ESCAPING STRICT SADDLE POINTS OF THE MOREAU
ENVELOPE IN NONSMOOTH OPTIMIZATION

DAMEK DAVIS*, MATEO DIAZ', AND DMITRIY DRUSVYATSKIY?

Abstract. Recent work has shown that stochastically perturbed gradient methods can effi-
ciently escape strict saddle points of smooth functions. We extend this body of work to nonsmooth
optimization, by analyzing an inexact analogue of a stochastically perturbed gradient method ap-
plied to the Moreau envelope. The main conclusion is that a variety of algorithms for nonsmooth
optimization can escape strict saddle points of the Moreau envelope at a controlled rate. The main
technical insight is that many algorithms applied to the proximal subproblem yield directions that
approximate the gradient of the Moreau envelope.

1. Introduction. Though nonconvex optimization problems are NP-hard in
general, simple nonconvex optimization techniques, e.g., gradient descent, are broadly
used and often highly successful in high-dimensional statistical estimation and ma-
chine learning problems. A common explanation for their success is that smooth non-
convex functions g: R? — R that arise in machine learning have amenable geometry:
all local minima are (nearly) global minima and all saddle points are strict (i.e., have a
direction of negative curvature). This explanation is well grounded: several important
estimation and learning problems have amenable geometry [3,17,18,45,46,49], and
simple iterative methods, such as gradient descent, asymptotically avoid strict saddle
points when randomly initialized [29,30]. Moreover, for any given 1,9 > 0, “ran-
domly perturbed” variants [26] “efficiently” converge to (e1,e2)-approximate second-
order critical points, meaning those satisfying

(1.1) IVg(2)| < e and Amin(V2g(z)) > —eo.

Recent work furthermore extends these results to C? smooth manifold constrained
optimization [7,16,47]. Other extensions to nonsmooth convex constraint sets have
proposed second-order methods for avoiding saddle points, but such methods must at
every step minimize a nonconvex quadratic over a convex set (an NP hard problem
in general) [19,33,37].

While impressive, the aforementioned works crucially rely on smoothness of ob-
jective functions or constraint sets. This is not an artifact of their proof techniques:
there are simple C! functions for which randomly initialized gradient descent with
constant probability converges to points that admit directions of second order de-
scent [12, Figure 1]. Despite this example, recent work [12] shows that randomly ini-
tialized proximal methods avoid certain “active” strict saddle points of (nonsmooth)
weakly convex functions. The class of weakly convex functions is broad, capturing, for
example those formed by composing convex functions h with smooth nonlinear maps
¢, which often appear in statistical recovery problems. The authors of [12] moreover
show that for “generic” semialgebraic problems, every critical point is either a lo-
cal minimizer or an active strict saddle. A key limitation of [12], however, is that
the result is asymptotic, and in fact pure proximal methods may take exponentially
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many iterations to find local minimizers [14]. Motivated by [12], the recent work [22]
develops efficiency estimates for certain randomly perturbed proximal methods. The
work [22] has two limitations: its measure of complexity appears to be algorithmically
dependent and the results do not extend to subgradient methods.

The purpose of this paper is to study “efficient” methods for escaping saddle
points of weakly convex functions. Much like [22], our approach is based on [12],
but the resulting algorithms and their convergence guarantees are distinct from those
in [22]. We begin with a useful observation from [12]: near an active strict saddle
point Z, a certain C'' smoothing, called the Moreau envelope, is C? and has a strict
saddle point at Z. If one could ezactly execute the perturbed gradient method of [26],
efficiency guarantees would then immediately follow. While this is not possible in
general, it is possible to inexactly evaluate the gradient of the Moreau envelope by
approximately solving a strongly convex optimization problem. Leveraging this idea,
we extend the work [26] to allow for inexact gradient evaluations, proving similar
efficiency guarantees.

Setting the stage, we consider a minimization problem

(1.2) minimize f(x)

TERC
where f: RY — R U {+o00} is closed and p-weakly convex with p > 0, meaning the
mapping = — f(z) + §|z||* is convex. Although such functions are nonsmooth in
general, they admit a global C'! smoothing furnished by the Moreau envelope. For all
i < p~1, the Moreau envelope and the prozimal mapping are defined to be

(1.3)

. 1 2 . 1 2
() = min + —lly—x and rox,, () = argmin + —lly — x|,
ful) min, f(y) 2ully | prox,, () reml fy) 2Mlly [
respectively. The minimizing properties of f and f,, are moreover closely aligned, for
example, their first-order critical points and local/global minimizers coincide. Inspired
by this relationship, this work thus seeks (e1,e2)-approzimate second-order critical
points x of f, for some fixed p. That is, a point satisfying:

(1.4) Vi@ <er and  Auin(VAfu(2)) > —e2.

An immediate difficulty is that f, is not C? in general. Indeed, the seminal work [31]
shows f, is C%-smooth globally, if and only if, f is C?-smooth globally. Therefore
assuming that f, is C? globally is meaningless for nonsmooth optimization. Never-
theless, known results in [13] imply that for “generic” semialgebraic functions, f, is
locally C? near x whenever |V f,(z)]| is sufficiently small.

Turning to algorithm design, a natural strategy is to apply a “saddle escaping”
gradient method [26] directly to f,. This strategy fails in general, since it is not
possible to evaluate the gradient

(1.5) Viuz) = i(x — prox,,;(z))

in closed form. Somewhat expectedly, however, our first contribution is to show
that one may extend the results of [26] to allow for inezact evaluations G(x) = V f,,(z)
satisfying
|G@) - Vhu(@)| < alVhu(@)| +b  for all w € RY,
2
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Algorithm ‘ Objective ‘ Model function f,(y) ‘

Prox-Subgradient [11] | i(y) + r(y) 1(z) + (vs,y — 2) +7r(y)
Prox-gradient F(y) +r(y) F(z)+(VF(y),y —z) +7r(y)
Prox-linear [15] h(c(y)) +r(y) | hlc(z) + Ve(z)(y — 2)) + r(y)

Table 1: The three algorithms with the update (1.6); we assume h is convex and
Lipschitz, r is weakly convex and possibly infinite valued, both F' and ¢ are smooth,
and [ is Lipschitz and weakly convex on dom r with v, € 9l(z).

for appropriately small a,b > 0. The algorithm (Algorithm 1 on page 6) returns
a point x satisfying (1.4), with O(max{e;?,e;*}) evaluations of G, matching the
complexity of [26].

