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ARTICLE INFO ABSTRACT

Handling Editor: Dr. M. Atiquzzaman Scheduling of Device-to-Device (D2D) links in communication networks conventionally relies on solving NP-hard
combinatorial optimization problems. These types of solution approaches will not be suitable for the service
requirements of future networks due to the associated computational complexity. That is why Deep Learning
(DL) is one of the promising approaches to tackle this problem. Nevertheless, designing the learning algorithm to
cope with the dynamic nature of the D2D network is a challenge. Current research using DL only assumes a static
layout of the network without taking advantage of the correlations between the decisions in a dynamic network.
Consequently, this paper proposes a sequence-to-sequence modelling (SSM) method for D2D scheduling using
only distance information. The SSM processes the distance information as well as the previous scheduling de-
cisions in a sequential manner with a feedback from the intermediate output, and models the correlations be-
tween consecutive input information as well as the produced decisions. Simulation results show that the average
sum rate of the SSM is about 95% of that achieved by the optimal scheduler and it requires at least 90% less
resources than those required by other DL schedulers reported in the literature. Finally, the decision-making of
SSM is explored for key input descriptors and an unsupervised decision-maker is explored, which is shown to

Keywords:
Device-to-Device
Machine learning
Scheduling
Sequence-to-Sequence

produce reasonable results with minimal computational requirements.

1. Introduction

Devices and their applications have evolved significantly over the
recent years. Clearly, such applications are service demanding, but
future networks will need to take advantage of the availability and
abundance of distributed devices to decrease the centralized load as
much as possible. Hence, different communication modes are envisioned
to co-exist within the same network (Soldani et al., 2014). Among these
modes is Device-to-Device (D2D) communication, which refers to direct
communication between user equipment. One of the main challenges
facing D2D networks is resource management, particularly the sched-
uling of active links. Generally, a base station needs to quickly assign
resources and identify transmission powers to devices coming into and
staying within its coverage area, including those in D2D communication
modes.

A lot of work on solving the D2D link scheduling can be found in
literature using fractional programming such as FLashLinQ, ITLinQ, and
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FPLinQ (Shen, 2020). Nevertheless, to cope with the demanding modern
wireless services, many works in the literature such as (Ye et al., 2019),
(Luo, 2020; Chen et al., 2019; Cui et al., 2019) sought solutions using
Deep Learning (DL) algorithms to avoid solving cumbersome optimi-
zation problems at the base stations. More precisely, various DL models
have emerged as effective approaches to achieve multiple goals in D2D
networks including power allocation, spectrum sharing, communication
mode selection, and efficient resource allocation while requiring lesser
computations and estimations (Luo, 2020), (Lee et al., 2020). Spatial
learning proposed by (Ba and Caruana, 2014) and graph embedding
proposed by (Prabhavalkar et al., 2017) and (Shen et al., 2020) are two
significant examples of such attempts. Both approaches try to define
neural network (NN) structures that automatically encode distance in-
formation. The former extracts interference and distance information
based on kernel filters that are learned from synthetically generated
data. However, in order to learn a sufficient number of filters to solve the
scheduling problem, a significant amount of training data is required.
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On the other hand, the graph embedding approach eases the burden of
learning the mappings through kernel filters by preparing neighborhood
graphs describing the network through pairwise distances. What is then
required to learn is the embedding from graph to vector representation
and feed it to the network since the NN can only work with vectors.
Although the spatio-temporal variations in communication links are
intrinsic to dynamic networks as a result of mobility as well as the
changes in the environment, neither of the two approaches mentioned
above takes into consideration the correlation between the scheduling
decisions neither in time nor in space.

It is worth mentioning here that the modelling capability of a DL
model is highly dependent on its structure and how the information is
processed within. For D2D networks, users’ mobility and relative loca-
tions are correlated to one another and the scheduling decisions taken
for each pair are also correlated. In addition to the channel variations for
a given device, the number of devices inside a certain coverage area will
also change, which will consequently affect the distribution of the re-
sources among the serviced devices. In other words, a base station needs
to quickly respond to a varying number of D2D pairs inside its coverage
area. This inter-dependency requires a model with internal feedback to
capture such complex correlations. Moreover, these inter-dependencies
do not generally follow a known pattern.

