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A B S T R A C T   

Scheduling of Device-to-Device (D2D) links in communication networks conventionally relies on solving NP-hard 
combinatorial optimization problems. These types of solution approaches will not be suitable for the service 
requirements of future networks due to the associated computational complexity. That is why Deep Learning 
(DL) is one of the promising approaches to tackle this problem. Nevertheless, designing the learning algorithm to 
cope with the dynamic nature of the D2D network is a challenge. Current research using DL only assumes a static 
layout of the network without taking advantage of the correlations between the decisions in a dynamic network. 
Consequently, this paper proposes a sequence-to-sequence modelling (SSM) method for D2D scheduling using 
only distance information. The SSM processes the distance information as well as the previous scheduling de
cisions in a sequential manner with a feedback from the intermediate output, and models the correlations be
tween consecutive input information as well as the produced decisions. Simulation results show that the average 
sum rate of the SSM is about 95% of that achieved by the optimal scheduler and it requires at least 90% less 
resources than those required by other DL schedulers reported in the literature. Finally, the decision-making of 
SSM is explored for key input descriptors and an unsupervised decision-maker is explored, which is shown to 
produce reasonable results with minimal computational requirements.   

1. Introduction 

Devices and their applications have evolved significantly over the 
recent years. Clearly, such applications are service demanding, but 
future networks will need to take advantage of the availability and 
abundance of distributed devices to decrease the centralized load as 
much as possible. Hence, different communication modes are envisioned 
to co-exist within the same network (Soldani et al., 2014). Among these 
modes is Device-to-Device (D2D) communication, which refers to direct 
communication between user equipment. One of the main challenges 
facing D2D networks is resource management, particularly the sched
uling of active links. Generally, a base station needs to quickly assign 
resources and identify transmission powers to devices coming into and 
staying within its coverage area, including those in D2D communication 
modes. 

A lot of work on solving the D2D link scheduling can be found in 
literature using fractional programming such as FLashLinQ, ITLinQ, and 

FPLinQ (Shen, 2020). Nevertheless, to cope with the demanding modern 
wireless services, many works in the literature such as (Ye et al., 2019), 
(Luo, 2020; Chen et al., 2019; Cui et al., 2019) sought solutions using 
Deep Learning (DL) algorithms to avoid solving cumbersome optimi
zation problems at the base stations. More precisely, various DL models 
have emerged as effective approaches to achieve multiple goals in D2D 
networks including power allocation, spectrum sharing, communication 
mode selection, and efficient resource allocation while requiring lesser 
computations and estimations (Luo, 2020), (Lee et al., 2020). Spatial 
learning proposed by (Ba and Caruana, 2014) and graph embedding 
proposed by (Prabhavalkar et al., 2017) and (Shen et al., 2020) are two 
significant examples of such attempts. Both approaches try to define 
neural network (NN) structures that automatically encode distance in
formation. The former extracts interference and distance information 
based on kernel filters that are learned from synthetically generated 
data. However, in order to learn a sufficient number of filters to solve the 
scheduling problem, a significant amount of training data is required. 
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On the other hand, the graph embedding approach eases the burden of 
learning the mappings through kernel filters by preparing neighborhood 
graphs describing the network through pairwise distances. What is then 
required to learn is the embedding from graph to vector representation 
and feed it to the network since the NN can only work with vectors. 
Although the spatio-temporal variations in communication links are 
intrinsic to dynamic networks as a result of mobility as well as the 
changes in the environment, neither of the two approaches mentioned 
above takes into consideration the correlation between the scheduling 
decisions neither in time nor in space. 

It is worth mentioning here that the modelling capability of a DL 
model is highly dependent on its structure and how the information is 
processed within. For D2D networks, users’ mobility and relative loca
tions are correlated to one another and the scheduling decisions taken 
for each pair are also correlated. In addition to the channel variations for 
a given device, the number of devices inside a certain coverage area will 
also change, which will consequently affect the distribution of the re
sources among the serviced devices. In other words, a base station needs 
to quickly respond to a varying number of D2D pairs inside its coverage 
area. This inter-dependency requires a model with internal feedback to 
capture such complex correlations. Moreover, these inter-dependencies 
do not generally follow a known pattern. 

