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Abstract—Deep learning models for scheduling of potentially-
interfering communication pairs, in device-to-device (D2D) set-
tings, require large training samples in the order of hundreds
to thousands. Some of the dynamic networks, such as vehicu-
lar networks, cannot tolerate the waiting time associated with
gathering a large number of training samples. Spatio-temporal
correlation among communication pairs in such networks can
be utilized to reduce the learning phase. In this paper, we
propose a Riemannian-geometric recurrent neural network (R-
RNN) method based on statistical recurrent unit (SRU) for
wireless link scheduling. First, we represent local graphs around
each D2D pair in any finite time frame as a sequence of points
on Riemannian manifold thanks to representing its topology
as a symmetric positive definite (SPD) matrix. We compute
the Riemannian metric, i.e., Stein metric, which are suitable
measures of time-dependence among D2D pairs. Then we use
the Stein metric in the proposed R-RNN method to forecast the
link scheduling decisions for a finite number of successive time
slots ahead. Simulation results reveal that the proposed method
achieves promising performance against the state-of-the-arts with
only 45 training samples.

Index Terms—Dynamic D2D networks, Riemannian geometry,
symmetric positive definite matrices, statistical recurrent unit,
stein metric, wireless link scheduling.

I. INTRODUCTION

Scheduling of interfering links in device-to-device (D2D)
wireless networks is one of the fundamental problems in
wireless communications. The D2D link scheduling problem
can be extended to dynamic networks, such as vehicular
communications [1], [2], that include mobile nodes. Link
scheduling requires a judicious activation of a subset of D2D
links to mitigate excessive interference. With the goal to maxi-
mize the information-theoretic sum rate, the link scheduling in
D2D networks can be defined as a non-convex combinatorial
optimization problem [3]–[5]. Conventional link scheduling
solutions are typically based on sequential link selection
algorithm [6], greedy heuristic search algorithm [7], [8],
iterative fractional programming algorithm [9], or interference
aware methods [10], [11]. Ma et al. [12] have proposed a
shortest link scheduling problem under signal to interference
plus noise ratio (SINR) model. Besides, a link scheduling
problem has been addressed under Rayleigh fading model in
[13]. On the other hand, machine learning (ML) based link
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scheduling approaches such as deep reinforcement learning
(DRL) in [14], or convolutional neural network (CNN) in [15]
have achieved a similar sum rate as optimization-based ones.
However, all algorithms mentioned above require channel state
information (CSI) estimation which is difficult to obtain in
densely deployed D2D networks [5], [16], [17].

A. Related Works

Towards the sole utilization of spatial locations of D2D
pairs, a spatial deep learning method has been applied in [4]
for wireless link scheduling. In [18], a learning based link
scheduling model has been proposed to satisfy user’s quality of
service (QoS) which utilizes the user’s location. As hundreds
of thousands training samples (i.e., wireless network layouts)
are required to train the model of these methods (i.e., 800, 000
in [4] and 100, 000 in [18]), other deep neural networks (DNN)
based schemes have been pursued. For instance, in [19], a
DNN based link scheduling approach has been proposed,
which needs 10, 000 training samples. Further, a DNN method
that is based on graph embedding has been presented in [5]
which reduces the number of training layouts to 500. However,
all of these methods require large training samples in the order
of hundreds to thousands to train the model. Dynamic settings,
such as vehicular networks, cannot tolerate the waiting time
associated with obtaining a large number of training samples.
To address this issue, we have proposed two novel geometric
machine learning (G-ML) methods in [20] where we have
modeled local graph around each D2D pair as a point on
the Riemannian manifolds and computed Log-euclidean metric
(LEM) as an interference measure among D2D pairs. The
proposed supervised G-SVM scheme in [20] requires only 90
training wireless network layouts.

B. Motivation

Movement of mobile users in dynamic D2D networks
exhibits spatio-temporal correlation, which can be utilized to
further reduce the training samples. Temporal movements of
D2D nodes over a series of time slots can be modeled as a time
series forecasting problem. To our context, time series fore-
casting involves taking ML model that learns from historical
statistics (i.e., spatio-temporal correlation among D2D pairs at
previous time slots) and using them to forecast link scheduling
decisions. Statistical recurrent unit (SRU) introduced in [21]
can be used in time series forecasting problem over Euclidean
space. SRU is able to learn long-term dependencies in time
series data by only keeping moving averages of statistics (i.e.,
summary statistics). SRU has been successfully applied in
many time series applications, e.g., intelligent systems [22],
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Fig. 1: The temporal behavior of Riemannian recurrent unit over time series. Yt, γt and St are performed using synaptic weights from
recurrent unit.

(
µt
)(α) is the summary statistics at time slot t. Ot is the output generated at time slot t.

pattern recognition [23], and fuel science [24]. Nonetheless,
to the best of our knowledge, no prior research work has
considered the spatio-temporal correlation in dynamic D2D
networks to reduce the number of training samples for link
scheduling.