Our second contribution constructs approximate oracles G(z), tailored to com-
mon problem structures. Each oracle satisfies

G(z) = ' (z — PROXORACLE,, (7)),

where PROXORACLE,; is an approximate minimizer of the strongly conver sub-
problem defining prox,, (z). Since the subproblem is strongly convex, we construct
PROXORACLE, s from K iterations of off-the-shelf first-order methods for convex op-
timization. We focus in particular on the class of model-based methods [11]. Starting
from initial point zg = x, these methods attempt to minimize f(y) + ﬁ”y —z||? by
iterating

. 1 O
(1.6 s = arguin { £, () + 5l = ol + Sy — P}
yeRd 14

where {0} is a positive control sequence and for all z € RY, the function f,: R —
R U {400} is a local weakly convex model of f. In Table 1, we show three models,
adapted to possible decompositions of f. In Table 2, we show how the model func-
tion f. influences the total complexity O(K x max{ej?,¢;%}) of finding a second
order stationary point of f, (1.4). In short, prox-gradient and prox-linear methods
require O(max{e?,,1}) iterations of (1.6), while prox-subgradient methods require
O(dmax{e; %5 e5'%}). The efficiency of the prox-gradient method directly matches
the analogous guarantees for the perturbed gradient method in the smooth setting [26].
The convergence guarantee of the prox-subgradient method has no direct analogue in
the literature. Extensions for stochastic variants of these algorithms follow trivially,
when the proximal subproblem (1.6) can be approximately solved with high prob-
ability (e.g. using [20,21,28,41]). The rates for the prox-gradient and prox-linear
method are analogous to those in [22], which uses an algorithm-dependent measure
of stationarity.! Although the algorithms and the results in our paper and in [22] are
mostly of theoretical interest, they do suggest that efficiently escaping from saddle
points is possible in nonsmooth optimization.

Related work. We highlight several approaches for finding second-order critical
points. Asymptotic guarantees have been developed in deterministic [12,29,30] and
stochastic settings [40]. Other approaches explicitly leverage second order informa-
tion about the objective function, such as full Hessian or Hessian vector products

IThe stationarity measure we propose (1.4) agrees with that of [22] for the proximal point method.

For more general methods, the relationship is unclear.

3
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Algorithm to Evaluate G(x) ‘ Overall Algorithm Complexity ‘

Prox-Subgradient [11] O(dmax{e; %, % ¢, '%})
Prox-gradient O(max{e; %, ;%))
Prox-linear [15] O(max{e; %, ;%))

Table 2: The overall complexity of the proposed algorithm O(K x max{e;?,e5}),
where K is the number of steps of (1.6) required to evaluate g(z). The rate for
Prox-subgradient holds in the regime £; = O(e3).

computations [1,2,6,8,9,36,39,43,44]. Several methods exploit only first-order in-
formation combined with random perturbations [10, 16,25-27]. The work [25] also
studies saddle avoiding methods with inexact gradient oracles G; a key difference: the
oracle of [25] is the gradient of a smooth function G = Vg. Several existing works
have developed methods that find second-order stationary points of manifold [7,47],
convex [32,33,37,50], and low-rank matrix constrained problems [38,51].

Road map. In Section 2 we introduce the preliminaries. Section 3 presents a
result for finding second-order stationary points with inexact gradient evaluations.
Section 4 develops several oracle mappings that approximately evaluate the gradient
of the Moreau Envelope and derives the complexity estimates of Table 2.

2. Preliminaries. This section summarizes the notation that we use throughout
the paper. We endow R? with the standard inner product (z,y) := 2"y and the
induced norm ||z||2 := /{(z, ). The closed unit ball in R? will be denoted by B? :=
{x € R? | ||z|| < 1}, while a closed ball of radius 7 > 0 around a point x will be
written as BZ(z). When the dimension is clear from the context we write B. Given a
function ¢: RY — R U {00}, the effective domain and the epigraphs of ¢ are given by
dom ¢ = {r € R? | p(z) < 0o} and epi p = {(z,7) | ¢(z) < r}. A function ¢ is called
closed if epi ¢ is a closed set. The distance of a point z € R? to a set M C R? is
denoted by dist(z, M) = inf,c ¢ ||z — y||. The symbol || A|| denotes the operator norm
of a matrix A, while the maximal and minimal eigenvalues of a symmetric matrix A
will be denoted by Apax(A) and Apin(A), respectively. For any bounded measurable
set Q C RY, we let Unif(Q) be the uniform distribution over Q.

We will require some basic constructions from Variational Analysis as described
for example in the monographs [4,34,42]. Consider a closed function f: R? — RU{oc}
and a point z, with f(z) finite. The subdifferential of f at x € dom f, denoted by
df(z), is the set of all vectors v € R satisfying

(2.1) f) z f(@) + v,y —2) +ollly —zl2) asy—

We set Of(z) = () when x ¢ dom f. When f is C! at x € R?, the subdifferential 0 f(x)
consists of the gradient {V f(z)}. When f is convex, it reduces to the subdifferential
in the sense of convex analysis. In this work, we will primarily be interested in the
class of p-weakly convex functions, meaning those for which @ — f(z) + §z? is
convex. For p-weakly convex functions the subdifferential satisfies:

J6) 2 J@) + vy —a) = Slly—al’,  foralla,y € R v € 9 ().

Finally, we mention that a point z is a first-order critical point of f whenever the
inclusion 0 € df(x) holds.

This manuscript is for review purposes only.



140
141
142
143
144
145
146
147
148

149

3. Escaping saddle points with inexact gradients. In this section, we an-
alyze an inexact gradient method on smooth functions, focusing on convergence to
second-order stationary points. The consequences for nonsmooth optimization, which
will follow from a smoothing technique, will be explored in Section 3.

We begin with the following standard assumption, which asserts that the function
g in question has a globally Lipchitz continuous gradient.

AssuMPTION A (Globally Lipschitz gradient). Fiz a function g: R? — R that is
bounded from below and whose gradient is globally Lipschitz continuous with constant
L1, meaning

IVg(z) = VgW)|l < Lillz =yl for all z,y € R%.

The next assumption is more subtle: it requires the Hessian V2g to be Lipschitz
continuous on a neighborhood of any point where the gradient is sufficiently small.
When we discuss consequences for nonsmooth optimization in the later sections, the
fact that g is assumed to be C%-smooth only locally will be crucial to our analysis.

AssumpTION B (Locally Lipschitz Hessian). Fiz function g: R* — R such that
there exist positive constants o > 0 and 3, Lo > 0 satisfying the following: For any
point T with |Vg(z)|| < «, the function g is C?-smooth on Bg(Z) and satisfies the
Lipschitz condition:

IV2g(x) — V2g(y)|| < Lollz —y|  for all 2,y € Ba().

We aim to analyze an inexact gradient method for minimizing the function g
under Assumptions A and B. The type of inexactness we allow is summarized by the
following oracle model.

DEFINITION 3.1 (Inexact oracle). Given a,b > 0, a map G: R? — R? is an
(a, b)-inexact gradient oracle for f if it satisfies

(3.1) IVg(z) - G| <a- [Vga)| +b Vo e R

Turning to algorithm design, the method we introduce (Algorithm 1) directly
extends the perturbed gradient method introduced in [26] to inexact gradient oracles
in the sense of Definition 3.1. The convergence guarantees for the algorithm are
based on the following explicit setting of parameters. For some fixed target accuracies
€1,e9 > 0, pick the inexactness parameters a € [0,1),b > 0, and choose any Ay >
g(zo) —inf g.2 We define the auwiliary parameters:

(3.2)

624 L2€1 lj Lf% 1 i o 8
é := 2%* max {1,5L1€2} 5 Vd <Ag max{ = 7l + 2 and v := log,(¢log,(9)°),
and )

1 1—a Sg 1 135}
= orh 371 T N2 T2 and = 0.
80073 (1 + a)? L3 4y Lo

Although the constant in this definition is large, it appears inside a logarithm. The
parameters required by the algorithm are then set as

1—a 1 62 . L152 (1 + a)2 L1
3.3 - 9 - =2 1 M=vTO
B3 = Frrn "7 10007 mm{ " 5e1 Lo } ’ 1—a) &

2Note that the precise infimal value inf g is not needed. Instead any lower bound suffices. Such
lower bounds are often available in practice, e.g., in machine learning applications where the optimal
value of the “loss function” is typically lower bounded by 0.

