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ABSTRACT
With rapid growth in unhealthy diet behaviors, implementing strate-
gies that improve healthy eating is becoming increasingly impor-
tant. One approach to improve diet behavior is to continuously mon-
itor dietary intake (e.g., calorie intake) and provide educational,
motivational, and dietary recommendation feedback. Although
technologies based on wearable sensors, mobile applications, and
light-weight cameras exist to gather diet-related information such
as food type and eating time, there remains a gap in research on
how to use such information to close the loop and provide feedback
to the user to improve healthy diet. We address this knowledge gap
by introducing a diet behavior change framework that generates
real-time diet recommendations based on a user’s food intake and
considering user’s deviation from the suggested diet routine. We
formulate the problem of optimal diet recommendation as a sequen-
tial decision making problem and design a greedy algorithm that
provides diet recommendations such that the amount of change in
user’s dietary habits is minimized while ensuring that the user’s diet
goal is achieved within a given time-frame. This novel approach is
inspired by the Social Cognitive Theory, which emphasizes behav-
ioral monitoring and small incremental goals as being important to
behavior change. Our optimization algorithm integrates data from
a user’s past dietary intake as well as the USDA nutrition dataset
to identify optimal diet changes. We demonstrate the feasibility of
our optimization algorithms for diet behavior change using real-
data collected in two study cohorts with a combined N=10 healthy
participants who recorded their diet for up to 21 days1.

CCS CONCEPTS
• Human-centered computing; • Ubiquitous and mobile com-
puting→ Ubiquitous and mobile computing systems and tools;

1Code available at: https://github.com/Arefeen06088/Sequential-Diet-Recommendati
on
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1 INTRODUCTION
In the 21st century, about two-thirds of all deaths are due to car-
diovascular disease, diabetes, cancer, and other chronic conditions
[6, 24]. However, the risk from these chronic disorders can be min-
imized by maintaining proper diet, reducing fats, carbs and salts
from daily consumption and performing exercise on a regular basis.
These causes of mortality warrant the need for developing advanced
technology-based interventions and prevention strategies focused
on chronic conditions and maintaining a healthy lifestyle.

Recent years have witnessed much research on developing nu-
trition monitoring technologies that track dietary intake [1, 25, 13,
2]. Technologies based on mobile applications or wearable sensors,
however, fall short in providing actionable interventions based on
the dietary intake data. Some of them utilize computationally ex-
pensive neural networks [16] which are often redundant to the
necessity. Dietary interventions need to be simple, cost-effective
and persuasive in order to attract public interest.

Current interventions are often provided either in form of in-
terpersonal counseling groups, which are based on needs of each
individual [17], or in form of face-to-face counseling [10], which is
time-consuming and expensive. These types of counseling interven-
tions have been mainly utilized for people diagnosed with chronic
diseases, alcohol use disorder, and smoking problems. However, it
remains unknown if such counseling interventions can be made
available and accessible in a large scale and across different popu-
lations. Therefore, design and implementation of an accurate and
automated intervention methodology embedded in mobile systems
contributes to scalability of diet interventions.

In this paper, we propose a computational algorithm for diet
assistance required for effective diet recommendations and healthy
eating. In particular, we propose an interdisciplinary approach that
integrates well-established evidence from human psychology with
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data-driven optimization algorithms to provide real-time feedback
about goal-oriented diet. We hypothesize that for lifestyle inter-
ventions to be effective, the technology needs to focus on gradual,
step-by-step, and continuous behavior change. Consistent with
these requirements, we offer the following contributions (i) we
propose a smart diet assistant, a computational framework for diet
behavior change and its design based on greedy optimization; (ii)
we formulate the problem of greedy diet recommendation as an
optimization problem with the objective of minimizing the amount
of change in diet habits and propose a tractable solution; and (iii)
we conduct a user study and collect dietary intake data with real
human subjects and use the data to develop and evaluate our diet
recommendation approach.