C. Contributions

In this paper, we aim to use a statistical recurrent model
over Riemannian manifolds to reduce the number of required
training samples further than [20]. Riemannian geometry was
recently used to address challenges in communication systems
such as the design of beamforming codebooks in [25] or the
deployment of relays in [26]. Local graph around each D2D
pair for each network layout in the network layout series
can be represented as a sequence of points over Riemannian
manifolds [20], [27] using a set of regularized Laplacian
matrices, which are Symmetric positive definite (SPD) one.
SPD matrices can be represented as points over Riemannian
manifolds [28], [29]. To this end, we propose a Riemannian-
geometric recurrent neural network (R-RNN) method for link
scheduling decisions which is based on the statistical recurrent
unit on SPDs [30]. The proposed method uses Stein metric
[31], [32] as a similarity measure in time series forecasting
problem that allows for better characterization of spatio-
temporal trends of D2D pairs at a series of time slots, and
this is the novel contribution of this paper. We show that our
proposed method is competitive with the state-of-the-arts by
using only forty five training samples without using any CSI.

The remainder of this paper is organized as follows. We
describe the system model in Section II and formulate the sum
rate maximization problem in Section III. Section IV proposes
a Riemannian-geometric recurrent model for link scheduling.
The performance of the proposed method is provided in
Section V. We conclude the paper in Section VI.

II. SYSTEM MODEL

In this section, we first give a brief overview of Rieman-
nian geometry and Geometric statistical recurrent unit. Next,
we present the system model of dynamic networks on the
Riemannian manifold.

A. Preliminaries

A differential manifold M is a topological space [33] that is
locally Euclidean around each point. The tangent space TpM
at any point p on the differential manifold M is a vector
space of all possible tangent vectors passing through the point
p. The Riemannian manifold (M,L) is a real differentiable
manifold M in which each tangent space is equipped with an
inner product L, a Riemannian metric such as Stein metric,
which varies smoothly from point to point and is studied by
Riemannian geometry [33]–[35]. The n × n SPD matrices
Sym++

n lie on the interior of convex cones which are special
class of Riemannian manifold [34].

Riemannian statistical recurrent unit employs moving aver-
ages of summary statistics to capture sequential information in
time series data with long-term dependencies over Riemannian
manifolds. Let, S1

D , S2
D ,. . .,ST

D be an input sequence of points
on Sym++

n . Then the update rule for the Geometric recurrent
unit are as [30]:

Yt = FM
({

(µt−1)
(α)
}
,
{(

wt
)(y,α)})

, (1)

Rt = Tr
(
Yt,
(
gt
)(r))

, (2)

γt = FM
({

Rt,St
D

}
,
(
wt
)(γ))

, (3)

Φt = Tr
(
γt,
(
gt
)(φ)

)
, (4)(

µt
)(α)

= FM
({(

µt−1
)(α)

,Φt
}
, α
)
,∀α ∈ J, (5)

St = FM
({(

µt
)(α)}

,
{(

wt
)(s,α)})

, (6)

Ot = Chol
(

ReLU
(

Chol
(

Tr
(
St,
(
gt
)(y)))))

, (7)

where, FM(·) is the recursive weighted Fréchet mean [30], [36]
of {St

D}Tt=1 of wights {wt}Tt=1, Tr(·) is the group operation
(i.e, translation) [30], Chol(·) is the Cholesky factorization
[30], wt are the trainable weights matrix. J is the set of
different time scales. In the recurrent unit above, the weighted
combinations of the summary statistics of previous time (i.e.,
(µt−1)

(α)) are computed using different scales α ∈ J =
{α1, . . . , αm}, where αi = [0, 1), with a translation in (1)
and (2). Next, in (3) and (4), the weighted combination of
past statistics Rt and the current point St

D are computed
with a translation to generate present recurrent statistics Φt.
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Fig. 2: Sequence of L-user interference channel model at t = {1, . . . , T} time slots.

Then the new summary statistics are updated based on the
combined recurrent statistics at the current time (i.e., Φt) in
(5). Finally, in (6) and (7), weighted combination of the current
FMs (average), i.e., St is computed and is used to create an
outputs Ot at time t. The temporal behavior of the Riemannian
recurrent model is shown in Fig. 1