5
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Algorithm 1: Perturbed inexact gradient descent

Data: o € R*, T € N, and n,7,61, M > 0

Set tpert =-M
Stept=0,...,T:
Set Uy = 0

If |G(zy)|| <e1/2 and t — tpers > M:
Update tpere =t
Draw perturbation u; ~ Unif(rB)
Set xpy1  xp — - (G(2y) + wy).

The following is the main result of the section. The proof follows closely the argument
in [26] and therefore appears in Appendix A.

THEOREM 3.1 (Perturbed inexact gradient descent). Suppose that g: R — R
is a function satisfying Assumptions A and B and G: RY — R? is an (a,b)-inexact
gradient oracle for g. Let 6 € (0,1), &1 € (0,a), g2 € (0,min{4yBLa, L1, L3}), and
suppose that

< mi 1 1 R J
a4 < 1min %7 LlnM27+27 El’l’}MQ’Y_"Z an

e F o\ L F /2 R
b<min< —, —— , , .
64’ \ 40nM M(5Ly + 1) Mn20+2)

Then with probability at least 1 — 0, at least one iterate generated by Algorithm 1 with
parameters (3.3) is a (£1,€&2)-second-order critical point of g after

M 256 ~ Lz 1
3.4) T =8A max{,}+4M—(9(L A max{z,}) iterations.
34 b= e A

The necessary bounds for a and b can be estimated as

0 e$ Lies)?
< a2 i 2 2.2 3A L . 1, 212 d
a s L:f ] min L%,5152,52 g ¢ min ' Tty an

5 e’ Lie
b< — a2 i S2 2.3 AA L 1 Z1s2
S L%LgAg min L%’EIEQ’SQ g (- in Ty |

where the symbol “<” denotes inequality up to polylogarithmic factors. Thus, Algo-
rithm 1 is guaranteed to find a second order stationary point efficiently, provided that
the gradient oracles are highly accurate. In particular, when a = b = 0 we recover
the known rates from [26].

(3.5)

4. Escaping saddle points of the Moreau envelope. In this section, we
apply Algorithm 1 to the Moreau Envelope (1.3) of the weakly convex optimization
problem (1.2) in order to find a second order stationary point of f, (1.4). We will
see that a variety of standard algorithms for nonsmooth convex optimization can be
used as inexact gradient oracles for the Moreau envelope. Before developing those
algorithms, we summarize our main assumptions on f,,, describe why approximate
second order stationary points of f,, are meaningful for f, and show that Assump-
tion B, while not automatic for general f,,, holds for a large class of semialgebraic
functions.
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Fig. 2: Critical points of f in (4.1). We use ¢ = €2 = 0.04. On the left: The
function, a point (z, f(x)) with  an (1, 2)-second-order critical point of f,, and its
corresponding cubic minorant. On the right: The set of first-order critical points of
f (yellow) and the set of (e1,€e2)-second-order critical points of f,, (red).

As stated in the introduction, for pu < p~!, the Moreau envelope is everywhere
C' smooth with Lipschitz continuous gradient. In particular,

Assumption A holds automatically for f,, with L; = max { [T 1—_% } I

See for example [12] for a short proof. Assumption B, however, is not automatic, so
we impose the following assumption throughout.

AssumpTION C. Let f: RY — RU{oco} be a closed p-weakly conver function whose
Moreau envelope f, satisfies Assumption B with constants o, 8, Lo.

To illustrate Assumption C, consider the family of functions f(*)(z) = s~ *2? — 1|
together with proximal parameter p = 1/4. Tt is straightforward to show that each
f(®) satisfies Assumption (C) with parameters a; and f, that must tend to zero as s
tends to infinity. For example, Figure 1 plots f(&) and V f;(f) with s = 1,2. We see
that both gradients V fl(f) are linear, hence, C*° around the critical points 1 and —1.
However, the region of smoothness for V fl(Ll) is larger than for V f;(f).

Turning to stationarity conditions, a natural question is whether the second order
condition (1.4) is meaningful for f. To answer this question, we prove the following
proposition, which shows that if ||V f,(z)|| < ¢, then f is minorized at a nearby point
by a cubic function whose gradient and Hessian match that of the Moreau envelope.
We defer the proof to Appendix B.
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PROPOSITION 4.1. Consider f: RY — R U {oo} satisfying Assumption C. Con-
sider a point x € RY satisfying ||Vfu.(x)| < «. Define the prozimal point
T :=prox,¢(r) and the cubic

I - 1 N N L .
q(z) == f(@) + (Vfu(x), 2 — ) + §<V2fu(x)(z —I),z2—1T)— %Hz — 7|3
Then q(z) = f(&) and for any z € Bg(Z), we have ¢(z) < f(z). Moreover, if x is
an (e1,€2)-second order critical point of f,, then & is an (e1,€2)-second order critical

point of q satisfying the proximity bound ||z — Z|| < pey.

An alternative statement of this result is that (Vf,(z), V2f.(z)) is an element of
the so-called second-order subjet of f at Z, which consists of all the second-order
expansions of C? minorants g of f with g(Z) = f(Z) [23]; see [5, Section 3] for further
references.

In Figure 2, we illustrate the proposition with the following nonsmooth function:

(11) Flay) = lel + (7~ 1)

The Moreau envelope of this function has three first-order critical points: a strict sad-
dle point (0,0) and two global minima (—1,0), and (1,0). As shown in the right plot
of Figure 2, approximate second-order critical points of f,, cluster around minimizers
of f. In addition, the left plot of Figure 2 shows the lower bounding quadratic from
Proposition 4.1.

Finally, we complete this section by showing that Assumption C is reasonable: it
holds for generic semialgebraic functions.®

THEOREM 4.1. Let f: R? = RU {oo} be a semi-algebraic p-weakly-convex func-
tion. Then, the set of vectorsv € R? for which the tilted function g(z;v) = f(z)+(v, x)
satisfies Assumption C has full Lebesgue measure.

The proof appears in Appendix C, and is a small modification of the argument
in [12].

4.1. Inexact Oracles for the Moreau Envelope. In this section, we develop
inexact gradient oracles for V f,, = u - Prox,, (z)). Leveraging this expression,
our oracles will satisfy

(4.2) G(z) = ' (z — PROXORACLE,, (7)),

where PROXORACLE,y is the output of a numerical scheme that solves (1.3). To
ensure G meets the conditions of Definition 3.1, we require that

[PROXORACLE, s (z) — prox,,;(z)|| < a- ||z — prox,, ;(z)| + p - b.

for some constants a € (0,1) and b > 0.