Based on the above discussion and inspired by the successful
employment of sequence-to-sequence modelling (SSM) in dealing with
correlated data in speech recognition and language processing where
data is treated sequentially to produce a sequential set of correlated
outputs (Haykin, 2010), this paper proposes the adoption of SSM for
D2D link scheduling. The idea is to represent each D2D pair with a set of
descriptors that rely solely on the devices’ locations, which can be ac-
quired using global positioning system (GPS), for example, without the
need for the fast-varying small-scale fading information (i.e., instanta-
neous channel state information (CSI)). In dense urban networks where
acquiring GPS data might be challenging, other techniques might be
used as well. This includes using the base stations in the cellular network
as anchor nodes to locate the users as in (Liu et al., 2021), using LiDAR
technology (Yu et al., 2021), using images from Google Street view
(Salarian, 2015) and using ultra-wideband ranging (Jourdan et al.,
2005), just to name a few. The usage of SSM has many advantages. First,
SSM inherently captures relations between the inputs without requiring
external structural modifications such as using multiple kernels as in
spatial learning or intermediate calculations as in graph embedding. In
the same time, SSM is able to generalize to different network layouts
since there are no restrictions on the number of input pairs. Moreover,
SSM is able to achieve reduction in the NN model size by modelling the
spatial correlations, which are inherited from the interference, and the
temporal correlations inherited from mobility in dynamic networks. In
addition, it achieves higher decision-making speeds and adaptability to
network layout variations. Furthermore, it can handle different numbers
of D2D pairs without requiring modifications since it models
variable-length sequences with no constraint on the number of inputs.
Although previous works using graph embedding, like (Shen et al.,
2020), had the capacity to handle a variable number of D2D pairs, it was
only without any mobility assumptions. In addition, this was achieved
through an embedding of the network connected graph, but not from a
direct modelling approach such as in the case of SSM. This adds more
computational requirements to the model as will be carefully detailed in
the sequel. Moreover, SSM has a built-in sequential inter-dependency
between the inputs and outputs that relaxes the requirement of adding
extra processing neurons in the used NN. This type of modelling was not
considered in the previous papers, and to the best of the authors’
knowledge, this is the first attempt to use SSM for link-scheduling in
such scenario.

The paper also analyzes the results of decision-making and proposes
an unsupervised scheduling scheme based on the observations. This goes
in line with the attempts discussed in (Cui and Yu, 2020) where the goal
is to decrease the reliance on labelled data, and to decrease the
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computations required to achieve acceptable performance. The main
contributions of this paper can thus be summarized as follows.

e Employing a learning scheme that can concurrently model the
spatiotemporal correlation in D2D link scheduling.

Selecting a set of informative descriptors for each D2D pair to ach-
ieve high performance without requiring any learned mapping,
which leads to a significant reduction in the computational
requirements.

Achieving comparable performance with much less computational
and storage requirements relative to previous DL techniques for D2D
link scheduling with a quantitative comparison based on statistical
tests.

Exploring the usage of key descriptor factors learned by the SSM to
train an unsupervised model to achieve acceptable decision-making
with minimal computational burden using a simple threshold.

The work herein also considers two simulation scenarios: the quasi-
static case where no correlation is assumed and is considered for com-
parison with previous works in the literature, and the dynamic case
where mobility is assumed. The rest of the paper is organized as follows:
in Section 2, we present the system model and formulate the link-
scheduling problem for a network.

Of D2D pairs. In Section 3, we describe the proposed SSM method to
solve the space-time problem. In Section 4, we present the quasi-static
simulation results followed by the dynamic results. The unsupervised
decision-making results are then discussed in Section 5, before the paper
is finally concluded in Section 6.

2. System model

We consider a network with Ny D2D pairs that are assumed to be
located randomly in a two-dimensional square area with length L and
the separation distances between the D2D pairs are uniformly distrib-
uted between Iy, and Ihax. A graphical representation of the network
layout is shown in Fig. 1 with several D2D pairs. The D2D pairs are
assumed to move in random directions while keeping the separating
distance between the pair members constant. This can be a valid
assumption in multiple scenarios like in the case of vehicle-to-vehicle
(V2V) communication where vehicles will be moving with constant
speeds in traffic or in the case of groups of users sharing content while
walking in a mall together, for example. Furthermore, we assume the
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Fig. 1. Channel links between transmitters and receivers in a given D2D
network. Each ellipse shows a pair of devices involved in a D2D communica-
tion session.
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devices’ transmission powers to be constant and we denote the channel
gain for the communication link between the transmitter (Tx) device of
the Ith D2D pair and the receiver (Rx) device of the kth pair by hy where
Lk € {1,2, ...,Np}. The goal of optimal D2D scheduling is to identify
which of the links need to be active to maximize a certain performance
metric. Typically, the sum rate of the whole network is chosen as a
performance metric, where the rate for the link between the Tx and Rx of
pair [ is defined by.