B. Spatio-Temporal Modeling over Riemannian Manifolds

Consider a dynamic D2D network where the temporal
movements of L mobile D2D pairs in a finite time frame
N ∈ R is illustrated in Fig. 2a. The time frame is discretized
to T = N

z time slots indexed by t = 1, . . . , T , where N is
the length of time frame and z is the length of each time slot.
Without loss of generality, we assume that z is small enough
that the speed of D2D pairs at random direction remains
unchanged within any time slot. The temporal movements of L
D2D pairs are characterized as a sequence of wireless network
layouts which represent snaps of movements in dynamic net-
works (as shown in Fig. 2b) at each time slot. Fig. 2c illustrates
a basic L-user interference channel model at any time slot t.
We consider q∈L-th D2D pair as a transceiver pair where the
transmitter and the receiver is depicted through black and blue
circle respectively. We represent dedicated communication
links between the transmitter and receiver of any D2D pairs
with green solid lines. Whereas, the interference links to and
from the neighbor D2D pairs are represented with red dashed
lines. With full frequency reuse, the communication between
any D2D pair D t

q at any time slot t creates interference to the
neighbor D2D pairs receivers D t

i , where i ̸= q, i ∈ L.
In this work, we incorporate M -nearest neighbor based

finite directed graph model in which interfering links from
the M nearest nodes are considered, where M < L. The
M-nearest neighbor-based local graph modeling is reasonable
since the interference caused by a transmitter on the considered

D2D pair is negligible if the transmitter is too far from the
targeted D2D pair [5], [20]. Dynamic scene can be modeled as
a sequence of finite weighted and directed graphs Gt(V,E),
t = 1, . . . , T . Each of these graphs is composed of a set
of n = 2L nodes, V , and a set of m edges E. The edges
comprise the communication links between the D2D pairs and
the interfering links to all M -nearest neighbors at any time slot
t. The incidence matrix At ∈ Rn×m of graph Gt at time slot
t is the matrix with k-th column given by edge vector at

k.
The edge vector at

k ∈ Rn is defined as atki
= 1, atkj

= −1
and rest of the entries are zero for the edges which connect
nodes i to j, where i, j ∈ M and i ̸= j. The weight matrix
W t ∈ Rm×m is defined as a diagonal matrix where each
diagonal entry represents the weight of k-th edge. The weight
of each edge is defined by the Euclidean distance between
its two nodes and quantified finite number of r bits through
uniform quantization [37] to shrink the dimension from infinite
to 2r.

Finally, the Laplacian matrix Lt ∈ Rn×n at time slot t
can be computed as Lt = AtW t(At)T , where T denotes the
matrix transposition. The Laplacian matrices are positive semi-
definite. Accordingly, a simple regularization step by adding a
scaled identity matrix produces a regularized SPD Laplacian
matrix [38] at time slot t as

St
D = AtW t(At)T + γI, (8)

where, γ > 0 is a regularization parameter and I is the n×n
identity matrix. The Riemannian metrics such as Stein metric
[31], [32] can be used to measure geodesic distance between
SPD matrices that correspond to the temporal-dependency
among D2D pairs at successive time slots. The distance
between St

D and St′

D through Stein metric can be computed
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as

L(St
D,S

t′

D)=

√√√√logdet

(
St

D+S
t′

D

2

)
−logdet

(
St

DSt′

D

)
, (9)

where, t, t′ ∈ T , and t ̸= t′.
We provide spatio-temporal correlation information at time

slot t for a given sequence of SPD points S1
D , . . . ,ST

D ∈
Sym++

n through recurrent statistics ϕt
D that depend on the

values of SPD points at previous time slots. That is, we
compute the recurrent statistics at t-th time slot not only as
a function of St

D , but also as a function of the previous
statistics St−1

D , ϕt−1
D (which itself depends on ϕt−2

D and so
on). Then the long-term dependencies in the input sequence
of SPD points are captured through the exponential moving
average of recurrent statistics ϕt

D at different time scales (i.e.,
summary statistics). The summary statistics at time slot t over
Riemannian manifold can be computed by weighted Fréchet
mean (wFM) [30], [36] as follows:

(
µt

D

)(α)
= argmin

µ

T∑
t=1

αL2
((

µt−1
D

)(α)
, ϕt

D

)
, (10)

where, α ∈ J = {α1, . . . , αm}, and αi ∈ [0, 1). The
link scheduling decisions dt of D2D pairs at time slot t are
forecasted using the summary statistics

(
µt

D

)(α)
.

III. PROBLEM FORMULATION

In this section, we formulate the sum rate maximization
problem in L-user interference channel, as depicted in Fig. 2c.
We introduce dt = [dt1, . . . , d

t
L]

T as the indicator vector
of D2D pairs states, with dtq = 1 if D t

q is activated, and
dtq = 0 if not at any time slot t = 1, . . . , T . With full
frequency reuse over bandwidth B, our objective is to find the
optimal combinations of the indicator vector that maximize the
summation of instantaneous information-theoretic rates over T
time slots as given by

max
dt

1

T

T∑
t=1

L∑
q=1

B log2

(
1+

pdtq|ht
qq|

2
(ρtqq)

−α∑
i̸=q pd

t
i|ht

iq|
2
(ρtiq)

−α + σ2

)
,

(11)
s.t. dtq ∈ {0, 1},∀q = 1, 2, . . . , L, t = 1, 2, . . . , T,

where p is the transmission power which is same for all links,
ht
iq is the fast-fading channel gain which is modeled as a

circularly-symmetric complex-Gaussian random variable, and
ρtiq is Euclidean distance between the i-th transmitter and q-th
receiver respectively at time slot t. Moreover, α is the path
loss exponent and σ2 is the noise variance.