Since f is p-weakly convex, evaluating proxuf(xk) amounts to minimizing the
(u=! — p)-strongly convex function f(z) + ﬁ“aﬁ — zi||*>. We now use this strong
convexity to derive efficient proximal oracles via a class of algorithms called model-
based methods [11], which we now briefly summarize. Given a minimization problem

3A function is semialgebraic if its graph can be written as a finite union of sets each defined by

finitely many polynomial inequalities.
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Algorithm 2: PROXORACLES;

Data: Initial point zy € R

Parameters: Stepsize 6 > 0, Flag one_sided.
Output: Approximation of prox,, (z0).

Step k (k< K+1):

2
146, T — (zo+0pp-xy)
2u 14601

Thy1 4 argmingcpa for, () +
If one_sided :
T = m Zf;rll(k + 1)$k
return rx
Else:
return rx

min,cra g(x), where g is strongly convex, a model-based method is an algorithm that
recursively updates

. (%
(4.3) Trr 4 argmin go, (2) + o — ]|,

where g,,: R — R U {oo} is a function that approximates g near x; and {6} is
a sequence of positive real numbers. Returning to the proximal subproblem, say we
wish to compute prox,, (x9) for some given xy. We consider an inner loop update of
the form

) 1 O
(4.4) Tpt1 < argmin fp, (z) + —|z — x0||2 + =z — a:k||2,
rER4 2/,[/ 2

where f,, : R4 — R U {00} is a function that locally approximates f (see Table 1
for three examples). Completing the square, this update can be equivalently written
as a proximal step on f,,, where the reference point is a weighted average of g
and xj as summarized in Algorithm 2. Turning to complexity, we note that the
approximation quality of a model governs the speed at which iteration (4.4) converges.
In what follows, we will present two families of models with different approximation
properties, namely one- and two-sided models. We will see that models with double-
sided accuracy require fewer iterations to approximate prox " f(xo).

4.1.1. One-sided models. We start by studying models that globally lower
bound the function and agree with it at the reference point. Subgradient-type models
are the canonical examples, and we will discuss them shortly.

AssUMPTION D (One-sided model). Let f =1+, where r: R — RU {+o0} is
a closed function and 1: R = R is locally Lipschitz. There exists T > 0 and a family
of models l,: RY — R, defined for each x € R, such that the following hold: For all
x € R, 1, is L-Lipschitz on dom r and satisfies

(4.5) lo(x) = l(x) and L(y) = l(y) < 7lly — =|)? for all y € R%.
In addition, for all x € R?, the model
Je=la+r

is p-weakly convex.
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Now we bound the number of iterations that are needed for Algorithm 2 to obtain
a (a,b)-inexact proximal point oracle with one-sided models. The algorithm outputs
an average of the iterates with nonuniform weights that improves the convergence
speed.

THEOREM 4.2. Fiz a,b > 0 and let f: R — R U {oo} be a p-weakly-convex
function and let f,: RY — RU {oo} be a family of models that satisfy Assumption D

for 7 =0. Let p=' > p be a constant, and set 6, = (”_;;p)(k + 1) then Algorithm 2
with flag one_sided = true outputs an a point Ty such that
12K — prox,, s (zo)ll2 < a - [lzo — prox,;(zo)ll2 + 4 - b,

provided the number of iterations is at least K > % + %.

The proof of this result follows easily from Theorem 4.5 in [11] and thus, we omit
it. By exploiting this rate, we derive a complexity guarantee with one-sided models.

THEOREM 4.3 (One-sided model-based method). Consider an L¢-Lipschitz
p-weakly-convex function f: RY — RU{oo} that satisfies Assumption C and a family
of models f, satisfying Assumption D. Then, for all sufficiently small e, > 0, and
any g2 > 0, 0 € (0,1) there exists a parameter configuration (n,r, M) that ensures
that with probability at least 1 — 0 one of the first T iterates generated by Algorithm 1
with gradient oracle

Gla)=p " (z— PROXORACLEfff(ac)) (Algorithm 2)

is an (e1,€9)-second-order critical point of f,, provided that the inner and outer iter-
ations satisfy

~ d Ly 1 L3e?
—272747272 2 281
K=0 <(1 —pp) “LFLILyAY - 5 -max{6%4, 6466} -maX{L%€%7l}) and

1€2
~ 2
T=0 (LlAfmax{Lf,lz}>
€ €71

where Ly := max{l L } and Ay = f(x¢) —inf f.

n? I—pp

(4.6)

Proof. This result is a corollary of Theorem 4.2 and Theorem 3.1. By [12, Lemma
2.5] and Assumption C we conclude that the Moreau envelope satisfies the hypothesis
of Theorem 3.1. Hence, the result follows from this theorem provided that we show
that the gradient oracle is accurate enough. By Theorem 4.2 if we set the number of
iterations according to (4.6) we get an inexact oracle that matches the assumptions
of Theorem 3.1 O

2.2
The rate from Table 2 follows by noting that max { é%i; , 1} =1 when g; < %Eg.

1=2
Example: proximal subgradient method. Consider the setting of Assump-
tion D, where f = [+ r. Assuming that [ is 7-weakly convex, it possesses an affine

model:

l.(y) =U(z) + (v,y — x), where v € 9l(z).

By weak convexity, f, = I, + r satisfies Assumption D. Moreover, the resulting up-
date (4.4) reduces to the following proximal subgradient method:

o (1 + O
Theorem 4.3 applied to this setting thus implies the rate in Table 2.
10

Tp4+1 = Prox (wo + Oppp - xp — p1 v)) :
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4.1.2. Two-sided models. The slow convergence of one-sided model-based al-
gorithms motivates stronger approximation assumptions. In this section we study
models that satisfy the following assumption.

AssUMPTION E (Two-sided model). For any x € R?, the function f,: R® —
R U {oo} is p-weakly convex and satisfies

(4.7) o) = FW)| < Sly — > for ally € RY,

for some fized v > 0.

When equipped with double-sided models, model-based algorithms for the proximal
subproblem converge linearly.

THEOREM 4.4. Suppose that f: R* — RU{oo} is a p-weakly-convex function, let
fz be a family models satisfying Assumption E. Fiz an accuracy level a. Set p=' >
p+ v and the stepsizes to 0; = 0 > v, then Algorithm 2 with flag one_sided = false
outputs a point xx such that

|zx — prox, ¢(wo)ll2 < a-[[zo — prox, ¢(wo)l|2,

_ -1
provided that K > 2log(a™")log (“%5*9) :

We defer the proof of this result to Appendix D. Given this guarantee for two-
sided models, we derive the following theorem. The proof is analogous to that of
Theorem 4.3: the only difference is that we use Theorem 4.4 instead of Theorem 4.2.
Thus we omit the proof.

THEOREM 4.5 (Two-sided model-based method). Consider a p-weakly con-
vex function f: R? — RU{oco} that satisfies Assumption C and a family of models f,
satisfying Assumption E. Then for any § € (0,1) and sufficiently small €1 > 0, there
exists a parameter configuration (n,r, M) such that with probability at least 1 — § one
of the first T iterates generated by Algorithm 1 with inexact oracle

Gl)=p " (z- PROXORACLEIIff(a:)) (Algorithm 2)

is an (e1,€2)-second-order critical point of f,, provided that the inner and outer iter-
ations satisfy

K=0(1) and T=0 (max{i, 1 —pup} (f(zg) —inf f) min{L§51—4,51—2}) .