Based on the above discussion and inspired by the successful 
employment of sequence-to-sequence modelling (SSM) in dealing with 
correlated data in speech recognition and language processing where 
data is treated sequentially to produce a sequential set of correlated 
outputs (Haykin, 2010), this paper proposes the adoption of SSM for 
D2D link scheduling. The idea is to represent each D2D pair with a set of 
descriptors that rely solely on the devices’ locations, which can be ac
quired using global positioning system (GPS), for example, without the 
need for the fast-varying small-scale fading information (i.e., instanta
neous channel state information (CSI)). In dense urban networks where 
acquiring GPS data might be challenging, other techniques might be 
used as well. This includes using the base stations in the cellular network 
as anchor nodes to locate the users as in (Liu et al., 2021), using LiDAR 
technology (Yu et al., 2021), using images from Google Street view 
(Salarian, 2015) and using ultra-wideband ranging (Jourdan et al., 
2005), just to name a few. The usage of SSM has many advantages. First, 
SSM inherently captures relations between the inputs without requiring 
external structural modifications such as using multiple kernels as in 
spatial learning or intermediate calculations as in graph embedding. In 
the same time, SSM is able to generalize to different network layouts 
since there are no restrictions on the number of input pairs. Moreover, 
SSM is able to achieve reduction in the NN model size by modelling the 
spatial correlations, which are inherited from the interference, and the 
temporal correlations inherited from mobility in dynamic networks. In 
addition, it achieves higher decision-making speeds and adaptability to 
network layout variations. Furthermore, it can handle different numbers 
of D2D pairs without requiring modifications since it models 
variable-length sequences with no constraint on the number of inputs. 
Although previous works using graph embedding, like (Shen et al., 
2020), had the capacity to handle a variable number of D2D pairs, it was 
only without any mobility assumptions. In addition, this was achieved 
through an embedding of the network connected graph, but not from a 
direct modelling approach such as in the case of SSM. This adds more 
computational requirements to the model as will be carefully detailed in 
the sequel. Moreover, SSM has a built-in sequential inter-dependency 
between the inputs and outputs that relaxes the requirement of adding 
extra processing neurons in the used NN. This type of modelling was not 
considered in the previous papers, and to the best of the authors’ 
knowledge, this is the first attempt to use SSM for link-scheduling in 
such scenario. 

The paper also analyzes the results of decision-making and proposes 
an unsupervised scheduling scheme based on the observations. This goes 
in line with the attempts discussed in (Cui and Yu, 2020) where the goal 
is to decrease the reliance on labelled data, and to decrease the 

computations required to achieve acceptable performance. The main 
contributions of this paper can thus be summarized as follows.  

• Employing a learning scheme that can concurrently model the 
spatiotemporal correlation in D2D link scheduling. 

• Selecting a set of informative descriptors for each D2D pair to ach
ieve high performance without requiring any learned mapping, 
which leads to a significant reduction in the computational 
requirements.  

• Achieving comparable performance with much less computational 
and storage requirements relative to previous DL techniques for D2D 
link scheduling with a quantitative comparison based on statistical 
tests.  

• Exploring the usage of key descriptor factors learned by the SSM to 
train an unsupervised model to achieve acceptable decision-making 
with minimal computational burden using a simple threshold. 

The work herein also considers two simulation scenarios: the quasi- 
static case where no correlation is assumed and is considered for com
parison with previous works in the literature, and the dynamic case 
where mobility is assumed. The rest of the paper is organized as follows: 
in Section 2, we present the system model and formulate the link- 
scheduling problem for a network. 

Of D2D pairs. In Section 3, we describe the proposed SSM method to 
solve the space-time problem. In Section 4, we present the quasi-static 
simulation results followed by the dynamic results. The unsupervised 
decision-making results are then discussed in Section 5, before the paper 
is finally concluded in Section 6. 

2. System model 

We consider a network with Nd D2D pairs that are assumed to be 
located randomly in a two-dimensional square area with length L and 
the separation distances between the D2D pairs are uniformly distrib
uted between lmin and lmax. A graphical representation of the network 
layout is shown in Fig. 1 with several D2D pairs. The D2D pairs are 
assumed to move in random directions while keeping the separating 
distance between the pair members constant. This can be a valid 
assumption in multiple scenarios like in the case of vehicle-to-vehicle 
(V2V) communication where vehicles will be moving with constant 
speeds in traffic or in the case of groups of users sharing content while 
walking in a mall together, for example. Furthermore, we assume the 

Fig. 1. Channel links between transmitters and receivers in a given D2D 
network. Each ellipse shows a pair of devices involved in a D2D communica
tion session. 
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devices’ transmission powers to be constant and we denote the channel 
gain for the communication link between the transmitter (Tx) device of 
the lth D2D pair and the receiver (Rx) device of the kth pair by hlk where 
l,k ∈ {1,2, …,ND}. The goal of optimal D2D scheduling is to identify 
which of the links need to be active to maximize a certain performance 
metric. Typically, the sum rate of the whole network is chosen as a 
performance metric, where the rate for the link between the Tx and Rx of 
pair l is defined by. 

