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Abstract. Recent work has shown that stochastically perturbed gradient methods can effi-4
ciently escape strict saddle points of smooth functions. We extend this body of work to nonsmooth5
optimization, by analyzing an inexact analogue of a stochastically perturbed gradient method ap-6
plied to the Moreau envelope. The main conclusion is that a variety of algorithms for nonsmooth7
optimization can escape strict saddle points of the Moreau envelope at a controlled rate. The main8
technical insight is that many algorithms applied to the proximal subproblem yield directions that9
approximate the gradient of the Moreau envelope.10

1. Introduction. Though nonconvex optimization problems are NP-hard in11

general, simple nonconvex optimization techniques, e.g., gradient descent, are broadly12

used and often highly successful in high-dimensional statistical estimation and ma-13

chine learning problems. A common explanation for their success is that smooth non-14

convex functions g : Rd → R that arise in machine learning have amenable geometry:15

all local minima are (nearly) global minima and all saddle points are strict (i.e., have a16

direction of negative curvature). This explanation is well grounded: several important17

estimation and learning problems have amenable geometry [3, 17, 18, 45, 46, 49], and18

simple iterative methods, such as gradient descent, asymptotically avoid strict saddle19

points when randomly initialized [29, 30]. Moreover, for any given ε1, ε2 > 0, “ran-20

domly perturbed” variants [26] “efficiently” converge to (ε1, ε2)-approximate second-21

order critical points, meaning those satisfying22

(1.1) ∥∇g(x)∥ ≤ ε1 and λmin(∇2g(x)) ≥ −ε2.23

Recent work furthermore extends these results to C2 smooth manifold constrained24

optimization [7, 16, 47]. Other extensions to nonsmooth convex constraint sets have25

proposed second-order methods for avoiding saddle points, but such methods must at26

every step minimize a nonconvex quadratic over a convex set (an NP hard problem27

in general) [19,33,37].28

While impressive, the aforementioned works crucially rely on smoothness of ob-29

jective functions or constraint sets. This is not an artifact of their proof techniques:30

there are simple C1 functions for which randomly initialized gradient descent with31

constant probability converges to points that admit directions of second order de-32

scent [12, Figure 1]. Despite this example, recent work [12] shows that randomly ini-33

tialized proximal methods avoid certain “active” strict saddle points of (nonsmooth)34

weakly convex functions. The class of weakly convex functions is broad, capturing, for35

example those formed by composing convex functions h with smooth nonlinear maps36

c, which often appear in statistical recovery problems. The authors of [12] moreover37

show that for “generic” semialgebraic problems, every critical point is either a lo-38

cal minimizer or an active strict saddle. A key limitation of [12], however, is that39

the result is asymptotic, and in fact pure proximal methods may take exponentially40
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many iterations to find local minimizers [14]. Motivated by [12], the recent work [22]41

develops efficiency estimates for certain randomly perturbed proximal methods. The42

work [22] has two limitations: its measure of complexity appears to be algorithmically43

dependent and the results do not extend to subgradient methods.44

The purpose of this paper is to study “efficient” methods for escaping saddle45

points of weakly convex functions. Much like [22], our approach is based on [12],46

but the resulting algorithms and their convergence guarantees are distinct from those47

in [22]. We begin with a useful observation from [12]: near an active strict saddle48

point x̄, a certain C1 smoothing, called the Moreau envelope, is C2 and has a strict49

saddle point at x̄. If one could exactly execute the perturbed gradient method of [26],50

efficiency guarantees would then immediately follow. While this is not possible in51

general, it is possible to inexactly evaluate the gradient of the Moreau envelope by52

approximately solving a strongly convex optimization problem. Leveraging this idea,53

we extend the work [26] to allow for inexact gradient evaluations, proving similar54

efficiency guarantees.55

Setting the stage, we consider a minimization problem56

minimize
x∈Rd

f(x)(1.2)57
58

where f : Rd → R ∪ {+∞} is closed and ρ-weakly convex with ρ > 0, meaning the59

mapping x 7→ f(x) + ρ
2∥x∥

2 is convex. Although such functions are nonsmooth in60

general, they admit a global C1 smoothing furnished by the Moreau envelope. For all61

µ < ρ−1, the Moreau envelope and the proximal mapping are defined to be62

fµ(x) = min
y∈Rd

f(y) +
1

2µ
∥y − x∥2 and proxµf (x) = argmin

y∈Rd

f(y) +
1

2µ
∥y − x∥2,

(1.3)

63

64

respectively. The minimizing properties of f and fµ are moreover closely aligned, for65

example, their first-order critical points and local/global minimizers coincide. Inspired66

by this relationship, this work thus seeks (ε1, ε2)-approximate second-order critical67

points x of fµ for some fixed µ. That is, a point satisfying:68

(1.4) ∥∇fµ(x)∥ ≤ ε1 and λmin(∇2fµ(x)) ≥ −ε2.69

An immediate difficulty is that fµ is not C2 in general. Indeed, the seminal work [31]70

shows fµ is C2-smooth globally, if and only if, f is C2-smooth globally. Therefore71

assuming that fµ is C2 globally is meaningless for nonsmooth optimization. Never-72

theless, known results in [13] imply that for “generic” semialgebraic functions, fµ is73

locally C2 near x whenever ∥∇fµ(x)∥ is sufficiently small.74

Turning to algorithm design, a natural strategy is to apply a “saddle escaping”75

gradient method [26] directly to fµ. This strategy fails in general, since it is not76

possible to evaluate the gradient77

∇fµ(x) =
1

µ
(x− proxµf (x))(1.5)78

79

in closed form. Somewhat expectedly, however, our first contribution is to show
that one may extend the results of [26] to allow for inexact evaluations G(x) ≈ ∇fµ(x)
satisfying

∥G(x)−∇fµ(x)∥ ≤ a∥∇fµ(x)∥+ b for all x ∈ Rd,
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Algorithm Objective Model function fz(y)

Prox-Subgradient [11] l(y) + r(y) l(z) + ⟨vz, y − z⟩+ r(y)
Prox-gradient F (y) + r(y) F (z) + ⟨∇F (y), y − z⟩+ r(y)
Prox-linear [15] h(c(y)) + r(y) h(c(z) +∇c(z)(y − z)) + r(y)

Table 1: The three algorithms with the update (1.6); we assume h is convex and
Lipschitz, r is weakly convex and possibly infinite valued, both F and c are smooth,
and l is Lipschitz and weakly convex on dom r with vz ∈ ∂l(z).

for appropriately small a, b ≥ 0. The algorithm (Algorithm 1 on page 6) returns80

a point x satisfying (1.4), with Õ(max{ε−2
1 , ε−4

2 }) evaluations of G, matching the81

complexity of [26].82

Our second contribution constructs approximate oracles G(x), tailored to com-
mon problem structures. Each oracle satisfies

G(x) = µ−1 (x− ProxOracleµf (x)) ,

where ProxOracleµf is an approximate minimizer of the strongly convex sub-83

problem defining proxµf (x). Since the subproblem is strongly convex, we construct84

ProxOracleµf from K iterations of off-the-shelf first-order methods for convex op-85

timization. We focus in particular on the class of model-based methods [11]. Starting86

from initial point x0 = x, these methods attempt to minimize f(y) + 1
2µ∥y − x∥2 by87

iterating88

xk+1 = argmin
y∈Rd

{
fxk

(y) +
1

2µ
∥y − x∥2 + θk

2
∥y − xk∥2

}
,(1.6)89

90

where {θk} is a positive control sequence and for all z ∈ Rd, the function fz : Rd →91

R ∪ {+∞} is a local weakly convex model of f . In Table 1, we show three models,92

adapted to possible decompositions of f . In Table 2, we show how the model func-93

tion fz influences the total complexity Õ(K × max{ε−2
1 , ε−4

2 }) of finding a second94

order stationary point of fµ (1.4). In short, prox-gradient and prox-linear methods95

require Õ(max{ε−2
1 , ε−4

2 }) iterations of (1.6), while prox-subgradient methods require96

Õ(dmax{ε−6
1 ε−6

2 , ε−18
2 }). The efficiency of the prox-gradient method directly matches97

the analogous guarantees for the perturbed gradient method in the smooth setting [26].98

