
JIGSAW: Efficient and Scalable Path Constraints
Fuzzing

Ju Chen, Jinghan Wang, Chengyu Song, Heng Yin
Computer Science and Engineering Department

University of California, Riverside

Abstract—Coverage-guided testing has shown to be an effective
way to find bugs. If we model coverage-guided testing as a search
problem (i.e., finding inputs that can cover more branches), then
its efficiency mainly depends on two factors: (1) the accuracy
of the searching algorithm and (2) the number of inputs that
can be evaluated per unit time. Therefore, improving the search
throughput has shown to be an effective way to improve the
performance of coverage-guided testing.

In this work, we present a novel design to improve the
search throughput: by evaluating newly generated inputs with
JIT-compiled path constraints. This approach allows us to
significantly improve the single thread throughput as well as
scaling to multiple cores. We also developed several optimization
techniques to eliminate major bottlenecks during this process.
Evaluation of our prototype JIGSAW shows that our approach
can achieve three orders of magnitude higher search throughput
than existing fuzzers and can scale to multiple cores. We also
find that with such high throughput, a simple gradient-guided
search heuristic can solve path constraints collected from a large
set of real-world programs faster than SMT solvers with much
more sophisticated search heuristics. Evaluation of end-to-end
coverage-guided testing also shows that our JIGSAW-powered
hybrid fuzzer can outperform state-of-the-art testing tools.

I. INTRODUCTION

Exploring a program’s execution space is essential for finding
bugs and security flaws in software. Starting from a set of initial
inputs (a.k.a. seeds) to the program, an automatic testcase
generation technique is expected to quickly find more inputs
that can exercise new states that are not covered before, such
that more and more behaviors can be revealed. Because bugs
tend to reside in less-tested code, coverage-guided testing,
which aims to cover as much code as possible, is a popular
and effective way to find bugs.

Fuzzing and symbolic execution are two representative
testcase generation techniques. Fuzzing [35, 65, 78] discovers
new coverage via random search: a new input is randomly
generated or mutated from an old input, which is then tested
with the program under test (PUT) to check whether one
or more new branches are covered. Symbolic execution [10–
15, 19, 31, 32, 56, 57, 64, 77], on the other hand, performs
more systematic exploration: it collects path constraints during
the execution and uses a constraint solver like a satisfiability
modulo theories (SMT) solver [4, 21, 22, 29, 49, 50] to generate
new input that can flip branches along execution paths.

If we model the coverage-guided testing as a search problem
that tries to find an input that can satisfy a target branch’s

predicate, then the efficiency of a coverage-guided testing tool

TABLE I: Comparison of branch flipping strategies.

Tools Searching target Form of target Core search alg.

AFL [78] Whole program Native code Random search
Angora [17] Whole program Native code Gradient-guided search
SymCC [56] Path constraint SMT formula SMT solving (DPLL)
Fuzzolic [9] Path constraint SMT formula Fuzzing heuristics
JIGSAW Path constraint JIT’ed code Gradient-guided search

can be measured using the branch flip rate (i.e., how many
branches are flipped per unit time), which is determined by
two factors: search throughput and search accuracy. Search
throughput represents how many inputs can be tried per
unit time, and search accuracy specifies how likely a newly
generated input can flip a branch. Obviously, the branch flip rate
is a product of search throughput and search accuracy. Overall,
a tool with a higher branch flipping rate can achieve the same
coverage faster and is more likely to find more bugs [5].

In this work, we investigate a new point in the design space of
coverage-guided testing (Table I). Our design goal is to improve
the search throughput. Our key insight is that evaluating a new
test input with path constraints in the form of native functions,
produced by Just-In-Time (JIT) compilation, can be much faster
than both traditional approaches. Specifically, when comparing
with fuzzers that evaluate a new input with the entire PUT,
we have several observations. (1) Invoking a set of native
functions is orders of magnitude faster than executing the
whole program. (2) Since a branch’s path constraints do not
update any global state, the JIT’ed functions are side-effect
free (i.e., pure). So, evaluating new inputs with them avoids
expensive state reset processes like forking a new process. (3)
When evaluating a new test input with functions, the input
can be passed through registers and memory instead of the
file system, which eliminates the file system bottleneck [74].
(4) Because every JIT’ed function is pure (i.e., independent
of each other), we can linearly scale the fuzzing threads to
multiple cores or machines [36] without worrying about data
races and synchronization. (5) The JIT’ed path constraints are
usually free of branches, which makes it easier for modern
processors to exploit instruction-level parallelism (i.e., no mis-
speculation) and to adopt SIMD (Single Instruction Multiple
Data) instructions to further improve the throughput via data
parallelization [25]. As a result, our approach can improve
both the sequential throughput (properties 1-3) and parallel



throughput (properties 3-5).
Compared to other solvers, which also evaluate a new input

with path constraints, including JIT-compiled constraints [40,
45, 53], our approach also features several optimizations to
improve the search throughput. First, to minimize the cost
of JIT compilation, we used an in-memory JIT engine and
implemented a constraint to JIT’ed function cache. More im-
portantly, we perform constraint normalization before accessing
the cache. We observe that many path constraints essentially
perform the same check over different inputs. In other words,
the abstract syntax trees (AST) of these path constraints only
differ at the leaf nodes, so they can be solved using the same
JIT’ed function. For instance, we can reuse the same JIT’ed
function

gt(x, y) { return y - x; }

to solve constraints like a > 10, b > 20, 30 > c, etc. This
normalization process significantly increases the cache hit rate.
Second, we reduced the number of invoked native functions
by only evaluating those that will be affected by the new input.
Finally, we reduced the use of locks to allow a more scalable
parallel search.

To validate this idea, we implement a prototype, called
JIGSAW (Just-in-Time Gradient descent Search for AnsWers).
It compiles path constraints collected from the target program
into a set of native functions using the JIT engine from LLVM.
Then it performs a gradient-guided search [17, 18], a relatively
simple local search heuristic, to find an input that can flip
the corresponding branch. Our evaluation of a set of popular
applications shows that JIGSAW can achieve an average search
throughput of 637.2K inputs/sec when fuzzing path constraints
with data dependencies (a.k.a. nested branch constraints) using
a single thread, and can scale to 12.5M inputs/sec using
48 threads. The corresponding branch flipping rate is about
588.9 branches/sec using a single thread and can scale to
11.3K branches/sec using 48 threads. When solving last-branch
constraints without dependencies (a.k.a. optimistic solving),
the search throughput scales from 3.1M inputs/sec with a
single thread to 74.7M with 48 threads. The corresponding
branch flipping rate is about 35.7K and 860.0K branches/sec,
respectively. For comparison, on libpng, a recent work [74]
on improving fuzzing throughput reported a throughput around
6.5M inputs/sec with libFuzzer using 120 cores; JIGSAW can
achieve 18.1M inputs/sec with 48 cores. Interestingly, such high
search throughput allowed JIGSAW to solve path constraints
collected from real-world applications faster than SMT solvers
powered with much more sophisticated search strategies.

To evaluate JIGSAW’s impact on end-to-end coverage-guided
testing, we also implemented a hybrid fuzzer with JIGSAW as
the path constraint solver. The evaluation results showed that
the high branch flipping rate of JIGSAW allowed our hybrid
fuzzer to achieve the same code coverage faster than existing
fuzzers and symbolic executors.

In summary, we make the following contributions:
• We designed a novel approach that improves the branch

flipping rate of automated test generation.

• We implemented a prototype JIGSAW and open-sourced
it (https://github.com/R-Fuzz/jigsaw).

• We evaluated our prototype with a set of real-world
applications. The results showed that our approach can
significantly improve the search throughput, which enables
better performance in coverage-guided testing.

• We released the path constraints we collected.

II. BACKGROUND

In this section, we first provide an overview of automated
test generation techniques, including modern feedback-guided
fuzzers and symbolic execution. Then we discuss the important
factors that affect their efficiency.

Automated Test Generation. Testing is an important and
effective way to detect software bugs. However, manually
generated test cases are usually biased towards normal or
expected inputs so they do not provide enough coverage,
especially for corner cases. As a result, simply testing software
with random inputs is enough to generate many crashes [47],
most of which are exploitable. Automated test generation aims
to generate test cases to cover as much code as possible.
Fuzzing and symbolic execution are the two most popular
automated test generation techniques.

Fuzzers create inputs in a generative manner or mutational
manner. Generative fuzzers can be grammar guided [1, 23,
30, 51, 61] or learning based [33, 59, 72]. Mutational fuzzers
generally adopt two genetic operations: random mutation and
crossover [35, 47, 65, 78]. The first generation of fuzzers was
blackbox fuzzers [1, 23, 47], which just create random test
inputs. While they have successfully found many bugs, most
of those bugs are shallow; once fixed, these fuzzers cannot
go deeper and cover more code/states. The reason is that
blackbox fuzzers are aimless so they can easily generate lots
of redundant test cases. To solve this problem, greybox (a.k.a.
feedback-guided) fuzzers were invented [2, 6–8, 17, 18, 20,
27, 35, 42, 46, 55, 65, 69, 75, 76, 78]. By using lightweight
instrumentation to collect limited runtime information (e.g.,
branch coverage), greybox fuzzers can measure the progress
they have made and steadily progress towards their goals [52].

White-box fuzzers and symbolic/concolic executors [10–
15, 19, 31, 32, 56, 57, 64, 77] generate new input test cases
more systematically. They treat the test input as a sequence
of symbolic bytes. When executing the target program, a
symbolic execution engine maintains (1) a symbolic state
�, that maps program variables to symbolic expressions
and (2) a set of quantifier-free first-order formulas over
symbolic expressions that are imposed by conditional branches
(a.k.a. path constraints) [14]. Whenever the execution engine
encounters an uncovered branch, it will query an SMT solver
for the satisfiability of that branch’s predicate under current
path constraints. If the branch predicate is satisfiable, it asks
the SMT solver to return a model for the relevant inputs bytes
and generates a new test input that should be able to cover
that branch.