Rl =B × log2

⎛

⎜
⎝1+

|hu|
2Plδl

∑

k∕=l
|hkl|

2Pkδk + σ2
n

⎞

⎟
⎠ (1) 

In the above equation, B is the link bandwidth, Pl is the power of the 
Tx of the lth link, σ2

N denotes the additive white Gaussian noise power 
and δk ∈ {0,1} indicates whether the kth link is active or not. The 
channel gain in (1) captures two different effects, namely the path loss 
(distance-dependent losses) and the shadowing effect, which is modeled 
using a lognormal random variable with zero mean and standard devi
ation σs. 

Although distances do not show up explicitly in Eq. (1), they indi
rectly affect the achievable rate through the value of the channel gain. 

Based on the above formulation, optimal scheduling targets finding 
the optimal values of δk for maximum sum rate for the Nd devices in the 
network as follows: 

max
δk

∑Nd

k=1
δkRk,

subject to
∑Nd

k=1
δk ≤ Nd  

which is a typical NP-hard optimization problem that requires CSI 
collection at a central node from each of the links. 

3. SSM for D2D space-time link scheduling 

In this work, SSM is proposed to process a series of input vector 
descriptions that use only distance information about each D2D pair to 
produce a series of correlated scheduling decisions. These vectors will be 
described in detail in Section 3.1. The model then learns from the 
optimal scheduler FPLinQ (Shen and Yu, 2017) its binary scheduling 
decisions and acts as an implicit channel estimator given a certain 
network layout and previously seen link-scheduling decisions. The 
model takes advantage of the spatial correlation between each D2D pair 
and its neighboring pairs, which is the result of the interference chan
nels. The interference perceived by the D2D pair under study (indicated 
by the bold ellipse in Fig. 1) is dependent on the layout of its neigh
borhood as clearly shown in the figure. There is also correlation through 
time, which is a result of the D2D mobility and for typical pedestrian 
speeds, it is expected that there will be a high correlation between the 
consecutive scheduling decisions. The change in location relative to time 
is shown in Fig. 2, where the vector descriptions of the pairs of trans
mitters and receivers can be processed based on the change in location 
starting from the first time they enter the coverage area. SSM typically 
relies on the well-known recurrent neural network (RNN) architecture 
as will be explained in the sequel. 

The first step in SSM is to describe the network layout upon which 
scheduling decisions will be made as detailed in the following 
subsections. 

3.1. The proposed SSM inputs 

As mentioned before, the status of each D2D pair will be represented 
by a set of descriptors. The proposed architecture uses only Euclidean 
distance information between the different devices as the descriptors, 

which can be easily acquired using GPS or otherwise, as mentioned 
earlier. Fig. 1 shows the distances used as local descriptors extracted for 
each D2D pair as colored lines. The red lines indicate interference and 
the green ones indicate intended communication links. The number of 
features representing each D2D pair is thus d = 4K + 1, where K, which 
is a design parameter, is the number of nearest neighbors. Those 
neighbors are defined as the closest K Txs to the Rx of the pair under 
study, as well as the closest K Rxs to the Tx of the pair under study. This 
results in 2K distances, which are used as descriptors, the remaining 2K 
+ 1 descriptors are the separating distance between those neighbors and 
their other end of communication, as well as the distance separating the 
pair under study. The value of this parameter is chosen by cross- 
validation as it is not learned from the data. The cross validation pro
cess is done by sub-sampling the training data into smaller training and 
validation groups. By using different groups for training and validation, 
an unbiased estimate of the hyper-parameters such as K can be obtained. 

Fig. 1 highlights the special case with K = 3 where the D2D pair 
under study is encompassed by the thick ellipse. In that case, there will 

Fig. 2. Channel links between a given D2D pair as they change location 
through time. 
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be d = 13 descriptor values as follows: first, the interference distances 
from Tx1 of the D2D pair under study to the K neighboring receivers and 
from the K neighboring Txs to Rx1 of the pair under study are extracted, 
so this accounts for 2K = 6 descriptors, 3 in each set. These are indicated 
by the red lines connecting Tx1 to its 3-nearest neighboring receivers 
and those connecting Rx1 to its 3-nearest neighboring Txs in Fig. 1. Next, 
we extract the separating distances between the Txs and Rxs of the 3- 
nearest neighbors to both Tx1 and Rx1, those are encompassed by 
solid ellipses for the Tx neighbors, and by dashed ellipses for the Rx 
neighbors, so that is another 2K = 6 descriptors and those are high
lighted in green in the figure. Finally, we include the separating distance 
between Tx1 and Rx1, and that constitutes the remaining descriptor, 
also highlighted in green in the figure. 

3.2. SSM proposed architecture 

The SSM is a variant of RNNs, which are a special type of NNs that are 
used to handle a series of inputs. In literature, the series can be a time 
series as in the case of speech recognition, a spatial series as in the case of 
optical character recognition (OCR) or a contextual one as in translation 
(Hochreiter and Schmidhuber, 1997). The main idea is feeding the 
output of the hidden neurons back to the input with some trans
formation weights. Fig. 3 illustrates the structure of the recurrent neuron 
in compact and unrolled forms over the series where w1 through wd are 
the components of the weight matrix that is multiplied with each 
component of the input vector ∈ Rd and then a non-linear function is 
applied. 

