number of engineering-
related prerequisite courses in other areas (e.g., mathematics, chemistry). At this institution, engineering students often
take only two or fewer engineering courses during their first year, with one course having very little variability in
grades (e.g., most students earn a 4.0 on a 4.0 scale). In other words, students may not view the courses that make up
their GPA as engineering courses per se because they include both prerequisites and major, specific courses. The dif-
ferent levels of measurement for self-efficacy and GPA could be a reason for the nonsignificant effects of engineering
academic self-efficacy in this study. However, we note that, in our case, it is also possible that engineering academic
self-efficacy could still support students' achievement in the courses in other areas (e.g., mathematics, chemistry)
because these courses are included as College Requirements or Major Requirements for engineering at the institution.
For clarifying the association between engineering academic self-efficacy and GPA, future research needs to focus on
the prediction of engineering-specific GPA. Alternately, considering the timing of our measurement, first-year students'
self-efficacy beliefs may not accurately reflect their actual ability in engineering. Thus, it is worthwhile to measure engi-
neering motivation later in college to see if stronger relations are identified as expected.

We also hypothesized that values would predict engineering career intentions, aspirations for engineering graduate
school, and engineering retention (Hypothesis 1). This hypothesis was supported in the interest- and utility-value
models only. Distinct from interest and utility values, attainment value is the most identity-related form of value
(Eccles, 2009). As prior research suggests that college is a key time for students' developing career and academic
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identities (Roisman et al., 2004), attainment value might function differently from the other values for college students
(Robinson et al., 2018). Such developmental characteristics, such as its relative stability and strong predictive power for
later university outcomes, could lead to nonsignificant main and interaction effects of attainment value in early college,
contrary to our expectations (Hypothesis 2 and 4).

Effort costs predicted all the outcomes except GPA; however, other costs did not, in alignment with prior research
(Perez et al., 2014) and supporting our hypothesis that effort costs would be most likely to predict the outcomes com-
pared to the other costs (Hypothesis 3). In our opportunity- and psychological-cost models, self-efficacy, not costs, sig-
nificantly predicted some outcomes, whereas in the effort-cost model, effort costs, but not self-efficacy, predicted the
outcomes. These results suggest that students who think engineering coursework is not worth the effort may be less
likely to pursue engineering-related behaviors, regardless of their self-efficacy. However, opportunity cost or psycholog-
ical cost appeared to be less predictive of the outcomes than self-efficacy. Perhaps if students feel competent about the
engineering-related coursework, the cost of giving up other valued activities or worrying about performance on engi-
neering might not be as concerning. These findings suggest that when intending to buffer students' perceived costs in
engineering-related coursework, reducing effort costs needs to be prioritized compared to opportunity or psychological
costs. For example, a professor might reduce students' effort costs by explaining why the effort is needed to be successful
in engineering and how it can be worth it in the end.

Regarding the interaction effect hypotheses, we found some significant interaction effects suggesting that the rela-
tions between self-efficacy and persistence outcomes (particularly career intentions and engineering retention) depend
on values and vice versa (Hypothesis 4). In the interest- and utility-value models, although there were significant main
effects of values, students' career intentions and retention in an engineering major were even higher when self-efficacy
was also high (Figures 2a,b, and 3a,b). Of note, in these two models, self-efficacy alone was not a significant predictor
of career intentions or engineering retention. However, self-efficacy further facilitated the positive roles of interest- or

TABLE 5 Hypotheses and associated findings in the current study

Hypothesis Findings

What are the main effects of engineering academic self-efficacy and each type of task value and perceived cost in predicting the four
outcomes?

H1. Engineering academic self-efficacy will more strongly
predict grades (GPA), whereas values and costs will more
strongly predict career intentions, aspirations, and
engineering retention.

Engineering academic self-efficacy did not predict grades, but
engineering academic self-efficacy significantly predicted all
other outcomes in the opportunity- and psychological-cost
models. Some values and costs significantly predicted
engineering persistence outcomes except GPA.

H2. Among the values, we hypothesize that attainment and
utility values will be more strongly related to career
intentions, aspirations, and engineering retention than will
interest values.

Only interest value and utility value significantly predicted career
intentions, aspirations, and engineering retention.

H3. Among the perceived costs, we hypothesize that effort
costs will be more strongly associated with career intentions,
aspirations, and engineering retention than opportunity and
psychological costs.

Only effort costs significantly predicted career intentions,
aspirations, and engineering retention.

What are the interaction effects of engineering academic self-efficacy and each type of task value and perceived cost in predicting the
four outcomes?

H4. Engineering academic self-efficacy will positively interact
with values to predict career intentions, aspirations,
engineering retention, and GPA; students with high values
will have higher levels of outcomes when they also have
high engineering academic self-efficacy.

There were positive interactions with engineering academic self-
efficacy in predicting career intentions and aspirations in the
interest- and utility-value models only.