IV. GEOMETRIC RECURRENT MODEL FOR LINK
SCHEDULING

In this section, we describe the proposed link scheduling
scheme in dynamic networks. We start with modeling the
temporal movement of each D2D pair on the manifold in any
finite time frame of T time slots. Then we explain how we
use the local graph modeling in R-RNN.
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Fig. 3: Example of local graph modeling of Dt
q=1 at time slot t: a)

modeling communication link, b) modeling interference links from
its neighbor D2D pairs, and c) modeling interference links to its
neighbor D2D pairs.

A. Problem Modeling on Riemannian manifold

For link scheduling, we need to know the impact of the
interference on the wireless networks if any D2D pair is
scheduled at any time slot t. So, we consider three special
cases of graph Gt

q at time slot t ∈ T as shown in Fig. 3.
The case-1 of graph Gt

q is the one that models the communi-
cation link between the targeted D2D pair Dt

q at time slot t,
denoted as Gt

Cq
(V,ECq ) (Fig. 3a). Here, we only consider the

communication link of the targeted D2D pair which provides
indication on the signal-to-noise level for a given D2D pair.
The interference, on the other hand, is considered in the other
two cases as follows. The case-2 of graph Gt

q is the one
that models the impact of the interference on the targeted
D2D pair if the M -nearest neighbor of the targeted D2D
pair is scheduled at time slot t, denoted as Gt

Iq
(V,EIq

)
(Fig. 3b). We consider the interference links from the M -
nearest transmitters to the receiver of the targeted D2D pair in
case-2. Finally, the case-3 of graph Gt

q is the one that models
the impacts of the interference on the receivers of M -nearest
neighbors if the communication link of D t

q is scheduled at
time slot t, denoted as Gt

Nq
(V,ENq

) (Fig. 3c). In case-3,
we consider the interference links from the transmitter of the
targeted D2D pair to the receivers of its M -nearest neighbors.
Then we formulate the sequence of SPD matrices as follows:

We use the graph models corresponding to three special
cases to compute three Laplacian matrices Lt

Cq
, Lt

Iq
and Lt

Nq

at each time slot t which are positive semi-definite. Then We
formulate three SPD matrices St

Cq
, St

Iq
and St

Nq
with the

simple regularization step as in (8). Addressing that the sum
of SPD matrices is also a positive definite matrix [39], we add
these three SPD matrices and form a single SPD matrix to get
complete interference information for the targeted D2D pair
at any time slot t. We use Algorithm 1 to represent the D2D
pairs local graphs as sequence of points {St

Dq
}Tt=1,∀q ∈ L on

manifold for a series of time slots t = 1, . . . , T .

B. Riemannian-Geometric RNN

Now, for a given sequence of local graph modeling, our
objective is to use the summary statistics in R-RNN to classify
the D2D pair’s state (i.e., active or inactive) at N successive
time slots ahead. The proposed link scheduling scheme is
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Fig. 4: Overall proposed R-RNN model as applied to link scheduling problem with a single Riemannian recurrent unit per D2D pair.

Algorithm 1 Sequential local graph modeling on manifold

1: Input: Lt
Cq

, Lt
Iq

, Lt
Nq

, ∀q ∈ L, t ∈ T

2: Initialization: St
Dq

= 0, ∀q ∈ L, t ∈ T
3: for t = 1, . . . , T do
4: for q = 1, . . . , L do
5: · Compute St

Cq
, St

Iq
, St

Nq
using (8);

6: · St
Dq

= St
Cq

+ St
Iq

+ St
Nq

;
7: end for
8: end for
9: return {St

Dq
}Lq=1,∀t = {1, . . . , T}

summarized in Algorithm 2 and illustrated in Fig. 4 and Fig. 5.

The inputs to the model are the training data set Dtr =
{(Str

Dq
, d̂trq )}τ+N−1

tr=1 , test data points Dts ={Sts
Dq

}T=τ+2N−1
ts=N+1 , and

the variable phase, where d̂trq are the true targets or label
to train the model (lines 1-4). Both data sets are segmented
into N Batches with size τ , i.e., windows {D1, . . . ,DN}, as
shown in Fig. 5. The outputs are the forecasted link scheduling
decisions {dtsq }T=τ+2N−1

ts=N+1 ∈ {0, 1} (lines 5-6).
At the initial phase, the finite time frame of T time slots is

divided into two consecutive phases (Fig. 5a), such as training
phase {1,. . .,τ+N− 1}, and test phase {τ+N,. . .,τ+2N− 1}
(line 7). The summary statistics