Another way to interpret the RNN in terms of the scheduling problem 
is to view each neuron as a programmable logic gate, which is activated 
whenever there is a certain relationship between the distances of the 
pair under study. Each neuron, after training, becomes responsible for 
identifying a certain relationship between the current descriptors and its 
previous output. In the end, the aggregation of the decisions of the 
different neurons by a second level of neurons produces the scheduling 
decisions at each time step as required. This process is what is commonly 
known in the literature as weight sharing through time (Goodfellow 
et al., 2016). 

Fig. 4 illustrates the proposed SSM architecture showing how an SSM 
processes the input sequence of D2D descriptors. As illustrated in Sec. 
3.1, the descriptors define the local neighborhood of a given D2D pair 
with K neighbors as detailed earlier. The quasi-static sequence is pro
cessed as the series of D2D pair descriptors are fed one-by-one to the 
SSM for a given layout. The starting point of the series is an arbitrary 
pair and then the pairs are scanned going from one pair to the next 
closest one, which is determined through the Euclidean distance be
tween the pairs calculated between their midpoints. Hence, each 
training instance is a series describing the D2D pairs spatial relationships 

with each other as they are laid out. On the other hand, in the dynamic 
case, each D2D pair is observed over time. Each time step is a descriptor 
describing the local neighborhood information of each D2D pair and 
hence, the series of which describes how the local network changes over 
time and space. Accordingly, each training instance in the dynamic case 
is a series of spatial information about a certain D2D pair. 

In the quasi-static case, each input descriptor vector for each D2D 
pair is processed by a set of Gated-Recurrent Units (GRUs) depicted as 
the blue circles in the figure, which are a more stable variant of the 
regular RNN. The descriptors are taken in sequence depending on the 
location of the D2D pair. A feedforward NN is then used to produce a 
binary decision of whether the link is active or not. The ability to work 
with sequences allows the SSM to mitigate any restrictions on the 
number of D2D pairs because the recurrent units in the SSM structure 
allow them to process a series of any size without requiring to be 
retrained, nor do they require new output units to be added or removed 
to accommodate changes in the number of D2D pairs. For the dynamic 
case, on the other hand, each D2D pair is considered to have a sequence 
of descriptors that change over time. Accordingly, the SSM processes 
these sequences and produces the results of each time step for each D2D 
pair. The space dependencies are implied in the descriptors, which are 
used to train the SSM with different network layouts. 

3.2.1. Training the SSM 
The SSM is a supervised learning model that requires target outputs 

to achieve the desired task. The data used for our model is composed of 
the input vectors as described in Section 3.1 and the outputs are the 
scheduling decisions made by the optimal scheduler FPLinQ (Shen and 
Yu, 2017) with a specific limit set on the maximum number of iterations. 
The learning algorithm is backpropagation through time (Goodfellow 
et al., 2016) using the Adam optimizer (Jozefowicz et al., 2015) and the 
loss function adopted is the binary cross-entropy (De Boer et al., 2005). 
The weight updates are done through the optimizer using the D2D 
scheduling training dataset, where each observation in the dataset is a 
series of locations and neighborhood information and its corresponding 
scheduling decision. 

3.2.2. Processing neurons 
A variant of the classical RNN neurons, which is now a common 

building unit for series NN, is the Long-Short Term Memory (LSTM) cell. 
LSTM cells mitigate the problem of vanishing and exploding gradients, 
which is faced in training classical RNNs (Friedman and Hastie, 2009). A 
proposed simplification of the LSTM cell is the GRU in order to decrease 
the number of trainable parameters while maintaining comparable 
performance (Jozefowicz et al., 2015). The GRU has three control sig
nals; each is a non-linear function activated by a weighed sum of the 
current input observation xj, which can be one of the descriptors 

Fig. 3. Recurrent neuron connections: (a) compact (b) unrolled over an input series.  
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describing. 
a pair and previous output state yj−1 as follows 

ij= σ (Wixj+Hiyj− 1) (2)  

oj= σ (Woxj+Hoyj− 1) (3)  

aj = tanh
(
Waxj +Ha

(
ij ⊙ yj−1

))
(4)  

yj =
(
1− oj

)
⊙ yj−1 + oj ⊙ aj (5) 

where W* and H* are the trainable input and hidden states’ weights, 
respectively, for each gating signal indicated by *, σ is the sigmoid 
function and ⊙ is the element-wise multiplication operator. The input 
gate ij decides whether the previous hidden state affects the new one or 
not using the current input and previous hidden state. The output gate ot 
provides a weighting between the internal state at and the previous 
output state yj−1 to produce the new output state yj. Fig. 5 illustrates 
how the gates and inputs interact. 

