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Abstract—Physical activity is a cornerstone of chronic con-
ditions and one of the most critical factors in reducing the
risks of cardiovascular diseases, the leading cause of death in
the United States. App-based lifestyle interventions have been
utilized to promote physical activity in people with or at risk for
chronic conditions. However, these mHealth tools have remained
largely static and do not adapt to the changing behavior of
the user. In a step toward designing adaptive interventions,
we propose BeWell24Plus, a framework for monitoring activity
and user engagement and developing computational models for
outcome prediction and intervention design. In particular, we
focus on devising algorithms that combine data about physical
activity and engagement with the app to predict future physical
activity performance. Knowing in advance how active a person
is going to be in the next day can help with designing adaptive
interventions that help individuals achieve their physical activity
goals. Our technique combines the recent history of a person’s
physical activity with app engagement metrics such as when,
how often, and for how long the app was used to forecast the
near future’s activity. We formulate the problem of multimodal
activity forecasting and propose an LSTM-based realization
of our proposed model architecture, which estimates physical
activity outcomes in advance by examining the history of app
usage and physical activity of the user. We demonstrate the
effectiveness of our forecasting approach using data collected
with 58 prediabetic people in a 9-month user study. We show
that our multimodal forecasting approach outperforms single-
modality forecasting by 2.2% to 11.1% in mean-absolute-error.

Index Terms—machine learning, physical activity, wearables,
time-series forecasting

I. INTRODUCTION

Mobile health (mHealth) interventions delivered through
mobile apps have the potential to promote physical activity
and reduce sedentary time as a means of reducing the risk
of chronic diseases (e.g., cardiovascular disease, diabetes, and
some cancers). There is some evidence suggesting a modest
effect of these interventions in promoting healthy behaviors
whereas some show no or limited effects [1]. One approach to
improve the effectiveness of mHealth interventions is to offer
real-time, personalized, and adaptive interventions. A potential
direction for adaptive intervention design is to forecast a
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person’s physical activity performance and offer interventions
tailored toward the person’s needs. Such a forecasting ap-
proach must not only take into account the person’s past
physical activity performance but also integrate information
about the user’s involvement with the mobile app that delivers
intervention components (e.g., reminders, motivational feed-
back, goal settings). There are several ways researchers have
defined user engagement with apps, or app usage, including
qualitative interviews, system usage data (e.g., frequency of
use, duration of use, number of log-ins, pages viewed, etc.),
and sensor data [2]. However, to the best of our knowledge,
the user engagement data have not been used to forecast a
person’s behavioral health outcomes.

Prior research on time-series forecasting focused primarily
on using current data to predict future data of the same type.
Examples include weather forecasting, stock-market predic-
tion, traffic forecast, and energy requirements prediction uti-
lizing a variety of machine learning models [3] [4]. The utility
of neural network based models such as LSTM and ARIMA
on stock market datasets has been studied previously [5]. Prior
research also developed a regression tree to predict the time
when a particular activity will take place in a smart home
setting [6]. Nonetheless, none of these prior studies examined
how engagement in an mHealth app can be combined with
sensor-based metrics such as physical activity performance to
predict future performance levels.

In this work, our main focus is on developing machine
learning algorithms that combine physical activity and app
engagement data to predict a person’s future physical activity
performance (e.g., next-day step counts). To this end, our ap-
proach examines how engagement with an mHealth app affects
a person’s physical activity and whether we can forecast phys-
ical activity with higher accuracy when we consider the app
usage history. Understanding engagement with smartphone
app intervention and its associations with physical activity aids
in the development of personalized app-based treatments that
maximize the efficacy of mHealth interventions.

Our contributions in this work are as follows: (i) we propose
a framework for activity and user engagement monitoring and
adaptive intervention design; (ii) we present a formal definition
of the time-series activity forecasting; (iii) we propose an over-
all architecture for designing a machine learning algorithm for
multimodal activity forecasting; and (iv) we show a realization
of our proposed architecture based on an LSTM model; and (v)
we demonstrate the effectiveness of our forecasting approach
using data collected with 58 prediabetic people. Our results
show that a suitable multimodal forecasting solution’s mean-



absolute-error can be 2.2% to 11.2% less than that of single-
modality forecasting.
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Fig. 1: The overall architecture of BeWell24Plus: the system
combines lifestyle education, physical activity tracking, and
machine learning for real-time health monitoring and adaptive
physical activity intervention. The user interacts with the
educational smartphone app while their physical activity is
monitored continuously. The machine learning model uses data
collected from the app and the fitness tracker to forecast the
daily number of steps.

II. SYSTEM ARCHITECTURE & MACHINE LEARNING

We discuss the overall architecture of BeWell24Plus (shown
in Fig. 1), formulation of the forecasting problem, and machine
learning approaches for time-series activity forecasting.

A. Overview

BeWell24Plus builds on our work in designing BeWell24
[7], a multi-component smartphone app intervention that tar-
gets behavior change in the 24h-spectrum (i.e., sleep, seden-
tary time, physical activity). As shown in Fig. 1, BeWell24Plus
gathers data about the physical activity using an activity
tracker (e.g., Fitbit). It also collects data about user engage-
ment in various components of the lifestyle intervention app.
The longitudinal data are then used to train a machine learning
algorithm to forecast the user’s activity performance (e.g.,
forecasting model). Our focus in this paper is on designing this
forecasting module. Nonetheless, the forecasting model can be
used to provide adaptive interventions through an intervention
agent (e.g., another machine learning model) that adjusts the
intervention components and parameters in the app based
on the person’s physical activity performance, the predicted
performance, and other person-specific data.