‘hulzplél

R =Bxlog,| | + —————
: S| Pidi + 62
k£l

@

In the above equation, B is the link bandwidth, P; is the power of the
Tx of the Ith link, 6% denotes the additive white Gaussian noise power
and 8¢ € {0,1} indicates whether the kth link is active or not. The
channel gain in (1) captures two different effects, namely the path loss
(distance-dependent losses) and the shadowing effect, which is modeled
using a lognormal random variable with zero mean and standard devi-
ation o;.

Although distances do not show up explicitly in Eq. (1), they indi-
rectly affect the achievable rate through the value of the channel gain.

Based on the above formulation, optimal scheduling targets finding
the optimal values of & for maximum sum rate for the N; devices in the
network as follows:

Na
maxg ORy,
K-

Na
subject to Z & <Ny

k=1

which is a typical NP-hard optimization problem that requires CSI
collection at a central node from each of the links.

3. SSM for D2D space-time link scheduling

In this work, SSM is proposed to process a series of input vector
descriptions that use only distance information about each D2D pair to
produce a series of correlated scheduling decisions. These vectors will be
described in detail in Section 3.1. The model then learns from the
optimal scheduler FPLinQ (Shen and Yu, 2017) its binary scheduling
decisions and acts as an implicit channel estimator given a certain
network layout and previously seen link-scheduling decisions. The
model takes advantage of the spatial correlation between each D2D pair
and its neighboring pairs, which is the result of the interference chan-
nels. The interference perceived by the D2D pair under study (indicated
by the bold ellipse in Fig. 1) is dependent on the layout of its neigh-
borhood as clearly shown in the figure. There is also correlation through
time, which is a result of the D2D mobility and for typical pedestrian
speeds, it is expected that there will be a high correlation between the
consecutive scheduling decisions. The change in location relative to time
is shown in Fig. 2, where the vector descriptions of the pairs of trans-
mitters and receivers can be processed based on the change in location
starting from the first time they enter the coverage area. SSM typically
relies on the well-known recurrent neural network (RNN) architecture
as will be explained in the sequel.

The first step in SSM is to describe the network layout upon which
scheduling decisions will be made as detailed in the following
subsections.

3.1. The proposed SSM inputs

As mentioned before, the status of each D2D pair will be represented
by a set of descriptors. The proposed architecture uses only Euclidean
distance information between the different devices as the descriptors,
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Fig. 2. Channel links between a given D2D pair as they change location
through time.

which can be easily acquired using GPS or otherwise, as mentioned
earlier. Fig. 1 shows the distances used as local descriptors extracted for
each D2D pair as colored lines. The red lines indicate interference and
the green ones indicate intended communication links. The number of
features representing each D2D pair is thus d = 4K + 1, where K, which
is a design parameter, is the number of nearest neighbors. Those
neighbors are defined as the closest K Txs to the Rx of the pair under
study, as well as the closest K Rxs to the Tx of the pair under study. This
results in 2K distances, which are used as descriptors, the remaining 2K
+ 1 descriptors are the separating distance between those neighbors and
their other end of communication, as well as the distance separating the
pair under study. The value of this parameter is chosen by cross-
validation as it is not learned from the data. The cross validation pro-
cess is done by sub-sampling the training data into smaller training and
validation groups. By using different groups for training and validation,
an unbiased estimate of the hyper-parameters such as K can be obtained.

Fig. 1 highlights the special case with K = 3 where the D2D pair
under study is encompassed by the thick ellipse. In that case, there will
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be d = 13 descriptor values as follows: first, the interference distances
from Tx1 of the D2D pair under study to the K neighboring receivers and
from the K neighboring Txs to Rx1 of the pair under study are extracted,
so this accounts for 2K = 6 descriptors, 3 in each set. These are indicated
by the red lines connecting Tx1 to its 3-nearest neighboring receivers
and those connecting Rx1 to its 3-nearest neighboring Txs in Fig. 1. Next,
we extract the separating distances between the Txs and Rxs of the 3-
nearest neighbors to both Tx1 and Rx1, those are encompassed by
solid ellipses for the Tx neighbors, and by dashed ellipses for the Rx
neighbors, so that is another 2K = 6 descriptors and those are high-
lighted in green in the figure. Finally, we include the separating distance
between Tx1 and Rx1, and that constitutes the remaining descriptor,
also highlighted in green in the figure.