H5. Engineering academic self-efficacy will negatively interact
with costs to predict career intentions, aspirations,
engineering retention, and GPA; students with low costs will
have higher levels of outcomes when they also have high
engineering academic self-efficacy.

There were no significant interactions with engineering academic
self-efficacy for costs.
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utility-values. These interaction effects of values and self-efficacy suggest that it is important for engineering educators
to focus on supporting engineering academic self-efficacy for students who are interested in engineering or who per-
ceive its usefulness for their future in order to achieve synergistic effects on engineering persistence.

Although having high self-efficacy and value together showed a synergistic effect on outcomes, we did not
observe that having high interest- or utility-value with low self-efficacy had a detrimental effect on outcomes.
That is, high task values were not detrimental when self-efficacy was low and vice versa; as long as the value is
high, career intentions and engineering retention are also high. Possibly, even in the interaction effects, the role
of values in choice and persistence behaviors may be more crucial than that of self-efficacy. Our findings bolster
the importance of supporting values in engineering education, especially as values (and self-efficacy) tend to
decline during undergraduate studies.

The expected significant multiplicative function was found only for some values but not for costs, and this pattern was
inconsistent with our hypothesis (Hypothesis 5) and prior work (Trautwein et al., 2012), showing interaction effects for all
values and overall costs. It may be that prior studies examined how a composite factor of perceived costs predicted out-
comes, but they did not examine the unique roles of each type of perceived cost. Another possibility is that there were dif-
ferences in the nature of the sample in terms of students' ages. In the current study, participants had already made an
initial decision about their major. Thus, even if working on engineering coursework is perceived as a high-cost pursuit,
students have already demonstrated a willingness to pursue engineering, and the high-cost perceptions may not deter
them during the first year. Students' earlier decisions about their major could lead to weaker-than-expected relations to
the engineering outcomes at the end of the first year. It is also possible that patterns could vary for individuals, with per-
ceived costs being detrimental for some students but not all. Specifically, engineering persistence may have unique impli-
cations at the intersection of students' gender, race/ethnicity, and FG college status, as situated expectancy–value theory
stresses the impact of the cultural background on the development of individuals' expectancy and values (Eccles &
Wigfield, 2020; Totonchi et al., 2021). Future research can investigate such intersectional effects on engineering persis-
tence, which can add nuance to guidelines for how to help students who are generally underrepresented in an engineering
field.

6.2 | Limitations and future directions

We note a few limitations in the current study to guide future research. First, we measured students' motivation at the
beginning of their university studies before they had begun coursework, and other university experiences that can
shape students' motivation over time. Assessing students' motivation in later months and years of college could provide
unique insights into how students' motivation, shaped based on their own experience with engineering coursework,
functions in engineering persistence in a more precise way. In other words, students' engineering-specific motivation
may be more established after they experience engineering coursework. However, we maintain that students' confi-
dence and reasons for engaging in engineering at the beginning of their studies, even before experiencing their courses,
is an important indicator, as students' engagement with and perceptions of their subsequent experiences are very likely
influenced by their incoming beliefs (Bandura, 1997). Since individuals' motivation can shift over time, accounting for
the nature of malleability in engineering motivation in future research would also clarify the relation between motiva-
tion and later engineering-related outcomes. For instance, examining time-related changes in expectancy and values/
costs could address how the development of motivation contributes to engineering persistence.

In addition, for the purpose of our analysis in this study, we chose to aggregate non-Asian and non-White individ-
uals as a URM group while we acknowledge the importance of being specific and sensitive to the variability that exists
between and within different racial and ethnic groups. Future research needs to investigate similarities and differences
in the roles of expectancy and values/costs in engineering persistence outcomes across different racial and ethnic
groups. Specifically, it would be useful to examine whether the main and interaction effects of expectancy and values/
costs may be similar or different across diverse populations by using a multigroup approach.

6.3 | Practical implications

The current findings provide implications for motivation interventions in engineering or STEM fields more broadly.
Our results highlight the importance of simultaneously supporting multiple forms of engineering motivation, including
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both values and academic self-efficacy. Doing so can yield the highest levels of persistence outcomes for students, as
our findings suggest that students who both value engineering and feel confident in their ability to do engineering
coursework were most likely to remain in engineering at the end of the first year and endorsed stronger career
intentions to pursue engineering. The need to support multiple forms of motivation highlights the potential bene-
fits of integrative motivational interventions designed to support multiple motivational constructs simultaneously.
For instance, Linnenbrink-Garcia et al. (2018) developed a 2-week summer science program for undergraduates
that drew from five motivational design principles (use real-world challenging tasks, provide choice, support
active involvement, support belonging, use effort-based evaluation) to successfully support early undergraduates'
self-efficacy and values in science. This multifaceted intervention also showed promising results for supporting
undergraduates' persistence in science.