We close the paper with two examples of two-sided models.
Example: Prox-gradient method. Suppose that

f=F+r

where r: R? — RU{+o00} is closed and p-weakly convex and F is C* with v-Lipschitz
continuous derivative on dom 7. Then due to the classical inequality

|F(y) — F(z) = (VF(x),y —z)| < gHy —z|)? for all z,y € dom r,
the model

fa(y) = F(2) + (VF(2),y — ) + r(2),
11
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317
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319
320
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332
333
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335
336
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satisfies Assumption E. Moreover, the resulting update (4.4) reduces to the following
proximal gradient method:

Tk+1 = Prox (xo + Ok - —u-VF(x;J)) .

1
o (1+9W

Theorem 4.5 applied to this setting thus implies the rate in Table 2.
Example: Prox-linear method. Suppose that

f=hoc+r

where 7: R? — RU {400} is closed and p-weakly convex, h is L-Lipschitz and convex
on dom r, and c is C! with B-Lipschitz Jacobian on dom r. Then due to the classical
inequality ||c(y) — c(x) — Ve(z)(y — x)|| < gHy — z|?, we have

[h(c(y)) — h(c(z) + Ve(x)(y — x))| < %Hx -y, for all z,y € dom .
Consequently, the model
fa(y) = hle(@) + Ve(o)(y — z)) +r(2),
satisfies Assumption E with v = SL. Moreover, the resulting update (4.4) reduces to

the following prox-linear method [15]:

2

1 = argmin h(c(zg) + Ve(zg) (y — zx)) +r(z) +

1+ Opp Hx_ T + Opp -y,
yER4 2;“’

1+ 6kp

Theorem 4.5 applied to this setting thus implies the rate in Table 2.
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Appendix A. Proof of Theorem 3.1. Throughout this section, we assume
the setting of Theorem 3.1.
We begin by recording some inequalities that we will use later on. The first
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463
464
465

466

467

168

169
170

171

inequality shows that the parameter ~, defined in (3.2), is lower bounded by one.
The second and third inequalities show that some radius and function value, that will
appear in the analysis, can be controlled by R and F, respectively. Finally, the last
inequality bounds some probability of failure by §.

LEMMA A.1. The following inequalities hold.
1. (Away from zero)

v =1l
2. (Radius)
1 2
590U v p e < R
(1-a)

3. (Function value)
enr + Lin*r?/2 < F)2.

4. (Probability)

TLI%\E/—EVQ max {1, 5%} 29
)
9

pi=

Proof. We start with the first inequality, recall that

2 2
¢ = 224max{1,5L261}%\/&(Agmax{&,%}+é) and 7 := log, (¢ log,(4)®),

5
Lieo €5 €1€3 5

Thus, it suffices to show that log,(¢) > 1. By definition,

2
¢2224i.\/g.l22224@>224
0 €35 0

where the second inequality uses that eo < Lj, and the last inequality utilizes § <
1 < d. The inequality follows directly from this.
We now tackle the next inequality, observe that

1 2 1 1 1-— 3 2L 2L
U gl nd FM= : 222.( +a) Slyo 22
(I1-a) L 80073 (1+a)2Li (1—a) e 800L3~?

32n

this follows from (3.3) and the definition of F. Therefore, since

1 €2 Liey e2
<= d =—2 _min{1 < 2
=T, " "= 100Lo? mm{ ’ 551L2} = 100Ly73’
then since v > 1 we have
(1+a)? 1 &9 €2
32n—MF < —= 4 —=
T T S 5 T, T 1000, ey
< 1 €2 i 1 2 < 1 €2 - R

5yLy 400y Ly ~4yLy
where the third inequality follows from L;/eq > 1.
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Now, we prove the third statement: 617]7" + Lyn?r? /2 < F/2. Indeed, first recall

F = 1-a_ 3 Thus, we bound

the definition of r above and that n = 8007 [(EDE L2

the first term:

(1+a)2 Ll

l—a 1 €2 Liey 1-—a 3
neor<eq- _. < -F.
LTSS T2 T, 4000078 Ber Lo — (1 4+ a)? 2000L373 — 5

[\)

179 Next, we bound the second term:

Li-n?-r? 1 1—a 1\ 22
2 2 1 +a)2L 100Lo?
g 1—a 1 1 1l—a &
4181 =

Ly (1+ a)? 40043 80073 (1 + a)? L2
1 1 l1-a & _F

182 = 3 3 272 > 71)

483 40093 80073 (1 +a)?2 L5 ~ 10

181 where we used (1 —a)/(1+a)? < 1, eg < L; and the inequality 40(%3 < -, which
485  follows since v > 1.

486 Finally, we show that p < §. Recall that by definition,
~ M 256

3
488 We upper bound T using F' = ﬁﬁ%, M = ((11+‘2)) h'y, and n = GFaZ L7

1+ a)? (1+a)*> L3 256 (1+4a)? Ly
T S N 0y* e R e S
489 T, Do 1max{80 - 53 22 + 1—a) 627
1+a)2\’ L2 1 1
190 < 2*-800 d+a” Lyt (A max{ =, 2} + ) :
491 l—a & & €2

This yields:

3

213 .80 (%) .L%V(i\/g.max{ljﬁf;} (Agmax{é—g, %1 }—i—%)

p< '
27

492 Next, recall that

L 3 1 1
103 27:¢.10g2(¢)8 with ¢ := 2 4L1\/‘max{1 5L251} <Agmax{%7 3 }"‘r*)

€2 g3’ e2ey g2

494 Thus, by combining the last two equations and reorganizing we get

2\ 3 6
195 p—§213~800<(1+a)> T __5<6
l—a /) 2%*log,(¢)

497  where the final inequality follows from the facts that ¢ > 2245—2? > 224 gince e < Ly,
2
3
195 logy(zlogy(x)8)6 < log, (2)® for any x > 224, and 213 x 800 x (%) < 224 since
199 a <1/20.

500 We assume that G is an (a, b)-inexact gradient oracle for g. We derive two simple
501 consequences of Definition 3.1.
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LEMMA A.2. We have that for any x € R the following inequalities hold:
L. (Norm similarity) |||G(x)|| — [[Vg(z)|]| < al|[Vg(x)[| +b.
2. (Correlation) (Vg(z),G(z)) > (7/8)(1 — a)||Vg(x)||* — 2b°.

Proof. Throughout the proof we let v = Vg(z) and v = G(z) and use that
|lu—v|| < a]|v||+b. The first part of the theorem is then a consequence of the triangle
inequality. The second part follows since ||ul|? > (1 —a)?||v||? — 2b(1 — a)||v|| + b and

[ull® = 2(u, v) + [[o]* = u = v|* < a®|jv]|* + 2abljv]| + b,
which implies the following:

2(u,v) > (1= a)?[oll* + (1 = a®)|[v]* = 2(1 — 2a)b||v]

— 2(1 - a)Jol]* - 2(1 — 2a)bo]

— 92q)?
> 201 - )= ol - G 1
R M

where the third inequality uses a < 1/2 and the second inequality follows from Young’s
inequality: 2-((1—2a)b-||v]]) < ((1—-2a)b)?/(2¢(1 —a))+2¢(1—a)||v||?. To complete
the result, set ¢ = 1/8. |

As a consequence of this Lemma, we prove that when b is small enough and
the iterates are far from being stationary the function g decreases along the inexact
gradient descent sequences with oracle G.