3.2. SSM proposed architecture

The SSM is a variant of RNNs, which are a special type of NNs that are
used to handle a series of inputs. In literature, the series can be a time
series as in the case of speech recognition, a spatial series as in the case of
optical character recognition (OCR) or a contextual one as in translation
(Hochreiter and Schmidhuber, 1997). The main idea is feeding the
output of the hidden neurons back to the input with some trans-
formation weights. Fig. 3 illustrates the structure of the recurrent neuron
in compact and unrolled forms over the series where w; through wy are
the components of the weight matrix that is multiplied with each
component of the input vector € R? and then a non-linear function is
applied.

Another way to interpret the RNN in terms of the scheduling problem
is to view each neuron as a programmable logic gate, which is activated
whenever there is a certain relationship between the distances of the
pair under study. Each neuron, after training, becomes responsible for
identifying a certain relationship between the current descriptors and its
previous output. In the end, the aggregation of the decisions of the
different neurons by a second level of neurons produces the scheduling
decisions at each time step as required. This process is what is commonly
known in the literature as weight sharing through time (Goodfellow
et al., 2016).

Fig. 4 illustrates the proposed SSM architecture showing how an SSM
processes the input sequence of D2D descriptors. As illustrated in Sec.
3.1, the descriptors define the local neighborhood of a given D2D pair
with K neighbors as detailed earlier. The quasi-static sequence is pro-
cessed as the series of D2D pair descriptors are fed one-by-one to the
SSM for a given layout. The starting point of the series is an arbitrary
pair and then the pairs are scanned going from one pair to the next
closest one, which is determined through the Euclidean distance be-
tween the pairs calculated between their midpoints. Hence, each
training instance is a series describing the D2D pairs spatial relationships

Wg
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with each other as they are laid out. On the other hand, in the dynamic
case, each D2D pair is observed over time. Each time step is a descriptor
describing the local neighborhood information of each D2D pair and
hence, the series of which describes how the local network changes over
time and space. Accordingly, each training instance in the dynamic case
is a series of spatial information about a certain D2D pair.

In the quasi-static case, each input descriptor vector for each D2D
pair is processed by a set of Gated-Recurrent Units (GRUs) depicted as
the blue circles in the figure, which are a more stable variant of the
regular RNN. The descriptors are taken in sequence depending on the
location of the D2D pair. A feedforward NN is then used to produce a
binary decision of whether the link is active or not. The ability to work
with sequences allows the SSM to mitigate any restrictions on the
number of D2D pairs because the recurrent units in the SSM structure
allow them to process a series of any size without requiring to be
retrained, nor do they require new output units to be added or removed
to accommodate changes in the number of D2D pairs. For the dynamic
case, on the other hand, each D2D pair is considered to have a sequence
of descriptors that change over time. Accordingly, the SSM processes
these sequences and produces the results of each time step for each D2D
pair. The space dependencies are implied in the descriptors, which are
used to train the SSM with different network layouts.

3.2.1. Training the SSM

The SSM is a supervised learning model that requires target outputs
to achieve the desired task. The data used for our model is composed of
the input vectors as described in Section 3.1 and the outputs are the
scheduling decisions made by the optimal scheduler FPLinQ (Shen and
Yu, 2017) with a specific limit set on the maximum number of iterations.
The learning algorithm is backpropagation through time (Goodfellow
et al., 2016) using the Adam optimizer (Jozefowicz et al., 2015) and the
loss function adopted is the binary cross-entropy (De Boer et al., 2005).
The weight updates are done through the optimizer using the D2D
scheduling training dataset, where each observation in the dataset is a
series of locations and neighborhood information and its corresponding
scheduling decision.

3.2.2. Processing neurons

A variant of the classical RNN neurons, which is now a common
building unit for series NN, is the Long-Short Term Memory (LSTM) cell.
LSTM cells mitigate the problem of vanishing and exploding gradients,
which is faced in training classical RNNs (Friedman and Hastie, 2009). A
proposed simplification of the LSTM cell is the GRU in order to decrease
the number of trainable parameters while maintaining comparable
performance (Jozefowicz et al., 2015). The GRU has three control sig-
nals; each is a non-linear function activated by a weighed sum of the
current input observation xj, which can be one of the descriptors
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Fig. 3. Recurrent neuron connections: (a) compact (b) unrolled over an input series.
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Fig. 4. The proposed SSM for D2D link-scheduling.

describing.
a pair and previous output state y;_; as follows

ij =0 (Wixj +Hiyj — 1) @
oj =0 (Woxj + Hoyj — 1) 3
a;=tanh(W,x; + H, (ij0y; 4)) 4
yi=(1-0) Oy +0;©a ©)]

where W+ and H+ are the trainable input and hidden states” weights,
respectively, for each gating signal indicated by *, ¢ is the sigmoid
function and © is the element-wise multiplication operator. The input
gate ij decides whether the previous hidden state affects the new one or
not using the current input and previous hidden state. The output gate o
provides a weighting between the internal state a; and the previous
output state yj_; to produce the new output state yj. Fig. 5 illustrates
how the gates and inputs interact.