The convergence guarantee of the prox-subgradient method has no direct analogue in99

the literature. Extensions for stochastic variants of these algorithms follow trivially,100

when the proximal subproblem (1.6) can be approximately solved with high prob-101

ability (e.g. using [20, 21, 28, 41]). The rates for the prox-gradient and prox-linear102

method are analogous to those in [22], which uses an algorithm-dependent measure103

of stationarity.1 Although the algorithms and the results in our paper and in [22] are104

mostly of theoretical interest, they do suggest that efficiently escaping from saddle105

points is possible in nonsmooth optimization.106

Related work. We highlight several approaches for finding second-order critical107

points. Asymptotic guarantees have been developed in deterministic [12, 29, 30] and108

stochastic settings [40]. Other approaches explicitly leverage second order informa-109

tion about the objective function, such as full Hessian or Hessian vector products110

1The stationarity measure we propose (1.4) agrees with that of [22] for the proximal point method.
For more general methods, the relationship is unclear.
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Algorithm to Evaluate G(x) Overall Algorithm Complexity

Prox-Subgradient [11] Õ(dmax{ε−6
1 ε−6

2 , ε−18
2 })

Prox-gradient Õ(max{ε−2
1 , ε−4

2 })
Prox-linear [15] Õ(max{ε−2

1 , ε−4
2 })

Table 2: The overall complexity of the proposed algorithm Õ(K × max{ε−2
1 , ε−4

2 }),
where K is the number of steps of (1.6) required to evaluate g(x). The rate for
Prox-subgradient holds in the regime ε1 = O(ε2).

computations [1, 2, 6, 8, 9, 36, 39, 43, 44]. Several methods exploit only first-order in-111

formation combined with random perturbations [10, 16, 25–27]. The work [25] also112

studies saddle avoiding methods with inexact gradient oracles G; a key difference: the113

oracle of [25] is the gradient of a smooth function G = ∇g. Several existing works114

have developed methods that find second-order stationary points of manifold [7, 47],115

convex [32,33,37,50], and low-rank matrix constrained problems [38,51].116

Road map. In Section 2 we introduce the preliminaries. Section 3 presents a117

result for finding second-order stationary points with inexact gradient evaluations.118

Section 4 develops several oracle mappings that approximately evaluate the gradient119

of the Moreau Envelope and derives the complexity estimates of Table 2.120

2. Preliminaries. This section summarizes the notation that we use throughout121

the paper. We endow Rd with the standard inner product ⟨x, y⟩ := x⊤y and the122

induced norm ∥x∥2 :=
√
⟨x, x⟩. The closed unit ball in Rd will be denoted by Bd :=123

{x ∈ Rd | ∥x∥ ≤ 1}, while a closed ball of radius r > 0 around a point x will be124

written as Bd
r(x). When the dimension is clear from the context we write B. Given a125

function φ : Rd → R∪ {∞}, the effective domain and the epigraphs of φ are given by126

dom φ = {x ∈ Rd | φ(x) <∞} and epi φ = {(x, r) | φ(x) ≤ r}. A function φ is called127

closed if epi φ is a closed set. The distance of a point x ∈ Rd to a set M ⊆ Rd is128

denoted by dist(x,M) = infy∈M ∥x−y∥. The symbol ∥A∥ denotes the operator norm129

of a matrix A, while the maximal and minimal eigenvalues of a symmetric matrix A130

will be denoted by λmax(A) and λmin(A), respectively. For any bounded measurable131

set Q ⊂ Rd, we let Unif(Q) be the uniform distribution over Q.132

We will require some basic constructions from Variational Analysis as described133

for example in the monographs [4,34,42]. Consider a closed function f : Rd → R∪{∞}134

and a point x, with f(x) finite. The subdifferential of f at x ∈ dom f , denoted by135

∂f(x), is the set of all vectors v ∈ Rd satisfying136

(2.1) f(y) ≥ f(x) + ⟨v, y − x⟩+ o(∥y − x∥2) as y → x.137

We set ∂f(x) = ∅ when x /∈ dom f . When f is C1 at x ∈ Rd, the subdifferential ∂f(x)
consists of the gradient {∇f(x)}. When f is convex, it reduces to the subdifferential
in the sense of convex analysis. In this work, we will primarily be interested in the
class of ρ-weakly convex functions, meaning those for which x 7→ f(x) + ρ

2∥x∥
2 is

convex. For ρ-weakly convex functions the subdifferential satisfies:

f(y) ≥ f(x) + ⟨v, y − x⟩ − ρ

2
∥y − x∥2, for all x, y ∈ Rd, v ∈ ∂f(x).

Finally, we mention that a point x is a first-order critical point of f whenever the138

inclusion 0 ∈ ∂f(x) holds.139
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3. Escaping saddle points with inexact gradients. In this section, we an-140

alyze an inexact gradient method on smooth functions, focusing on convergence to141

second-order stationary points. The consequences for nonsmooth optimization, which142

will follow from a smoothing technique, will be explored in Section 3.143

We begin with the following standard assumption, which asserts that the function144

g in question has a globally Lipchitz continuous gradient.145

Assumption A (Globally Lipschitz gradient). Fix a function g : Rd → R that is146

bounded from below and whose gradient is globally Lipschitz continuous with constant147

L1, meaning148

∥∇g(x)−∇g(y)∥ ≤ L1∥x− y∥ for all x, y ∈ Rd.149

The next assumption is more subtle: it requires the Hessian ∇2g to be Lipschitz150

continuous on a neighborhood of any point where the gradient is sufficiently small.151

When we discuss consequences for nonsmooth optimization in the later sections, the152

fact that g is assumed to be C2-smooth only locally will be crucial to our analysis.153

Assumption B (Locally Lipschitz Hessian). Fix function g : Rd → R such that154

there exist positive constants α ≥ 0 and β, L2 > 0 satisfying the following: For any155

point x̄ with ∥∇g(x̄)∥ ≤ α, the function g is C2-smooth on Bβ(x̄) and satisfies the156

Lipschitz condition:157

∥∇2g(x)−∇2g(y)∥ ≤ L2∥x− y∥ for all x, y ∈ Bβ(x̄).158

We aim to analyze an inexact gradient method for minimizing the function g159

under Assumptions A and B. The type of inexactness we allow is summarized by the160

following oracle model.161

Definition 3.1 (Inexact oracle). Given a, b ≥ 0, a map G : Rd → Rd is an162

(a, b)-inexact gradient oracle for f if it satisfies163

(3.1) ∥∇g(x)−G(x)∥ ≤ a · ∥∇g(x)∥+ b ∀x ∈ Rd.164

Turning to algorithm design, the method we introduce (Algorithm 1) directly165

extends the perturbed gradient method introduced in [26] to inexact gradient oracles166

in the sense of Definition 3.1. The convergence guarantees for the algorithm are167

based on the following explicit setting of parameters. For some fixed target accuracies168

ε1, ε2 > 0, pick the inexactness parameters a ∈ [0, 1), b ≥ 0, and choose any ∆g ≥169

g(x0)− inf g.2 We define the auxiliary parameters:170

(3.2)

ϕ := 224 max

{
1, 5

L2ε1
L1ε2

}
L2

1

δ

√
d

(
∆g max

{
L2

2

ε52
,

1

ε21ε
1
2

}
+

1

ε22

)
and γ := log2(ϕ log2(ϕ)

8),171

and

F =
1

800γ3

1− a

(1 + a)2
ε32
L2
2

and R =
1

4γ

ε2
L2

.

Although the constant in this definition is large, it appears inside a logarithm. The172

parameters required by the algorithm are then set as173

η =
1− a

(1 + a)2
1

L1
, r =

ε22
400L2γ3

min

{
1,

L1ε2
5ε1L2

}
, M =

(1 + a)2

(1− a)

L1

ε2
γ.(3.3)174

175

2Note that the precise infimal value inf g is not needed. Instead any lower bound suffices. Such
lower bounds are often available in practice, e.g., in machine learning applications where the optimal
value of the “loss function” is typically lower bounded by 0.
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Algorithm 1: Perturbed inexact gradient descent

Data: x0 ∈ Rd, T ∈ N, and η, r, ε1,M > 0
Set tpert = −M
Step t = 0, . . . , T :

Set ut = 0
If ∥G(xt)∥ ≤ ε1/2 and t− tpert ≥M :

Update tpert = t
Draw perturbation ut ∼ Unif(rB)

Set xt+1 ← xt − η · (G(xt) + ut).

The following is the main result of the section. The proof follows closely the argument176

in [26] and therefore appears in Appendix A.177

Theorem 3.1 (Perturbed inexact gradient descent). Suppose that g : Rd → R178

is a function satisfying Assumptions A and B and G : Rd → Rd is an (a, b)-inexact179

gradient oracle for g. Let δ ∈ (0, 1), ε1 ∈ (0, α), ε2 ∈ (0,min{4γβL2, L1, L
2
1}), and180

suppose that181

a ≤ min

{
1

20
,

1

L1ηM2γ+2
,

R

ε1ηM2γ+2

}
and

b ≤ min

{
ε1
64

,

(
F

40ηM

)1/2

,

(
L1F

M(5L1 + 1)

)1/2

,
R

Mη2(γ+2)

}
.