(
µ0
q

)(α)
is initialized to be a

n× n matrix with small values.
At the training phase, the training data set is fit to the

model (lines 11-12) as shown in Fig. 5b. The algorithm feeds
the samples to the model from each window to update the
Riemannian recurrent unit (as described in Section II-A) by
computing the summary statistics and forecasts a continuous
link scheduling decision variable of q-th D2D pair at time
slot tr (lines 16-24). For instance, the first forecast would be
made at time slot tr=τ using summary statistics

(
µτ
q

)(α)
(5),

kept at various scales α∈ J = {α1,. . .,αm}, where αi = [0, 1)
which is computed from the input points {S1

Dq
, . . . ,Sτ

Dq
} in

window D1. The summary statistics
(
µτ
q

)(α)
, are of recurrent

statistics Φτ
q (3) and (4) that is dependent not only on the

current input point Sτ
Dq

but also on the features of averages

Algorithm 2 Proposed R-RNN scheme

1: Inputs: Training data set Dtr ={(Str
Dq

, d̂trq )}τ+N−1
tr=1 , q∈L,

2: Test data points Dts ={Sts
Dq
}T=τ+2N−1
ts=N+1 , q ∈ L, and

3: phase; where each data set is divided into N batches
4: {D1, . . . ,DN}
5: Outputs: Forecasted scheduling of N successive time slots for
6: q-th D2D pair;
7: Initialization: Divide the time frame into train and test phases;
8:

(
µ0
q

)(α) is initialized to be a n× n matrix with
9: small values;

10: Process:
11: if phase=”train” then
12: Fit training data set Dtr ;
13: else
14: Select test data set Dts ;
15: end if
16: Set b← 1; ▷ selecting first input window
17: while b ≤ N do ▷ N window slides
18: Db = {(Sl

Dq
, yl

q)}
τ+b−1

l=b
;

19: Set l← 1;
20: while l ≤ τ do
21: · Slice the window at time slot l: Sl

Dq
←Db,l;

22: · Update the Riemannian recurrent unit;
23: · l← l + 1;
24: end while
25: Binarize forecasted scheduling decision variable using (12);
26: if phase=”train” then
27: Calculate the error and update the weights;
28: end if
29: b← b+ 1;
30: end while

Rτ
q (1) and (2). Then the weighted combination of the current

summary statistics, i.e., {
(
µτ
q

)(α1)
,. . .,

(
µτ
q

)(αm)} is computed
as in (6) and is used to create the output Oτ

q (7) at time slot
tr = τ . Likewise, by shifting the window by 1 time slot, the
R-RNN forecasts the scheduling decision at time slot tr=τ+1.
The forecast is made based on summary statistics

(
µτ+1
q

)(α)
using the points in window D2 and so on. The algorithm
discretizes the outputs (line 25) to obtain binary scheduling
decision variable dtrq ∈{0, 1} by

dtrq = fround
(
σ(Otr

q )
)
, (12)
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Fig. 5: Detailed illustration of train and test data processing: a) a finite time frame of T = τ+2N− 1 time slots divided into train and
test phases, b) the N input windows of size τ during training phase consist with the sequence of points S1

Dq
, . . .,Sτ+N−1

Dq
, and c) the N

input windows of size = τ during test consist with the sequence of points SN+1
Dq

, . . .,Sτ+2N−1
Dq

and the forecasted link scheduling decisions
{dtsq }τ+2N−1

ts=τ+N ∈ {0, 1} of N successive time slots ahead.

where σ is a sigmoid activation function and fround() coverts
the floating point number to decimal values, i.e., 0 or 1. Then
it compares the forecasted binary link scheduling decision
dtrq with the target d̂trq , calculates the error and updates the

trainable parameters (i.e.,
(
wt
)(y,α)

,
(
wt
)(γ)

, and
(
wt
)(s,α)

in (1-7) ) of the Riemannian recurrent unit (lines 26-28). We
use softmax cross entropy with logits loss function [40] and
ADADELTA optimizer [41] where the initial learning rate is
set to 0.9, decay rate is set to 0.99 and decay step is set to
1000. The algorithm repeats the above steps until forecasting
N successive decisions for N training batches.

At the test phase, the test data points Dts ={Sts
Dq

}T=τ+2N−1
ts=N+1

are used (lines 13-14) to forecast the scheduling decisions
of N successive test time slots by only using the summary
statistics of N test batches (Fig. 5c). At this phase, no weights
and biases of the Riemannian recurrent unit are updated. The
rest of the steps are exactly the same as those done in the
training phase (lines 16-30).

We emphasize that the geometric recurrent model is de-
signed on a per link basis where a single geometric recurrent
unit is used for each D2D pair. Hence, the overall model
is scalable with respect to the number of D2D pairs in the
dynamic networks.

V. PERFORMANCE EVALUATION
This section presents the simulation results of our proposed

R-RNN method and compares it against other benchmark
solutions in terms of sum rate performance.