2

https://github.com/R-Fuzz/jigsaw


Efficiency of Test Generation. Since we only have limited
resources (CPU, memory, and time), the most important metric
for measuring an automated test generation technique is its
efficiency, i.e., how much coverage can it achieve with the
limited resources. The first component that has a huge impact
on efficiency is state/path scheduling. For fuzzers, since each
testcase represents an execution path, testcase scheduling is
the same as path scheduling. A basic observation is that if
opposite branches along a path have already been covered or
are hard/infeasible to flip, then spending more time on this
path will not give any reward (new coverage). This scheduling
problem can be generally modeled as a multi-armed bandit
(MAB) problem [16, 76] and numerous scheduling algorithms
have been proposed to improve the efficiency of fuzzers [6–
8, 28, 43, 60, 70, 71, 76].

Once a path is scheduled, the next important factor that
affects the efficiency is the speed to flip an uncovered branch.
The branch flipping problem is a typical search problem: how to
find an input that can satisfy the branch predicate and additional
path constraints that must be satisfied to reach this branch [18].
The efficiency of this step depends on two factors. The first
factor is the search algorithm. Off-the-shelf fuzzers [35, 65, 78]
do not pay much attention to this problem and rely on a random
search. As a result, their search is aimless and usually faces
difficulties when trying to flip branches with tight constraints
(e.g., magic number check). To overcome this limitation,
researchers have proposed numerous heuristics [2, 54, 60, 73].
A more general solution is to measure progress and perform a
directed search, such as splitting branches [41], using gradient-
guided search [17, 18, 66, 67], binary search [20], genetic
algorithms [27], or simulated annealing [68]. For complex
path constraints, the most efficient way so far is to use
an SMT solver, which applies a large set of sophisticated
heuristics to transform/rewrite the constraints into simpler
ones, then searches for a satisfying solution. Modern SMT
solvers usually leverage two main solving strategies for path
constraints that are in the quantifier-free theories of bit-vectors
and arrays: (1) bit-blasting, which reduces the constraints into
a corresponding SAT (boolean satisfiability) problem, then
queries an efficient SAT solver to find a solution; (2) local
search, which transforms the constraints into an objective
function and applies optimization techniques to find a solution.
Recent research also shows that employing the aforementioned
fuzzing heuristics can be beneficial [9, 45, 53]. Note that the
focus of this work is not on improving the search heuristics,
but on improving the throughput; and our approach can be
combined with any fuzzing- or local-search-based heuristics.

The second factor that affects the efficiency of branch
flipping is the number of new inputs that can be tried in a unit
of time. The more inputs a fuzzer can try, the faster it can find a
satisfying input. For this reason, efforts have also been made to
improve the throughput of fuzzers. For example, AFL [78] uses
fork_server to avoid initialization overhead. kAFL [63] avoids
instrumentation by using a hardware trace collector. Firm-
AFL [79] avoids expensive whole-system emulation through
augmented user-mode emulation. Xu et al. [74] designed three

new operating system (OS) primitives to improve the scalability
of parallel fuzzing on multi-core machines. Nyx [62] employs a
fast virtual machine reset technique. By evaluating with JIT’ed
path constraints, our approach can significantly improve the
search throughput.

Previously, the major drawback of symbolic execution has
been that collecting symbolic constraints is very slow [77], so
the overall branch flipping efficiency is not as good as greybox
fuzzers. However, recent advances in constraints collection
have largely reduced this overhead [10, 56, 57, 77].

III. OUR APPROACH

A. Insight

Our design goal is to push the search throughput (i.e., the
number of test inputs got evaluated per unit time) to the next
level. To achieve this goal, we leverage an important insight:
path constraints collected by symbolic executors are pure and

straight-line functions. Similar to a mathematical function, a
pure function always returns the same value on the same inputs
(i.e., there are no hidden dependencies over global states) and
has no side-effect (i.e., will not affect global states). This makes
pure functions an ideal target for evaluating newly generated
test inputs because P1. no side-effect means no need to perform
expensive state reset (e.g., invoking fork()). P2. no external
dependencies mean we can linearly scale the search to multiple
cores without worrying about data races and lock contention.
P3. being a function, we can easily pass the new test inputs
as arguments via registers or memory thus avoiding going
through file systems. These properties alone already eliminate
two major scalability bottlenecks identified in [74], namely
fork() and file system.

Moreover, being a straight-line function means the function
does not have any conditional branches, which means P4. it
is easier for modern processors to exploit instruction-level
parallelism without worrying about branch mis-prediction
during speculative execution.

Finally, each branch predicate is much simpler than the
original program under test, so P5 fuzzing individual branch’s
path constraints can be orders of magnitude faster than fuzzing
the whole program under test.

B. Overview

Figure 1 shows the design of JIGSAW. JIGSAW works in
a way similar to SMT solvers: 1 it takes a branch’s path
constraints (with dependencies) in the abstracted syntax tree
(AST) form as input; 2 it preprocesses the AST to find all
the input bytes and constants, and decomposes it into potential
sub-tasks; 3 it then compiles each sub-task into a function in
LLVM IR and uses LLVM’s JIT engine to compile the IR into
a native function; 4 it searches for a satisfying solution using
gradient-guided search; and 5 if a solution is found within a
time budget, it returns the solution.
A Running Example. To demonstrate how JIGSAW works,
we will use the following branch constraints as an example.
In this simple example, x is from stdin and will affect the
conditional branch at line 5. In step 1 , we use a symbolic

3



Front-end

Front-end

JIGSAW

RPC
+

i 10

<
90

❶ branch
constraints

Task 
queue

Di
sp

at
ch

er

worker thread

❷ pre-
process

❸ JIT 
engine

❹ GD 
search

sub-task

sub-task

native func

native func ❺ sat
inputs

worker thread

❷ pre-
process

❸ JIT 
engine

❹ GD 
search

sub-task

sub-task

native func

native func

Inputs 
queue

Fig. 1: Overview of JIGSAW

1 bool test(i) { return i < 13; }
2 void main() {
3 unsigned int x;
4 read(0, &x, sizeof(x));
5 if (x > 8 && test(x))
6 assert(0);

7 }

Listing 1: A running example to demonstrate the workflow.

execution engine to collect the path constraints. This can be
done by marking the input from the read system call (i.e., x)
as symbolic. When the execution reaches line 5, we have a
conditional branch whose branch predicate is symbolic, which
can be represented as the following.

1 land(

2 ugt(read(0, 32), constant(8, 32)),

3 ult(read(0, 32), constant(13, 32))

4 )

Note that path constraints are essentially a dynamic slice
of the execution trace of the PUT, so even though there
is a function call (invoking test) in the original code, a
symbolic executor will “enter” the function and collect/slice
instructions that are related to the branch, instead of collecting
test(read(0,32)). This example also shows how dependency-
based nested branch collection works. Here, both the branch
on line 5 and line 1 depend on x, so we need to solve them
together.

Next, in step 2 , we break down the (conjunct) path
constraints into two sub-tasks that should be solved jointly.
We will also normalize ASTs and map leaf nodes of ASTs
(i.e., x and constant) as arguments. This step ensures every
JIT’ed native function can return a numeric distance, so we
can calculate their approximated gradient to guide the search;
otherwise, we can only observe two binary values: true and
false. The result is as follows.

1 ugt(arg0, arg1)

2 ult(arg0, arg1)

After preprocessing, in step 3 , we compile each sub-task
into a function in LLVM IR. Note that unlike previous work [40,
45, 53], these functions are generated in memory using LLVM’s
C++ API instead of writing to files. We then use LLVM’s
JIT engine to compile each IR function to a native function.
In this step, we do not enable any optimizations during JIT

compilation, for two reasons: (1) path constraints are collected
from already optimized code and are usually not too complex;
but (2) more importantly, we found that the extra time spent
on optimization may reduce the overall branch flipping rate
because compilation is much more expensive than fuzzing
(see §VI for more details).

In step 4 , we plug two JIT’ed functions into the gradient-
guided search algorithm from Matryoshka [18] to search for a
satisfying x. This algorithm can jointly solve conjunctions of
sub-tasks.

C. Challenges

While directly fuzzing branch constraints is promising, we
need to address two critical road-blockers.

Constraint Compilation. While searching with JIT’ed native
functions offers high throughput, a slow compilation process
can become a bottleneck and cancel the benefit of faster solving
speed (see §VI). Our solution to this problem is to cache the
JIT-compiled functions so we can avoid repeatedly compiling

the same constraints. However, simply caching the raw JIT’ed
path constraints yields a mediocre cache hit rate. The reason
is that we do not see identical constraints very often. Our
insight to solve this problem is that many constraints operate
on different data (e.g., x > 8 and y > 16) are performing the
same check (e.g., ugt(arg0,arg1)); therefore we can use the
same JIT’ed function to solve both constraints. Note that our
function cache is different from the constraint cache used by
symbolic executors. A constraint cache memorizes satisfying
solutions to avoid solving the same constraints repeatedly; our
function cache saves JIT’ed functions to avoid compilation, not
solving. So, they are complementary and can be used together.

Lock Contention. While invoking JIT’ed path constraints is
highly parallelizable, data races can happen in other steps (e.g.,
updating the native function cache). A standard way to avoid
data races is to use locks; however, lock contention can also
scalability bottleneck. We apply two main strategies to avoid
lock contention: (1) we reduce data sharing thus the locations
where data race can happen; and (2) we reduce the use of
locks by using lock-free data structures.

D. Comparison with SMT Solvers

Since our prototype JIGSAW is a path constraint solver, a
natural question is: how it compares to SMT solvers. We believe

4



1 message AstNode {
2 uint32 op;
3 uint32 width; // operand width
4 string value; // used by constant expr
5 string name; // used for debugging
6 uint32 offset; // used by read expr
7 uint32 label; // for expression dedup
8 uint32 hash; // for request dedup
9 repeated AstNode children;

10 }

Listing 2: AST node for function cache lookup.

the comparison can be done at two levels. Methodology-wise,
our approach provides a new and fast way to evaluate the
satisfiability of a concrete model (i.e., assignments to symbolic
variables); therefore, our approach can also be leveraged by
SMT solvers to improve their performance. For example, we
have used path constraints collected from objdump to evaluate
the z3_model_eval() API and JIT’ed functions from JIGSAW:
the Z3 API can evaluate about 43K concrete models per second
while JIGSAW can evaluate 8M models per second.