LEMMA A.3 (Descent lemma). Assume that G is an (a,b)-inexact gradient
oracle for g. Given yo € R%, consider the inexact gradient descent sequence: Y41 <
ye —n - G(yt). Then for all t > 0, we have

t—1

(1—a) > [Vg(y)|* + 5tnb”.

=0

(A1) 9(ye) —9(yo) < —

|3

Proof. Since the function g has L;-Lipschitz gradients we have

L1772 2
9(yr+1) < 9(ye) = (Vg (), Gye)) + == G (o)
_a 2
< ()~ D wg) 2+ 2007 + B (1 4 ) Vg + 1)
< ) — 0 L Tg|? + 2
2
+ (S0 Tt P + 0.

Here the second inequality follows from Lemma A.2 and the third follows from
Young’s inequality: 2(1 + a)||[Vg(y:)[|b = 2 ((1+a)|[Vg(y)|/VE) (VBb) < (1 +
17
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536
537
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548
549
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LIRS, SRS, B
w N o=

=

a)?||Vg(y:)|* + 5b%. Next, observe that

7(1—a Lin? (6
- %Ilw(yall2 +2nb? + IT” (5(1 +a)2||Vg(y) |2 +6b2)
7(1—a 6
< - ((8) — gL+ a)2> IVg(ye)ll* + (2 + 3) nb?
1—a
<~y 4 5m?,

where the second line follows since n < 1/L; and the last inequality follows from
(6/10)(1 + a)? < (3/4)(1 — a) for a < 1/20. Thus, we have shown that

1-a
o) — o) <~ "= ()| + 52,

which implies (A.1). O

As a consequence of the above Lemma, we now show that inexact gradient descent
sequences {y;} either (a) significantly decrease g or (b) remain close to yq.

LeEMMA A.4 (Improve or localize). Given yo € R, consider the inezact gra-
dient descent sequence: Y11 < yr — 1+ Ge(ye). Then, for all T < t, we have

(1+a)?
(1-a)

Proof. By Lemma A.2, we have

(A2) lyr —woll* < 16t (9(yo) — 9(ye) + (5 +n) tb%) .

r—1 2 t—1 2
lyr = wol> = | > Glwa)| <n’ (Z(l +a)[Vg (i)l + tb)
i=0 i=0

t—1
<2 (trf > (1 +a) Vg l* + n2t2b2> ,
i=0

where the last inequality follows from Jensen’s inequality. Next apply Lemma A.3,

to bound n? Zf;é Vg(y)|* < (18_77@ (g(yo) — g(ys) + 5bt). Plugging this bound into

the above inequality, we have

14 a)?
Iy — ol < 2 (8nt((1a)) (9(yo) — g(ys) + 5b°t) + n2t262>
1+a)?
< 16nt((1a)) (9(y0) = 9(ye) + (5+m) t8?) .
This concludes the proof. 0

In the next two Lemmas, we show that, when randomly initialized near a critical
point with negative curvature, inexact gradient descent sequences decrease the objec-
tive g with high probability. The first result (Lemma A.5) will help us estimate the
failure probability.

LEMMA A.5. Fiz a point § satisfying |Vg(9)| < e1 and Amin(V39(9)) < —£2 and
let eg denote an eigenvector associated to the smallest eigenvalue of V2g(3j). Consider
two points yo and y}, with

Yo = yo +nroeo  and  max{||yo — gll, o — 7ll} < 0,
18
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583

584

where Tg > w = %23’71%. Let {y:},{y;} be two inexact gradient descent sequences,
initialized at yo and y|,, respectively:

Yer1 = Ye — NG (ye) and Yir1 =y — 1G(yy).

Then min{g(yar) — 9(y0), 9(¥ar) — 9(y0)} < —F.
Proof. We argue by contradiction. Suppose that

max{g(yo) — 9(ym), 9(yo) — 9(¥rr)} < F.

Then by Lemma A.4, the iterates of both sequences remain close to their initializers:

1+a)?
A3)  max{ly — woll. I} — w1 < \/ 169 M (F + (5 -+) M)
2
< SQnMMF, for all t < M.
(1-a)

where the second inequality follows from two upper bound: 1 < 1/L; and b? <
Lo F We now use (A.3) to show for all ¢ < M, iterates y; and y; remain close to

M(GBL+1)
3. By Lemma A.1, we get
(A4)
max{|lye — JII, lys — I} < max{{lye — oll, lv; — voll} + max{llyo — 7l llyo — 9}
1 2
< J3209F Y ey e < R

(1—-a)

In the remainder of the proof, we will argue that inequality (A.4) cannot hold. In
particular, we will show that negative curvature of g implies the sequences y; and y;
must rapidly diverge from each other.

To leverage negative curvature, we first claim that g is C? with Lo-Lipschitz
Hessian in Bg(g), which contains y; and y; for ¢ < M. Indeed, since § satisfies
[Vg(@)| < e1 <, Assumption B ensures V2g(y) is defined and Lo-Lipschitz through
Bg(y). The claim then follows since R = ﬁ%"; < B, which follows from the assump-
tion g9 < 47,@[42

Now observe that {y; + s(y: —y;) | s € [0,1]} C Br(gy) for all ¢ < M. Therefore,
defining H := V?¢(9), v := Vg(ys) — G(we), vi := Vg(y;) — G(y;), and G = y; — y,
we have forall t < M — 1

Ger1 =Gt — 0(V9(ye41) — Vo(yi11)) — n(ve — vy)
— (T — )~ [ / (Vg0 + sy — ) — H) ds} 9o — (e — )

t 1
=T —nH) o —nY (I —nH)'~" UO (V29(yr + s(yr —ur)) — H) ds | §r
" =0
=:p(t+1)

=:q(t+1)

—nY (= M) (v, =)
7=0

=:n(t+1)

19
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604
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609

610
611

where the last equality follows from the recursive definition of y; and y;. In what
follows we will argue that p(t) diverges exponentially and dominates ¢(t) and n(t).