2 RELATED WORK
Our research in this paper mainly spans nutrition monitoring. Sev-
eral researchers have developed wearable systems for monitoring
dietary context of the user such as eating time, food type, and eating
style [7, 27]. The eating gesture was counted using a 6-axis inertial
wrist sensor [33]. Although these systems collect eating-related
data seamlessly, their utility is limited to portion control or eating
detection rather than estimating nutrient intake.

Linear programming is one of the most popular quantitative
approaches for diet planning which is used in different aspects of
diet-related problems [5, 8]. Linear programming can be applied to
different nutrition problems, such as diet problems, food planning,
and guidelines for diet intake. Initially, the use of linear program-
ming was investigated for searching low-cost diet while meeting
all nutritional needs for soldiers in World War II. Prior research
utilized linear optimization techniques for finding the cheapest
diet plan while delivering enough calories, protein, vitamins, and
minerals [30]. A method was proposed by other researchers which
utilized linear programming for choosing ready-to-use therapeutic
foods [9]. Their objective function was to minimize the price and
weight of the merchandise and the constraints were to take care of
the palatability, food ingredients, and texture.

In several research studies, the use of machine learning is ex-
plored for behavior change and monitoring purposes [3, 26]. Sher-
wood et al. proposed an adaptive intervention method for providing
treatments in weight loss intervention programs called BestFIT [28].
BestFIT is a framework for evaluating the best timing for sending
interventions in a weight loss treatment program. The result shows
that BestFit optimizes weight loss outcomes, which results in health
benefits. To the best of our knowledge, behavior change using adap-
tive/reinforcement learning in the context of diet planning is yet to
be explored.

Our work in this paper is different from previous research. We
provide a computational framework that allows for providing per-
sonalized and adaptive diet recommendations by combining knowl-
edge from clinical domain (i.e., human psychology) and computer
science (i.e., linear optimization). To the best of our knowledge,
our work is the first study to tackle the problem of sequential diet
recommendation from a linear programming perspective. We show
that the problem of optimal diet recommendation is a NP-hard
problem and offer an integer relaxation of our linear programming
formulation of the diet recommendation problem to transform the

initial problem into a tractable problem that can be solved in poly-
nomial time. We also demonstrate the feasibility of our computa-
tional framework using a number of lifestyle intervention scenarios,
including short-term diet management and longer-term lifestyle
behavior change settings. We collected dietary intake data from
human subjects to conduct extensive analysis of our proposed opti-
mization approach.

3 METHODOLOGY
Our goal is to develop a generic approach for pervasive diet rec-
ommendations. Such a recommendation approach enhances the
effectiveness of lifestyle interventions. To this end, our algorithm
does not rely on a particular sensor modality or nutrition moni-
toring technology. Instead, as shown in Figure 1, this sensor and
technology-agnostic approach assumes that the outcome of nutri-
tion monitoring is stored in a database. This database maintains
longitudinal data on dietary intake for each user. The algorithm
generates diet recommendations at desirable time intervals (e.g.,
daily, weekly) based on a target diet goal, dietary intake, and diet
habits/history from data available in the database.

Our data-driven optimization approach is inspired by the Social
Cognitive Theory in psychology [4], which emphasizes behavioral
monitoring and small incremental goals as being important to be-
havior change. Hence, our smart diet assistant aims to gradually
reach the diet goal within a given time-frame while minimizing the
amount of chance across consecutive intervention cycles. There-
fore, we propose an optimization approach as our diet assistant
where the objective function is to minimize the amount of change
in portion sizes in each recommendation cycle while taking one
step toward the diet goal at a time. Specifically, the output of our op-
timization is a list of food items and their portion sizes that describe
a diet recommendation. In this article, we plan to demonstrate the
feasibility of our optimization approach for generating accurate es-
timations for diet recommendations. Investigating the effectiveness
of our approach for deployment in lifestyle intervention studies
will be the subject of our future work.

Our diet assistant algorithm uses, as a reference for recommen-
dation, the USDA nutrition dataset [12] where 3171 types of foods
and their respective nutrition values (calorie, protein and fiber) are
enlisted. At any point in time, the algorithm takes a user’s prior
food habits and desired nutrition target (e.g., calorie goal) as input
and generates a recommended food list for the next time point. The
algorithm is designed to ensure that the user achieves their diet
goal within a given time-frame.