4. Simulation results 

4.1. Simulation setup 

The simulated network layouts are generated using the code from 
(Ba and Caruana, 2014) and the parameters described in (Prabhavalkar 
et al., 2017) for proper comparison. The simulator uses the ITU-1411 
outdoor channel model where distance-dependent pathloss and shad
owing are considered (Recommendation, 1411-11). The range of the 
channel gains produced by this model will depend on the dimensionality 
of the simulation environment, which is chosen to be a 500 × 500 square 
area, the separation distance between the Tx and Rx members of a D2D 
pair, which is chosen to be uniformly distributed between 2 and 65 m, as 
well as the lognormal shadowing standard deviation σs. The default 
number of D2D pairs is chosen to be 50 in the square coverage area and 
the number of generated training samples is 500 while 1000 test samples 
are used. The three nearest neighbors (K = 3) were chosen to construct 
the descriptors since the performance of the classifier did not improve 
significantly with the increase of the number of neighbors beyond K = 3. 
The speed of D2D pairs is kept constant at 5 km/h, which is a typical 

Fig. 4. The proposed SSM for D2D link-scheduling.  

Fig. 5. Structure of the GRU cell.  

Table 1 
Summary of simulation and model parameters.  

Network Layout Parameters 

Square area side length 500 m 
D2D distance 2 − 65 m 
Noise spectral density −169 dB m/Hz 
Bandwidth 5 MHz 
Carrier frequency 2.4 GHz 
Antenna height 1.5 m 
Active link transmit power 40 dB m 

SSM Parameters 

Hidden GRU Units 30 
Output neurons 2 
Epochs 30 
Batch size 64 
Optimizer Adam  
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pedestrian speed. All the other parameters are summarized in Table 1. 
The performance is quantified as a percentage of the sum rate ob

tained from the optimal scheduler FPLinQ (Shen and Yu, 2017). The 
reported percentages are the averages of the 1000 test samples. It is 
impotent to note that different scheduling combinations can end up with 
the same sum rate. Fig. 6 shows the distribution of performances for 
1000 test samples when there are 100 D2D pairs in each. It can be 
readily seen that in some cases the SSM even outperforms FPLinQ. This 
can happen because the SSM does not exactly replicate the FPLinQ 
output, nor has all its given inputs, which include the channel quality 
indicators. Hence, there is a chance that relying only on the path-loss 
information can produce better sum rate if the channel estimation was 
misleading. It is important to also note that FPLinQ does not provide a 
global optimal solution, but rather, a very good approximation to it so it 
is possible that other techniques may outperform its performance in 
specific runs. Having said that, in this work, it was always found that the 
average performance of the proposed SSM technique is worse than 
FPLinQ in all the conducted experiments as will be shown in the sequel. 
Since the complexity and the number of required training samples 
required by the Kernel model are prohibiting, we will establish com
parisons only with the graph embedding approach. This comparison will 
be quantitatively evaluated using the Wilcoxon Signed-Rank Test 
(Friedman and Hastie, 2009). The p-value result from the test describes 
how likely the hypothesis that both sets of experiments come from 
different distributions, i.e., the smaller the p-value, the more similar the 
results of the two sets of experiments are. There are two commonly used 
thresholds for the p-value to decide on the similarity of the experiment 
sets, which are 0.05 and 0.1. So, we will consider values more than 0.1 to 
be similar and less than 0.05 to be different, and in-between to be almost 
similar. The fast decision-making process of the proposed model allows 
the assumption of a quasi-static network layout. 

This assumption allows the network to be trained with a multitude of 
scenarios but without assuming correlation between the different lay
outs. Hence, the locations can be assumed completely random from one 
instance to another. On the other hand, when mobility is taken into 
consideration as an input piece of information then the correlation in 
time needs to be explored for improving the decision-making process. 

4.2. Simulation results for quasi-static D2D networks 

4.2.1. Comparison of generalizability 
Generalizability refers to the ability of the model to perform well in 

testing environments other than those seen during the training phase. 
Table 2 shows the percentage of the sum rate obtained from the optimal 
scheduler FPLinQ for the proposed model compared to that of graph 
embedding as reported in (Prabhavalkar et al., 2017) assuming different 
number of D2D pairs. Note that the model is trained using 50 D2D pairs 
as described earlier and tested using various numbers of D2D pairs. 
Clearly, the proposed model is resilient to changes in the number of D2D 
pairs in the test compared to those in the training set. 

This is due to the fact that the feature used is independent of the 
number of D2D pairs and relies only on the three (K = 3) nearest 
neighbors. In fact, as the number of D2D pairs increases, the decisions 
based on distances between the neighbors become more effective in the 
resource scheduling decisions and hence, the notable improvement in 
performance when the number of D2D pairs increases. The graph 
embedding, on the other hand, does not base the internal NN calcula
tions on raw ordered distances, but there is the embedding phase, which 
non-linearly transforms the distances in the graph into a quantized 
vector representation. This, in turn, compromises the information 
retained as the number of pair-wise distances increases. 