W, H;

X ht-l ht

Fig. 5. Structure of the GRU cell.

4. Simulation results
4.1. Simulation setup

The simulated network layouts are generated using the code from
(Ba and Caruana, 2014) and the parameters described in (Prabhavalkar
et al., 2017) for proper comparison. The simulator uses the ITU-1411
outdoor channel model where distance-dependent pathloss and shad-
owing are considered (Recommendation, 1411-11). The range of the
channel gains produced by this model will depend on the dimensionality
of the simulation environment, which is chosen to be a 500 x 500 square
area, the separation distance between the Tx and Rx members of a D2D
pair, which is chosen to be uniformly distributed between 2 and 65 m, as
well as the lognormal shadowing standard deviation o;. The default
number of D2D pairs is chosen to be 50 in the square coverage area and
the number of generated training samples is 500 while 1000 test samples
are used. The three nearest neighbors (K = 3) were chosen to construct
the descriptors since the performance of the classifier did not improve
significantly with the increase of the number of neighbors beyond K = 3.
The speed of D2D pairs is kept constant at 5 km/h, which is a typical

Table 1
Summary of simulation and model parameters.

Network Layout Parameters

Square area side length 500 m
D2D distance 2—-65m
Noise spectral density —169 dB m/Hz
Bandwidth 5 MHz
Carrier frequency 2.4 GHz
Antenna height 1.5m
Active link transmit power 40 dB m
SSM Parameters

Hidden GRU Units 30
Output neurons 2

Epochs 30

Batch size 64
Optimizer Adam
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pedestrian speed. All the other parameters are summarized in Table 1.

The performance is quantified as a percentage of the sum rate ob-
tained from the optimal scheduler FPLinQ (Shen and Yu, 2017). The
reported percentages are the averages of the 1000 test samples. It is
impotent to note that different scheduling combinations can end up with
the same sum rate. Fig. 6 shows the distribution of performances for
1000 test samples when there are 100 D2D pairs in each. It can be
readily seen that in some cases the SSM even outperforms FPLinQ. This
can happen because the SSM does not exactly replicate the FPLinQ
output, nor has all its given inputs, which include the channel quality
indicators. Hence, there is a chance that relying only on the path-loss
information can produce better sum rate if the channel estimation was
misleading. It is important to also note that FPLinQ does not provide a
global optimal solution, but rather, a very good approximation to it so it
is possible that other techniques may outperform its performance in
specific runs. Having said that, in this work, it was always found that the
average performance of the proposed SSM technique is worse than
FPLinQ in all the conducted experiments as will be shown in the sequel.
Since the complexity and the number of required training samples
required by the Kernel model are prohibiting, we will establish com-
parisons only with the graph embedding approach. This comparison will
be quantitatively evaluated using the Wilcoxon Signed-Rank Test
(Friedman and Hastie, 2009). The p-value result from the test describes
how likely the hypothesis that both sets of experiments come from
different distributions, i.e., the smaller the p-value, the more similar the
results of the two sets of experiments are. There are two commonly used
thresholds for the p-value to decide on the similarity of the experiment
sets, which are 0.05 and 0.1. So, we will consider values more than 0.1 to
be similar and less than 0.05 to be different, and in-between to be almost
similar. The fast decision-making process of the proposed model allows
the assumption of a quasi-static network layout.

This assumption allows the network to be trained with a multitude of
scenarios but without assuming correlation between the different lay-
outs. Hence, the locations can be assumed completely random from one
instance to another. On the other hand, when mobility is taken into
consideration as an input piece of information then the correlation in
time needs to be explored for improving the decision-making process.

4.2. Simulation results for quasi-static D2D networks

4.2.1. Comparison of generalizability
Generalizability refers to the ability of the model to perform well in

140 [T T T T T T
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Fig. 6. Distribution of sum rate performance for SSM for 1000 test scenarios of
100 D2D pairs.
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testing environments other than those seen during the training phase.
Table 2 shows the percentage of the sum rate obtained from the optimal
scheduler FPLinQ for the proposed model compared to that of graph
embedding as reported in (Prabhavalkar et al., 2017) assuming different
number of D2D pairs. Note that the model is trained using 50 D2D pairs
as described earlier and tested using various numbers of D2D pairs.
Clearly, the proposed model is resilient to changes in the number of D2D
pairs in the test compared to those in the training set.