182

183

Then with probability at least 1− δ, at least one iterate generated by Algorithm 1 with184

parameters (3.3) is a (ε1, ε2)-second-order critical point of g after185

(3.4) T = 8∆g max

{
M

F
,
256

ηε21

}
+ 4M = Õ

(
L1∆g max

{
L2
2

ε42
,
1

ε21

})
iterations.186

The necessary bounds for a and b can be estimated as187

a ≲
δ

L3
1∆g

· d−1/2 ·min

{
ε62
L2
2

, ε21ε
2
2, ε

3
2∆g

}
·min

{
1,

L1ε2
L2ε1

}2

and

b ≲
δ

L2
1L2∆g

· d−1/2 ·min

{
ε72
L2
2

, ε21ε
3
2, ε

4
2∆g

}
·min

{
1,

L1ε2
L2ε1

}
,

(3.5)188

189

where the symbol “≲” denotes inequality up to polylogarithmic factors. Thus, Algo-190

rithm 1 is guaranteed to find a second order stationary point efficiently, provided that191

the gradient oracles are highly accurate. In particular, when a = b = 0 we recover192

the known rates from [26].193

4. Escaping saddle points of the Moreau envelope. In this section, we194

apply Algorithm 1 to the Moreau Envelope (1.3) of the weakly convex optimization195

problem (1.2) in order to find a second order stationary point of fµ (1.4). We will196

see that a variety of standard algorithms for nonsmooth convex optimization can be197

used as inexact gradient oracles for the Moreau envelope. Before developing those198

algorithms, we summarize our main assumptions on fµ, describe why approximate199

second order stationary points of fµ are meaningful for f , and show that Assump-200

tion B, while not automatic for general fµ, holds for a large class of semialgebraic201

functions.202

6
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Fig. 1: Illustration of Assumption C; see text for description.
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Fig. 2: Critical points of f in (4.1). We use ε1 = ε2 = 0.04. On the left: The
function, a point (x, f(x)) with x an (ε1, ε2)-second-order critical point of fµ and its
corresponding cubic minorant. On the right: The set of first-order critical points of
f (yellow) and the set of (ε1, ε2)-second-order critical points of fµ (red).

As stated in the introduction, for µ < ρ−1, the Moreau envelope is everywhere203

C1 smooth with Lipschitz continuous gradient. In particular,204

Assumption A holds automatically for fµ with L1 = max
{
µ−1, ρ

1−µρ

}
.205

See for example [12] for a short proof. Assumption B, however, is not automatic, so206

we impose the following assumption throughout.207

Assumption C. Let f : Rd → R∪{∞} be a closed ρ-weakly convex function whose208

Moreau envelope fµ satisfies Assumption B with constants α, β, L2.209

To illustrate Assumption C, consider the family of functions f (s)(x) = s−1|x2−1|210

together with proximal parameter µ = 1/4. It is straightforward to show that each211

f (s) satisfies Assumption (C) with parameters αs and βs that must tend to zero as s212

tends to infinity. For example, Figure 1 plots f (s) and ∇f (s)
µ with s = 1, 2. We see213

that both gradients ∇f (s)
µ are linear, hence, C∞ around the critical points 1 and −1.214

However, the region of smoothness for ∇f (1)
µ is larger than for ∇f (2)

µ .215

Turning to stationarity conditions, a natural question is whether the second order216

condition (1.4) is meaningful for f . To answer this question, we prove the following217

proposition, which shows that if ∥∇fµ(x)∥ ≤ α, then f is minorized at a nearby point218

by a cubic function whose gradient and Hessian match that of the Moreau envelope.219

We defer the proof to Appendix B.220

7
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Proposition 4.1. Consider f : Rd → R ∪ {∞} satisfying Assumption C. Con-
sider a point x ∈ Rd satisfying ∥∇fµ(x)∥ ≤ α. Define the proximal point
x̂ := proxµf (x) and the cubic

q(z) := f(x̂) + ⟨∇fµ(x), z − x̂⟩+ 1

2
⟨∇2fµ(x)(z − x̂), z − x̂⟩ − L2

6
∥z − x̂∥3.

Then q(x̂) = f(x̂) and for any z ∈ Bβ(x̂), we have q(z) ≤ f(z). Moreover, if x is221

an (ε1, ε2)-second order critical point of fµ, then x̂ is an (ε1, ε2)-second order critical222

point of q satisfying the proximity bound ∥x− x̂∥ ≤ µε1.223

An alternative statement of this result is that (∇fµ(x),∇2fµ(x)) is an element of224

the so-called second-order subjet of f at x̂, which consists of all the second-order225

expansions of C2 minorants g of f with g(x̂) = f(x̂) [23]; see [5, Section 3] for further226

references.227

In Figure 2, we illustrate the proposition with the following nonsmooth function:228

(4.1) f(x, y) = |x|+ 1

4
(y2 − 1)2.229

The Moreau envelope of this function has three first-order critical points: a strict sad-230

dle point (0, 0) and two global minima (−1, 0), and (1, 0). As shown in the right plot231

of Figure 2, approximate second-order critical points of fµ cluster around minimizers232

of f . In addition, the left plot of Figure 2 shows the lower bounding quadratic from233

Proposition 4.1.234

Finally, we complete this section by showing that Assumption C is reasonable: it235

holds for generic semialgebraic functions.3236

Theorem 4.1. Let f : Rd → R ∪ {∞} be a semi-algebraic ρ-weakly-convex func-237

tion. Then, the set of vectors v ∈ Rd for which the tilted function g(x; v) = f(x)+⟨v, x⟩238

satisfies Assumption C has full Lebesgue measure.239

The proof appears in Appendix C, and is a small modification of the argument240

in [12].241

4.1. Inexact Oracles for the Moreau Envelope. In this section, we develop242

inexact gradient oracles for ∇fµ = µ−1(x − proxµf (x)). Leveraging this expression,243

our oracles will satisfy244

(4.2) G(x) = µ−1 (x− ProxOracleµf (x)) ,245

where ProxOracleµf is the output of a numerical scheme that solves (1.3). To
ensure G meets the conditions of Definition 3.1, we require that

∥ProxOracleµf (x)− proxµf (x)∥ ≤ a · ∥x− proxµf (x)∥+ µ · b.

for some constants a ∈ (0, 1) and b > 0.246

Since f is ρ-weakly convex, evaluating proxµf (xk) amounts to minimizing the247

(µ−1 − ρ)-strongly convex function f(x) + 1
2µ∥x − xk∥2. We now use this strong248

convexity to derive efficient proximal oracles via a class of algorithms called model-249

based methods [11], which we now briefly summarize. Given a minimization problem250

3A function is semialgebraic if its graph can be written as a finite union of sets each defined by
finitely many polynomial inequalities.

8
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Algorithm 2: ProxOracleKµf

Data: Initial point x0 ∈ Rd.
Parameters: Stepsize θk > 0, Flag one sided.
Output: Approximation of proxµf (x0).
Step k (k ≤ K + 1):

xk+1 ← argminx∈Rd fxk
(x) + 1+θkµ

2µ

∥∥∥x− (x0+θkµ·xk)
1+θkµ

∥∥∥2
If one sided :

x̄K = 2
(K+2)(K+3)−2

∑K+1
k=1 (k + 1)xk

return x̄K

Else:
return xK

minx∈Rd g(x), where g is strongly convex, a model-based method is an algorithm that251

recursively updates252

(4.3) xk+1 ← argmin
x

gxk
(x) +

θk
2
∥x− xk∥2,253

where gxk
: Rd → R ∪ {∞} is a function that approximates g near xk and {θk} is254

a sequence of positive real numbers. Returning to the proximal subproblem, say we255

wish to compute proxµf (x0) for some given x0. We consider an inner loop update of256

the form257

(4.4) xk+1 ← argmin
x∈Rd

fxk
(x) +

1

2µ
∥x− x0∥2 +

θk
2
∥x− xk∥2,258

where fxk
: Rd → R ∪ {∞} is a function that locally approximates f (see Table 1259

for three examples). Completing the square, this update can be equivalently written260

as a proximal step on fxk
, where the reference point is a weighted average of x0261

and xk as summarized in Algorithm 2. Turning to complexity, we note that the262

approximation quality of a model governs the speed at which iteration (4.4) converges.263