At the tool level, our prototype JIGSAW has both advantages
and limitations. First, due to the high search throughput, our
evaluation shows that JIGSAW can solve path constraints faster
than SMT solvers. However, because JIGSAW only employs a
single search heuristic (the gradient-guided search from [17]),
it is not as capable as off-the-shelf SMT solvers. First of all,
JIGSAW can only be used to find satisfying inputs, while SMT
solvers can also be used to prove theorems. Second, our current
prototype only supports constraints in the theory of bit-vectors
while most modern SMT solvers support more theories like
arrays, floating-point numbers, and strings. Even for bit-vectors,
JIGSAW cannot identify unsatisfiable constraints and can only
solve 94% of the constraints solved by Z3. Nevertheless, we
want to emphasize that these limitations are introduced by
the search heuristic but not the methodology proposed in this
work. Therefore, these limitations can be addressed by adopting
additional heuristics from SMT solvers. For instance, similar to
Bitwuzla [48], we can apply rewriting rules to identify simple
unsatisfiable constraints and add a bit-blasting-based solver to
handle constraints that cannot be decided by local search.

IV. JIGSAW

In this section, we present the design details of JIGSAW.

A. Getting Constraints

JIGSAW relies on a concolic execution engine to collect
path constraints to be solved. To do so, we use our data-
flow sanitizer-based engine (§V). Similar to SymCC [56], our
engine collects path constraints at the LLVM IR [58] level. The
collected path constraints are then passed to JIGSAW through
shared memory.

AST for Cache Lookup. Listing 2 shows the format of
each abstract syntax tree node we use to store the collected
constraints, where op denotes the operator and children denote
the child nodes of the AST. Currently, JIGSAW supports all of
LLVM’s binary operators, including integer arithmetic, bitwise,

and logical instructions. It also supports three conversion
operators (ZExt, SExt, and Trunc) and relational comparison
instructions. We add a special operator Read to denote symbolic
input bytes. Different input bytes are distinguished with their
offset from the beginning of the input.

Nested Branches. One particular challenge during branch
flipping is that solving a single branch predicate alone is not
enough [18]. The reason is that the solution can negatively
affect preceding branches and cause the control-flow to diverge;
as a result, the new input may never reach this supposedly
solved branch. To address this problem, we need to solve these
dependent/nested branches together. In this work, we used
QSYM’s [77] approach to identify nested branches based on
data dependency: finding all precedent branches whose input
bytes overlap with the current branch.

B. Preprocessing

Since calculating the numeric approximation of gradient
works best for individual comparison instructions where we
can measure the distance, we want to avoid logical operators
inside the JIT’ed testing function. Therefore, after receiving
a solving request, the first step is to break it up into possible
sub-tasks, where each sub-task is a single AST rooted with a
comparison instruction. Then we will parse the AST to find all
the arguments (both input bytes and constants) to the testing
function.

Removing Logical Or. Due to compiler optimizations, branch
constraints may occasionally contain logical or (LOr) operators.
To remove LOr operators, we first convert a solving request
into DNF (disjunctive normal form). Each clause in the DNF
can then be solved in parallel. As long as one clause is solved,
the branch can be flipped.

Removing Logical And. After removing LOr, each sub-task
should be clauses connected with logical and (LAnd). To remove
LAnd, we will generate a separate testing function for each
clause. However, all clauses will be solved jointly (§IV-D).

Removing Logical Not. After removing LOr and LAnd, we
may still have clauses/AST with a leading logical not (LNot)
operator. Removing LNot is relatively simple, we just remove
it and set the comparison condition to its opposite (e.g., < to
�).

Arguments Mapping. To maximize the reuse of JIT’ed
functions and minimize the compilation time (§IV-E), we treat
both input data and constants as arguments to the testing
function. In our current design, the testing function takes a
single argument as an array of 64-bit integers, to support an
arbitrary length of arguments. To correctly invoke the testing
function, we need to map input bytes and constants in the AST
to the correct offsets inside the argument array. To do so, we
perform a pre-order traversal of the AST and number the leaf
nodes according to the traversal order.

5



TABLE II: Transforming a comparison operation into a distance-
based loss function. a and b are arbitrary ASTs/expressions, ✏ is a
small positive value, e.g., integer 1.

Comparison Loss function f()

slt(a, b) max(sext(a, 64)� sext(b, 64) + ✏, 0)
sle(a, b) max(sext(a, 64)� sext(b, 64), 0)
sgt(a, b) max(sext(b, 64)� sext(a, 64) + ✏, 0)
sge(a, b) max(sext(b, 64)� sext(a, 64), 0)
ult(a, b) max(zext(a, 64)� zext(b, 64) + ✏, 0)
ule(a, b) max(zext(a, 64)� zext(b, 64), 0)
ugt(a, b) max(zext(b, 64)� zext(a, 64) + ✏, 0)
uge(a, b) max(zext(b, 64)� zext(a, 64), 0)
a = b abs(zext(a, 64)� zext(b, 64))
a 6= b max(�abs(zext(a, 64)� zext(b, 64)) + ✏, 0)

C. Code Generation

After preprocessing a solving task and decomposing it into
sub-tasks, the next step is to JIT-compile each comparison
AST into a testing function that returns a distance so we can
perform a gradient-guided search. To do so, we transform the
comparison instruction into a loss function similar to previous
works [17, 18, 67]. Table II shows the transformation. To
minimize the impact of integer overflow/underflow during
calculation, we first extend both operands into 64-bit numbers.
For each unsigned comparison, we perform a zero extension
(ZExt). For each signed comparison, we perform a signed
extension (SExt). Then we apply the max operation to avoid
any negative distance. This is done by performing the original
comparison followed by a conditional move (i.e., Select)
instruction. Because our AST language is close to LLVM
IR, the rest of the code generation is straightforward: just
perform a post-order traversal of the AST.

D. Solving

To search for a satisfying input, we use the gradient-guided
search algorithm from Matryoshka [18], which uses a numeric
approximation to calculate the gradient and is capable of
solving conjunctions of comparisons. The original algorithm
uses three search strategies to solve conjunctions of branch
constraints, in our prototype, we used a simplified version:

1) Prioritize satisfiability: try to solve the current branch
predicate first.

2) Once we find a satisfying input, use the following loss
function to solve nested branch constraints using joint
optimization:

g(x) =
nX

i=1

fi(x)

To avoid negating a previously satisfied constraint, we will
stop mutating an input byte if its new value will violate any
constraint that is satisfied previously. However, as long as
the constraint is satisfied, we will allow the input byte to be
mutated according to the gradient.

Handling Division and Remainder. During fuzzing, the
JIT’ed function may generate divide-by-zero exceptions. Instead
of capturing and recovering from such exceptions, we add a
check before each divide instruction to see whether the divisor

is zero and if so, we simply skip the execution of the current
input. Note that this handling will not prevent JIGSAW from
finding a satisfying solution, as a solution that will trigger
a divide-by-zero exception is not a satisfying solution. This
handling will not prevent the coverage-guided testing from
discovering divide-by-zero bugs either. To detect divide-by-
zero bugs in the PUT, the concolic executor needs to explicitly
check if divide-by-zero is possible (i.e., adding an assertion
for divisor 6= 0) under the current path constraints.

E. Scaling

While the single thread design presented so far already
provides a much higher branch flipping rate than existing
fuzzers (e.g., AFL and Angora), another major design goal of
JIGSAW is to provide linear scalability to multiple cores. As
mentioned in §III, searching for a satisfying input with JIT’ed
path constraints should be highly scalable, as there are no
interdependencies between different solving threads. However,
constructing the solving task may become a bottleneck. In this
subsection, we discuss how we improve the scalability of task
construction.

Parallelized Solving. We scale the solving to multiple cores
using threads instead of processes, as communication through
shared memory is easier and more efficient. Moreover, two
properties of our JIT’ed functions allow us to do so. (1) They
have no side effects after the invocation, so we do not need
to clean up. (2) They do not have external dependencies, so
we do not need to worry about interference between different
threads. Finally, thanks to property (1), we can further avoid
the expense of creating threads by using a thread pool, because
once a side-effect-free solving task is done, the thread is ready
to handle another task.

Function Cache. While LLVM’s JIT engine is easy to adopt,
it is also much slower than other JIT engines like the TCG
(tiny code generator) from QEMU. Fortunately, many path
constraints collected during fuzzing are very similar (e.g.,
performing the same check over different input data). Based
on this observation, we designed a function cache to minimize
the invocation of the JIT engine. To further maximize the reuse
of compiled testing functions, we also treat all constants in
the constraints as input arguments to the testing function. By
doing so, constraints like a+ b < 10 and c+ d < 40 can now
reuse the same testing function.

Essentially, our function cache maps a partial AST (excluding

all leaf nodes) to a compiled function. To speed up the look-up
and tree comparison, we added a hash value to each AST node.
Since we treat both input bytes and constants as arguments to
the testing function, each leaf node has a hash value according
to the preorder traversal (i.e., the corresponding argument
index). For each non-leaf node, its hash is calculated using
its operator and the hash(es) of its operand(s) (i.e., hash(es)
of child node(s)). This is similar to a Merkle tree (except we
do not use a crypto hash function), so if the hash values of
two ASTs are different, we do not need to perform a more
expensive recursive equality comparison.

6



Since it is important to maintain a high cache hit rate, we
use a global function cache instead of per-thread caches.

Avoiding Lock Contentions. We minimize the use of locks.
First, each task construction thread has its own LLVM JIT
engine to avoid sharing. Second, the dispatcher and solving
threads communicate with a lock-free queue. Third, we
implement the function cache with a lock-free hash table.
Finally, we minimize dynamic memory allocation and use the
TCMalloc [34] from Google to reduce contentions caused by
malloc and free.

V. IMPLEMENTATION

In this section, we provide some implementation details
of JIGSAW and additional components to support end-to-end
fuzzing.

JIGSAW. We implemented JIGSAW in C++ with about 4,800
lines of code. The gradient-guided search algorithm is a re-
implementation of Angora’s. We used the ORC JIT APIs
from LLVM for JIT compilation. We used the CTPL1 for
the thread pool, and an open-source implementation based on
linear probing2 for the hash table. For the heap allocator, we
used the TCMalloc from Google.

Constraint Collector. JIGSAW can support different symbolic
executors as the front-end constraint collector. In our evaluation,
we used our concolic execution engine based on the data-flow
sanitizer (DFSan)3. We chose this DFSan-based constraints
collector for a better comparison with Angora [17]. We re-
implemented QSYM’s dependency forest [77] to identify nested
branches. To support C++ programs, we used the instrumented
libc++ library.