This is due to the fact that the feature used is independent of the
number of D2D pairs and relies only on the three (K = 3) nearest
neighbors. In fact, as the number of D2D pairs increases, the decisions
based on distances between the neighbors become more effective in the
resource scheduling decisions and hence, the notable improvement in
performance when the number of D2D pairs increases. The graph
embedding, on the other hand, does not base the internal NN calcula-
tions on raw ordered distances, but there is the embedding phase, which
non-linearly transforms the distances in the graph into a quantized
vector representation. This, in turn, compromises the information
retained as the number of pair-wise distances increases.

The Wilcoxon test for this comparison results in a p-value of 0.75,
which indicates that the proposed SSM performs as well as graph
embedding but with lesser required resources and parameters as will be
shown in the sequel. The reason for this overall similarity when
comparing the experiments from both models is that the SSM performs
better when the number of D2D pairs increases, and worse when it is
low. Being able to perform well in different scenarios will decrease the
requirement to re-train the model and will maintain acceptable perfor-
mance for different network scales decreases the requirement of having
to acquire labels for training. In other words, running the optimal
classifier during the training phase to obtain labels for training will not
be required frequently since the proposed model scales well without
compromising the performance.

Hence, the impact of requiring the optimal classifier’s decisions
during the training phase will have minimum impact.

Another comparison for generalizability is carried out for different
shadowing standard deviations and the results are shown in Table 3.
Since the learning is done only using distance information, the model
will be challenged to generalize for scenarios when an unknown
component distorts the communication. Table 3 shows lesser sum rates
as the shadowing standard deviation increases. The Wilcoxon test p-
value reports a value of 0.0625, which suggests that the proposed model
is almost similar to graph embedding. The comparison is clearly in favor
of the proposed model since it has lesser complexity and has fewer pa-
rameters as will be shown below.

4.2.2. Comparison of scalability

Scalability refers to the ability of the model to perform well under
different scenarios given that there is training data simulating the actual
testing or working network environment but without discrimination
between the training and testing environments. In this case, it is bene-
ficial to observe the scalability of the SSM learning classification accu-
racy with respect to the indirect objective of maximizing the sum rate.
Table 4 shows how the proposed model performs for various numbers of
D2D pairs from both the classification accuracy and the achievable sum
rate perspectives in comparison with the graph embedding network.
Clearly, the proposed SSM gives almost similar overall performance to
graph embedding with a p-value of 0.0625 for the.

Wilcoxon test with better performance in dense networks. The

Table 2
Generalizability of the proposed model and graph embedding for different
numbers of D2D pairs.

Number of D2D Pairs 10 30 50 80 100
Graph Embedding 0.96 0.97 0.94 0.9 0.85
Proposed Model 0.94 0.93 0.92 0.96 0.96
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Table 3
Generalizability of the proposed model and graph embedding for different
shadowing standard deviation values.

Shadowing o (dB) 0 3 5 8 10

Graph Embedding 0.94 0.93 0.87 0.81 0.75

Proposed Model 0.93 0.9 0.84 0.74 0.67
Table 4

Scalability of the proposed model for different number of D2D pairs vs. graph
embedding.

Number of 10 30 50 80 100 500
D2D Pairs
Classifier Graph 088 081 082 082 083 0.89
Accuracy Embedding
Proposed 085 085 087 089 09 0.95
Model
Average Sum Graph 098 096 095 093 092 0.87
Rate Embedding
Proposed 094 094 095 094 09 094
Model

performance of the SSM is better in the case of higher numbers of D2D
pairs because as the number of D2D pairs increases in a fixed area the
distances tend to become more representative of the channel loss. In
other words, the scheduling decisions become more accurate for shorter
separations between the D2D pairs. The reason that SSM performs better
in denser networks is that it uses raw distance data without any
mapping.

Fig. 7 shows the convergence speed of the SSM training phase for
both the average sum rate and classifier accuracy. The figure shows that
convergence starts after approximately 15 epochs, which is half the time
reported by the graph embedding method. Also, there is no mismatch
between the sum rate performance and the training accuracy. This also
shows consistency between the model’s performance in both classifi-
cation and scheduling, which proves to be very helpful in practical
scenarios. On the other hand, in (Prabhavalkar et al., 2017), the graph
embedding method shows an inconsistent behavior, which makes the
anticipation of an improvement in the scheduling performance from an
improvement in the model performance unclear.

