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Abstract—Postprandial hyperglycemia (PPHG) is detrimental
to health and increases risk of cardiovascular diseases, reduced
eyesight, and life-threatening conditions like cancer. Detecting
PPHG events before they occur can potentially help with provid-
ing early interventions. Prior research suggests that PPHG events
can be predicted based on information about diet. However,
such computational approaches (1) are data hungry requiring
significant amounts of data for algorithm training; and (2)
work as a black-box and lack interpretability, thus limiting the
adoption of these technologies for use in clinical interventions.
Motivated by these shortcomings, we propose, DietNudge', a
machine learning based framework that integrates multi-modal
data about diet, insulin, and blood glucose to predict PPHG
events before they occur. Using data from patients with diabetes,
we demonstrate that our model can predict PPHG events with
up to 90% classification accuracy and an average F1 score of
0.93. The proposed decision-tree-based approach also identifies
modifiable factors that contribute to an impending PPHG event
while providing personalized thresholds to prevent such events.
Our results suggest that we can develop simple, yet effective,
computational algorithms that can be used as preventative
mechanisms for diabetes and obesity management.

Index Terms—Machine learning, decision tree, diabetes, con-
tinuous glucose monitor, postprandial hyperglycemia.

I. INTRODUCTION

Postprandial hyperglycemia (PPHG) is characterized by
hyperglycemic spikes in blood glucose level. As defined by
the American Diabetes Association (ADA) and the World
Health Organization (WHO), the threshold for unacceptable
postprandial glycemia is 8.89 mmol/L (>160 mg/dL) at any
time after the meal [1]. Long-term exposure to hyperglycemia
reduces glycemic control and enhances the development of
cancer, macrovascular complications, cerebrovascular and car-
diovascular diseases [2], [3]. The consequences are more
severe among individuals living with obesity and diabetes.
Therefore, the significance of predicting PPHG events, even
before consuming a meal, is evident.

Continuous glucose monitors (CGM) are utilized for ef-
fective diabetes management as they transmit blood glucose
concentration at a consistent frequency over extended time
spans. Although CGM sensors have shown efficacy in re-
liably estimating blood glucose level in real-time, they are
not equipped with computational algorithms to predict and
warn the users of PPHG. Hence, developing an algorithm
that predicts and conveys information to the users regarding
imminent PPHG events and underlying modifiable factors
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remains unexplored. We hypothesize that blood glucose data
transmitted by advanced wearables can be used to develop a
machine learning model to accurately predict hyperglycemia.

Several prior studies attempted to develop algorithm for pre-
dicting glycemic response [4]-[6]. In particular, Karim et al.
[7] forecast the glycemic response following the consumption
of a meal by providing a feed-forward network with infor-
mation including applied bolus insulin dose, baseline blood
glucose concentration, maximum carbohydrate absorption rate,
area under the carbohydrate absorption curve, and time elapsed
since the last basal insulin. Prendin et al. [8] developed and
compared thirty linear and non-linear predictive models by
forecasting glucose concentrations and hypoglycemic events.
Gu et al. [9] leveraged food records, drug and insulin intake,
physical activities and sleep quality captured by smartphone
sensors and a deep RNN (Recurrent Neural Network) model
to predict abnormal glucose events such as hyperglycemia
and hypoglycemia. Although the aforementioned methods can
detect PPHG events, they fail to provide interpretable results
or specific preventive measures and guidelines to prevent
hyperglycemia. Additionally, prior studies developed data-
hungry and computational expensive models, making such
more less appealing for implementation on embedded systems
and mobile devices.

Therefore, we observe clear gaps in the literature and
to bridge them, we propose, DietNudge, a computationally-
simple and human-readable machine learning model to predict
hyperglycemia and counsel users with necessary modifiable
factors and decision support for controlling blood glucose. We
make all the resources and software code of DietNudge public
for future aspirants to reproduce the work.
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Fig. 1: Glucose concentration captured using a CGM. Post-
prandial glycemic response exceeds threshold for hyper-
glycemia.
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Fig. 2: DietNudge accepts data about various sources such as
a camera, wearables, and user input to forecast PPHG.

II. SYSTEM DESIGN

As shown in Fig. 2, DietNudge integrates data about diet,
insulin, and baseline glucose level from various sources. The
machine learning algorithm takes these data as input and
forecasts the incidence of an impending PPHG event. The data
are fed into the algorithm by user or passive sensors; e.g., data
derived from user scans of food items or nutrition fact labels,
blood glucose data transmitted by CGM attached to the body
and data from a Bluetooth enabled insulin pen or insulin pump
to forecast hyperglycemia upon what the user is about to eat.

Since personal health data, including CGM data, are sen-
sitive, they are not readily available in plenty. Therefore, the
notion is that decision tree models would be a good fit for
analyzing personal glucose data as they perform well with
smaller datasets [10]. Furthermore, unlike SVM and neural
networks, which follow non-linear decision boundaries, deci-
sion trees explore linear decision boundaries for classification
and regression tasks and produce threshold values, which are
easily interpretable for behavioral modification.