Hybrid Fuzzer. JIGSAW itself acts as a solver. To perform end-
to-end coverage-guided test generation, we still need a fuzzing
driver to close the loop. For the evaluation, we implemented a
hybrid fuzzer based on Angora [17].

VI. EVALUATION

In this section, we evaluate our prototype JIGSAW, aiming
to answer the following research questions.
• RQ1: Does it improve the search throughput?
• RQ2: Can it improve the branch flipping rate?
• RQ3: Can it scale well with the increase of CPU cores?
• RQ4: Can it improve the performance of coverage-guide

testing?

Experiment Setup. All evaluation was done on a workstation
with two-socket, 48-core, 96-thread Intel Xeon Platinum 8168
processors. The workstation has 768G memory. The GPU is
Quadro P5000. To minimize the impact of I/O, we used four
Intel 512G Pro 7600 NVME SSD in a RAID-1 setup. The
operating system is Ubuntu 18.04 with kernel 5.4.0. The file

1https://github.com/vit-vit/ctpl
2https://github.com/cmuparlay/parlaylib/
3https://github.com/ChengyuSong/Kirenenko

TABLE III: Details of real-world applications used for evaluation.

Program Version #Constraints Program Version #Constraints

objdump 2.33.1 372,880 libpng 1.2.56 626,480
size 2.33.1 604,610 openssl-x509 b0593c0 1,000,000
nm 2.33.1 1,000,000 libjpeg-turbo b0971e4 494,695
readelf 2.33.1 1,000,000 mbedtls 4c08dd4 377,542
tiff2pdf 4.1.0 803,036 libxml2 2.9.2 942,240
file 5.39 1,000,000 vorbis c1c2831 47,387
tcpdump 4.9.3 1,000,000 sqlite3 c78cbf2 769,548

TABLE IV: Solving capability comparison. The timeout of JIGSAW
is set to one million iterations (JIGSAW-1M). The timeout of Z3
and Bitwuzla is set to 60 seconds (Z3-60s, baseline). The timeout
of Bitwuzla local search (LS) only mode is also set to 1M updates.
Nested means the percentage of solved nested branch constraints.
Single means the percentage of solved last branch constraints.

Solver Nested vs. Z3-60s Single vs. Z3-60s

Z3-60s 50.07% - 89.17% -
STP 49.04% 0.98 89.13% 1.00
YICES2 49.07% 0.98 89.05% 1.00
Bitwuzla-60s 50.17% 1.00 89.13% 1.00
Bitwuzla-LS-1M 48.36% 0.97 88.40% 0.99
JIGSAW-1M 46.96% 0.94 87.97% 0.99

system is XFS. JIGSAW was compiled with LLVM 9.0.0 with
-O3. For Z3, we used version 4.8.7.

Dataset. We used two datasets in our evaluation. The first
dataset includes 14 real-world programs (Table III). We use
this dataset to answer RQ1, RQ2, and RQ3. To answer RQ4,
our main dataset is the Google Fuzzbench [37]. To compare
with fuzzers that are not supported by Fuzzbench, we use part
of our first dataset.

A. Constraint Solving Performance

To evaluate the solving performance, we collected about 10
million path constraints from 14 real-world programs (Table III).
We first use AFL to fuzz the target programs for 48 hours
(single instance, non-deterministic mode, no dictionary). Then
we ran our DFSan-base constraint collector over the corpora
generated by AFL and serialized path constraints required to
negate every branch to files. We chose to load the collected
constraints from files to minimize the impact of the constraint
collector (which will be evaluated in §VI-B). Because the
numbers of seeds found by AFL vary a lot across the programs,
to ensure we have enough constraints from every program,
we only applied a light filter when collecting the constraints,
which avoids duplicated constraints from the same seed. For
programs with more seeds, we cut off at 1 million. The collected
path constraints include both satisfiable and unsatisfiable ones,
reflecting the real scenario during hybrid fuzzing.

Solving Capability. Before evaluating the search throughput
and branch flipping rate, we first compared JIGSAW’s solving
capability with a set of SMT solvers that provide C/C++
bindings, including Z3 [21], STP [29], Yices2 [22], and
Bitwuzla [48]. For Bitwuzla, we evaluated two different modes:
(1) the configuration that won the SMT-COMP 2021 [49]

7

https://github.com/vit-vit/ctpl
https://github.com/cmuparlay/parlaylib/
https://github.com/ChengyuSong/Kirenenko


Fig. 2: Constraints processing time distribution (in micro-seconds). Because of the large data set, we use boxenplot [38] for illustration. The
centerline indicates the median. The first two boxes surrounding the center line contain 50% of the data. Each successive level outward
contains half of the remaining data. We use award-winning configurations [49] for Bitwuzla. Bitwuzla-LS is Bitwuzla in local search only
mode.

(denoted as Bitwuzla), and (2) the configuration that only uses
local search without bit-blasting (denoted as Bitwuzla-LS).
Besides trying to understand the limitations of the gradient-
guided search heuristic, this evaluation also helps us to set
the proper timeout for the following experiments. For this
purpose, we used large timeout setups in this experiment: 1
million iterations for JIGSAW (denoted as JIGSAW-1M) and
Bitwuzla-LS, and 60 seconds for Z3 and Bitwuzla. For STP and
Yices2, we either did not find a timeout setting or the timeout
functionality did not work well, to avoid getting stuck in the
middle of the evaluation, we removed timeout constraints (using
Z3) from the dataset when evaluating these two tools. Note that
the version of Z3 we used (4.8.7) does not support timeout on
get_model(), the API to retrieve a satisfying assignment. So
we modified its source code to support a timeout. As a result,
there are cases where Z3 deems the constraints are satisfiable
but cannot return a model within the timeout. We consider
these cases as not solved.

The result is shown in Table IV. All the results returned by
JIGSAW were verified by Z3 to validate their correctness. At
1M iterations, JIGSAW was able to solve 93.8% of the nested
branch constraints Z3 can solve within 60 seconds. We also
evaluated last-branch constraints because, in QSYM [77], the
authors have demonstrated that inputs satisfying just the last
branch can also lead to new coverage in many cases. For last-
branch constraints (i.e., without nested dependencies), JIGSAW
was able to solve 98.65% of the constraints Z3 can solve
within 60 seconds. Based on the results, we conclude that
JIGSAW’s simple gradient-guided search algorithm (§IV-D) is
capable enough to solve most constraints, especially last branch
constraints.

To understand why certain constraints are not solved by
JIGSAW, we analyzed the distribution of the following factors
in the solved and unsolved constraints: (1) involved operations,
(2) AST size of a constraint, and (3) the number of nested

constraints. The result shows the two most important factors.
First, a large portion of constraints with udiv, urem, and xor are
not solved by JIGSAW, due to the loss of gradient. Specifically,
when estimating the gradient, the algorithm adds a small ✏ (±1)
to each input byte and then calculates the change of distance to
the objective (Table II). However, when the constraints include
division or bitwise masking, ±1 is usually too small to change
the distance, so the gradient estimation would fail. The second
factor is a well-known limitation of gradient-guided search:
when the constraints are not convex, the joint-optimization can
get stuck at a local minimum. On the contrary, the backtracing
strategy used by SMT solvers can avoid this. We want to
emphasize again that these are the limitations of the search
heuristic used in our prototype, but are not limitations of the
proposed methodology (i.e., using JIT’ed path constraints to
evaluate inputs); and our approach can be combined with other
search heuristics to overcome these limitations.

Solving Efficiency. Figure 2 shows the solving time distribu-
tion. For JIGSAW, solving time is the fuzzing time. For SMT
solvers, solving time includes checking for satisfiability and
retrieving the solution/model. As we can see, for satisfiable (sat)
constraints, JIGSAW is faster than all but Yices2. The biggest
difference between JIGSAW and other solvers is for unsolvable
(unsat) constraints. Because JIGSAW cannot tell if a set of
constraints are not satisfiable, it can only timeout. As a result,
unsat constraints will consume a lot of time if we set JIGSAW’s
timeout to a large number of iterations. On the contrary, SMT
solvers can tell whether a set of constraints are unsat rather
quickly. We also analyzed the most important factors that
would affect JIGSAW’s solving time using linear regression.
As expected, the top ones are the size of the constraint’s AST,
the number of nested constraints, and the presence of division
operations. We would like to point out again that lacking the
ability to answer unsat queries is not a fundamental limitation
of our methodology, but a limitation of our current prototype;

8



and it can be addressed by incorporating more rewriting rules
and a bit-blasting solver similar to Bitwuzla.

Choosing Timeout Setups. To enable more fair comparisons
between different tools on the metric of branch flipping rate,
we need to select appropriate timeout setups. Specifically, the
branch flipping rate is calculated as:

branch flipping rate =
number of satisfying solutions

total process time
Therefore, (1) a too-short timeout will reduce both the numera-
tor (number of satisfying solutions) and the denominator (total
processing time), and (2) a too-long timeout will unnecessarily
increase the denominator. To address this issue, we can either
fix the numerator or fix the denominator. In the following
experiments, we decided to fix the numerator because we do
not know the distribution of easy, hard, and unsat constraints
in the dataset, so if different solvers are not solving the same
set of constraints, then the results could be biased. To this end,
we leveraged the experimental results in Figure 2 to determine
the timeout setups. Specifically, we set the timeout for JIGSAW
at 1,000 iterations (denoted as JIGSAW-1K), which can solve
93.8% of all the constraints that Z3 can solve within 60 seconds.
Similarly, we set the timeout at 50ms for Z3 (denoted as Z3-
50ms), at 6ms for Bitwuzla (denoted as Bitwuzla-6ms), and at
10,000 model updates for Bitwuzla-LS (denoted as Bitwuzla-
LS-100K), which can solve 94.0%, 92.5%, and 94.5% of Z3-
60s.

TABLE V: The throughput (number of tried inputs per second) of
JIGSAW (JIGSAW-1K) and Bitwuzla (BZLA-LS-100K) in a single-
threaded execution. The first half of the table shows the results of
nested branch constraints, and the second half shows the results of
single branch constraints.