A. Simulation Setup

In this experiment, we set up the moving pattern of D2D
pairs in a finite time frame of T time slots as follows: First,
we consider a 500m×500m two-dimensional square are with
L D2D pairs. The transmitters of L D2D pair are deployed
by uniform distribution in the area and the receivers are
distributed in a disk centered by its corresponding transmitter
with uniform pairwise distance between 2m to 65m. This
wireless network layout represents the dynamic scene at the
very first time slot t = 1. Then, for each succeeding time slot,
the transmitter of each D2D pair is first randomly displaced by
a distance between 2m to 60m in any random direction from
its previous position, while the receivers are deployed within
the disk (with a uniformly distributed radius between 2m to
65m) around its corresponding transmitter pair similarly as
before.

In our simulation, we use a single Riemannian recurrent
unit per D2D pair for link scheduling forecasting in proposed
R-RNN method. Besides, we consider a distance-based path-
loss according to the outdoor model ITU-1411. We set the
number of quantization bits, q = 3 to quantify the distances
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TABLE I: NETWORK SIMULATION PARAMETERS

Parameter Value
D2D distance (dmin, dmax) 2m to 65m

Carrier Frequency 2.4 GHz
Bandwidth, B 5MHz

Transmit power p of the activated link 40 dBm
Antenna height (both Transmitter and Receiver) 1.5m
Antenna gain (both Transmitter and Receiver) 2.5 dB

Noise spectral density -169 dBm/Hz

between the nodes in the Euclidean space. Moreover, the
link scheduling decisions of FPLinQ algorithm [9] are used
as targets to train the proposed model. Rest of simulation
parameters are kept same as in [9], [4], [5] and [27] and
included in Table I to have a fair comparison. The design
paramenters of Riemannian recurrent neural networks are
summarized in Table II.

TABLE II: RIEMANNIAN RECURRENT NEURAL NETWORK PARAMETERS

Parameter Value
Number of Riemannian

Recurrent Unit
1 unit per D2D pair

Input Matrix size Defined by the dimension
of input SPDs

Batch Size 38
Number of Batches 8

Set of scales used for
Computing Summary Statistics J={0.01, 0.25, 0.5, 0.9, 0.99}

B. Simulation Results

Since the proposed R-RNN method forecasts the scheduling
decisions by only using the summary statistics, errors that
occurred in previous time slots will be propagated to the
prediction of spatio-temporal correlations among D2D pairs
at the succeeding time slots ahead. Hence, it is difficult to
accurately forecast the scheduling decisions for an unlimited
number of time slots ahead. So, we first test the sum rate per-
formance of proposed R-RNN method for a different number
of training samples and its impact on the number of forecasted
link scheduling decisions at successive time slots ahead for 50
D2D pairs. In Table III, we compare the achievable sum rate
performance and the number of forecasted scheduling time
slots under different number of training samples. As shown in
the table, 45 training samples are enough to train the proposed
model for forecasting scheduling up to N = 8 successive
time slots ahead, due to the fact that there is no notable
performance enhancement with the increase in the number of
training samples and our goal is to reduce the requirement of
the number of training samples.

TABLE III: IMPACT OF THE NUMBER OF TRAINING SAMPLES ON THE
NUMBER OF FORECASTED LINK SCHEDULING AT SUCCESSIVE TIME

SLOTS AHEAD

Number of Training
Network Layouts 30 45 60 90 200 500

Scheduling for
Number of time
slots ahead

7 8 8 10 11 12

Average
Sum Rate (%) 89.14% 95.79% 95.46% 95.12% 94.87% 95.23%

Next, we experiment with the M -nearest neighbor D2D
pairs for local graph modeling to test its impact on the sum

rate performance. We still consider 50 pairs in a 500m×500m
region for each scenario and the results are summarized in
Table IV. Here, the upper bound on the sum rate performance
is given by all D2D neighbor pairs local graph modeling.
Table IV shows that the sum rate performance varies between
95% to 97% of FPLinQ algorithm [9] for various numbers
of nearest neighbors. This implies that 10-nearest neighbor
pairs are enough for local graph modeling and there is no
performance loss for not using a higher number of neighbors.

TABLE IV: AVERAGE SUM RATE FOR M -NEAREST NEIGHBOR D2D
PAIRS. THE RESULTS ARE NORMALIZED BY THE SUM RATE OF FPLinQ [9]

M -nearest
D2D pairs 10 20 36 40 49

(Full connectivity)

Average
Sum Rate (%) 95.79% 96.02% 96.18% 96.37% 97.06%

The average sum rate performances of various wireless link
scheduling methods for 50 D2D pairs in a 500m × 500m
region is summarized in Table V. From the table, the spatial
learning [4] and graph embedding [5] need 800,000 and 500
training wireless network layouts, respectively, to approach
the sum rate performance as FPLinQ [9] while requiring no
CSI. In contrast, the G-SVM method in [20] reduces the
number of training wireless network layouts to 90 to achieve a
comparable performance as [4] and [5] and without using any
CSI. However, our proposed R-RNN method only needs 45
training wireless network layouts to achieve a good sum rate
without using CSI. Hence, the requirement of the number of
training samples is reduced by 91% and 50% compared to the
graph embedding [5] and G-SVM [20] method respectively.