3.1 Problem Formulation
Let𝐺 be the user’s diet goal. For simplicity, we present our formula-
tion in this section for a single goal (e.g., achieving a target calorie
intake goal). However, the formulation can be easily extended to
include additional goals specific to various nutrients (e.g., fat, pro-
tein, carbohydrates). Furthermore, let 𝑛 be the duration of the diet
intervention (i.e., deadline by which the user is aimed to achieve
their goal. During each recommendation cycle, the optimization
problem examines diet history of the user as maintained in the
personalized nutrition database. Assume that we want to make a
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Figure 1: Our algorithm enables integration of diet monitoring and behavior change by providing continuous diet recommenda-
tions. Diet monitoring is commonly done using text, voice, and image input as well as passive sensing provided with wearables
[18, 11, 15, 14].

recommendation during cycle ‘𝑖’. The personalized nutrition data-
base maintains ‘𝑚’ food items {𝑓1,...,𝑓𝑚 } thus far. Let 𝑞 (𝑖−1) 𝑗 denote
the amount of food 𝑓𝑗 taken (portion size) during recommendation
cycle ‘𝑖−1’ and 𝑐 𝑗 denotes the calorie value associated with the food
𝑓𝑗 . The greedy diet recommendation problem can be formulated as
an integer linear programming problem as follows.

Minimize
𝑚∑︁
𝑗=1
|𝑝𝑖 𝑗 − 𝑞 (𝑖−1) 𝑗 | (1)

Subject to:

|
𝑚∑︁
𝑗=1

𝑝𝑖 𝑗𝑐 𝑗 −
𝑚∑︁
𝑗=1

𝑞 (𝑖−1) 𝑗𝑐 𝑗 | ≥ 𝜆𝑚𝑖𝑛 ∀𝑖, 𝑗 (2)

𝑝𝑖 𝑗 ∈ {0, 1, . . . , 𝑘𝑚𝑎𝑥 } ∀𝑖, 𝑗 (3)

The objective function (1) attempts to minimize the amount of
change in the person’s diet by minimizing the difference between
the consumed food in the previous cycle, 𝑖 − 1 and that of being
recommended in the current cycle, 𝑖 . The goal of the optimization
problem is to find 𝑝𝑖 𝑗 , the amount of food 𝑓𝑗 recommended during
cycle ‘𝑖’ for all food items in the personalized nutrition database.
We limit the value of 𝑝𝑖 𝑗 to be an integer number between 0 and
𝑘𝑚𝑎𝑥 (i.e.„ constraint in (3)). We limit the number of food items
recommended in each cycle to 𝑘𝑚𝑎𝑥 to avoid recommending too
many food items. The constant 𝑘𝑚𝑎𝑥 is a tunable parameter that
can be customized depending on the recommendation frequency
(i.e., daily, weekly) and the person’s diet habits. When making
recommendations weekly, a larger number of unique food items
are recommended compared to the case when recommendations
are made daily.

The constraint in (2) guarantees that the amount of change in
nutrient intake (e.g., calorie) from one cycle to another is at least

𝜆𝑚𝑖𝑛 . The parameter 𝜆𝑚𝑖𝑛 is computed during each recommenda-
tion cycle based on the remaining recommendation cycles, diet goal,
and dietary intake, and is given by-

𝜆𝑚𝑖𝑛 =
|𝐺 −∑𝑚

𝑗=1 (𝑞 (𝑖−1) 𝑗𝑐 𝑗 ) |
(𝑛 − 𝑖 + 1) . (4)

This equation attempts to distribute the residual dietary change
(e.g., remaining amount of reduction in calorie intake) evenly among
the remaining recommendation cycles.

3.2 Integer Relaxation
The optimization problem in (1)–(3) is an integer program in nature.
Such problems are known to be hard to solve. Here we propose an
integer relaxation of the problem as follows.