Program Nested Branch Constraints Last Branch Constraints

JIGSAW BZLA-LS JIGSAW BZLA-LS

objdump 382.3 (±2.1)K 25.7 (±0.5)K 4.3 (±0.8)M 84.9 (±1.4)K
size 1995.5 (±31.2)K 42.3 (±0.5)K 6.7 (±0.8)M 67.1 (±0.3)K
nm 4649.5 (±33.6)K 45.0 (±1.0)K 13.4 (±1.1)M 82.6 (±0.9)K
readelf 622.7 (±8.9)K 28.0 (±0.0)K 7.2 (±0.5)M 90.2 (±0.1)K
libpng 820.0 (±5.1)K 28.1 (±0.0)K 1.2 (±0.3)M 121.3 (±1.0)K
tiff2pdf 280.5 (±7.9)K 29.2 (±0.5)K 4.5 (±0.4)M 82.4 (±1.0)K
file 431.7 (±6.2)K 40.0 (±0.9)K 4.9 (±0.2)M 56.3 (±0.8)K
tcpdump 1396.9 (±18.4)K 41.3 (±0.9)K 1.7 (±0.1)M 82.0 (±0.9)K
openssl 270.2 (±40.4)K 57.4 (±0.1)K 4.2 (±0.1)M 102.5 (±0.5)K
sqlite3 3446.4 (±51.8)K 46.5 (±1.5)K 0.8 (±0.0)M 54.3 (±0.0)K
vorbis 358.4 (±11.5)K 38.5 (±0.3)K 3.1 (±0.0)M 101.0 (±1.8)K
mbedtls 61.1 (±1.6)K 37.3 (±0.8)K 2.8 (±0.1)M 26.2 (±0.2)K
libxml2 2629.4 (±13.5)K 21.0 (±0.0)K 2.4 (±0.1)M 69.1 (±0.0)K
libjpeg-turbo 110.6 (±4.1)K 6.9 (±0.0)K 0.9 (±3.5)M 42.9 (±0.1)K

Geomean 637.2K 31.7K 3.1M 71.2K

Single-thread Search Throughput. Because our primary de-
sign goal is to improve the search throughput, we first evaluated
JIGSAW’s throughput and compared it with Bitwuzla’s local
search mode. Similar to the previous experiment, all constraints
were first loaded into memory, then passed to the solver one
by one. For each set of constraints, we ran the corresponding
experiments 30 times and report the average and standard
deviation. Table V shows the result. The first half is for nested
branch constraints and the second half is for the last branch
constraints. On nested branch constraints, our search throughput

ranges from 61.1K to 4.6M inputs/sec with a single thread.
For last branch constraints, as fewer functions need to be
evaluated, our search throughput is much higher, ranging from
755.3K to 13.4M inputs/sec. The throughput on nm is much
higher than others because only about 25% of the collected
constraints are solvable; so JIGSAW spent more time searching
for a result with the JIT’ed functions. To put these numbers
into context, Angora’s search throughput ranges from 58 (file)
to 3363 (libpng) inputs/sec on the same machine. On average
(geomean across all programs) JIGSAW’s throughput (on nested
branch constraints) is about two orders of magnitude higher
(373⇥). Compared to Bitwuzla, JIGSAW’s throughput is also
much higher. Based on this experiment, we believe the answer
to RQ1 is yes: our approach indeed can significantly improve
the search throughput.

Single-thread Branch Flipping Rate. Next, we compared
our branch flipping rate with popular SMT solvers. As shown
in Table VI, JIGSAW’s branch flipping rate is also very good
when compared to SMT solvers: JIGSAW can beat other solvers
on branch flipping rate, including Yices2 and Bitwuzla (because
of the shorter timeout setup). On average, JIGSAW is 14.4⇥
faster than Z3 on solving nested branch constraints and 119.7⇥
faster on solving single branch constraints. Based on this
comparison, we believe the answer to RQ2 is yes: when the
search throughput is high enough, even with a simple search
heuristic, JIGSAW can flip branches faster than state-of-the-art
tools.

Solving Time Breakdown. Table VII shows the accumulated
time spent on different components of JIGSAW (preprocessing,
JIT, and fuzzing), and the average function cache hit rate. The
timeout is at 1K iterations. As we can see, even with a high
cache hit rate (99.99%), a significant portion of time is still
spent on JIT compilation. Therefore, the performance could
be worse if without the code cache or with an even slower
JIT procedure (e.g., that used by [53, 61]). Similarly, we can
further improve the performance by using a faster JIT engine
and by making the cache persistent.

Effectiveness of Function Cache. To better understand
the impact of our normalized AST to function cache, we
did a comparison using 20K constraints from readelf. The
result is shown in Table VIII. As we can see, when we
enable cache with full AST matching, the cache hit rate
is only 66.9%, the JIT time is reduced by 64.3%, and the
throughput is mildly increased by 72.1%, compared to no
function cache. With our optimization that normalizes the AST
before matching, the cache hit rate increases significantly to
99.9%. The corresponding JIT time is reduced by 97.9%, and
the throughput is increased by 3.3⇥ compared to no function
cache.

Multi-thread Performance. In this subsection, we evaluate
JIGSAW’s scalability to multiple cores. We focus on two main
performance metrics: search throughput and branch flipping
rate. We tested with 8-, 16-, 24-, 32-, 40-, and 48-threads, each
thread is pinned to a real CPU core (not hyper-thread). For

9



TABLE VI: The branch flipping rate of single thread JIGSAW and comparison with popular SMT solvers. BZLA is the abbreviation of
Bitwuzla. The first half of the table shows the results of nested branch constraints; the second half shows the results of single branch
constraints.

Program Nested Branch Constraints Single Branch Constraints

Yices2 BZLA-LS-100K BZLA-6MS STP Z3-50MS JIGSAW-1K Yices2 BZLA-LS-100K BZLA-6MS STP Z3-50MS JIGSAW-1K

objdump 134.2 19.3 23.9 38.6 22.5 300.0 21.9 K 0.6 K 0.9 K 2.4 K 0.5 K 73.4 K
size 436.1 54.3 114.1 132.7 54.4 1296.0 13.9 K 0.6 K 0.7 K 1.1 K 0.6 K 34.7 K
nm 4540.4 281.4 486.4 754.7 294.5 6679.5 39.7 K 1.3 K 1.4 K 4.4 K 0.5 K 41.3 K
readelf 18.1 22.7 52.6 82.5 42.9 433.9 11.5 K 0.4 K 0.6 K 1.1 K 1.0 K 38.7 K
libpng 870.7 26.7 53.0 269.6 120.3 736.1 14.4 K 0.9 K 0.9 K 1.2 K 0.1 K 28.8 K
tiff2pdf 220.9 54.8 55.2 44.1 24.6 155.5 40.5 K 1.5 K 1.9 K 10.2 K 1.2 K 98.8 K
file 104.1 26.4 26.8 43.5 14.0 267.7 22.4 K 0.9 K 1.1 K 2.9 K 0.4 K 61.0 K
tcpdump 1298.6 155.1 147.1 435.5 92.5 1850.1 23.7 K 0.7 K 1.1 K 4.0 K 0.5 K 27.7 K
openssl 2.4 29.9 44.3 46.6 21.7 303.4 6.6 1.1 K 1.1 K 0.6 K 0.8 K 16.3 K
sqlite3 25429.2 1448.3 1338.0 2622.4 896.5 12510.5 70.2 K 2.3 K 2.3 K 7.7 K 2.0 K 156.2 K
vorbis 93.1 14.6 23.4 36.1 7.0 168.3 1.2 K 0.3 K 0.4 K 2.0 K 0.2 K 8.0 K
mbedtls 42.2 6.3 6.8 12.7 5.3 98.4 4.5 K 0.8 K 0.4 K 0.3 K 16.3 14.4 K
libxml2 3531.4 46.4 488.5 562.0 191.6 3925.3 44.0 K 2.3 K 2.1 K 5.7 K 0.3 K 113.7 K
libjpeg-turbo 2.1 4.1 2.6 4.5 4.7 38.3 92.4 192.6 226.5 214.7 53.7 8.2 K

Geomean 204.4 40.3 61.0 100.1 41.0 588.9 6.8 K 0.8 K 0.9 K 1.2 K 0.3 K 35.7 K

TABLE VII: Accumulated solving time breakdown of JIGSAW, when
solving all constraints using 1000 iterations as the timeout.

Preprocessing JIT Searching Cache Hit Rate

1328s 462s 4403s 99.99%

TABLE VIII: Benefits of using function cache, when solving 20,000
constraints from readelf.

Caching Hit Rate JIT Searching Throughput

Disabled N/A 33.9s 12.6s 229K inputs/s
Full AST 66.9% 12.1s 12.6s 394K inputs/s
Normalized AST 99.9% 0.7s 12.6s 747K inputs/s

comparison, we also tried multi-threaded Z3 where each thread
uses a separate Z3 context and solver.

Figure 3 shows the results. Overall, adding more
threads/cores can help JIGSAW increase the throughput and
branch flipping rate. The geomean of JIGSAW’s throughput can
reach 12.5M inputs/sec for solving nested branch constraints
and 74.7M inputs/sec for solving single branch constraints. The
geomean of JIGSAW’s branch flipping rate can reach 11.3K
branches/sec and 860.0K branches/sec, respectively. For Z3,
we did not observe much improvement when adding more
parallelism, due to lock contention. Based on this experiment,
we conclude that the answer to RQ3 is yes: our approach can
scale well to multiple cores.

To put the numbers into context, Xu et al. reported a

Fig. 3: Average search throughput and branch flipping rate of JIGSAW
on multiple cores.

throughput of around 6.5M inputs/sec when fuzzing libpng
with libFuzzer, using 120 CPU cores and their new OS
primitives [74]. For libpng, the peak throughput of JIGSAW,
using 48 cores, can reach 18.1M inputs/sec for solving nested
branch constraints and 36.9M inputs/sec for solving single
branch constraints; which is about 22.1⇥ and 30.9⇥ faster than
single thread mode, respectively. The corresponding branch
flipping rate can reach 15.0K branches/sec for solving nested
branch constraints and 895.1K branches/sec for solving single
branch constraints; which is also about 21.4⇥ and 31.0⇥ faster
than single thread mode, respectively.