In what follows, we will present two families of models with different approximation264

properties, namely one- and two-sided models. We will see that models with double-265

sided accuracy require fewer iterations to approximate proxµf (x0).266

4.1.1. One-sided models. We start by studying models that globally lower267

bound the function and agree with it at the reference point. Subgradient-type models268

are the canonical examples, and we will discuss them shortly.269

Assumption D (One-sided model). Let f = l+ r, where r : Rd → R∪ {+∞} is270

a closed function and l : Rd → R is locally Lipschitz. There exists τ ≥ 0 and a family271

of models lx : Rd → R, defined for each x ∈ Rd, such that the following hold: For all272

x ∈ Rd, lx is L-Lipschitz on dom r and satisfies273

(4.5) lx(x) = l(x) and lx(y)− l(y) ≤ τ∥y − x∥2 for all y ∈ Rd.274

In addition, for all x ∈ Rd, the model

fx := lx + r

is ρ-weakly convex.275
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Now we bound the number of iterations that are needed for Algorithm 2 to obtain276

a (a, b)-inexact proximal point oracle with one-sided models. The algorithm outputs277

an average of the iterates with nonuniform weights that improves the convergence278

speed.279

Theorem 4.2. Fix a, b > 0 and let f : Rd → R ∪ {∞} be a ρ-weakly-convex
function and let fx : Rd → R ∪ {∞} be a family of models that satisfy Assumption D

for τ = 0. Let µ−1 > ρ be a constant, and set θk = (µ−1−ρ)
2 (k + 1) then Algorithm 2

with flag one sided = true outputs an a point x̄K such that

∥x̄K − proxµf (x0)∥2 ≤ a · ∥x0 − proxµf (x0)∥2 + µ · b,

provided the number of iterations is at least K ≥ 4
a + 16L2

(1−µρ)2b2 .280

The proof of this result follows easily from Theorem 4.5 in [11] and thus, we omit281

it. By exploiting this rate, we derive a complexity guarantee with one-sided models.282

Theorem 4.3 (One-sided model-based method). Consider an Lf -Lipschitz
ρ-weakly-convex function f : Rd → R∪ {∞} that satisfies Assumption C and a family
of models fx satisfying Assumption D. Then, for all sufficiently small ε1 > 0, and
any ε2 > 0, δ ∈ (0, 1) there exists a parameter configuration (η, r,M) that ensures
that with probability at least 1− δ one of the first T iterates generated by Algorithm 1
with gradient oracle

G(x) = µ−1
(
x− ProxOracleKµf (x)

)
(Algorithm 2)

is an (ε1, ε2)-second-order critical point of fµ provided that the inner and outer iter-283

ations satisfy284

K = Õ
(
(1− µρ)−2L2

fL
4
1L

2
2∆

2
f ·

d

δ
·max

{
L4
2

ε142
,

1

ε41ε
6
2

}
·max

{
L2
2ε

2
1

L2
1ε

2
2

, 1

})
and

T = Õ
(
L1∆f max

{
L2
2

ε42
,
1

ε21

})(4.6)285

286

where L1 := max
{

1
µ ,

ρ
1−µρ

}
and ∆f = f(x0)− inf f .287

Proof. This result is a corollary of Theorem 4.2 and Theorem 3.1. By [12, Lemma288

2.5] and Assumption C we conclude that the Moreau envelope satisfies the hypothesis289

of Theorem 3.1. Hence, the result follows from this theorem provided that we show290

that the gradient oracle is accurate enough. By Theorem 4.2 if we set the number of291

iterations according to (4.6) we get an inexact oracle that matches the assumptions292

of Theorem 3.1293

The rate from Table 2 follows by noting that max
{

L2
2ε

2
1

L2
1ε

2
2
, 1
}
= 1 when ε1 ≤ L1

L2
ε2.294

Example: proximal subgradient method. Consider the setting of Assump-
tion D, where f = l + r. Assuming that l is τ -weakly convex, it possesses an affine
model:

lx(y) = l(x) + ⟨v, y − x⟩, where v ∈ ∂l(x).

By weak convexity, fx = lx + r satisfies Assumption D. Moreover, the resulting up-
date (4.4) reduces to the following proximal subgradient method:

xk+1 = prox µ
1+θkµ r

(
1

1 + θkµ
(x0 + θkµ · xk − µ · v)

)
.

Theorem 4.3 applied to this setting thus implies the rate in Table 2.295
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4.1.2. Two-sided models. The slow convergence of one-sided model-based al-296

gorithms motivates stronger approximation assumptions. In this section we study297

models that satisfy the following assumption.298

Assumption E (Two-sided model). For any x ∈ Rd, the function fx : Rd →299

R ∪ {∞} is ρ-weakly convex and satisfies300

(4.7) |fx(y)− f(y)| ≤ ν

2
∥y − x∥2 for all y ∈ Rd,301

for some fixed ν ≥ 0.302

When equipped with double-sided models, model-based algorithms for the proximal303

subproblem converge linearly.304

Theorem 4.4. Suppose that f : Rd → R∪{∞} is a ρ-weakly-convex function, let
fx be a family models satisfying Assumption E. Fix an accuracy level a. Set µ−1 >
ρ+ ν and the stepsizes to θt = θ > ν, then Algorithm 2 with flag one sided = false

outputs a point xK such that

∥xK − proxµf (x0)∥2 ≤ a · ∥x0 − proxµf (x0)∥2,

provided that K ≥ 2 log(a−1) log
(

µ−1−ρ+θ
ν+θ

)−1

.305

We defer the proof of this result to Appendix D. Given this guarantee for two-306

sided models, we derive the following theorem. The proof is analogous to that of307

Theorem 4.3: the only difference is that we use Theorem 4.4 instead of Theorem 4.2.308

Thus we omit the proof.309

Theorem 4.5 (Two-sided model-based method). Consider a ρ-weakly con-
vex function f : Rd → R∪{∞} that satisfies Assumption C and a family of models fx
satisfying Assumption E. Then for any δ ∈ (0, 1) and sufficiently small ε1 > 0, there
exists a parameter configuration (η, r,M) such that with probability at least 1− δ one
of the first T iterates generated by Algorithm 1 with inexact oracle

G(x) = µ−1
(
x− ProxOracleKµf (x)

)
(Algorithm 2)

is an (ε1, ε2)-second-order critical point of fµ provided that the inner and outer iter-
ations satisfy

K = Õ(1) and T = Õ
(
max

{
1

µ
,

ρ

1− µρ

}
(f(x0)− inf f)min

{
L2
2ε

−4
1 , ε−2

1

})
.

We close the paper with two examples of two-sided models.310

Example: Prox-gradient method. Suppose that

f = F + r

where r : Rd → R∪{+∞} is closed and ρ-weakly convex and F is C1 with ν-Lipschitz
continuous derivative on dom r. Then due to the classical inequality

|F (y)− F (x)− ⟨∇F (x), y − x⟩| ≤ ν

2
∥y − x∥2 for all x, y ∈ dom r,

the model
fx(y) = F (x) + ⟨∇F (x), y − x⟩+ r(x),
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satisfies Assumption E. Moreover, the resulting update (4.4) reduces to the following
proximal gradient method:

xk+1 = prox µ
1+θkµ r

(
1

1 + θkµ
(x0 + θkµ · xk − µ · ∇F (xk))

)
.

Theorem 4.5 applied to this setting thus implies the rate in Table 2.311

Example: Prox-linear method. Suppose that

f = h ◦ c+ r

where r : Rd → R∪{+∞} is closed and ρ-weakly convex, h is L-Lipschitz and convex
on dom r, and c is C1 with β-Lipschitz Jacobian on dom r. Then due to the classical
inequality ∥c(y)− c(x)−∇c(x)(y − x)∥ ≤ β

2 ∥y − x∥2, we have

|h(c(y))− h(c(x) +∇c(x)(y − x))| ≤ βL

2
∥x− y∥2, for all x, y ∈ dom r.

Consequently, the model

fx(y) = h(c(x) +∇c(x)(y − x)) + r(x),

satisfies Assumption E with ν = βL. Moreover, the resulting update (4.4) reduces to
the following prox-linear method [15]:

xk+1 = argmin
y∈Rd

h(c(xk) +∇c(xk)(y − xk)) + r(x) +
1 + θkµ

2µ

∥∥∥∥x− x0 + θkµ · xk

1 + θkµ

∥∥∥∥2 .
Theorem 4.5 applied to this setting thus implies the rate in Table 2.312
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inequality shows that the parameter γ, defined in (3.2), is lower bounded by one.462

The second and third inequalities show that some radius and function value, that will463

appear in the analysis, can be controlled by R and F , respectively. Finally, the last464

inequality bounds some probability of failure by δ.465

Lemma A.1. The following inequalities hold.466

1. (Away from zero)

γ ≥ 1.