4.2.3. Comparison of model complexity and computational requirements
We conclude this subsection by comparing the complexity of the
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Fig. 7. Training convergence speed with 50 D2D pairs and 500 training sam-
ple layouts.
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proposed approach against both graph and kernel embedding.
Complexity directly impacts the model’s computational requirements
and, in turn, affects the speed with which the link-scheduling decisions
come through. Table 5 shows such comparison. From the table, it is
evident that the proposed model achieves the same scheduling accuracy
as that reported by (Prabhavalkar et al., 2017) while requiring only
29.5% of its parameters, 31.6% of its multiplication operations and is
not confined to a specific number of D2D pairs to schedule. Similarly, the
proposed model shows a negligible 4.4% loss in sum rate while gaining a
significant decrease in the number of parameters, which is only 0.85% of
those required by the kernel model and a similar significant decrease in
the number of multiplication operations to only 11% of the latter as well.
As introduced before, the reduction in complexity is a result of the SSM
built-in flexibility in modelling dependent input data, and using raw yet
informative distance information, which minimizes the learning burden
on the network to model the network layout. Finally, when compared to
FPLinQ which has a complexity in the order of O(N?), the complexity in
SSM is in the order of O(N).

4.3. Simulation results for dynamic D2D networks

In this section, we describe the inclusion of the spatio-temporal de-
pendencies. As mentioned in Section 4.1, the link scheduling problem
needs to deal with dynamicity in both space and time due to mobility of
the D2D pairs. Fig. 1 shows how the space information is represented by
distances calculated around each D2D pair as detailed in Section 3.1 and
Fig. 2 illustrates how the spatial locations of the D2D pair change
throughout time. The inputs are processed starting with the input at ¢,
and up to ty,. The decision takes place for each D2D pair for every time
step throughout the presence of the D2D pair within the coverage area.

Simulation results are generated using a modified version of the code
from (Ba and Caruana, 2014). The code was modified to generate one
initial random layout of the network, and then mobilize each Tx-Rx pair
in a random direction with a certain speed. All pairs are forced to stay
within the network coverage region by bouncing off the boundaries if
they reach it. The network parameters used are those described in
(Prabhavalkar et al., 2017) to allow for proper comparison of perfor-
mance. All simulation parameters are the same as those mentioned in
Section 4.1 with the speed set to a constant pedestrian speed of 5 km/h.

4.3.1. Comparison of generalizability
Table 6 shows the generalizability performance measure for SSM in
the dynamic network scenario. The results of the proposed SSM for

Table 5
Comparison between the number of parameters and multiplication operations
for different NN structures.

Point of Kernel Model (Ba Graph Embedding ( Proposed
Comparison and Caruana, Prabhavalkar et al., SSM
2014) 2017)
Main DL Technique Kernel method and ~ Graph embedding Recurrent
DNN and DNN NN
Required Training Hundreds of Hundreds Hundreds
Samples thousands
Training Method Unsupervised Supervised or Supervised
Unsupervised
Number of layers For each D2D pair: * 1 Embedding layer *16 input
* 2 Convolutional to 32 descriptors
Filters 63 x 63 * 1 Hidden Layer * 30 GRU
* 2 Hidden Layers with 64 neurons cells
with 30 neurons * 2 x 50 Output * 2 output
* 1 output neuron neurons neurons
Approximate 0.8 M 9.5k 2.8k
number of
learnable
parameters
Approximate number of multiplication 19k 6 k

operations 90 k
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Table 6
Generalizability of the quasi-static and dynamic models for different numbers of
D2D pairs.
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Table 8
Scalability of the proposed model for quasi-static and dynamic D2D network for
different number of D2D pairs.

Number of D2D Pairs 10 30 50 80 100 Number of D2D Pairs 10 30 50 80 100
Quasi-static Model 0.96 0.97 0.94 0.9 0.85 Quasi-static Model 0.94 0.94 0.95 0.94 0.96
Dynamic Model 0.93 0.90 0.95 0.93 0.90 Dynamic Model 0.94 0.95 0.95 0.96 0.98
quasi-static modelling using only spatial correlations are compared to
0.12 T T T

that of the proposed SSM exploiting both spatio-temporal ones. Note
that the model is trained using the default 50 D2D pairs as mentioned
earlier. Since the proposed model tracks the mobility of each D2D pair
throughout time assuming dependency between the different time in-
stants, the model is left with very limited data to learn from when the
number of D2D pairs is small. On the other hand, the benefit of adding
more data is clear and does not require adding any extra learners to the
SSM method to achieve better performance with significantly low
computational requirements as already shown before. Another com-
parison for generalizability is carried out for different shadowing stan-
dard deviations and the results are shown in Table 7. Of course, as the
shadowing standard deviation level increases, the assumption of corre-
lated time samples becomes less effective and there is a notable deteri-
oration in performance.