Minimize
𝑚∑︁
𝑗=1
|𝑝𝑖 𝑗 − 𝑞 (𝑖−1) 𝑗 | (5)

Subject to:

|
𝑚∑︁
𝑗=1

𝑝𝑖 𝑗𝑐 𝑗 −
𝑚∑︁
𝑗=1

𝑞 (𝑖−1) 𝑗𝑐 𝑗 | ≥ 𝜆𝑚𝑖𝑛 ∀𝑖, 𝑗 (6)

0 ≤ 𝑝𝑖 𝑗 ≤ 𝑘𝑚𝑎𝑥 ∀𝑖, 𝑗 (7)

The new optimization problem in (5)–(7) relaxes the integer re-
quirement on variables 𝑝𝑖 𝑗 allowing the resulting portion sizes (𝑝𝑖 𝑗
denotes recommended amounts of food 𝑓𝑗 during cycle 𝑖) to take
real values between 0 and 𝑘𝑚𝑎𝑥 . In reality, however, we recognize
that the amount of food cannot take arbitrary values. For example,
recommending a user to take 0.653 of a “wheat bagel” is both unre-
alistic and infeasible in practice. To address this issue, we propose
to round each obtained 𝑝𝑖 𝑗 from the optimization problem to its
nearest 0.5 portion size (e.g., a half bagel).
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3.3 Problem Solution
The optimization problem in (5)–(7) needs to be solved for 𝑝𝑖 𝑗 . Note
that in this optimization formulation, both the objective function
and the constraints are linear. The problem has been solved for 𝑝𝑖 𝑗
using a standard linear programming solver (e.g., PuLP [21], a linear
programming modeler written in Python). Due to the constraint
in (7), many food items are suggested in ’0’ amount in each cycle,
which implies that these food items are just not recommended for
that cycle.

Figure 2: A raw suggestion list is shown for a random inter-
vention cycle (day 7). The diet assistant shows food items,
their amounts and cumulative nutrition values.

Once the problem is solved for 𝑝𝑖 𝑗 variable, we have a suggested
list of foods and their respective amounts for the current cycle.
Figure 2 shows an example of suggested food items for a random
cycle (i.e., 7th day of diet recommendation). Next, priority has been
given to make our smart diet assistant algorithm more flexible and
realistic.

Note that the proposed optimizing approach is not confined
to optimizing for a particular macro-nutrient only or to optimize
for a specific diet outcome such as calorie intake. Instead, it can
keep track of multiple number of micro-nutrients at once and help
to control all such constraints. To make such adjustments in the
optimization approach, one needs to add one inequality (similar to
the constraint in (6) about calorie intake) for each new constraint
that is added to the problem.

3.4 Sequential Diet Recommendation
Algorithm 1 depicts the chronicles of the proposed diet recom-
mendation process. The inputs to the algorithm are user’s calorie
goal, desired number of intervention cycles (i.e., intervention time-
frame), initial consumption behavior (i.e., diet habit), calorie values
of food items (computed from a reference database such as USDA
nutrition database), maximum achievable transition per cycle, and
defiance percentage for people who fail to comply with the sug-
gested amounts.

Onset of each optimization iteration, the algorithm ensures that
the per day transition falls within an achievable threshold value 𝛾 .

Algorithm 1 Diet Recommendation Algorithm
Input:
user’s calorie goal, G
duration of diet intervention, 𝑛
user’s initial consumption behavior, Q0 = {𝑞01, 𝑞02, ..., 𝑞0𝑚}
associated calorie values per serving, C = {𝑐1, 𝑐2, ..., 𝑐𝑚}
maximum allowed transition per intervention cycle, 𝛾
defiance, 𝑑%
Output:
suggested amounts for 𝑖𝑡ℎ intervention, P𝑖 = {𝑝𝑖1, 𝑝𝑖2, ..., 𝑝𝑖𝑚}
while intervention 𝑖 𝜖{1, 2, ..., 𝑛} do