2. (Radius) √
32η

(1 + a)2

(1− a)
MF + ηr < R.

3. (Function value)

ε1ηr + L1η
2r2/2 ≤ F/2.

4. (Probability)

p :=
TL1

(1+a)2

(1−a)

√
d

ε2
γ2 max

{
1, 5L2ε1

L1ε2

}
29

2γ
≤ δ.

Proof. We start with the first inequality, recall that467

ϕ := 224 max

{
1, 5

L2ε1
L1ε2

}
L2

1

δ

√
d

(
∆g max

{
L2

2

ε52
,

1

ε21ε
1
2

}
+

1

ε22

)
and γ := log2(ϕ log2(ϕ)

8),468

Thus, it suffices to show that log2(ϕ) ≥ 1. By definition,

ϕ ≥ 224
L2
1

δ
·
√
d · 1

ε22
≥ 224

√
d

δ
> 224

where the second inequality uses that ε2 < L1, and the last inequality utilizes δ <469

1 ≤ d. The inequality follows directly from this.470

We now tackle the next inequality, observe that

32η
(1 + a)2

(1− a)
≤ 32

1

L1
and FM =

1

800γ3

1− a

(1 + a)2
ε32
L2
2

· (1 + a)2

(1− a)

L1

ε2
γ =

ε22L1

800L2
2γ

2
,

this follows from (3.3) and the definition of F . Therefore, since471

η ≤ 1

L1
and r =

ε22
400L2γ3

min

{
1,

L1ε2
5ε1L2

}
≤ ε22

400L2γ3
,472

473

then since γ ≥ 1 we have474 √
32η

(1 + a)2

(1− a)
MF + ηr ≤ 1

5γ

ε2
L2

+
ε22

400L1L2γ
475

≤ 1

5γ

ε2
L2

+
1

400γ

ε2
L2

<
1

4γ

ε2
L2

= R.476
477

where the third inequality follows from L1/ε2 ≥ 1.478
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Now, we prove the third statement: ε1ηr + L1η
2r2/2 ≤ F/2. Indeed, first recall

the definition of r above and that η = 1−a
(1+a)2

1
L1

, F = 1
800γ3

1−a
(1+a)2

ε32
L2

2
. Thus, we bound

the first term:

ε1 · η · r ≤ ε1 ·
1− a

(1 + a)2
1

L1
· ε22
400L2γ3

L1ε2
5ε1L2

≤ 1− a

(1 + a)2
ε32

2000L2
2γ

3
≤ 2

5
F.

Next, we bound the second term:479

L1 · η2 · r2

2
≤1

2
L1 ·+

(
1− a

(1 + a)2
1

L1

)2

·
(

ε22
400L2γ3

)2

480

=
ε2
L1

1− a

(1 + a)2
1

400γ3

1

800γ3

1− a

(1 + a)2
ε32
L2
2

481

≤ 1

400γ3

1

800γ3

1− a

(1 + a)2
ε32
L2
2

≤ F

10
482
483

where we used (1 − a)/(1 + a)2 ≤ 1, ε2 ≤ L1 and the inequality 1
400γ3 ≤ 1

10 , which484

follows since γ ≥ 1.485

Finally, we show that p ≤ δ. Recall that by definition,486

T = 8∆g max

{
M

F
,
256

ηε21

}
+ 4M.487

We upper bound T using F = 1
800γ3

1−a
(1+a)2

ε32
L2

2
, M = (1+a)2

(1−a)
L1

ε2
γ, and η = 1−a

(1+a)2
1
L1

:488

T = 24
(1 + a)2

1− a
∆gL1 max

{
800γ4 (1 + a)2

1− a

L2
2

ε42
,
256

ε21

}
+ 4

(1 + a)2

(1− a)

L1

ε2
γ489

≤ 24 · 800
(
(1 + a)2

1− a

)2

· L1γ
4 ·
(
∆g max

{
L2
2

ε42
,
1

ε21

}
+

1

ε2

)
.490

491

This yields:

p ≤
213 · 800

(
(1+a)2

1−a

)3
· L2

1γ
6
√
d ·max

{
1, 5L2ε1

L1ε2

}(
∆g max

{
L2

2

ε52
, 1
ε21ε2

}
+ 1

ε22

)
2γ

.

Next, recall that492

2γ = ϕ · log2(ϕ)
8 with ϕ := 224

L2
1

δ

√
dmax

{
1, 5

L2ε1
L1ε2

}(
∆g max

{
L2

2

ε52
,

1

ε21ε2

}
+

1

ε22

)
.493

Thus, by combining the last two equations and reorganizing we get494

p = ≤ 213 · 800
(
(1 + a)2

1− a

)3
γ6

224 log82(ϕ)
δ ≤ δ495

496

where the final inequality follows from the facts that ϕ ≥ 224
L2

1

ε22
≥ 224 since ε2 ≤ L1,497

log2(x log2(x)
8)6 ≤ log2 (x)

8
for any x ≥ 224, and 213 × 800 ×

(
(1+a)2

1−a

)3
≤ 224 since498

a ≤ 1/20.499

We assume that G is an (a, b)-inexact gradient oracle for g. We derive two simple500

consequences of Definition 3.1.501
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Lemma A.2. We have that for any x ∈ Rd the following inequalities hold:502

1. (Norm similarity) |∥G(x)∥ − ∥∇g(x)∥| ≤ a∥∇g(x)∥+ b.503

2. (Correlation) ⟨∇g(x), G(x)⟩ ≥ (7/8)(1− a)∥∇g(x)∥2 − 2b2.504

Proof. Throughout the proof we let v = ∇g(x) and u = G(x) and use that
∥u−v∥ ≤ a∥v∥+b. The first part of the theorem is then a consequence of the triangle
inequality. The second part follows since ∥u∥2 ≥ (1− a)2∥v∥2− 2b(1− a)∥v∥+ b2 and

∥u∥2 − 2⟨u, v⟩+ ∥v∥2 = ∥u− v∥2 ≤ a2∥v∥2 + 2ab∥v∥+ b2,

which implies the following:505

2⟨u, v⟩ ≥ (1− a)2∥v∥2 + (1− a2)∥v∥2 − 2(1− 2a)b∥v∥506

= 2(1− a)∥v∥2 − 2(1− 2a)b∥v∥507

≥ 2(1− a)(1− c)∥v∥2 − (1− 2a)2

2(1− a)c
b2508

≥ 2(1− a)(1− c)∥v∥2 − 1

2c
b2509

510

where the third inequality uses a ≤ 1/2 and the second inequality follows from Young’s511

inequality: 2 · ((1−2a)b · ∥v∥) ≤ ((1−2a)b)2/(2c(1−a))+2c(1−a)∥v∥2. To complete512

the result, set c = 1/8.513

As a consequence of this Lemma, we prove that when b is small enough and514

the iterates are far from being stationary the function g decreases along the inexact515

gradient descent sequences with oracle G.516

Lemma A.3 (Descent lemma). Assume that G is an (a, b)-inexact gradient517

oracle for g. Given y0 ∈ Rd, consider the inexact gradient descent sequence: yt+1 ←518

yt − η ·G(yt). Then for all t ≥ 0, we have519

(A.1) g(yt)− g(y0) ≤ −
η

8
(1− a)

t−1∑
i=0

∥∇g(yi)∥2 + 5tηb2.520

Proof. Since the function g has L1-Lipschitz gradients we have521

g(yt+1) ≤ g(yt)− η⟨∇g(yt), G(yt)⟩+
L1η

2

2
∥G(yt)∥2522

≤ g(yt)− η
7(1− a)

8
∥∇g(yt)∥2 + 2ηb2 +

L1η
2

2
((1 + a)∥∇g(yt)∥+ b)

2
523

≤ g(yt)− η
7(1− a)

8
∥∇g(yt)∥2 + 2ηb2524

+
L1η

2

2

(
6

5
(1 + a)2∥∇g(yt)∥2 + 6b2

)
.525

526

Here the second inequality follows from Lemma A.2 and the third follows from527

Young’s inequality: 2(1 + a)∥∇g(yt)∥b = 2
(
(1 + a)∥∇g(yt)∥/

√
5
) (√

5b
)
≤ 1

5 (1 +528
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a)2∥∇g(yt)∥2 + 5b2. Next, observe that529

− η
7(1− a)