B. End-to-End Fuzzing Performance

In this subsection, we evaluate the effectiveness of JIGSAW
on coverage-guided test generation. We choose the Z3 solver as
the main comparing target in the end-to-end fuzzing evaluation
for the considerations below:
• Z3 is widely adopted by recently concolic executors, such

as QSYM [77], SymCC [56], SymQEMU [57], and Fuz-
zolic [10]. Using Z3 makes it easier to tell how much
performance gain is from our DFSan-based constraint
collection engine, and how much is from JIGSAW.

• All other solvers are not as robust as Z3 and can get stuck
in the middle of a fuzzing campaign because they either do
not provide APIs to specify a timeout (Yices2) or that API
does not work well (STP).

Concolic Execution Performance. We first compare JIGSAW
with other state-of-the-art concolic execution (CE) engines and
fuzzers on flipping all symbolic branches along execution traces
of a fixed set of seeds. As argued in [57], this experiment setup
removes the path scheduling variable from the comparison so
the result can better reflect the end-to-end branch flipping
performance (i.e., path constraints collection + constraints
solving). The first two configurations to compare are Z3-10s
and Z3-50ms, which share the same hybrid fuzzing driver as
JIGSAW but use Z3 as the solver. The 10 seconds timeout is the

10



TABLE IX: Comparison of concolic execution engines on flipping all
symbolic branches along a single execution trace. The top half shows
the execution time, the bottom half shows the basic-block coverage
measured by SanitizerCoverage.

Programs JIGSAW Z3-10s Z3-50ms Angora SymCC Fuzzolic

readelf 2.2h 51.3h 12.6h 89.5h 546.6h 48.2h
objdump 12.3h 227.5h 29.6h 411.5h 373.5h 52.2h
nm 0.3h 18.1h 3.2h 72.3h 29.3h 48.2h
size 0.1h 8.4h 1.4h 16.8h 12.6h 5.2h
libxml2 0.2h 9.3h 3.6h 58.0h 52.3h 20.9h

readelf 7923 7957 7423 8287 6410 5843
objdump 4926 4926 4865 4846 4929 4689
nm 3347 3347 3329 3339 3122 3123
size 2453 2457 2449 2406 2229 2259
libxml2 6038 6233 6034 5952 6012 6022

setting used by other concolic executors [56, 57, 77] and 50ms
timeout is the setting that offers a similar solving capability
as JIGSAW-1K. The next one is Angora [17]. We believe the
comparison with Angora is especially meaningful because:
(1) Our constraint collector and Angora’s taint analysis are
both implemented based on DFSan; and (2) JIGSAW uses the
same gradient-guided searching algorithm as Angora so the
main difference is the search throughput. In short, JIGSAW,
Z3, and Angora are almost identical except for how they try
to flip a particular branch: Angora [17] performs gradient-
guided search with the original program, JIGSAW performs
gradient-guided search with the JIT’ed path constraints, and
Z3 performs SMT solving with path constraints. We believe
this setup can better reflect JIGSAW’s impact on end-to-end
fuzzing. We also compared with SymCC [56], a state-of-the-art
CE engine also uses compile-time instrumentation to collect
constraints. Since it also uses Z3 as the solver, comparison
with it shows the advantages of our DFSan-based constraint
collector. The last one is Fuzzolic [10], with Fuzzy-Sat [9],
another fuzzing-based constraint solver. Note that we have
disabled input level timeout so all tools will finish flipping all
branches in one seed before moving on to the next.

Table IX shows the results over the corpora from Neuzz4.
As we can see, JIGSAW can flip branches much faster than
other tools. Z3-50ms was faster than Z3-10s but also flipped
fewer branches (i.e., achieved lower code coverage). We want
to point out that most other tools cannot even finish processing
the corpora in 24 hours, which means under a normal fuzzing
setup where the seed level timeout is enabled, they may have
problems flipping branches in deep execution traces.

Local Fuzzing. Next, we evaluated three fuzzers that are not
supported by Fuzzbench. The first one is Angora [17]. We want
to emphasize again that the comparison between JIGSAW, Z3,
and Angora (where everything is the same except the solver)
can better reflect JIGSAW’s impact on end-to-end fuzzing. Note
that for a better comparison with Angora, JIGSAW and Z3 use
Angora’s AFL mutator instead of AFL++ in this experiment.
The second one is QSYM [77], a state-of-the-art hybrid fuzzer,
paired with AFL++. The third one is Neuzz [66], which also

4https://github.com/Dongdongshe/neuzz

TABLE X: Comparing JIGSAW with other state-of-the-art symbolic
executors based on their publicly available Fuzzbench results. The
metric is median coverage reached in 24 hours. We show the results
of 16 programs where all tools generate valid results. JIGSAW takes
the lead in 7 out of 16 programs among 5 hybrid fuzzers (two from
us) and 1 non-hybrid fuzzer AFL++.

Target JIGSAW Z3 SymCC SymQEMU Fuzzolic AFL++

curl 17956.5 17931.0 17622.0 17564.5 17599.5 17948.5
freetype 28026.0 27932.5 25496.0 24028.0 26371.0 27956.5
harfbuzz 8705.0 8959.0 8482.5 8482.5 8515.0 8427.0
lcms 3872.0 2874.0 3701.5 3656.0 3770.0 3446.0
libjpeg 3809.0 3802.5 3810.5 3819.0 3814.0 3798.0
libpng 2128.0 2124.0 1914.5 2149.5 2146.5 2080.5
libxml2 13010.5 13056.0 11097.0 12305.0 12072.0 12429.5
libxslt 19083.5 19064.5 18577.0 18592.5 18515.0 18963.5
mbedtls 8297.0 8310.0 8260.0 8244.5 8268.0 8252.5
openssl 13768.0 13778.0 13777.0 13777.0 13767.5 13779.0
openthread 7199.5 7197.5 5935.0 5862.5 5912.0 5837.5
proj4 6919.0 6785.0 5365.0 5314.0 5836.5 5563.5
re2 3518.0 3533.5 3521.5 3519.0 3544.5 3517.0
sqlite3 35767.0 35886.5 35478.5 35845.5 35922.5 36699.0
vorbis 2169.5 2166.5 2167.5 2168.0 2168.0 2168.0
woff2 1858.0 1875.5 1934.0 1934.0 1936.5 1871.5

uses gradient-guide search. However, instead of using numerical
approximation, it uses a neural network to approximate the
program under test. The fourth one is Fuzzolic [10] with Fuzzy-
Sat [9] as the solver. Finally, we also included AFL++ [26]
(3.12c with cmplog enabled), the state-of-the-art fuzzer.

For comparison, we used the same strategy as Neuzz [66].
Specifically, all fuzzers use a larger set of initial corpus instead
of a single seed. To facilitate better reproducibility, we used
the corpora from the Neuzz repository. We chose 5 programs
from Table III: readelf, objdump, nm, size, and libxml2, as
we can find the corresponding corpus from Neuzz’s repository
and they can be successfully compiled by Angora. Note that
we did not use the binaries in Neuzz’s repository because both
JIGSAW and Angora need to compile the target program from
the source code. To ensure a fair comparison, we followed
Fuzzbench’s setting: each fuzzing trial runs inside a docker
container which is assigned and limited to one physical CPU
core. The only exception is Neuzz, which also uses a dedicated
GPU (P5000). All experiments are run 10 times, except Neuzz,
which we cannot run in parallel. We use afl-cov to measure
the edge coverage with binaries built for Neuzz.

Figure 4 shows the accumulated coverage growth. Compared
to the two Z3 configurations, JIGSAW is better on objdump and
size, worse on nm, and similar on readelf and libxml. This
is similar to the CE testing results: given enough time (i.e.,
the per-input timeout), Z3 can solve more constraints and
achieve higher coverage; otherwise, JIGSAW can go deeper
into the execution trace and flip more branches. Compared to
Angora, JIGSAW’s coverage growth is much faster, reflecting
the advantage of its higher search throughput. For the rest
fuzzers, JIGSAW is significantly better on the four binutils
programs in terms of both final coverage and the coverage
growth rate; it achieved similar final coverage as QSYM and
AFL++ on libxml, but the coverage growth rate is higher.

11

https://github.com/Dongdongshe/neuzz


Fig. 4: Edge coverage growth over time for local fuzzing.

Fuzzbench. Next, we compared JIGSAW with other popular
fuzzers on Google the Fuzzbench dataset [37]. We used two
configurations of our fuzzing driver. The first one uses JIGSAW
as the solver, denoted as JIGSAW. The second one uses the
same setup except using Z3 with 10s timeout as the solver,
denoted as Z3. This setup is to show the benefit of JIGSAW
over Z3. Both configurations use AFL++ (commit 70bf4b4
with the default build and fuzz options5) for hybrid fuzzing.
The experiment is conducted by Google on its cloud. Due to
the page limit, we only provide a summary in this section. The
more detailed results are presented in §X.

Out of 13 fuzzers (11 state-of-the-art and 2 from us), JIGSAW
is 1st by average score and 1st (tied) by average rank, Z3 is
2rd by average score, and 1st by average rank. For median
coverage, JIGSAW leads in 4 programs, Z3 leads in 3 programs,
and AFL++ leads in 2 programs.

We also compared JIGSAW’s performance with other con-
colic executors based on their publicly available experiment
report6. Table X shows the result. We can see that JIGSAW
can outperform other CE engines including SYMCC [56],
SymQEMU [57], and Fuzzolic [10].

Analysis. Because our hybrid fuzzer with JIGSAW did
not outperform all other tools, including AFL++ across all
benchmarks in end-to-end fuzzing, we analyzed the results
to figure out the reason. The most important factor is the
ability to track branches that can be affected by the inputs.
Specifically, our constraint collector performs instrumentation
during the compile time so it cannot collect and update path
constraints in uninstrumented third-party libraries and across
system calls (e.g., when the input is written to another file and
read back). As a result, it may try to flip fewer branches
than runtime-instrumentation-based tools like QSYM [77]
and SymQEMU [57]. In addition, all the evaluated concolic
executors did not support tracking of floating-point number
constraints, so they would not try to flip branches with floating-
point number constraints. On the contrary, fuzzers like AFL++
can flip such branches.

The second issue is that the existing hybrid fuzzing scheme
cannot fully utilize JIGSAW’s fast-solving capability. Specifi-
cally, our hybrid fuzzer used the branch filter from QSYM [77]
to determine whether a branch should be flipped or not. Because

5https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/
fuzzer.py

6https://www.fuzzbench.com/reports/experimental/2021-07-03-
symbolic/index.html

this filter is coarse-grained, many branches will be filtered. As
a result, JIGSAW ended up idling most time of the fuzzing
campaign. We believe a new hybrid fuzzing scheme is required
to address this issue and leave it for future work.