The Wilcoxon test for this comparison results in a p-value of 0.75, 
which indicates that the proposed SSM performs as well as graph 
embedding but with lesser required resources and parameters as will be 
shown in the sequel. The reason for this overall similarity when 
comparing the experiments from both models is that the SSM performs 
better when the number of D2D pairs increases, and worse when it is 
low. Being able to perform well in different scenarios will decrease the 
requirement to re-train the model and will maintain acceptable perfor
mance for different network scales decreases the requirement of having 
to acquire labels for training. In other words, running the optimal 
classifier during the training phase to obtain labels for training will not 
be required frequently since the proposed model scales well without 
compromising the performance. 

Hence, the impact of requiring the optimal classifier’s decisions 
during the training phase will have minimum impact. 

Another comparison for generalizability is carried out for different 
shadowing standard deviations and the results are shown in Table 3. 
Since the learning is done only using distance information, the model 
will be challenged to generalize for scenarios when an unknown 
component distorts the communication. Table 3 shows lesser sum rates 
as the shadowing standard deviation increases. The Wilcoxon test p- 
value reports a value of 0.0625, which suggests that the proposed model 
is almost similar to graph embedding. The comparison is clearly in favor 
of the proposed model since it has lesser complexity and has fewer pa
rameters as will be shown below. 

4.2.2. Comparison of scalability 
Scalability refers to the ability of the model to perform well under 

different scenarios given that there is training data simulating the actual 
testing or working network environment but without discrimination 
between the training and testing environments. In this case, it is bene
ficial to observe the scalability of the SSM learning classification accu
racy with respect to the indirect objective of maximizing the sum rate. 
Table 4 shows how the proposed model performs for various numbers of 
D2D pairs from both the classification accuracy and the achievable sum 
rate perspectives in comparison with the graph embedding network. 
Clearly, the proposed SSM gives almost similar overall performance to 
graph embedding with a p-value of 0.0625 for the. 

Wilcoxon test with better performance in dense networks. The 

Fig. 6. Distribution of sum rate performance for SSM for 1000 test scenarios of 
100 D2D pairs. 

Table 2 
Generalizability of the proposed model and graph embedding for different 
numbers of D2D pairs.  

Number of D2D Pairs 10 30 50 80 100 
Graph Embedding 0.96 0.97 0.94 0.9 0.85 
Proposed Model 0.94 0.93 0.92 0.96 0.96  
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performance of the SSM is better in the case of higher numbers of D2D 
pairs because as the number of D2D pairs increases in a fixed area the 
distances tend to become more representative of the channel loss. In 
other words, the scheduling decisions become more accurate for shorter 
separations between the D2D pairs. The reason that SSM performs better 
in denser networks is that it uses raw distance data without any 
mapping. 

Fig. 7 shows the convergence speed of the SSM training phase for 
both the average sum rate and classifier accuracy. The figure shows that 
convergence starts after approximately 15 epochs, which is half the time 
reported by the graph embedding method. Also, there is no mismatch 
between the sum rate performance and the training accuracy. This also 
shows consistency between the model’s performance in both classifi
cation and scheduling, which proves to be very helpful in practical 
scenarios. On the other hand, in (Prabhavalkar et al., 2017), the graph 
embedding method shows an inconsistent behavior, which makes the 
anticipation of an improvement in the scheduling performance from an 
improvement in the model performance unclear. 

4.2.3. Comparison of model complexity and computational requirements 
We conclude this subsection by comparing the complexity of the 

proposed approach against both graph and kernel embedding. 
Complexity directly impacts the model’s computational requirements 
and, in turn, affects the speed with which the link-scheduling decisions 
come through. Table 5 shows such comparison. From the table, it is 
evident that the proposed model achieves the same scheduling accuracy 
as that reported by (Prabhavalkar et al., 2017) while requiring only 
29.5% of its parameters, 31.6% of its multiplication operations and is 
not confined to a specific number of D2D pairs to schedule. Similarly, the 
proposed model shows a negligible 4.4% loss in sum rate while gaining a 
significant decrease in the number of parameters, which is only 0.85% of 
those required by the kernel model and a similar significant decrease in 
the number of multiplication operations to only 11% of the latter as well. 
As introduced before, the reduction in complexity is a result of the SSM 
built-in flexibility in modelling dependent input data, and using raw yet 
informative distance information, which minimizes the learning burden 
on the network to model the network layout. Finally, when compared to 
FPLinQ which has a complexity in the order of O(N2), the complexity in 
SSM is in the order of O(N). 