8
∥∇g(yt)∥2 + 2ηb2 +

L1η
2

2

(
6

5
(1 + a)2∥∇g(yt)∥2 + 6b2

)
530

≤ −η
(
7(1− a)

8
− 6

10
(1 + a)2

)
∥∇g(yt)∥2 + (2 + 3) ηb2531

≤ −η(1− a)

8
∥∇g(yt)∥2 + 5ηb2,532

533

where the second line follows since η ≤ 1/L1 and the last inequality follows from
(6/10)(1 + a)2 ≤ (3/4)(1− a) for a ≤ 1/20. Thus, we have shown that

g(yt+1)− g(yt) ≤ −
η(1− a)

8
∥∇g(yt)∥2 + 5ηb2,

which implies (A.1).534

As a consequence of the above Lemma, we now show that inexact gradient descent535

sequences {yt} either (a) significantly decrease g or (b) remain close to y0.536

Lemma A.4 (Improve or localize). Given y0 ∈ Rd, consider the inexact gra-537

dient descent sequence: yt+1 ← yt − η ·Gt(yt). Then, for all τ ≤ t, we have538

(A.2) ∥yτ − y0∥2 ≤ 16ηt
(1 + a)2

(1− a)

(
g(y0)− g(yt) + (5 + η) tb2

)
.539

Proof. By Lemma A.2, we have540

∥yτ − y0∥2 = η2

∥∥∥∥∥
τ−1∑
i=0

G(yi)

∥∥∥∥∥
2

≤ η2

(
t−1∑
i=0

(1 + a)∥∇g(yi)∥+ tb

)2

541

≤ 2

(
tη2

t−1∑
i=0

(1 + a)2∥∇g(yi)∥2 + η2t2b2

)
,542

543

where the last inequality follows from Jensen’s inequality. Next apply Lemma A.3,544

to bound η2
∑t−1

i=0 ∥∇g(yi)∥2 ≤
8η

(1−a) (g(y0)− g(yt) + 5b2t). Plugging this bound into545

the above inequality, we have546

∥yτ − y0∥2 ≤ 2

(
8ηt

(1 + a)2

(1− a)

(
g(y0)− g(yt) + 5b2t

)
+ η2t2b2

)
547

≤ 16ηt
(1 + a)2

(1− a)

(
g(y0)− g(yt) + (5 + η) tb2

)
.548

549

This concludes the proof.550

In the next two Lemmas, we show that, when randomly initialized near a critical551

point with negative curvature, inexact gradient descent sequences decrease the objec-552

tive g with high probability. The first result (Lemma A.5) will help us estimate the553

failure probability.554

Lemma A.5. Fix a point ỹ satisfying ∥∇g(ỹ)∥ ≤ ε1 and λmin(∇2g(ỹ)) ≤ −ε2 and
let e0 denote an eigenvector associated to the smallest eigenvalue of ∇2g(ỹ). Consider
two points y0 and y′0 with

y0 = y′0 + ηr0e0 and max{∥y0 − ỹ∥, ∥y′0 − ỹ∥} ≤ ηr,
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where r0 ≥ ω := 1
η2

3−γR. Let {yt}, {y′t} be two inexact gradient descent sequences,555

initialized at y0 and y′0, respectively:556

yt+1 = yt − ηG(yt) and y′t+1 = y′t − ηG(y′t).557558

Then min{g(yM )− g(y0), g(y
′
M )− g(y′0)} ≤ −F .559

Proof. We argue by contradiction. Suppose that

max{g(y0)− g(yM ), g(y′0)− g(y′M )} < F.

Then by Lemma A.4, the iterates of both sequences remain close to their initializers:560

max{∥yt − y0∥, ∥y′t − y′0∥} ≤

√
16η

(1 + a)2

(1− a)
M (F + (5 + η)Mb2)(A.3)561

≤

√
32η

(1 + a)2

(1− a)
MF, for all t ≤M.562

563

where the second inequality follows from two upper bound: η ≤ 1/L1 and b2 ≤564
L1F

M(5L1+1) . We now use (A.3) to show for all t ≤M , iterates yt and y′t remain close to565

ỹ. By Lemma A.1, we get566

max{∥yt − ỹ∥ , ∥y′t − ỹ∥} ≤ max{∥yt − y0∥, ∥y′t − y′0∥}+max{∥y0 − ỹ∥, ∥y′0 − ỹ∥}

≤

√
32η

(1 + a)2

(1− a)
MF + ηr < R.

(A.4)

567

568

In the remainder of the proof, we will argue that inequality (A.4) cannot hold. In569

particular, we will show that negative curvature of g implies the sequences yt and y′t570

must rapidly diverge from each other.571

To leverage negative curvature, we first claim that g is C2 with L2-Lipschitz572

Hessian in BR(ỹ), which contains yt and y′t for t ≤ M . Indeed, since ỹ satisfies573

∥∇g(ỹ)∥ ≤ ε1 ≤ α, Assumption B ensures ∇2g(y) is defined and L2-Lipschitz through574

Bβ(ỹ). The claim then follows since R = 1
4γ

ε2
L2
≤ β, which follows from the assump-575

tion ε2 ≤ 4γβL2.576

Now observe that {y′t + s(yt − y′t) | s ∈ [0, 1]} ⊆ BR(ỹ) for all t ≤ M . Therefore,577

defining H := ∇2g(ỹ), vt := ∇g(yt)−G(yt), v
′
t := ∇g(y′t)−G(y′t), and ŷt := yt − y′t,578

we have for all t ≤M − 1579

ŷt+1 = ŷt − η(∇g(yt+1)−∇g(y′t+1))− η(vt − v′t)580

= (I − ηH)ŷt − η

[∫ 1

0

(
∇2g(y′t + s(yt − y′t))−H

)
ds

]
ŷt − η(vt − v′t)581

= (I − ηH)t+1ŷ0︸ ︷︷ ︸
=:p(t+1)

− η

t∑
τ=0

(I − ηH)t−τ

[∫ 1

0

(
∇2g(y′τ + s(yτ − y′τ ))−H

)
ds

]
ŷτ︸ ︷︷ ︸

=:q(t+1)

582

− η
t∑

τ=0

(I − ηH)t−τ (vτ − v′τ )︸ ︷︷ ︸
=:n(t+1)

583

584
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where the last equality follows from the recursive definition of yt and y′t. In what585

follows we will argue that p(t) diverges exponentially and dominates q(t) and n(t).586

Beginning with exponential growth, notice that ŷ0 is an eigenvector of H with587

eigenvalue λmin(H). Let λ := −λmin(H). Then,588

∥p(t)∥ = (1 + ηλ)t∥ŷ0∥ = (1 + ηλ)tηr0.(A.5)589590

Consequently, if max{∥q(t)∥, 2∥n(t)∥} ≤ ∥p(t)∥
2 , then the following bound would hold:591

max{∥yM − ỹ∥, ∥y′M − ỹ∥} ≥ ∥ŷM∥
2

592

≥ 1

2
(∥p(M)∥ − ∥q(M)∥ − ∥n(M)∥)593

≥ 1

8
∥p(M)∥594

=
(1 + ηλ)Mηr0

8
595

≥ 2γ−3ηr0 ≥ R,596597

where the fourth inequality follows since M = γ/ηε2, (1 + ηλ) ≥ (1 + ηε2) and598

(1+x)1/x ≥ 2 for all x ∈ (0, 1), while the final inequality follows since r0 ≥ ω = R
2γ−3η .599

Thus, by proving the following claim, we will contradict (A.4) and prove the result.600

Claim 1. For all t ≤M , we have max{∥q(t)∥, 2∥n(t)∥} ≤ ∥p(t)∥
2 .601

The proof of the claim follows by induction on t and the following bound

∥I − ηH∥ ≤ (1 + ηλ),

which holds since η is small enough that I − ηH ≽ 0.602

Turning to the inductive proof, we note that the base case holds since

2n(0) = q(0) = 0 ≤ ∥ŷ0∥/4.