if | (𝐺 − Q𝑖−1 ·𝐶)/𝑛 | > 𝛾 then
𝑛 ←− ⌈|(𝐺 − Q𝑖−1 ·𝐶)/𝛾 |⌉

end if
𝜆𝑚𝑖𝑛 =

|𝐺−∑𝑚
𝑗=1 (𝑞 (𝑖−1) 𝑗𝑐 𝑗 ) |
(𝑛−𝑖+1)

minimize
𝑝

𝑚∑︁
𝑗=1
|𝑝𝑖 𝑗 − 𝑞 (𝑖−1) 𝑗 |

Ensure: |∑𝑚
𝑗=1 𝑝𝑖 𝑗𝑐 𝑗 −

∑𝑚
𝑗=1 𝑞 (𝑖−1) 𝑗𝑐 𝑗 | ≥ 𝜆𝑚𝑖𝑛

Ensure: 0 ≤ 𝑝𝑖 𝑗 ≤ 𝑘𝑚𝑎𝑥 ∀𝑗
P𝑖 ←− ⌊P𝑖 ⌉
Q𝑖 ←− P𝑖 + 𝑑%
𝑖 ←− 𝑖 + 1

end while

In case of a steep change rate, it adjusts the transition by increas-
ing the number of intervention cycles. This adaptive adjustment
is necessary for realistic diet recommendations because sudden
changes in a person’s behavior may not be attainable. Then the
algorithm uses the proposed optimization strategy discussed pre-
viously to optimize the food items while ensuring that they do
not come up with unusual amounts and stay within some limit.
Therefore, the rounded amounts are delivered to the user, which
are concurrently stored as consumption behavior of the user for
use in future intervention cycles.

We define defiance as the extent to which users deviate from
the suggested amounts and express these measures as a percentage.
For people with some percentage of defiance, the algorithm always
assumes that they will consume some percentage (𝑑%) extra and
thus it will adjust the consumption behavior for the following
intervention period and optimize the food amounts thereby.

As explained in Algorithm 1, we can boil down to the following
features, which the diet recommendation system has been embel-
lished with.

Sequential Recommendation: This algorithm is a sequential rec-
ommendation procedure that monitors user’s performance during
each cycle. If a user fails to comply with the diet suggestion at
any point of the intervention time-frame, i.e., deviates from the
suggested list, given proper data, the algorithm will provide the
user with a new diet suggestion to meet the user’s desired diet goal
in due time.

Dynamic Convergence: The algorithm adjusts the convergence
time of the intervention as dietary intake data is continuously pro-
vided to the algorithm by a nutrition monitor tool. For instance,
assume that a user consumes 4000 kCal on a regular basis and aims
for a diet goal of 2500 kCal in 7 days. On average, there needs
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to be a steep reduction (i.e., 4000−25007 = 214.3 kCal) in consump-
tion everyday. Such a drastic reduction may be infeasible in prac-
tice. To counter this issue, our algorithm adjusts the variable 𝛾
in Algorithm 1 according to a pre-defined value from the clinical
knowledge. The algorithm will extend the minimum required inter-
vention cycles and suggest food items and their respective amounts
accordingly.

Adherence and Defiance: The algorithm can provide diet recom-
mendations for people with different degrees of attachment to the
produced suggestion list. For instance, assume that a user with a
15% defiance rate, although eating from the suggested items only,
consumes extra amounts and incurs an accumulated 15% extra con-
sumption of associated nutrients. The same goes for people with
different percentages of adherence levels. Hence, the algorithm can
optimize these deviations as well.

3.5 Goal Setting
An important input parameter in our diet recommendation system
is a diet goal. This includes specifying a target diet goal in terms
of nutrient information such as calorie intake and amounts of indi-
vidual macronutrients (i.e., carbohydrates, fat and protein) as well
as the intervention time-frame, 𝑛. Such intervention parameters
can be set by a clinical expert or automatically set according to the
well-known goals in lifestyle intervention programs. An example
of such programs is pre-diabetes lifestyle interventions, which em-
phasize a 𝜖 = 7% weight loss in a 3-month period. Here we discuss
how various demographic and personal health information about
an individual can be used to calculate the goal setting parameters
required for our algorithm.