Assuming we have n instances each with D features from a
meal (e.g., carb, fat, fiber) and health conditions (e.g., insulin
amount, baseline glucose level), the ith sample would be, x; =

[:z:l(.l), xl(?), ey a:ED)] yielding a D-dimensional feature set x €
R"*P_ Our goal is to predict, given his/her health conditions,
if a user will encounter hyperglycemia upon consuming the
meal. Hence, our target domain of i*" sample y; is a binary
variable to predict and yields a target vector y € {0,1}"*".
Decision trees require decision making, i.e., whether to
break a leaf node into more branches based on their impurity.
The two most common impurity measures used in decision
tree algorithms are Entropy and Gini Index. Given probability

P; for j'" class, Entropy is given by

E=-) P;-log(P;)
j=1
and Gini Index is calculated as N

G=1—2Pj2
j=1

Because we aim to develop both personalized and
population-based models, we used both Entropy and the Gini
Index for impurity measurement. Other hyper parameters like
maximum tree depth and minimum sample counts for splitting

a node are chosen on a trial-and-error basis to maximize the
prediction accuracy.

When training a machine learning algorithm, we use mean
accuracy and p-average F1 score as our evaluation metrics
because performance of the model is iteratively measured
across varying number of samples under both personalized
and population-wise setups. The p-average F1 score can be
expressed as the harmonic mean of p-average precision and
p-average recall and is given by
2 PuTp
P+ T
where, p-average precision is written as

TP, +TP;+ ...
- TPi+ TP+ ..+ FPi+FPy + ...

and, p-average recall is given by

TP, +TPy+ ...
TPy +TPy+ ...+ FNy + FNy + ...

The true positive values (TP, TPs,,...), false posi-
tive numbers (FP;,F'Ps,...), and false negative numbers
(F'N1,F Ns,...) are derived from the model’s prediction on
test samples (i.e., test meals and test subjects) in personalized
and population-based setups, respectively.

We hypothesize that factors leading to hyperglycemia are
subject dependent. A subset of factors could be highly corre-
lated to one subject’s PPHG and could be loosely correlated to
that of others. Therefore, we employ Recursive Feature Elimi-
nation (RFE) to identify the top contributors in hyperglycemia
forecasting. In general, RFE forms a classification/regression
model and initiates a k-fold cross-validation to recursively
evaluate smaller and smaller feature sets. On each iteration,
RFE identifies the least important feature and ranks the
features accordingly. The iteration continues until a desired
number of top contributing features are identified. In our case,
although we obtain factors leading to PPHG using the decision
tree enroute to PPHG events, we also use a decision tree based
RFE to identify the top contributors on a personal level.

III. EXPERIMENTAL VALIDATION
A. Dataset

We used the Nutrients Absorption dataset [11], which
include data from five participants (4 T2DM and 1 TIDM
patients, 4 male and 1 female, mean age 51.6 years), who were
fed a combined total of 167 meals. In addition to meal nutrient
amounts (carb, fat, and fiber), the dataset contains injected
bolus insulin amounts, time elapsed since last insulin dose
(DFB), blood glucose concentration before each meal (SBGL),
and four hours of CGM data following the consumption of
meals with S7 EasySense CGM System by Medtrum.

P, =

Pu

T =

B. Model Construction

For PPHG forecasting, two different model types were de-
veloped using the decision tree algorithm: leave-one-meal-out
(LOMO), which is subject-dependent and leave-one-subject-
out (LOSO), which is subject-independent. The subject-
dependent (LOMO) model was obtained using data from all
the meals except one, which was left out for testing, and



TABLE I: Comparison of Decision Tree (DT) and SVM models with subject-dependent and subject-independent frameworks
when fiber is included. On average, we received 76.2 and 79.7% accuracy respectively across 5 subjects with LOMO setup.

DT - LOMO SVM - LOMO DT - LOSO || SVM - LOSO
Metric type || P1 | P2 | P3 | P4 | P5 PlL | P2 | P3 | P4 | P5

Mean 89.6 | 744 | 615 | 70 | 857 || 724 | 100 | 54.8 | 100 | 71.4 68.8 67.5
accuracy (%)
“‘avirjf: FlAl 003 | 081 | 067 | 078 | 09 || 084 | 1 0.7 1 | 083 0.81 0.81

TABLE II: Subject-dependent (LOMO) and subject-independent (LOSO) performance of DT and SVM models when fiber is
excluded. Note that, average prediction performance slightly improves and extends upto 79.6% accuracy across 5 subjects for
DT-LOMO when fiber is excluded. Depending on the dataset, the prediction horizon of our approach is 4 hours.