Now assume the claim holds for all τ ≤ t. Then for all τ ≤ t we have

∥ŷτ∥ ≤ ∥p(τ)∥+ ∥q(τ)∥+ ∥n(τ)∥ ≤ 2 ∥p(τ)∥ ≤ 2(1 + ηλ)τηr0,

where the final inequality follows from (A.5). Consequently, we may bound ∥q(t+1)∥603

as follows:604

∥q(t+ 1)∥ ≤ η
t∑

τ=0

∥I − ηH∥t−τ

∥∥∥∥∫ 1

0

(
∇2g(y′τ + s(yτ − y′τ ))−H

)
ds

∥∥∥∥ ∥ŷτ∥605

≤ ηL2

t∑
τ=0

∥I − ηH∥t−τ
max{∥yt − ỹ∥ , ∥y′t − ỹ∥} ∥ŷτ∥606

≤ ηL2R
t∑

τ=0

∥I − ηH∥t ηr0607

= ηL2RM ∥I − ηH∥t ηr0608

≤ 2ηL2RM∥p(t+ 1)∥609

≤ ∥p(t+ 1)∥
2

,610
611
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where the second inequality follows from L2-Lipschitz continuity of ∇2g on BR(ỹ),612

the third inequality follows from the inclusions yt, y
′
t ∈ BR(ỹ), the fourth inequality613

follows from (A.5), and the fifth inequality follow from 2ηL2RM ≤ 1/2. This proves614

half of the inductive step.615

To prove the other half of the inductive step, we bound ∥n(t+ 1)∥ as follows:616

∥n(t+ 1)∥ ≤ η
t∑

τ=0

∥I − ηH∥t−τ ∥vτ − v′τ∥617

≤ η
t∑

τ=0

∥I − ηH∥t−τ
[a (∥∇g(yτ )∥+ ∥∇g(y′τ )∥) + 2b]618

≤ 2η
t∑

τ=0

∥I − ηH∥t−τ
[
a (L1R+ ε1) + b

]
619

≤ 2η(1 + ηλ)
t
[
Ma (L1R+ ε1) +Mb

]
620
621

where the third inequality follows from L1 Lipschitz continuity of ∇g, the inclusions622

yt, y
′
t ∈ BR(ỹ), and the bound ∥∇g(ỹ)∥ ≤ ε1; and the fourth inequality follows from623

the bound ∥I − ηH∥t−τ ≤ (1 + ηλ)t. To complete the proof, we recall that three624

inequalities: b ≤ R
Mη2(γ+2) , a ≤ 1

ηM2γ+2 min{ 1
L1

, R
ε1
}, and r0 ≥ ω = R

2γ−3η . Then, we625

find that626

∥n(t+ 1)∥ ≤ 2η(1 + ηλ)
t
[
Ma (L1R+ ε1) +Mb

]
627

≤ 3(1 + ηλ)tR

2γ+1
628

≤ 3(1 + ηλ)tηr0
16

629

≤ ∥p(t+ 1)∥/4.630631

This concludes the proof of the claim. Consequently, the proof of the Lemma is632

complete.633

Using the Lemma A.5, the following Lemma proves that inexact gradient descent634

will decrease the objective value by a large amount if it is randomly initialized near a635

point with negative curvature.636

Lemma A.6 (Descent with negative curvature). Fix a point ỹ satisfying637

∥∇g(ỹ)∥ ≤ ε1 and λmin(∇2g(ỹ)) ≤ −ε2.638

Consider an initial point y0 := ỹ+η ·u with u ∼ Unif(rB). Let {yt} be an inexact639

gradient descent sequence, initialized at y0:640

yt+1 = yt − ηG(yt).641642

Then with probability at least643

(A.6) p := 1−min

{
1, L1

(1 + a)2

(1− a)

√
d

ε2
γ2 max

{
1, 5

L2ε1
L1ε2

}
29−γ

}
,644

we have g(yM )− g(ỹ) ≤ −F/2645
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Proof. If p = 0 the statement holds trivially, thus we assume p > 0. First, we
establish the following containment of events: {g(yM ) − g(y0) ≤ −F} ⊆ {g(yM ) −
g(ỹ) ≤ −F/2}. To that end, first observe that

g(y0)− g(ỹ) ≤ ⟨∇g(ỹ), y0 − ỹ⟩+ L1η
2

2
∥y0 − ỹ∥2 ≤ ε1ηr +

L1η
2r2

2
≤ F/2

where the last inequality follows by Lemma A.1. Then, if we assume the event646

{g(yM )− g(y0) ≤ −F} holds, we derive647

g(yM )− g(ỹ) ≤ g(yM )− g(y0) + g(y0)− g(ỹ) ≤ −F/2.648649

Thus, {g(yM )− g(y0) ≤ −F} ⊆ {g(yM )− g(ỹ) ≤ −F/2} and so

P(g(yM )− g(y0) ≤ −F ) ≤ P(g(yM )− g(ỹ) ≤ −F/2).

In the remainder of the proof, we show the event {g(yM )− g(y0) ≤ −F} holds with650

the claimed probability in (A.6). To that end, define the operator T : Rd → Rd given651

by T (x) = x − ηG(x) and let TM = T ◦M be the M -fold composition of T . Consider652

the set of points y ∈ Bηr(ỹ), for which M steps of inexact gradient method with oracle653

G fail to decrease the g significantly:654

Xstuck = {y ∈ Bηr(ỹ) | g(TM (y))− g(y0) > −F}.655656

We now show that P (y0 ∈ Xstuck) ≤ 1 − p. Indeed, Lemma A.5 shows that there657

exists e0 ∈ Sd−1 such that width of Xstuck along e0 is upper bounded by ηω. Thus658

the volume of Xstuck is bounded by the volume of the cylinder [0, ω]×Bd−1
ηr (0), which659

yields the result:660

P(y0 ∈ Xstuck) =
Vol(Xstuck)

Vol(Bd
ηr(0))

≤ ηω ·Vol(ηrBd−1)

Vol(ηrBd)
661

≤
ω · Γ

(
d+1
2 + 1

2

)
r
√
πΓ
(
d+1
2

)662

≤ ω

r
·
√

d

π
663

≤ 23−γR

ηr
·
√

d

π
664

≤ L1
(1 + a)2

(1− a)

√
d

ε2
γ2 max

{
1, 5

L2ε1
L1ε2

}
29−γ .665

666

where the second inequality follows from the identity Vol(ηrBd) = (ηr)dπd/2/Γ(d2+1);667

the third inequality follows from the bound Γ(x+ 1
2 )/Γ(x) ≤

√
x for any x ≥ 0 [24]; the668

fourth inequality follows from the definition ω = R
2γ−3η ; and the fifth inequality follows669

from the definitions η = (1−a)/L1(1+a)2, R = 1
4γ

ε2
L2

, and r =
ε22

400L2γ3 min
{
1, L1ε2

5ε1L2

}
,670

as well as the bound 400 · 23/(4
√
π) ≤ 29. This concludes the proof.671

To conclude this section, we now combine all the Lemmas to prove Theorem 3.1.672

Proof of Theorem 3.1. Set the number of iterations to673

T = 8∆g max

{
M

F
,
256

ηε21

}
+ 4M.674
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Then, we will prove the slightly stronger claim that there is at least one (ε1/4, ε2)-675

second-order critical point among the first T iterates of the algorithm. Let {xt}Tt=0 be676

the sequence generated by Algorithm 1. We partition this sequence into three disjoint677

sets:678

1. The set of (ε1/4, ε2)-second-order critical points, denoted S2.679

2. The set of (ε1/4)-first-order critical points that are not in S2, denoted S1.680

3. All the other points S3 = {xt}Tt=0 \ (S1 ∪ S2).681

We first prove that |S3| ≤ T/4:682

g(xT )− g(x0) =
T−1∑
t=0

(g(xt+1)− g(xt))683

≤ −η (1− a)

8

T−1∑
t=0

∥∇g(xt)∥2 + 5ηTb2684

≤ −η (1− a)

8

∑
t∈S3

∥∇g(xt)∥2 + 5ηTb2685

< −η|S3|ε21(1− a)
1

128
+ 5ηTb2,686

687

where the first inequality follows from Lemma A.3. Rearranging, and applying b2 ≤
ε21

4096 , we find

|S3| ≤
g(x0)− g(xT )

ηε21(1− a) 1
128

+
5Tb2

ε21(1− a) 1
128

≤ T

(1− a)16
+

640T

(1− a)4096
≤ T/4,

since a ≤ 1/20.688

Now suppose for the sake of contradiction that |S2| is empty. Define ∆ ⊂ [T ] be
the set of iteration numbers where Algorithm 1 adds a perturbation to the iterate:

Λ := {t ∈ [T ] | ∥G(xt)∥ ≤ ε1/2 and t− tpert ≥M}.

Every xt with t ∈ Λ is first-order stationary, since

∥∇g(xt)∥ ≤
1

1− a
(∥G(xt)∥+ b) ≤ 1

1− a

(ε1
2

+ b
)
≤ 20

19

(ε1
2

+
ε1
64

)
≤ ε1.