We propose to set the calorie goals following a pre-diabetes
lifestyle, which requires a certain percentage of weight loss within
a specific time period. The calorie intake for pre-diabetic lifestyle
can be estimated using the Harris-Benedict equation [20]. Given
a person’s age (A years), height (H centimeters) and weight (W
kilograms), the basal metabolic rate (BMR) of a female subject is
calculated following the Harris-Benedict equation-

𝐵𝑀𝑅 = 655 + (9.6 ×𝑊 ) + (1.8 × 𝐻 ) − (4.7 ×𝐴) (8)
For someone with a sedentary behavior, the daily calorie intake

can be estimated as-

𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑑 = 1.2 × 𝐵𝑀𝑅 (9)
Hence, calorie intake per day following pre-diabetic lifestyle

with 𝜖% weight reduction in 𝑇 days can be calculated as-

𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑑 = 1.2×[655+(9.6×𝑊 (1−𝜖%))+(1.8×𝐻 )−(4.7×𝐴)] (10)

For male participants, the constants change and the equation
becomes-

𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑑 = 1.2× [66+ (13.7×𝑊 (1−𝜖%)) + (5×𝐻 )− (6.8×𝐴)] (11)

Since protein and sugar contribute roughly 15% and 10% of daily
calorie requirement, respectively [32, 29, 22], and each gram of both
releases 4 kCal following the Atwater method [19], protein and
sugar amounts can be calculated as-

𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑑 = 15% 𝑜 𝑓 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑑/4 (12)
𝑠𝑢𝑔𝑎𝑟𝑑 = 10% 𝑜 𝑓 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑑/4 (13)

Therefore, for a person following the pre-diabetes lifestyle pro-
gram, we can calculate their daily calorie intake, protein, and sugar,
as described above. If the goal of the program is 𝜖=5% weight loss,
one can compute these target values taking into account the current
and projected weight of the individual as given in (11). These com-
puted values are then used as inputs in our optimization problem.

Table 1: Participant demographics. All participants were
healthy and not having any chronic disease as reported by
themselves.

Cohort of 3
Age (Mean ± SD) 31.3 ± 9.03

Frequency Percentage
Gender

Female 1 33.33
Male 2 66.67

Ethnicity
White or Caucasian 2 66.7
Asian 1 33.3

Cohort of 7
Age (Mean ± SD) 28.9 ± 7.08

Frequency Percentage
Gender

Female 4 57.1
Male 3 42.9

Ethnicity
White or Caucasian 6 85.7
Asian 1 14.3

4 VALIDATION
4.1 Data Collection
We conducted two pilot studies, including a three-week-long exper-
iment with 3 participants and a one-week-long experiment with 7
additional subjects. IRB (Institutional Review Board) approval was
obtained prior to screening for eligible participants and recruiting
individuals for our study. The participants were asked to record
their food intake on a daily basis for the entire period (1 week or 3
weeks). They were provided with a mobile application, developed
by our research team, to record their food intake. A reminder was
sent to each participant every morning. The recorded food intake
data was transferred to our cloud-based database in real-time. The
food names and quantities were pulled from the database for further
analysis. From these aforementioned datasets, our intention was to
obtain the initial consumption behavior (baseline diet habit) of the
healthy subjects for this study. Demographic information of the
participants is shown in Table 1.

4.2 Initial Personalized Nutrition Database
Our diet recommendation system is developed based on USDA
nutrition dataset as a reference to calculate nutrients associated
with each food item. Later in this paper, we will present our results
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based on the average consumption pattern from the three-week-
long data collection with 3 participants and the one-week-long
data from 7 others. Figure 3 shows the average daily calorie intake,
taken over the span of monitoring period, for each user. The 3-
participant cohort had an average calorie intake of 2155 kCal. The
average calorie intake was 2925 kCal for the cohort of 7. Primary
purpose of the system is to provide its users with a step-by-step
diet recommendation sequence while being loaded with their food
habit and desired time period for the diet.

Figure 3: Average daily calorie intake by each participant
during baseline data collection. Dashed line separates the
two cohorts.