Beginning with exponential growth, notice that 7y is an eigenvector of H with
eigenvalue Amin(H). Let A := —Apin(H). Then,

(A-5) o)l = (1 + 1) [[Foll = (1 +nX)'nro.
Consequently, if max{||q(¢)|],2]|n(t)]} < M, then the following bound would hold:

. . Unm
max{lyar — 7, lyar — 7} > 12241

Y

vV

where the fourth inequality follows since M = ~/nea, (1 +nA) > (1 + ne2) and
(1+z)'/* > 2 for all 2 € (0, 1), while the final inequality follows since rg > w = %.
Thus, by proving the following claim, we will contradict (A.4) and prove the result.
1)l
CLAIM 1. For all t < M, we have max{||q(¥)||,2||[n(®)|} < Hp(z—)‘

The proof of the claim follows by induction on ¢ and the following bound
1T = nH[| < (1+1nA),

which holds since 7 is small enough that I — n#H = 0.
Turning to the inductive proof, we note that the base case holds since

2n(0) = q(0) = 0 < [|o||/4-
Now assume the claim holds for all 7 < ¢. Then for all 7 < ¢t we have

1911 < PO+ llg() I+ lIn()]l < 2[p(7)] < 2(1 + nA) o,

where the final inequality follows from (A.5). Consequently, we may bound |[|q(¢t+ 1)||
as follows:

t 1
lg(t + DI <0y 1 —nH]"7 / (V2g(ys + s(yr — 7)) = H) ds| |3l
7=0 0

t

<Ly | — M| max{llye — gl ly; — g1} 13-
=0

t
< LRI —nH| 1o

7=0
=nLaRM || T — yH||" nro
< 2nLoRM ||p(t + 1) ||
< lIp(t+ 1)||’
= 2
20
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62

622
623
624
625

626

627

644

645

where the second inequality follows from Ls-Lipschitz continuity of V2g on Bg(3),
the third inequality follows from the inclusions y;,y; € Br(y), the fourth inequality
follows from (A.5), and the fifth inequality follow from 2nLoRM < 1/2. This proves
half of the inductive step.

To prove the other half of the inductive step, we bound ||n(t + 1)|| as follows:

t
It + D)l < 0 ST —nHl 7 o, — o
7=0

<0y I =nH]" [a(IVg(yo)ll + IVa(y,)|) + 20]

7=0
t
<Y =M [a (LR + 1) + D)
7=0
< 2m(1 + 3\ [Ma (LR +e1) + Mb]

where the third inequality follows from L; Lipschitz continuity of Vg, the inclusions
Y, y; € Br(y), and the bound [Vg(@)|l < e1; and the fourth inequality follows from
the bound [|[I —nH|"™" < (1 +n\). To complete the proof, we recall that three
inequalities: b < a < = mm{L - } and rg > w = %. Then, we
find that

1
Mn2(v+2) nM27+

[n(t +1)|| < 2n(1 +nA)" [Ma (L1R + 1) + Mb
< 3(1+nN)'R
= T
_ 30+ o
- 16
< llp(t +1)[|/4.

This concludes the proof of the claim. Consequently, the proof of the Lemma is
complete. ]

Using the Lemma A.5, the following Lemma proves that inexact gradient descent
will decrease the objective value by a large amount if it is randomly initialized near a
point with negative curvature.

LEMMA A.6 (Descent with negative curvature). Fiz a point § satisfying
[Vg@)ll < e1 and Anin(V?9(9)) < —e2.

Consider an initial point yo := §+n-u with u ~ Unif(rB). Let {y;} be an inexact
gradient descent sequence, initialized at yo:

Yi+1 =Yt — 77G(yt)-

Then with probability at least

L . (1 =+ a)2 \[ Loeq 9~
(A.6) p:=1—min {1,L1 (i—a) < 2 2 max 1’5L152 2 ,

we have g(yn) — 9(§) < —F/2
21
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Proof. If p = 0 the statement holds trivially, thus we assume p > 0. First, we
establish the following containment of events: {g(ynr) — g(yo) < —F} C {g(ym) —
g(9) < —F/2}. To that end, first observe that

~ _ ~ L 2 _ L 27,.2
9(s0) — 9(5) < (Vo(@),v0 — ) + Z5|lvo = 911° < exnr + T < F/2

where the last inequality follows by Lemma A.1. Then, if we assume the event
{9(yar) — 9(yo) < —F} holds, we derive

9(ym) — 9(9) < g(yar) — 9(vo) + 9(yo) — 9(9) < —F/2.
Thus, {g9(yamr) — 9(v0) < —F} C{g(ym) — g(g) < —F/2} and so
P(g(yn) — 9(yo) < —F) < P(g9(ym) — 9(9) < —F/2).

In the remainder of the proof, we show the event {g(yn) — g(yo) < —F'} holds with
the claimed probability in (A.6). To that end, define the operator 7: R? — R? given
by T(z) = x — nG(z) and let Tpy = T°M be the M-fold composition of 7. Consider
the set of points y € B,,.(), for which M steps of inexact gradient method with oracle
G fail to decrease the g significantly:

Xstuek = {y € By (9) | 9(Tar(y)) — 9(yo) > —F}.

We now show that P(yo € Xstuek) < 1 — p. Indeed, Lemma A.5 shows that there
exists eg € S?! such that width of Xyua along ey is upper bounded by nw. Thus
the volume of Xytuc is bounded by the volume of the cylinder [0,w] x Bf,*(0), which
yields the result:

~ Vol(Xstuck) < W Vol(m"IB%d_l)
~ Vol(Bg.(0)) = Vol(nrBd)
o T (54 )

P W S— T

< A (&)
w d

<

]P(yO S Xstuck)

o m

23-7R d

nr T

1+ a)? L
< Llﬂﬁ’ﬂ max< 1,5 261 L 99—,
(1 - a) 135 L1€2

where the second inequality follows from the identity Vol(nrB?) = (nr)¢r®/2/T'(4+1);
the third inequality follows from the bound I'(z+3)/I'(z) < v/ for any = > 0 [24]; the

fourth inequality follows from the definition w = %; and the fifth inequality follows
2
from the definitions n = (1—a)/Ly(1+a)?, R = %%, andr = 400272”3 min {1, 52‘222 },

as well as the bound 400 - 23/(4,/m) < 29. This concludes the proof.
To conclude this section, we now combine all the Lemmas to prove Theorem 3.1.

Proof of Theorem 3.1. Set the number of iterations to

M 256
22
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Then, we will prove the slightly stronger claim that there is at least one (e1/4,¢e2)-
second-order critical point among the first 7 iterates of the algorithm. Let {z;}7_, be
the sequence generated by Algorithm 1. We partition this sequence into three disjoint
sets:

1. The set of (g1/4,e2)-second-order critical points, denoted Ss.

2. The set of (1/4)-first-order critical points that are not in Ss, denoted Sj.

3. All the other points Sz = {x;}1_ \ (S1 U Sa).
We first prove that |S3| < T'/4:

T—1
g(zr) — g(x0) = (9(@e41) — g(x1))
t=0
(1—a) — 2 2
< g D Vgl + 5T
t=0
1—-a
< - < ) > IVg(a)|® + 5yTb?
teSs3
1
< —n|Sslef(1 — G)ES + 5nTh?,
where the first inequality follows from Lemma A.3. Rearranging, and applying b? <
2
Tov5> we find
- 5Tb? T 6407
1S5 < g(:;‘o) g(x?) T _ < n <T/4,
net(l—a)mg  €i(l—a)mpg ~ (1—a)l6 (1 —a)4096

since a < 1/20.
Now suppose for the sake of contradiction that |Sa| is empty. Define A C [T] be
the set of iteration numbers where Algorithm 1 adds a perturbation to the iterate:

A:={t e [T)|||G(x)| <e1/2 and ¢ — tpert > M}.
Every z; with t € A is first-order stationary, since