Moreover, since |S2| is empty, such xt satisfy λmin(∇2g(xt)) < −ε2. Therefore, by
Lemma A.6 and a union bound, the following event

E =

{
g(xt+M )− g(xt) ≤ −

F

2
for all t ∈ Λ

}
does not happen with probability at most689

(A.7) P(Ec) ≤
TL1

(1+a)2

(1−a)

√
d

ε2
γ2 max

{
1, 5L2ε1

L1ε2

}
29

2γ
.690

By Lemma A.1, this probability is upper bounded by δ. Therefore, throughout the691

remainder of the proof, we suppose the event E happens. In this event we will show692

that g(xt) < inf g for some t, which yields the desired contradiction.693
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To that end, recall that by Lemma A.3, g cannot increase by much at each
iteration:

g(xt+1)− g(xt) ≤ 5ηb2 for all t ∈ [T ].

Thus, defining tlast := max{t | t+M < T} and we find that694

g(xtlast+M+1)− g(x0) =

tlast+M∑
t=0

(g(xt+1)− g(xt))695

≤
∑
k∈Λ

k≤tlast

∑
t∈[k,k+M−1]

(g(xt+1)− g(xt)) + 5ηb2|T |696

=
∑
k∈Λ

k≤tlast

(g(xt+M )− g(xt)) + 5ηb2|T |697

≤ −(|Λ| − 1)F/2 + 5ηb2|T |.698699

To arrive at the desired contradiction, we will show that |Λ| is large. In particular,
we claim that

|Λ| ≥ 3T

4M
.

To prove this claim, first observe that the definition of Algorithm 1 ensures that
{xt | ∥G(xt)∥ ≤ ε1/2} ⊆

⋃
k∈Λ{k, . . . , k+M}. Moreover, S1 ⊆ {xt | ∥G(xt)∥ ≤ ε1/2}

by Lemma A.2:

∥∇g(xt)∥ ≤ ε1/4 =⇒ ∥G(x)∥ ≤ (1 + a)
ε1
4

+ b ≤ 21

20

ε1
4

+
ε1
64
≤ ε1

2
,

since a ≤ 1/20 and b ≤ ε1/64. Therefore, since |S1| = T − |S3| ≥ 3T/4, we have700

(3T/4) ≤ |S1| ≤ |Λ|M , as desired.701

Finally, we find702

g(xtlast+M+1)− g(x0)703

≤ −(|Λ| − 1)F/2 + 5ηb2|T |704

≤ −
(

3T

4M
− 1

)
F

2
+ 5ηb2|T |705

≤ −TF

4M
+ 5ηb2|T |706

≤ −TF

8M
< inf g − g(x0),707

708

where the third inequality follows since T ≥ 4M and the fourth inequality follows709

since b2 ≤ 1
40η

F
M . Thus, yielding a contradiction. This completes the proof.710

Appendix B. Proof of Proposition 4.1. Recall that ∇2fµ is L2-Lipschitz711

on the ball Bβ(x). Consequently, by [35, Lemma 1.2.4], the following bound holds for712

all y ∈ Bβ(x):713

fµ(x) + ⟨∇fµ(x), y − x⟩+ 1

2
⟨∇2fµ(x)(y − x), y − x⟩ − L2

6
∥y − x∥3 ≤ fµ(y).(B.1)714

715
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Now fix a point z ∈ Bβ(x̂) and observe that y := z + (x− x̂) is an element of Bβ(x).716

Thus, by (B.1), the following bound holds:717

fµ(x) + ⟨∇fµ(x), z − x̂⟩+ 1

2
⟨∇2fµ(x)(z − x̂), z − x̂⟩ − L2

6
∥z − x̂∥3 ≤ fµ(z + (x− x̂)).

(B.2)

718719

We now simplify this inequality using the definition of the Moreau envelope. Indeed,
first observe that since fµ(x) = f(x̂)+ 1

2µ∥x−x̂∥
2, the left-hand-side of (B.2) is simply

q(z) + 1
2µ∥x− x̂∥2. Second, observe that the right-hand-side of (B.2) satisfies

fµ(z + (x− x̂)) = inf
z′∈Rd

f(z′) +
1

2µ
∥z′ − z − (x− x̂)∥2 ≤ f(z) +

1

2µ
∥x− x̂∥2.

Thus, we find that

q(z) +
1

2µ
∥x− x̂∥2 ≤ f(z) +

1

2µ
∥x− x̂∥2.

Consequently, we have q(z) ≤ f(z), as desired.720

To complete the proof, note that the claimed stationarity guarantees for q follow
immediately. On the other hand, the proximity bounds follow from the identity
∇fµ(x) = µ−1(x− x̂), which implies that

∥x− x̂∥ ≤ µ∥∇fµ(x)∥ ≤ µε1,

as desired.721

Appendix C. Proof of Theorem 4.1. By [13, Theorem 3.7], there exist
disjoint open sets {V1, . . . , Vk} in Rd, whose union has full measure in Rd, and such
that for each i = 1, . . . , k, there exist finitely many smooth maps g1, . . . , gm satisfying

(∂f)−1(v) = {g1(v), . . . , gm(v)} ∀v ∈ Vi.

In particular, since gi are locally Lipschitz continuous, for every v ∈ Vi, there exists722

a constant ℓ satisfying723

(C.1) (∂f)−1(Bϵ(v)) ⊂
k⋃

j=m

Bℓϵ(gj(v)),724

for all small ϵ > 0. Moreover, by [13, Corollary 4.8] we may assume that for every point725

v in Vi and for sufficiently small ϵ > 0 the set gj(Bϵ(v)) is an active manifold around726

gj(v) for the tilted function f(·; v) = f(·) − ⟨v, ·⟩. Taking into account [12, Theorem727

3.1], we may also assume that the Moreau envelope fµ(·; v) of f(·; v) is Cp-smooth on728

a neighborhood of each point gj(v).729

Fix now a set Vi a point v ∈ Vi. Clearly, then there exist constants r, β, L2 > 0,
such that for any point y with dist(y, (∂f)−1(v)) ≤ r, the Hessian ∇2fµ(·; v) is L2-
Lipschitz on the ball Bβ(y). It remains to show that for all sufficiently small α > 0,
any point y satisfying ∥∇fµ(y; v)∥ ≤ α also satisfies dist(y, (∂f)−1(v)) ≤ r. To this
end, consider a point y with ∥∇fµ(y; v)∥ ≤ α for some α > 0. Note the proximal
point ŷ of fµ(·; v) at y then satisfies

dist(v, ∂f(ŷ)) ≤ α and ∥ŷ − y∥ ≤ µα.
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Therefore we deduce, ŷ ∈ (∂f)−1(Bα(v)) and dist(y, (∂f)−1(Bα(v)) ≤ µα. Thus,
using (C.1) we deduce that for sufficiently small α > 0, we have

dist(y, (∂f)−1(v)) ≤ (µ+ ℓ)α.

Choosing α < r/(µ+ ℓ) completes the proof.730

Appendix D. Proof of Theorem 4.4. The proof of the theorem is a conse-731

quence of the following Lemma.732

Lemma D.1. Assume that g : Rd → R∪{∞} is α-strongly convex with minimizer
x⋆. Let gx : Rd → R ∪ {∞} be a family of convex models satisfying Assumption E.
Let x0 ∈ Rd, let θ > ν, and consider the following sequence:

xk+1 ← argmin
x∈Rd

{
gxk

(x) +
θ

2
∥x− xk∥2

}
Then733

(D.1) ∥xk+1 − x⋆∥ ≤
(
θ + ν

α+ θ

) k+1
2

∥x0 − x⋆∥.734

Proof. By θ-strong convexity and quadratic accuracy, we have735 (
gxk

(xk+1) +
θ

2
∥xk − xk+1∥2

)
+

θ

2
∥x∗ − xk+1∥2 ≤ gxk

(x∗) +
θ

2
∥x∗ − xk∥2736

≤ g(x∗) +
θ + ν

2
∥x∗ − xk∥2.737

738

From g(xk+1) ≤ gxk
(xk+1) +

θ
2∥xk − xk+1∥2 and the above inequality, we have739

g(xk+1) +
θ

2
∥x∗ − xk+1∥2 ≤ g(x∗) +

θ + ν

2
∥x∗ − xk∥2740

741

Subtract g(x∗) from both sides and use g(xk+1)− g(x∗) ≥ α
2 ∥xk+1 − x∗∥2 to get the742

result.743

To complete the proof notice that the function g(y) = f+ 1
2µ∥y−x0∥2 and the models744

gx = fx + 1
2µ∥y − x0∥2 are α = (µ−1 − ρ)-strongly convex. Therefore, Theorem 4.4745

follows from an application of Lemma D.1.746
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