Such an approach could readily be applied to engineering classrooms as well. For instance, as a way of supporting
self-efficacy, students who are unsure about their own capabilities to successfully complete engineering tasks can ben-
efit from vicarious experiences such as exposure to role models who had common difficulties (e.g., struggled in intro-
ductory required courses) but overcame barriers to becoming engineers. Even for students who are quite competent
about engineering tasks, our findings of synergistic effects of self-efficacy and values suggest the importance of pro-
moting task values while holding their self-efficacy high in order to maximize the positive effects of motivational beliefs
on engineering persistence. For example, as shown in some current intervention approaches, making engineering
courses personally relevant can help students find the usefulness of engineering work in their career path (Hulleman
et al., 2010; Hulleman & Harackiewicz, 2009). As such, class activities for supporting self-efficacy should be provided
along with activities that illustrate the relevance of the material to students' lives, perhaps, including value interven-
tions, bringing synergistic effects of expectancy and values beyond the independent effect of each construct. Even for
courses in which the vast majority of students receive high grades, their longer-term persistence may be harmed if they
do not have experiences that support their interest in engineering or their recognition of its usefulness and importance
to their identities.

6.4 | Conclusion

For informing strategies for promoting students' engineering persistence, this study's findings suggest the importance of
supporting both engineering academic self-efficacy and task values simultaneously in engineering coursework, as
opposed to supporting only one of these motivational constructs. This means that supporting only engineering students'
confidence or providing a rationale for why a task is valuable may not be sufficient. Of note, we found evidence of this
multiplicative function of engineering academic self-efficacy and interest/utility value only, but not for self-efficacy and
utility value or perceived costs in engineering. Thus, an effective way of supporting college students' engineering persis-
tence may differ depending on which motivational construct (e.g., values or costs) is targeted. The current findings con-
tribute important knowledge to situated expectancy–value theory about how expectancy and value beliefs function
together. We believe these theoretical findings can also inform educational policies and practices by providing insights
for how to intervene in support of students' motivation and success.
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APPENDIX

SURVEY ITEMS FOR MOTIVATIONAL BELIEFS IN ENGINEERING
Values in parentheses are estimated standardized factor loadings for each item in the CFA model with seven latent vari-
ables, including engineering academic self-efficacy and all types of task values and perceived costs.

Engineering academic self-efficacy (adapted from Mamaril et al., 2016)

1. I'm certain I can master the content in the engineering-related courses I am taking this semester. (0.73)
2. I will be able to master the content in even the most challenging engineering course if I try. (0.67)
3. I will be able to do a good job on almost all my engineering coursework if I do not give up. (0.64)
4. I'm confident that I can learn the content taught in my engineering-related courses. (0.74)
5. I'm certain I can earn a good grade in my engineering-related courses. (0.76)
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Task values (adapted from Conley, 2012)

Interest value:
1. I enjoy the subject of engineering. (0.82)
2. I enjoy doing engineering. (0.79)
3. Engineering is exciting to me. (0.64)
4. I am fascinated by engineering. (0.70)
5. I like engineering. (0.81)

Attainment value:
1. It is important for me to be a person who reasons like an engineer. (0.65)
2. It is important for me to be someone who is good at solving problems that involve engineering. (0.70)
3. Being someone who is good at engineering is important to me. (0.69)
4. Being good in engineering is an important part of who I am. (0.59)

Utility value:
1. Engineering is valuable because it will help me in the future. (0.69)
2. Engineering will be useful for me later in life. (0.76)
3. Being good in engineering will be important for my future (like when I get a job or go to graduate

school). (0.68)

Perceived costs (adapted from Perez et al., 2014)

Opportunity cost:
1. I'm concerned that I have to give up a lot to do well in engineering. (0.85)
2. I'm concerned that success in engineering requires that I give up other activities I enjoy. (0.80)
3. I'm concerned about losing track of valuable relationships because of the work required for engineering. (0.63)
4. I would rather leave more time for fun than for something as intense as engineering (dropped). (0.46).

Effort cost:
1. When I think about the hard work needed to be successful in engineering, I am not sure that studying

engineering is going to be worth it in the end. (0.66)
2. Studying engineering will require more effort than I'm willing to put in. (0.54)
3. For me, studying engineering may not be worth the effort. (0.67)
4. I am not sure if I've got the energy to do well in engineering. (0.78)

Psychological cost:
1. I'm concerned that I'm not a good enough student to do well in engineering. (0.72)
2. I'm concerned about being embarrassed if my work in engineering is inferior to that of my peers. (0.64)
3. I'm concerned that my self-esteem will suffer if I am unsuccessful in engineering. (0.69)
4. I worry that others will think I am a failure if I do not do well in engineering. (0.72)
5. I'm anxious that I won't be able to handle the stress that goes along with studying engineering. (0.69)
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