TABLE V: LINK SCHEDULING METHODS WITH AVERAGE SUM RATES
FOR 50 D2D PAIRS. THE RESULTS ARE NORMALIZED BY THE SUM RATE OF

CSI- BASED FPLinQ [9]

Scheduling Methods CSI
Achievable
Sum rate
(on Avg.)

Required
Training
Samples

Scheme

FPLinQ [9] Yes 100% /
Fractional

programming
optimization

Proposed R-RNN No 95.79% 45 Graph Modeling
& RNN

Fully Connected
R-RNN (upper bound) No 97.06% 45 Graph Modeling

& RNN

G-SVM [20] No 94.84% 90 Graph Modeling,
Kernel & SVM

Spatial learning [4] No 96.20% 80,000 Kernel method
& DNN

Graph embedding [5] No 95.29% 500 Graph embedding
& DNN

LEM-based
sequential [27] No 86.15% / Sequential link

selection

1) Scalability to Different Pairwise Distances and Link
Densities: We first test the performance of the proposed
method on scenarios with different pairwise distances for
L = 50 D2D pairs in the network area of 500m × 500m
and the results are summarized in Table VI. From the Table,
the performance of the proposed method deteriorates with the
decrease of the D2D pairwise distribution interval. However,
the proposed method still achieves promising sum rate per-
formance against other benchmark algorithms. For example,
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the proposed method achieves comparable average sum rates
as G-SVM [20], graph embedding [5] and supervised spatial
learning [4] for scenarios with pairwise distance (2m ∼ 65m)
and (10m ∼ 50m), and outperforms the G-SVM [20] and
spatial learning [4] by 3.74% and 9.32% respectively for the
pairwise distance (30m ∼ 70m). The proposed method also
outperforms the G-SVM and the spatial learning method for
the scenario of pairwise distance (all 30m).

On the other hand, the proposed R-RNN method approaches
the Greedy heuristic which requires CSI. Moreover, the other
simple heuristic methods (i.e., strongest link, random, and all
active) have poor performance with different pairwise dis-
tances, compared to the proposed approach. This emphasizes
that the machine learning based method is necessary for link
scheduling.

TABLE VI: AVERAGE SUM RATE WITH DIFFERENT PAIRWISE
DISTANCES. THE RESULTS ARE NORMALIZED BY THE SUM RATE OF

FPLinQ [9]

Pairwise Distance
dmin ∼ dmax(m)

CSI 2 ∼ 65 10 ∼ 50 30 ∼ 70 all 30

Proposed R-RNN No 95.79% 93.55% 92.52% 89.34%

G-SVM [20] No 94.84% 90.13% 88.78% 81.20%

Spatial learning [4] No 96.20% 90.30% 83.20% 82.00%

Graph embedding [5] No 95.29% 93.08% 91.76% 87.18%

Greedy Yes 97.08% 94.00% 84.76% 84.56%

Strongest Link No 82.03% 75.41% 59.66% N/A

Random No 47.47% 49.63% 35.30% 50.63%

All Active No 54.18% 48.22% 26.74% 43.40%

Fully Connected
R-RNN (upper bound) No 97.06% 95.21% 93.76% 90.14%

To understand the behavior of the link scheduling schemes,
we compare their link activation (i.e., scheduling ratios) for
different link densities (i.e., Area/L) at 5-th sample time slot
in Fig. 6. As shown in the figure, our proposed method closely
follows the link activation pattern of CSI based FPLinQ [9],
whereas the other schemes fail to follow the state-of-the-art
behavior. This illustrates that the proposed R-RNN method is
capable of learning the state-of-the-art optimization strategy.

Next, we test the scalability of our proposed method to
topologies with different link densities, i.e., the ratio between
the layout area and the number of D2D pairs inside that area,
with respect to 500m × 500m region. As shown in Table
VII, the proposed R-RNN method achieves similar sum rate
performance as [5] for all scenarios except 500 D2D pairs and
achieves slightly higher performance on average than G-SVM
[20], while having a few fold reduction in training samples.
However, the performance decreases by around 7% with the
scenario of 500 D2D pairs compared to the 50 D2D pairs
scenario.