€1

1 20 /&1 €1
< — <7 — < —|=4+ =) <eq.
Vgl < = (GG +b) < — (S +b) < 5 (5 + 1) <=

Moreover, since |Sq| is empty, such z; satisfy Apin(V2g(2:)) < —eo. Therefore, by
Lemma A.6 and a union bound, the following event

F
&= {g($t+M) —g(xy) < -5 for all t € A}

does not happen with probability at most

TL, ((11+aa)) \['y max{l 52?2}29
27 '

(A7) P(£°) <

By Lemma A.1, this probability is upper bounded by §. Therefore, throughout the
remainder of the proof, we suppose the event £ happens. In this event we will show
that g(x;) < inf g for some ¢, which yields the desired contradiction.
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To that end, recall that by Lemma A.3, g cannot increase by much at each
iteration:

g(wii1) — glzy) < 5nb? for all ¢t € [T].
Thus, defining 1,5t := max{t | t + M < T} and we find that

tlast+ M

9@t nrr1) — 9(wo) = Y (9(weg1) — g(a1))
t=0
Z Z (9(xi41) — gla)) + 50b*|T|

<
keA telk,k+M—1]
kgtlast
= > (g(@eear) = glae)) + 5nb? T
keA
k<tiast
< —(|A| = 1)F/2 + 50b?|T.

To arrive at the desired contradiction, we will show that |A] is large. In particular,

we claim that
3T
Al > —.
A= aM
To prove this claim, first observe that the definition of Algorithm 1 ensures that
{2 | |G(ze)| < e1/2} € Ugepdks- .- k+ M}. Moreover, S; C {x | |G(z)| < e1/2}
by Lemma A.2:

&1 2151 €1 €1
< 4 <(1 — <
IVg@n)ll < e1/4 = IG@I < A +a)F +b< =0+ 22 <2,

since a < 1/20 and b < £1/64. Therefore, since |Si| = T — |S3| > 37/4, we have
(3T/4) < |51] < |A|M, as desired.
Finally, we find

9@ty +0r41) — 9(20)
< —(JA| = 1)F/2 4 50b*|T|

3T F 9
< — - — + Z
- (41\4 1) 2 Snb | ‘

TF
< - 4 b3 (T

- 4AM
TF
< ~S < inf g — g(xo),
where the third inequality follows since T > 4M and the fourth inequality follows
since b? < ﬁ%. Thus, yielding a contradiction. This completes the proof. 0

Appendix B. Proof of Proposition 4.1.  Recall that VQfM is Lo-Lipschitz
on the ball Bg(x). Consequently, by [35, Lemma 1.2.4], the following bound holds for
all y € Bg(x):

(BA) fule) + (Vhule)y = ) + 5V ule)ly = 2)oy = 2) = 2y = al* < fulw)
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716  Now fix a point z € Bg(Z) and observe that y := z + (z — Z) is an element of Bg(z).
717 Thus, by (B.1), the following bound holds:

(B.2)
fu@) +(Vfu(z), 2 - 7) + %(Vqu(w)(z —I),z-I) - %Ilz =2 < fulz + (2 - )

-~
Ay
@0

We now simplify this inequality using the definition of the Moreau envelope. Indeed,
first observe that since f,(z) = f(Z)+ ﬁ |z — 2|2, the left-hand-side of (1B.2) is simply
q(z) + ﬁ”m — Z||%. Second, observe that the right-hand-side of (B.2) satisfies

fulzt (@ —B) = inf f()+ iuz’ - DI < () + iux—%u?

2/ €R4

Thus, we find that
(2) + L lo = Z|* < f(2) + L [l — |
a 2u - 21 '

720  Consequently, we have ¢(z) < f(z), as desired.
To complete the proof, note that the claimed stationarity guarantees for ¢ follow
immediately. On the other hand, the proximity bounds follow from the identity
V fu(x) = p=(z — ), which implies that

[l =[] < plVIu(@)] < per,

=~
V]

as desired.

Appendix C. Proof of Theorem 4.1. By [13, Theorem 3.7], there exist
disjoint open sets {Vi,...,Vi} in R% whose union has full measure in R¢, and such
that for each ¢ = 1,..., k, there exist finitely many smooth maps g1, ..., g, satisfying

@) W) ={91(v), ... gm(v)} VeV

722 In particular, since g; are locally Lipschitz continuous, for every v € V;, there exists
723 a constant ¢ satisfying

k
724 (C.1) (0f) " (Be(v)) C U Bre(g;(v)),

for all small € > 0. Moreover, by [13, Corollary 4.8] we may assume that for every point
v in V; and for sufficiently small € > 0 the set g;(B¢(v)) is an active manifold around
g;j(v) for the tilted function f(-;v) = f(-) — (v,-). Taking into account [12, Theorem
3.1], we may also assume that the Moreau envelope f,(-;v) of f(-;v) is CP-smooth on
a neighborhood of each point g;(v).

Fix now a set V; a point v € V;. Clearly, then there exist constants r, 5, Ly > 0,
such that for any point y with dist(y, (0f)~!(v)) < r, the Hessian V2 f,(+;v) is Lo-
Lipschitz on the ball Bg(y). It remains to show that for all sufficiently small o > 0,
any point y satisfying ||V f.(y;v)| < « also satisfies dist(y, (0f)~*(v)) < r. To this
end, consider a point y with ||V f,(y;v)|| < a for some a > 0. Note the proximal
point g of f,(-;v) at y then satisfies

N N NN N
© o N o Ot

-~ =~ =~ =~ =3

dist(v,0f(§) < and  [|j - y] < po
25
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Therefore we deduce, § € (0f) 1 (B,(v)) and dist(y, (0f) 1 (Ba(v)) < pa. Thus,
using (C.1) we deduce that for sufficiently small o > 0, we have

dist(y, (0f) ' (v)) < (u + e
Choosing a < r/(p + £) completes the proof.

Appendix D. Proof of Theorem 4.4. The proof of the theorem is a conse-
quence of the following Lemma.

LEMMA D.1. Assume that g: R? — RU{oo} is a-strongly convex with minimizer
x*. Let g,: RY — R U {oco} be a family of convex models satisfying Assumption E.
Let zg € RY, let @ > v, and consider the following sequence:

. 0 9
Tpt1 ¢ argmin < g, (x) + §||:1c — x|
z€ER4

Then

k41

* 0+V oz *
(D.1) v =o'l < (255) 7 - ol

Proof. By 6-strong convexity and quadratic accuracy, we have

0 0 0
(9o o) + Gl = il ) + " = ol < e a”) + " P

From g(z511) < gay (Tr41) + §llzk — 2341/ and the above inequality, we have

0+v

Y — a2

0, . «
9(@rt1) + 5H9€ — el < glz*) +

Subtract g(z*) from both sides and use g(zp4+1) — g(z*) > §llzp+1 — 2*[|* to get the
result. |

To complete the proof notice that the function g(y) = f+ i”y —z0/|? and the models

9z = fo + i”y — x9]|? are @ = (u~! — p)-strongly convex. Therefore, Theorem 4.4
follows from an application of Lemma D.1.
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