Using these data, we present our results based on two schemes-
(i) short-term monitoring and (ii) long-term monitoring.

4.3 Short-Term Diet Management
The performance of the greedy approach was analyzed per user for
each recommendation frequency (i.e., daily). For daily diet recom-
mendations, the starting calorie value and regular food habit was
initially set to the average calorie intake of the user coming from
the baseline experiment. We put a lower- and upper-limit on the
amount of food items (i.e., constraint in (7)) that can be taken by
each user in each recommendation cycle according to what seems
usual to most people. The calorie goal was set at typical goals, i.e.,
2000 kCal (female) to 2500 kCal (male) [23]. The minimum change
in nutrient intake in each cycle was set to be the average amount
of reduction/increase needed for the user to reach the calorie goal
in the desired intervention cycles (7 days, 10 days, or 4 weeks).
Different adherence and defiance levels (i.e., 100%, 90%, 80% adher-
ence and 5%, 15% and 25% defiance) to the recommended diet were
simulated for evaluating the recommendation algorithm.

Let us assume subject # 3 from our 3-weeks dataset aims for a
transition in his calorie plan, i.e., from 3650 kCal (average consump-
tion behavior) to 2200 kCal in a short period of 7 days. Because
the algorithm has access to the user’s consumption behavior, it can
generate a proper diet recommendation plan to assist the user in
achieving their goal. Figure 4 represents an analytical view on the
diet recommendation offered by the algorithm. Note that the opti-
mizer provides a suggestion list of 9 days instead of 7. With 7 days

Figure 4: An analysis on the diet recommendations made for
subject # 3 from the three-week-long data. This plot evalu-
ates the suggestion list for 3 nutrients (Energy, Protein and
Sugar). The approach can be used to control more nutrients
as needed.

of intervention, the average calorie transition per day (207.2 kCal)
becomes too steep and the algorithm increases the number of cycles
to 9 days, thereby lowering the average calorie transition per day
(160 kCal) and gradually lowering calorie consumption during this
period. Other than calories, recommendations for protein (92.20g to
56g) and sugar (255.41g to 37.5g) have also been entertained here.

As mentioned previously, this smart diet assistant has been fea-
tured and tested with adherence and defiance facilities. Diet rec-
ommendation lists have been made for subject # 3 of 3-week-long
dataset with several levels of defiance (5%, 15% and 25%) in Figure
5. Note that the diet recommendations converge to the goal of 2200
kCal after 11, 15 and 19 cycles, whereas they converged only after
9 cycles for no defiance. With several degrees of defiance levels,
consumed food items and associated nutrient values are not on par
with suggested values, which results in an increased average calorie
transition per cycle. To maintain the maximum allowed average
calorie transition per cycle, the number of cycles or convergence
time has been increased by 4, 8 and 12 days for 5%, 15% and 25% of
defiance, respectively, compared to initial target of 7 days.

4.4 Long-Term Diet Management
For all the subjects, we designed a diet recommendation sequence
assuming a pre-diabetes management through lifestyle modifica-
tions, i.e., 7% weight loss in a 90 day period [31] using the afore-
mentioned eqs. (10) to (13).

For a 19 years old female participant of 74 kilograms and 177.8
centimeters, if we focus solely on a diet intervention for weight
reduction (with no association with physical exercise), her daily
calorie goal would be-

𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑑 = 1.2 × [655 + (9.6 × 74(1 − 7%))+
(1.8 × 177.8) − (4.7 × 19)] (14)

= 1855
With further calculations, daily protein and sugar goals are-

𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑑 = 0.15 × 1855/4 = 70 (15)
𝑠𝑢𝑔𝑎𝑟𝑑 = 0.10 × 1855/4 = 46 (16)
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Figure 5: An analysis on the diet plan made for Subject # 3 with 5%, 15% and 25% defiance is shown here. This graphical
representation evaluates the suggestion list for energy only. The black dashed line refers to the user’s desired calorie goal i.e.
2200 kCal.

Table 2: Error analysis on the diet plan for subjects from 3 week-long dataset.