2) Generalizability to Different Fading Scenes: We test the
generalizability of the proposed method for various fast fading
scenes. Generalizability testing is performed in a different way
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Fig. 6: Proportion of activated links for various link scheduling
scheme

TABLE VII: SCALABILITY TO DIFFERENT LINK DENSITIES. THE
RESULTS ARE NORMALIZED BY THE SUM RATE OF FPLinQ [9]

D2D Pairs 10 30 50 100 500

Proposed R-RNN / 96.35% 95.79% 95.16% 88.74%

G-SVM [20] / 94.39% 94.84% 94.52% 86.38%

Graph embedding [5] 97.51% 96.14% 95.29% 93.53% 91.13%

Fully Connected
R-RNN (upper bound) 97.32% 97.58% 97.06% 96.56% 89.52%

than scalability testing. Unlike the scalability testing where the
training is performed every time for different scenarios, we
train our proposed model only once for any particular scenario
and we use the already trained model for different topological
scenarios for generalizability testing.

TABLE VIII: AVERAGE SUM RATE WITH DIFFERENT FAST FADING
SCENARIOS. THE RESULTS ARE NORMALIZED BY THE SUM RATE OF

FPLinQ [9]

Various
Fast Fading
Realization

I II III IV V VI Avg.

Proposed R-RNN 87.74% 86.13% 84.77% 90.22% 87.34% 86.52% 87.12%

Fully Connected
R-RNN
(upper bound)

88.45% 89.53% 86.23% 91.54% 88.76% 87.65% 88.69%

G-SVM [20] 83.62% 92.30% 84.34% 82.24% 83.72% 84.05% 85.05%

FPLinQ [9]
without knowing
fading

89.76% 88.45% 88.76% 84.39% 89.51% 87.78% 88.11%

We introduce Rayleigh fast fading conditions into the
ITU-1411 model and show six realizations in Table VIII.
We notice some performance deterioration while testing the
proposed method with different fast fading scenes. However,
the proposed R-RNN method achieves similar performance as
FPlinQ [9] without knowing fading. Moreover, the sum rate
performance of the proposed method and the fully connected
R-RNN (i.e., upper bound) are similar.

C. Computational Complexity
In this subsection, we inspect the computational complexity

for the recurrent neural network based method and make a
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TABLE IX: Computational Complexity Analysis

Methods FPLinQ [9] Spatial Learning [4] Graph Embedding [5]
(M -nearest neighbor)

G-SVM [20]
(M -nearest neighbor)

Proposed R-RNN
(M -nearest neighbor)

D2D Network
Representation Complexity / Defined by

Convolutional Filters
O(L) O(L2) O(L2)

Machine Learning
Complexity (scale as L) / O(L) O(L) O(L) O(L)

Total Computational
Complexity = O(L2) = O(L) = O(L) = O(L2) = O(L2)

comparison with other state-of-the-arts in Table IX.
The proposed method is formulated in two steps: 1) se-

quential local graph modeling on Riemannian manifold, and
2) forecasting link scheduling for N consecutive time slots.
Considering the formation of a series of SPD matrices for a
fixed number of time slots T , the complexity for the manifold
representation is O(L2). On the other hand, with a fixed
number of iteration, the computational complexity for R-RNN
forecasting is:

O(LWτN) ≈ O(L), (13)

where W is the total number of trainable parameters in the
Riemannian recurrent unit, τ is the size of the input window,
and N is the number of batches (i.e., windows) that are fixed
in our context. So, the total computational complexity for our
proposed method is O(L2). Thus, our proposed method has
similar complexity with FPLinQ method [9] but does not need
any CSI that is hard to obtain in practice. The complexity is
also the same as G-SVM [20] method, but it requires 50%
less training wireless network layouts than G-SVM.

From the analysis above, the sequential local graph mod-
eling of D2D pairs on Riemannian manifold brings up addi-
tional computational complexity in comparison to the graph
embedding method in [5] and spatial learning [4]. However,
the proposed R-RNN method requires less training samples
than those benchmarks to achieve comparable performance.

VI. CONCLUSION

In this paper, we have introduced a Riemannian-geometric
recurrent model for wireless link scheduling problems in
dynamic D2D networks. Our aim is to reduce the requirement
of the number of training samples further than state-of-the-
arts by capturing the spatio-temporal correlations in dynamic
networks such as vehicular communications. To this aim, we
have first modeled the temporal movements of D2D nodes in
any finite time interval as a time series forecasting problem.
Then we have proposed the Riemannian-geometric recurrent
model based on the statistical recurrent unit on SPDs that
learns the spatio-temporal correlation among D2D pairs over
a series of time slots through the summary statistics. The
proposed R-RNN method is able to forecast link scheduling
decisions for a finite number of successive time slots ahead.
We have shown that our proposed method achieves promising
performances for sum rate maximization with only 45 training
wireless network layouts compared to the requirement of
hundreds to thousands of training samples by the state-of-the-
arts.
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Conceição and S. G. Soares Alcalá, ”Recurrent Neural Network Based on
Statistical Recurrent Unit for Remaining Useful Life Estimation,” 2019
8th Brazilian Conference on Intelligent Systems (BRACIS), 2019, pp.
425-430, doi: 10.1109/BRACIS.2019.00081.
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