4.3. Simulation results for dynamic D2D networks 

In this section, we describe the inclusion of the spatio-temporal de
pendencies. As mentioned in Section 4.1, the link scheduling problem 
needs to deal with dynamicity in both space and time due to mobility of 
the D2D pairs. Fig. 1 shows how the space information is represented by 
distances calculated around each D2D pair as detailed in Section 3.1 and 
Fig. 2 illustrates how the spatial locations of the D2D pair change 
throughout time. The inputs are processed starting with the input at t0 
and up to tNs. The decision takes place for each D2D pair for every time 
step throughout the presence of the D2D pair within the coverage area. 

Simulation results are generated using a modified version of the code 
from (Ba and Caruana, 2014). The code was modified to generate one 
initial random layout of the network, and then mobilize each Tx-Rx pair 
in a random direction with a certain speed. All pairs are forced to stay 
within the network coverage region by bouncing off the boundaries if 
they reach it. The network parameters used are those described in 
(Prabhavalkar et al., 2017) to allow for proper comparison of perfor
mance. All simulation parameters are the same as those mentioned in 
Section 4.1 with the speed set to a constant pedestrian speed of 5 km/h. 

4.3.1. Comparison of generalizability 
Table 6 shows the generalizability performance measure for SSM in 

the dynamic network scenario. The results of the proposed SSM for 

Table 3 
Generalizability of the proposed model and graph embedding for different 
shadowing standard deviation values.  

Shadowing σs (dB) 0 3 5 8 10 
Graph Embedding 0.94 0.93 0.87 0.81 0.75 
Proposed Model 0.93 0.9 0.84 0.74 0.67  

Table 4 
Scalability of the proposed model for different number of D2D pairs vs. graph 
embedding.  

Number of 
D2D Pairs  

10 30 50 80 100 500 

Classifier 
Accuracy 

Graph 
Embedding 

0.88 0.81 0.82 0.82 0.83 0.89 

Proposed 
Model 

0.85 0.85 0.87 0.89 0.9 0.95 

Average Sum 
Rate 

Graph 
Embedding 

0.98 0.96 0.95 0.93 0.92 0.87 

Proposed 
Model 

0.94 0.94 0.95 0.94 0.96 0.94  

Fig. 7. Training convergence speed with 50 D2D pairs and 500 training sam
ple layouts. 

Table 5 
Comparison between the number of parameters and multiplication operations 
for different NN structures.  

Point of 
Comparison 

Kernel Model (Ba 
and Caruana, 
2014) 

Graph Embedding ( 
Prabhavalkar et al., 
2017) 

Proposed 
SSM 

Main DL Technique Kernel method and 
DNN 

Graph embedding 
and DNN 

Recurrent 
NN 

Required Training 
Samples 

Hundreds of 
thousands 

Hundreds Hundreds 

Training Method Unsupervised Supervised or 
Unsupervised 

Supervised 

Number of layers For each D2D pair: 
* 2 Convolutional 
Filters 63 × 63 
* 2 Hidden Layers 
with 30 neurons 
* 1 output neuron 

* 1 Embedding layer 
to 32 
* 1 Hidden Layer 
with 64 neurons 
* 2 × 50 Output 
neurons 

* 16 input 
descriptors 
* 30 GRU 
cells 
* 2 output 
neurons 

Approximate 
number of 
learnable 
parameters 

0.8 M 9.5 k 2.8 k 

Approximate number of multiplication 
operations 90 k 

19 k 6 k  
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quasi-static modelling using only spatial correlations are compared to 
that of the proposed SSM exploiting both spatio-temporal ones. Note 
that the model is trained using the default 50 D2D pairs as mentioned 
earlier. Since the proposed model tracks the mobility of each D2D pair 
throughout time assuming dependency between the different time in
stants, the model is left with very limited data to learn from when the 
number of D2D pairs is small. On the other hand, the benefit of adding 
more data is clear and does not require adding any extra learners to the 
SSM method to achieve better performance with significantly low 
computational requirements as already shown before. Another com
parison for generalizability is carried out for different shadowing stan
dard deviations and the results are shown in Table 7. Of course, as the 
shadowing standard deviation level increases, the assumption of corre
lated time samples becomes less effective and there is a notable deteri
oration in performance. 

4.3.2. Comparison of scalability 
Table 8 compares the results of both types of proposed models. The 

scalability seems to improve more in dense networks in the dynamic 
case than in the quasi-static case. This results from the fact that time 
correlations are more impactful than spatial correlations alone. Also, the 
correlations between the consecutive decisions in time are more stable 
when the network is dense than in the less dense networks where the 
distance information are not sufficient to make decisions because of the 
wide spacing between the different D2D pairs. 