Finally, the performance of a (hybrid) fuzzer is also con-
strained by other well-known factors, such as (1) the fuzzing
harness [3, 39], which limits the upper bound of the code
coverage that can be achieved (e.g., all fuzzers saturated the
coverage on some FuzzBench programs), and (2) scheduling
(e.g., which input to fuzz next and which technique (mutation
or constraint solving) to apply).

Summary. Based on these three experiments, we conclude
that the answer to RQ4 is yes: our approach can improve the
performance of coverage-guided testing.

C. Threat to Validity

There are three major threats to the validity of our evaluation.
First, although we tried to use a relatively large and diverse set
of programs for evaluation, it cannot represent all programs,
so the conclusion may not be generalizable to all programs.
Similarly, because our constraint collector and JIGSAW only
handle bitvector constraints, the conclusion may not be general-
izable to other types of constraints SMT solvers support, such
as floating-point numbers and strings. Second, the end-to-end
performance of a coverage-guided testing tool depends on many
aspects. Besides the speed of branch flipping, it also depends
on path/seed scheduling, branch filtering, seed synchronization,
randomness, etc. Although we have performed each experiment
several times and used statistical tools, the result may not truly
reflect the advantages and drawbacks of our approach. Finally,
our prototype implementation could have bugs. During our
evaluation, we have identified and fixed several bugs that led
to poor coverage, but there could be more bugs that we have
missed.

VII. DISCUSSION

In this section, we discuss the limitations of our current
prototype and potential future works.

Faster JIT Engine. In our current prototype, LLVM’s JIT
engine is a main performance bottleneck (i.e., JIGSAW spends
similar time on JIT as time on solving). We expect a faster
JIT engine that can directly compile the AST into native code
(e.g., the tiny code generator from QEMU) can help further
improve the performance and scalability of JIGSAW.

12

https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html
https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html


Better Task Scheduling. Different constraints require different
numbers of iterations to solve. Right now we use a single
timeout for all tasks. As a result, if we make this timeout too
large, more complex constraints may block simpler constraints
and reduce the total branch flipping rate; on the other hand, if
we make this timeout too small, we may not be able to solve
those more complex constraints. We plan to adopt an OS-style
scheduler to balance this. Essentially, we can prioritize simpler
constraints to be solved first but still allow more complex
constraints to run for a much longer time.

String and Floating-point Operations. Due to the limitation
of concolic execution engines (both QSYM [77] and our DFSan-
based executor), our current prototype neither collects nor
solves constraints involving string and floating-point operations.
However, as shown in previous work [45, 53], even random-
mutation-based fuzzing can be more efficient than SMT
solvers in solving constraints involving string and floating-point
operations. We believe it is possible to apply their algorithms
to JIGSAW. We will explore this direction in future work.

Better Searching Algorithms. Since the main focus of
JIGSAW is to improve the execution throughput, we did not
spend too much effort on improving the search algorithm itself
and simply adopted the numeric gradient descent algorithm
from Angora [17]. While this algorithm is general, it is not the
most efficient one [9] and does not work very well when the
number of conjunct constraints is large. We plan to investigate
and adopt other searching heuristics, including ones from SMT
solvers to overcome this limitation.

VIII. RELATED WORK

A. Improving Search Accuracy

The main task for automated test generation is solving
branch constraints. There are two main ways to improve
the performance of branch constraint solving. The first way
is to improve the efficiency of the solving algorithm. To
solve complex constraints or constraints with tight conditions
(e.g., magic bytes matching), researchers have proposed many
solutions. Vuzzer [60] uses taint analysis to find magic bytes
matching and solves them by copying the expected values.
Steelix [44] and REDQUEEN also aim to solve magic bytes and
simple input transformation but use offset inference instead of
heavy dynamic taint analysis. TaintScope [73] and T-Fuzz [54]
avoid complex constraints (e.g., checksum check) by patching
the corresponding branches. The problem with these approaches
is that they only target one or few types of constraints and
thus are not very generalizable.

Angora [17] and Matryoshka [18] use taint analysis to collect
input dependencies and use numerical gradient descent to solve
branch constraints. Eclipser [20] uses coverage information
to infer input dependencies and then uses binary search to
solve branch constraints. GreyOne [27] also uses coverage
information to infer input dependencies but the scope is
expanded to both direct dependencies and indirect dependencies,
then it uses a genetic algorithm to solve the constraints.

Whitebox fuzzers [11–15, 19, 31, 32, 64, 77] collect branch
constraints as symbolic formulas and use SMT solvers to solve
them. While SMT solvers are very powerful, they are not very
efficient at solving constraints over floating-point and strings.
To overcome this limitation, researchers have proposed using
a deep neural network to simulate the target constraints and
solve them using gradient descent [67]. They have also shown
that random-mutation-based fuzzing can be more efficient at
solving these constraints [45, 53].

JIGSAW does not aim to improve the efficiency of the solving
algorithm. We simply adopted the numeric gradient descent
algorithm from [17]. Our goal is to improve search throughput.

B. Improving Fuzzing Throughput

When a branch solving algorithm is fixed, another way to
improve the performance of branch solving is to improve the
throughput, i.e., the number of inputs that can be tried in a
given period. The most straightforward way to improve fuzzing
throughput is to improve parallelism. ClusterFuzz [36] uses
a cluster of machines to improve fuzzing throughput. The
problem, as pointed out by Xu et al. [74] is that running
several fuzzing instances in parallel does not scale very well
to multiple cores on commodity OS. To solve the bottlenecks,
they proposed new OS primitives. Besides running multiple
instances, another way to improve parallelism is to use SIMD
instructions to do data parallelization [25]. The challenge for
data parallelization, however, is conditional branches. Most
solutions will end up limiting the data parallelism [24], i.e.,
disabling deviated data lanes. JIGSAW can use both multi-core
and SIMD to improve parallelism. Compared with existing
solutions, JIGSAW’s approach is more scalable to multiple cores
as it has fewer synchronization bottlenecks; it is also more
efficient at using data parallelism because the JIT-compiled
functions do not have conditional branches.

IX. CONCLUSION

In this paper, we present a novel design to improve the
search throughput in automated test generation, based on a
powerful insight: searching for a satisfiable input is much
more efficient and scalable with path constraints than with the
whole original program. Our evaluation results showed that
our approach indeed can achieve a search throughput orders
of magnitude higher than state-of-the-art fuzzers, which can
lead to significant improvement in branch flipping rate and
end-to-end coverage-guided testing.

ACKNOWLEDGMENTS

This work is supported, in part, by the National Science
Foundation under Grant No. 2046026, No. 2133487, and the
Office of Naval Research under Award No. N00014-17-1-
2893. Any opinions, findings, conclusions, or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

13



REFERENCES

[1] Dave Aitel. An introduction to spike, the fuzzer creation
kit. presentation slides, 1, 2002.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN: Fuzzing
with input-to-state correspondence. In Annual Network

and Distributed System Security Symposium (NDSS),
2019.

[3] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo
Ivančić, Tim King, Markus Kusano, Caroline Lemieux,
László Szekeres, and Wei Wang. Fudge: fuzz driver
generation at scale. In ACM Joint European Software En-

gineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE), 2019.
[4] Clark Barrett, Christopher L Conway, Morgan Deters,

Liana Hadarean, Dejan Jovanović, Tim King, Andrew
Reynolds, and Cesare Tinelli. Cvc4. In International

Conference on Computer Aided Verification (CAV), pages
171–177. Springer, 2011.

[5] Marcel Böhme and Brandon Falk. Fuzzing: On the
exponential cost of vulnerability discovery. In ACM

Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering

(ESEC/FSE), 2020.
[6] Marcel Böhme, Valentin Manes, and Sang Kil Cha.

Boosting fuzzer efficiency: An information theoretic
perspective. In ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE), 2020.
[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,

and Abhik Roychoudhury. Directed greybox fuzzing.
In ACM Conference on Computer and Communications

Security (CCS), 2017.
[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-

hury. Coverage-based greybox fuzzing as markov chain.
In ACM Conference on Computer and Communications

Security (CCS), 2016.
[9] Luca Borzacchiello, Emilio Coppa, and Camil Deme-

trescu. Fuzzing symbolic expressions. In International

Conference on Software Engineering (ICSE), 2021.
[10] Luca Borzacchiello, Emilio Coppa, and Camil Deme-

trescu. Fuzzolic: mixing fuzzing and concolic execution.
Computers & Security, page 102368, 2021.

[11] Ella Bounimova, Patrice Godefroid, and David Molnar.
Billions and billions of constraints: Whitebox fuzz testing
in production. In International Conference on Software

Engineering (ICSE), 2013.
[12] Cristian Cadar, Daniel Dunbar, and Dawson R Engler.

KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In USENIX

Symposium on Operating Systems Design and Implemen-

tation (OSDI), 2008.
[13] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski,

David L Dill, and Dawson R Engler. Exe: automatically
generating inputs of death. In ACM Conference on

Computer and Communications Security (CCS), 2006.
[14] Cristian Cadar and Koushik Sen. Symbolic execution for

software testing: three decades later. Communications of

the ACM, 56(2):82–90, 2013.
[15] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,

and David Brumley. Unleashing mayhem on binary code.
In IEEE Symposium on Security and Privacy (Oakland),
2012.

[16] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In IEEE Symposium

on Security and Privacy (Oakland), 2015.
[17] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by

Principled Search. In IEEE Symposium on Security and

Privacy (Oakland), 2018.
[18] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:

Fuzzing deeply nested branches. In ACM Conference on

Computer and Communications Security (CCS), 2019.
[19] Vitaly Chipounov, Volodymyr Kuznetsov, and George

Candea. S2E: A platform for in-vivo multi-path analysis
of software systems. In ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2011.
[20] Jaeseung Choi, Joonun Jang, Choongwoo Han, and

Sang Kil Cha. Grey-box concolic testing on binary code.
In International Conference on Software Engineering

(ICSE), 2019.
[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient

smt solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems,
2008.