DT - LOMO SVM - LOMO DT - LOSO || SVM - LOSO
Metric type || P1 | P2 | P3 | P4 | P5 PlL | P2 | P3 | P4 | P5

Mean 899 | 80 | 653 | 77.1 | 857 || 725 | 744 | 548 | 62 | 72.1 70 70
accuracy (%)
”'avsecr;‘ie FIAl 003 | 083 | 071 | 08 | 09 || 084 | 085 | 07 | 076 | 083 0.81 0.81

this was repeated across all the meals and subjects. As such,
all subjects had a personalized PPHG forecasting model. In
contrast, the subject-independent (LOSO) model was obtained
using data and features from all subjects except one, which
was set aside for testing. This was repeated across all subjects,
leading to one generalized model for all participants. This
way, we evaluated if subject-dependent or subject-independent
models give us better results in PPHG forecasting.

C. Performance

We split our results into two branches based on inclusion
and exclusion of consumed fiber amount. We also present
the performance of a SVM-based (Support Vector Machine)
PPHG forecasting model for a valid comparison.

Table I presents results including fiber amounts while Ta-
ble II shows results when fiber amounts were excluded from
the dataset. As expected the personalized models performed
better than subject-independent models. For example, decision
tree and SVM based subject-independent models offered the
best accuracy at 70% with a p-average F1 score of 0.81. In
contrast, personalized SVM models for P2 and P4 recorded
maximum accuracy and p-average F1 score.

Although subject-dependent SVM models achieved the
highest accuracy for P2 and P4, subject-dependent decision
tree models achieved a better performance overall. Accuracy
values and F1 scores were lowest for P3 be it a decision tree
model or SVM. However, it is worth noting that P3 was the
oldest of five participants and had the least number of meal
records or data points, which are likely responsible for the
abnormality in forecasting results. Forecasting horizon was 4
hours as imposed by the dataset.

D. Top factors

We further employed RFE algorithm on the data to get
top two influential factors in PPHG forecasting. For subject-
specific models, carb amounts and carb composition were
frequently identified as strongest predictors of PPHG. Table III
shows other variables including insulin amounts, fat amounts
and baseline blood glucose also played leading roles for fore-
casting some participants’ hyperglycemia. Carb composition

and DFB were dominant in generalized models. This finding
is consistent with prior research [12] which suggests that
altering the type and/or amount of dietary carb can improve
postprandial glucose.

TABLE III: Top 2 driving factors of PPHG.

V;l;i;;gm Partlllil'pant Top 2 contributing features
P1 Insulin, Carbs amount
P2 Carbs amount, Fat amount
LOMO P3 Carbs amount, Carbs
composition
P4 Insulin, Carbs amount
P5 SBGL, Carbs composition
LOSO Generalized Carbs composition, DFB
model

E. Interpretation

Since decision trees follow linear decision boundaries and
generate understandable thresholds for each variable, they can
be utilized for hyperglycemia, diabetes or obesity manage-
ment. DietNudge presents those factors and corresponding
thresholds in a way that they become useful, informative and
may operate as guidelines for users.

Fig. 3 shows factors with their thresholds for subjects, P1,
P2, P3 and P4. P3, for example, might be able to avoid
hyperglycemia if the consumed meal contains carb less than
83.4 grams and fat less than 1.5 grams or if overall carb
composition is below 68.7%. From a different standpoint, if a
consumed meal contains carb amount greater than 83.4 grams,
a basal insulin dose higher than 0.09 might help evade a PPHG
event.

IV. CONCLUSIONS AND FUTURE WORK
We developed a simple interpretable machine learning
model for forecasting hyperglycemia in patients with dia-
betes. The developed decision tree model provides insights
about effective interventions to prevent PPHG events. Our
results demonstrate the feasibility of designing computational
algorithms trained with small amounts of training data for
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Fig. 3: Interpretation of decision tree results for hyperglycemia management using threshold values produced by DietNudge.
Under LOMO setup, decision trees are generated as many times as the available number of meals, however, most are identical.
Most recurring ones are taken to the next step for behavioral modification.

accurate prediction of important health events. We showed
that carb component of the diet (i.e., carb amount and carb
composition) is a strong predictor of PPHG event, however,
the thresholds that trigger a health event are not universal
across all patients. This finding emphasizes the importance
of personalized interventions.

We recognize that hyperglycemia depends on many other
factors such as physical activity choices, poor disease manage-
ment, non-diabetes medications, or skipping glucose-lowering
medication [13]. To the best of our knowledge, however,
current publicly available datasets do not contain such a
comprehensive set of variables. For this research, our analysis
was limited to designing machine learning models based on
baseline glucose level, diet, and insulin amount only. Our on-
going and future work involves construction of comprehensive
dataset that integrates different modalities from a large cohort
of individuals as well as the development of interpretable
machine learning models for PPHG forecasting and blood
glucose management.
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