4.3.2. Comparison of scalability

Table 8 compares the results of both types of proposed models. The
scalability seems to improve more in dense networks in the dynamic
case than in the quasi-static case. This results from the fact that time
correlations are more impactful than spatial correlations alone. Also, the
correlations between the consecutive decisions in time are more stable
when the network is dense than in the less dense networks where the
distance information are not sufficient to make decisions because of the
wide spacing between the different D2D pairs.

5. Unsupervised D2D link scheduling

The proposed SSM showed good generalizability, but it still requires
some labelled training data. In scenarios where a new area is being
covered, or when the coverage is done by a remote station with limited
capabilities then unsupervised learning becomes a necessity. From the
previous experiments, it was noted that in denser networks, the
decision-making relies more on the separating distance between the
D2D pairs. As a further investigation, a density-based estimation of the
distribution of separating distances between the pairs for different sce-
narios is explored. To achieve this, an empirical histogram is explored
and then a performance evaluation is done using a simple threshold
approach. Fig. 8 shows the distribution of separating distances for a low-
density network of 10 D2D pairs and a high-density network of a 100.
The skewness of the distributions becomes clearer in the high-density
case due to the confinement in the coverage area and increased inter-
ference. Hence, the optimal decisions tend to favor the stronger links.

With the simple proposed thresholding approach, distributed
decision-making can be enabled. The proposed approach enables each
D2D pair to decide whether they can initiate a communication link at a
given moment or not without relying on a centralized decision maker.
All what is required from the central node is to broadcast the threshold
value and each pair can decide based on their separating distance.

Clearly, for an unsupervised approach, the distributions of each de-
cision will be unknown. The only available observation is the uniform

Table 7
Generalizability of the proposed model for a dynamic D2D network with
shadowing.

Shadowing o, (dB) 0 3 5 8 10
Quasi-static Model 0.94 0.93 0.87 0.81 0.75
Dynamic Model 0.95 0.91 0.84 0.72 0.63

Low Density Network 10 Pairs
High Density Network 100 Pairs
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Fig. 8. Probability of scheduled links versus the separating distances in case of
a low-density network with 10 pairs and a high-density network with 100 pairs.

distribution for the separating distances. The safest decision would
hence be the midpoint of the range. The performance relative to the
optimal classifier is shown in Table 9. It is clear that the performance is
much better in the high-density networks. This fact can be very useful
for distributed processing since all what the core network needs to share
with the users is the decision threshold as mentioned earlier. Although
this approach requires almost no computations at all, it comes at the cost
of performance. If the performance is crucial for a given system, then the
supervised approach is recommended.

It is worth mentioning, however, that the extra complexity is
encountered during the offline training phase, while the online perfor-
mance is unaffected by the system training requirements. The offline
training and model update can be done during the non-busy hours of the
day if required. This requirement comes only whenever there is a sig-
nificant change in the layout of traffic of the covered area. Otherwise,
there will not be any need for such an update.

6. Conclusion

This paper tackled the link scheduling problem in D2D networks. The
proposed SSM solution uses a DL-based approach to tackle the problem
using only raw distance information. Also, the paper showed the benefit
of taking into account the correlation between time samples when a
space-time model is considered where the information required is only
distance information. The proposed model achieved approximately 90%
reduction in the number of required parameters and multiplication op-
erations required by the previously proposed simplest model in the

literature while achieving statistically better generalizability

Table 9

Unsupervised vs supervised link scheduling using only the separating distance.
Number of D2D Pairs 10 30 50 80 100
Quasi-static Model 0.96 0.97 0.94 0.9 0.85
Dynamic Model 0.93 0.90 0.95 0.93 0.90
Unsupervised Link Scheduling 0.70 0.77 0.80 0.85 0.88
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performance. Also, in other tests, it achieved a statistically comparable
performance, which is on average equivalent to 92% of the sum rate
performance of the optimal scheduler that uses CSI and solves a complex
MILP optimization problem to perform resource allocation. Finally,
analyzing the decision-making of the proposed SSM solution resulted in
formulating a very simple threshold decision-making that works in an
unsupervised manner and achieves acceptable results. This approach
requires very limited computational resources and can be suitable for
remote base stations with limited capabilities. The promising outcomes
of the proposed scheduling process as well as the significant reduction in
computational requirements will translate to a reduction in the power
requirements of future base stations. Hence, D2D scheduling can be
achieved using remote stations that can run on sustainable and renew-
able energy sources, thus opening the door for a wider adoption of green
communication. This will also lead to a faster deployment of applica-
tions that can benefit from D2D scheduling such as vehicular commu-
nication or cached media streaming.
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