5. Unsupervised D2D link scheduling 

The proposed SSM showed good generalizability, but it still requires 
some labelled training data. In scenarios where a new area is being 
covered, or when the coverage is done by a remote station with limited 
capabilities then unsupervised learning becomes a necessity. From the 
previous experiments, it was noted that in denser networks, the 
decision-making relies more on the separating distance between the 
D2D pairs. As a further investigation, a density-based estimation of the 
distribution of separating distances between the pairs for different sce
narios is explored. To achieve this, an empirical histogram is explored 
and then a performance evaluation is done using a simple threshold 
approach. Fig. 8 shows the distribution of separating distances for a low- 
density network of 10 D2D pairs and a high-density network of a 100. 
The skewness of the distributions becomes clearer in the high-density 
case due to the confinement in the coverage area and increased inter
ference. Hence, the optimal decisions tend to favor the stronger links. 

With the simple proposed thresholding approach, distributed 
decision-making can be enabled. The proposed approach enables each 
D2D pair to decide whether they can initiate a communication link at a 
given moment or not without relying on a centralized decision maker. 
All what is required from the central node is to broadcast the threshold 
value and each pair can decide based on their separating distance. 

Clearly, for an unsupervised approach, the distributions of each de
cision will be unknown. The only available observation is the uniform 

distribution for the separating distances. The safest decision would 
hence be the midpoint of the range. The performance relative to the 
optimal classifier is shown in Table 9. It is clear that the performance is 
much better in the high-density networks. This fact can be very useful 
for distributed processing since all what the core network needs to share 
with the users is the decision threshold as mentioned earlier. Although 
this approach requires almost no computations at all, it comes at the cost 
of performance. If the performance is crucial for a given system, then the 
supervised approach is recommended. 

It is worth mentioning, however, that the extra complexity is 
encountered during the offline training phase, while the online perfor
mance is unaffected by the system training requirements. The offline 
training and model update can be done during the non-busy hours of the 
day if required. This requirement comes only whenever there is a sig
nificant change in the layout of traffic of the covered area. Otherwise, 
there will not be any need for such an update. 

6. Conclusion 

This paper tackled the link scheduling problem in D2D networks. The 
proposed SSM solution uses a DL-based approach to tackle the problem 
using only raw distance information. Also, the paper showed the benefit 
of taking into account the correlation between time samples when a 
space-time model is considered where the information required is only 
distance information. The proposed model achieved approximately 90% 
reduction in the number of required parameters and multiplication op
erations required by the previously proposed simplest model in the 
literature while achieving statistically better generalizability 

Table 6 
Generalizability of the quasi-static and dynamic models for different numbers of 
D2D pairs.  

Number of D2D Pairs 10 30 50 80 100 
Quasi-static Model 0.96 0.97 0.94 0.9 0.85 
Dynamic Model 0.93 0.90 0.95 0.93 0.90  

Table 7 
Generalizability of the proposed model for a dynamic D2D network with 
shadowing.  

Shadowing σs (dB) 0 3 5 8 10 
Quasi-static Model 0.94 0.93 0.87 0.81 0.75 
Dynamic Model 0.95 0.91 0.84 0.72 0.63  

Table 8 
Scalability of the proposed model for quasi-static and dynamic D2D network for 
different number of D2D pairs.  

Number of D2D Pairs 10 30 50 80 100 
Quasi-static Model 0.94 0.94 0.95 0.94 0.96 
Dynamic Model 0.94 0.95 0.95 0.96 0.98  

Fig. 8. Probability of scheduled links versus the separating distances in case of 
a low-density network with 10 pairs and a high-density network with 100 pairs. 

Table 9 
Unsupervised vs supervised link scheduling using only the separating distance.  

Number of D2D Pairs 10 30 50 80 100 
Quasi-static Model 0.96 0.97 0.94 0.9 0.85 
Dynamic Model 0.93 0.90 0.95 0.93 0.90 
Unsupervised Link Scheduling 0.70 0.77 0.80 0.85 0.88  
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performance. Also, in other tests, it achieved a statistically comparable 
performance, which is on average equivalent to 92% of the sum rate 
performance of the optimal scheduler that uses CSI and solves a complex 
MILP optimization problem to perform resource allocation. Finally, 
analyzing the decision-making of the proposed SSM solution resulted in 
formulating a very simple threshold decision-making that works in an 
unsupervised manner and achieves acceptable results. This approach 
requires very limited computational resources and can be suitable for 
remote base stations with limited capabilities. The promising outcomes 
of the proposed scheduling process as well as the significant reduction in 
computational requirements will translate to a reduction in the power 
requirements of future base stations. Hence, D2D scheduling can be 
achieved using remote stations that can run on sustainable and renew
able energy sources, thus opening the door for a wider adoption of green 
communication. This will also lead to a faster deployment of applica
tions that can benefit from D2D scheduling such as vehicular commu
nication or cached media streaming. 
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