Subject # 1 Subject # 2 Subject # 3
Nutrient
type

Expected
Goal

Optimized
Value

Error
(%)

Expected
Goal

Optimized
Value

Error
(%)

Expected
Goal

Optimized
Value

Error
(%)

Energy
(kCal) 1635 1651.4 1 1550 1537 0.84 2370 2397.5 1.16

Protein (g) 60 63.4 5.67 58 53.8 7.2 90 92.6 2.9
Sugar (g) 40 36.6 8.5 40 46.3 15.8 60 57.5 4.2

Table 3: Error analysis on the diet recommendation for subjects from the 1-week-long dataset.

Subject # 1 Subject # 2 Subject # 3 Subject # 4
Nutrient
type Goal Optimized

Value
Error
(%) Goal Optimized

Value
Error
(%) Goal Optimized

Value
Error
(%) Goal Optimized

Value
Error
(%)

Energy
(kCal) 2115 2102.5 0.59 1855 1834.5 1.1 1700 1684 0.95 2442 2426 0.66

Protein (g) 79 62.6 20.8 70 72.4 3.4 64 68.5 7 92 98.2 6.7
Sugar (g) 53 56.4 6.4 46.5 48 3.2 42.5 36.2 14.8 61 59.2 2.95

Subject # 5 Subject # 6 Subject # 7

Nutrient type Goal Optimized
Value

Error
(%) Goal Optimized

Value
Error
(%) Goal Optimized

Value
Error
(%)

Energy (kCal) 1987 2004 0.85 2534 2538 0.16 2023 2030.5 0.37
Protein (g) 74.5 68.4 8.2 95 89.5 5.8 76 66.2 12.9
Sugar (g) 50 59.5 19 63 58 7.9 50.5 48 5

The above information has been plugged into the algorithm to
evaluate the optimization accuracy of our approach. Table 2 and
3 highlight the set goals for the weight loss program, optimized
amount and corresponding errors by the algorithm for different
nutrients for different subjects. Note that, the optimized value is
often slightly different than the desired amount because arriving to
an exact goal would require a very rare combination of food items,
which might not even exist and unusual fractional amounts of dif-
ferent food items, which we are avoiding by adopting an integer
relaxation of the original integer linear optimization problem. Fur-
thermore, dynamic convergence is not in effect here since we are
simulating for a long intervention period of 90 days which does not

impose a steep transition at all. Maximum errors found using our
optimization and goal setting approaches are 1.16%, 20.8% and 19%
for energy, protein and sugar respectively. The error will increase
with an increase in the number of goals (e.g. number of nutrients
to be monitored).

5 LIMITATIONS AND FUTUREWORK
Diet monitoring and modification can be contingent upon more
variables (e.g. physical activities, health conditions, cultural vari-
ance, etc.). We note that assessment of such contextual factors is
also non-trivial and requires significant infrastructure development,
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user study design, data collection, and algorithm design. As an ini-
tiative, we are more interested in behavioral change based diet
modification. Hence, as a significant and easily modifiable parame-
ter, our sole focus was on consumption-based diet monitoring and
modification. Genetic aspects are also out of the scope of our work
in this project. Besides, inclusion of the aforementioned parameters
will likely require a more complex computational framework and
potentially advanced machine learning algorithms and sequential
decision making modeling. Given the fact that we are interested
in a low latency approach which is highly appreciated in a mobile
health setup, our proposed scheme in this work is solely based on
users’ consumption behavior to keep the computational models
lightweight. We also acknowledge, validating the suggestions made
by our algorithm requires implementation of a large-scale clinical
trial. We also plan to study how clinical domain knowledge can
be integrated into reinforcement learning models for diet-based
behavioral interventions.

6 CONCLUSION
We presented a novel framework, a light-weight data driven smart
diet assistant scheme for diet recommendation and behavioral inter-
ventions. An optimization strategy was proposed for designing diet
recommendations while taking into account domain knowledge
gained through well-known theories in human psychology. Experi-
ments show convincing evidence in support of the proposed diet
recommendation approach, which has potential for use in behavior
change interventions.
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