[22] Bruno Dutertre. Yices 2.2. In International Conference

on Computer Aided Verification (CAV). Springer, 2014.
[23] Michael Eddington. Peach fuzzer platform. http://www.

peachfuzzer.com/products/peach-platform/, 2011.
[24] Brandon Falk. How conditional branches work in vec-

torized emulation. https://gamozolabs.github.io/fuzzing/
2019/10/07/vectorized_emulation_condbranch.html, 2018.

[25] Brandon Falk. Vectorized emulation: Hardware ac-
celerated taint tracking at 2 trillion instructions per
second. https://gamozolabs.github.io/fuzzing/2018/10/14/
vectorized_emulation.html, 2018.

[26] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++: Combining incremental steps of
fuzzing research. In USENIX Workshop on Offensive

Technologies (WOOT), 2020.
[27] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xi-

aojun Qin, Dong Wu, and Zuoning Chen. Greyone: Data
flow sensitive fuzzing. In USENIX Security Symposium

(Security), 2019.
[28] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,

Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl: Path
sensitive fuzzing. In IEEE Symposium on Security and

Privacy (Oakland), 2018.
[29] Vijay Ganesh and David L Dill. A decision procedure

for bit-vectors and arrays. In International Conference

on Computer Aided Verification (CAV), 2007.

14

http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/
https://gamozolabs.github.io/fuzzing/2019/10/07/vectorized_emulation_condbranch.html
https://gamozolabs.github.io/fuzzing/2019/10/07/vectorized_emulation_condbranch.html
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html


[30] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In ACM SIGPLAN

Conference on Programming Language Design and Im-

plementation (PLDI), 2008.
[31] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:

directed automated random testing. In ACM SIGPLAN

Conference on Programming Language Design and Im-

plementation (PLDI), 2005.
[32] Patrice Godefroid, Michael Y Levin, and David A Molnar.

Automated whitebox fuzz testing. In Annual Network and

Distributed System Security Symposium (NDSS), 2008.
[33] Patrice Godefroid, Hila Peleg, and Rishabh Singh.

Learn&fuzz: Machine learning for input fuzzing. In
IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), 2017.
[34] Google. TCMalloc. https://github.com/google/tcmalloc.
[35] Google. honggfuzz. https://github.com/google/honggfuzz,

2010.
[36] Google. Fuzzing for security. https://blog.chromium.org/

2012/04/fuzzing-for-security.html, 2012.
[37] Google. Fuzzbench: Fuzzer benchmarking as a service.

https://google.github.io/fuzzbench/, 2020.
[38] Heike Hofmann, Karen Kafadar, and Hadley Wickham.

Letter-value plots: Boxplots for large data. Technical
report, had.co.nz, 2011.

[39] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and
Mathias Payer. FuzzGen: Automatic fuzzer generation.
In USENIX Security Symposium (Security), 2020.

[40] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang
Kunz. gosat: floating-point satisfiability as global opti-
mization. In Formal Methods in Computer Aided Design

(FMCAD), 2017.
[41] lafintel. Circumventing fuzzing roadblocks with compiler

transformations. https://lafintel.wordpress.com/, 2016.
[42] Caroline Lemieux, Rohan Padhye, Koushik Sen, and

Dawn Song. Perffuzz: automatically generating patho-
logical inputs. In International Symposium on Software

Testing and Analysis (ISSTA), 2018.
[43] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted

mutation strategy for increasing greybox fuzz testing
coverage. In IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2018.
[44] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,

Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In ACM Joint Euro-

pean Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE),
2017.

[45] Daniel Liew, Cristian Cadar, Alastair F Donaldson, and
J Ryan Stinnett. Just fuzz it: solving floating-point
constraints using coverage-guided fuzzing. In ACM

Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering

(ESEC/FSE), 2019.
[46] Valentin JM Manès, Soomin Kim, and Sang Kil Cha.

Ankou: Guiding grey-box fuzzing towards combinatorial

difference. In International Conference on Software

Engineering (ICSE), 2020.
[47] Barton P Miller, Louis Fredriksen, and Bryan So. An

empirical study of the reliability of unix utilities. Com-

munications of the ACM, 33(12):32–44, 1990.
[48] Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-

COMP 2020. CoRR, abs/2006.01621, 2020.
[49] Aina Niemetz and Mathias Preiner. Bitwuzla at the

smt-comp 2021. https://smt-comp.github.io/2021/system-
descriptions/Bitwuzla.pdf, 2021.

[50] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolec-
tor 2.0. J. Satisf. Boolean Model. Comput., 9(1):53–58,
2014.

[51] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Semantic fuzzing with
zest. In International Symposium on Software Testing and

Analysis (ISSTA), 2019.
[52] Rohan Padhye, Caroline Lemieux, Koushik Sen, Lau-

rent Simon, and Hayawardh Vijayakumar. Fuzzfactory:
domain-specific fuzzing with waypoints. In Annual ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2019.
[53] Awanish Pandey, Phani Raj Goutham Kotcharlakota,

and Subhajit Roy. Deferred concretization in symbolic
execution via fuzzing. In International Symposium on

Software Testing and Analysis (ISSTA), 2019.
[54] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz:

fuzzing by program transformation. In IEEE Symposium

on Security and Privacy (Oakland), 2018.
[55] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and

Suman Jana. Slowfuzz: Automated domain-independent
detection of algorithmic complexity vulnerabilities. In
ACM Conference on Computer and Communications

Security (CCS), 2017.
[56] Sebastian Poeplau and Aurélien Francillon. Symbolic

execution with symcc: Don‘t interpret, compile! In
USENIX Security Symposium (Security), 2020.

[57] Sebastian Poeplau and AurÃ©lien Francillon.
SymQEMU: Compilation-based symbolic execution for
binaries. In Annual Network and Distributed System

Security Symposium (NDSS), 2021.
[58] LLVM Project. LLVM language reference manual. https:

//llvm.org/docs/LangRef.html.
[59] Mohit Rajpal, William Blum, and Rishabh Singh. Not

all bytes are equal: Neural byte sieve for fuzzing. arXiv

preprint arXiv:1711.04596, 2017.
[60] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar,

Cristiano Giuffrida, and Herbert Bos. Vuzzer: Application-
aware evolutionary fuzzing. In Annual Network and

Distributed System Security Symposium (NDSS), 2017.
[61] Jesse Ruderman. Introducing jsfunfuzz. http://www.

squarefree.com/2007/08/02/introducing-jsfunfuzz/, 2007.
[62] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,

Simon Wörner, and Thorsten Holz. Nyx: Greybox
hypervisor fuzzing using fast snapshots and affine types.
In 30th {USENIX} Security Symposium ({USENIX}

15

https://github.com/google/tcmalloc
https://github.com/google/honggfuzz
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://google.github.io/fuzzbench/
https://lafintel.wordpress.com/
https://smt-comp.github.io/2021/system-descriptions/Bitwuzla.pdf
https://smt-comp.github.io/2021/system-descriptions/Bitwuzla.pdf
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/


Security 21), 2021.
[63] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik,

Sebastian Schinzel, and Thorsten Holz. kAFL: Hardware-
assisted feedback fuzzing for os kernels. In USENIX

Security Symposium (Security), 2017.
[64] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a

concolic unit testing engine for c. In ACM Joint European

Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE), 2005.
[65] Kosta Serebryany. Continuous fuzzing with libfuzzer and

addresssanitizer. In IEEE Cybersecurity Development

(SecDev). IEEE, 2016.
[66] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,

Baishakhi Ray, and Suman Jana. Neuzz: Efficient fuzzing
with neural program learning. In IEEE Symposium on

Security and Privacy (Oakland), 2019.
[67] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik

Roychoudhury, and Prateek Saxena. Neuro-symbolic
execution: Augmenting symbolic execution with neural
constraints. In Annual Network and Distributed System

Security Symposium (NDSS), 2019.
[68] László Szekeres. Memory corruption mitigation via

software hardening and bug-finding. PhD thesis, Stony
Brook University, 2017.

[69] Dmitry Vyukov. Syzkaller: an unsupervised, coverage-
guided kernel fuzzer, 2019.

[70] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun
Qian, Srikanth V Krishnamurthy, and Nael Abu-Ghazaleh.
SyzVegas: Beating kernel fuzzing odds with reinforcement
learning. In USENIX Security Symposium (Security),
2021.

[71] Jinghan Wang, Chengyu Song, and Heng Yin. Rein-
forcement learning-based hierarchical seed scheduling for
greybox fuzzing. In Annual Network and Distributed

System Security Symposium (NDSS), 2021.
[72] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu.

Skyfire: Data-driven seed generation for fuzzing. In IEEE

Symposium on Security and Privacy (Oakland), 2017.
[73] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.

TaintScope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In IEEE

Symposium on Security and Privacy (Oakland), 2010.
[74] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo

Kim. Designing new operating primitives to improve
fuzzing performance. In ACM Conference on Computer

and Communications Security (CCS), 2017.
[75] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,

Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-
fuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In IEEE Symposium on Security

and Privacy (Oakland), 2019.
[76] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,

Kai Lu, and Xu Zhou. Ecofuzz: Adaptive energy-saving
greybox fuzzing as a variant of the adversarial multi-
armed bandit. In USENIX Security Symposium (Security),
2020.

[77] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. Qsym: A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX Security

Symposium (Security), 2018.
[78] Michal Zalewski. American fuzzy lop.(2014). http://

lcamtuf.coredump.cx/afl, 2014.
[79] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,

Hongsong Zhu, and Limin Sun. Firm-afl: high-throughput
greybox fuzzing of iot firmware via augmented process
emulation. In USENIX Security Symposium (Security),
2019.

X. APPENDIX

This section includes more results from the FuzzBench exper-
iment. The full report can be retrieved at https://anonysp2022.
github.io/.

16

http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://anonysp2022.github.io/
https://anonysp2022.github.io/


17



18


	Introduction
	Background
	Our Approach
	Insight
	Overview
	Challenges
	Comparison with SMT Solvers

	JIGSAW
	Getting Constraints
	Preprocessing
	Code Generation
	Solving
	Scaling

	Implementation
	Evaluation
	Constraint Solving Performance
	End-to-End Fuzzing Performance
	Threat to Validity

	Discussion
	Related Work
	Improving Search Accuracy
	Improving Fuzzing Throughput

	Conclusion
	Appendix