B. Multimodal Forecasting

As discussed in Section I, it is possible to forecast a
variable using the past values of the same variable with deep
learning. We follow a similar approach, but in our case, we
consider additional information to train a model and make
an inference. In our case, the variable we want to forecast
is an activity pattern, such as, the number of steps in a day,
and the additional information contains the app usage history
and other activity measures, such as time spent in sedentary
activity, low-intensity physical activity (LPA), and moderate
to vigorous physical activity (MVPA) in the previous days.
Therefore, there are two broad categories of input data that we

Fig. 2: Block diagram of our forecasting with past engagement
and activity metrics. Here, for any t, at is the physical activity
measure, ut is the app usage measure, and xt is the embedding
of those two. Also, w is the window size, T is the current time
step, and T+1 is the next time step. We want to forecast yT+1,
which is a physical activity outcome in the next time step.

use in our forecasting, physical activity data and engagement
data.

Assume we are given k activity features, a =
(a(1), a(2), ..., a(k)), and p user engagement features, u =
(u(1), u(2), . . . , u(p)), for a user. Let {a1, a2, ..., aT } be the
values of a for time steps (e.g., days) 1 to T . Similarly, let
{u1, u2, ..., uT } be the values of u during time 1 to T . Let w
be the window length, i.e., number of previous days we are
considering to make our forecasting. Our goal is to forecast
the value of some physical activity outcome, yT+1 (e.g., one
of the features in a).

Depending on what input features are used, various predic-
tion models can be constructed. Using only activity features,
the forecasting model will learn function fa given by

yT+1 = fa(aT−w+1, aT−w+2, ..., aT ) (1)

Using only app engagement features, the forecasting model
will learn function fu as shown in

yT+1 = fu(uT−w+1, uT−w+2, ..., uT ) (2)

To design a forecasting model that uses both activity metrics
and engagement features, we combine at and ut to create xt

for every past value of t using an embedding function, Emb.

xt = Emb(at, ut), 1 ≤ t ≤ T (3)

Then we forecast the activity outcome, yT+1, according to
the following equation.

yT+1 = f(xT−w+1, xT−w+2, ..., xT ) (4)

This proposed forecasting approach incorporated into our
BeWell24Plus framework is visualized in Fig. 2. To realize
this forecasting approach, we propose to use an LSTM (Long
Short-Term Memory) network. LSTM networks have shown
promising results on time series classification tasks. These
models capture long-distance dependencies from sequential



data through the integration of memory cells and RNNs [8].
The forecasting models that can be obtained by training fa
and fu in (1) and (2) will be used as two baseline methods in
our analyses.

III. VALIDATION APPROACH

A. User Study

We collected data from 58 people with prediabetic con-
ditions in a 9-month clinical study. The participants were
instructed to wear a Fitbit device for as much as they could
throughout the day. For each user, we filter the data by
removing the days with a daily wear time of less than 10
hours. We also exclude the users who have data for less than
10 days. After these steps, our dataset contains data from
54 participants (40 male, 10 female). Their average age is
56.13 ± 10.55, mean BMI is 34.91 ± 6.98. For our first set
of experiments, we keep only the top 25% most active users,
based on how many times they opened the app throughout the
total intervention period. That leaves us with 14 super users in
total. The concept of super users was inspired by [9]. However,
all 54 users were involved in our second set of experiments.

B. Data Preprocessing

Initially, we have minute-level app usage and activity data
for each user. For every minute, we have a binary value
indicating whether a user accessed the app in that minute.
Additionally, we have the number of steps and duration of
sedentary activity, LPA, and MVPA in seconds in that minute.
We convert the minute-level data to daily-level values by
aggregating the minute-level features. A day is defined as the
period from 12:00 AM to 11:59 PM according to the local
time zone of the user.

The final feature set is composed of engagement measures
and activity measures. The engagement features have app
usage metrics and a piece of additional information, ‘day of the
week’. Among the app usage features, there are total minutes
used and times opened for a day. The same features have been
created on an hourly basis as well, which implicitly embeds
the ‘time of the day’ information. People usually have different
schedules for weekends and weekdays. Therefore, we believe
that the day of the week may influence the activity levels.
The ‘day of the week’ feature is implemented by creating 7
one-hot encoded columns, one for each day of the week. For
our experiments, 30 was chosen as the window size, which
means, the machine learning model would take last 30 days’
engagement metrics and physical activity metrics as input and
forecast the next-day physical activity outcomes.

C. Forecasting Model

An LSTM layer with 100 neurons, followed by a dense layer
with 50 neurons and the output neurons, was implemented
for the forecasting. The model was trained for 20 epochs
with the Adam optimizer for validating with each user. As
there are 14 super users in total and each of them has to
be on the validation set for 20 epochs, the total number of
epochs the model is trained for is 14 x 20 = 280 for activity

forecasting on super users. We divide our experiments into two
categories, regression, and classification. For the regression
experiments, mean-absolute-error (MAE) is reported, and for
the classification problem, accuracy and f-score are reported
for each threshold for the daily number of steps to walk. We
vary the threshold from 5000 to 10000 with an increment of
1000. We use the leave-one-subject-out validation method in
all our experiments.

D. Baseline Models

Our two baselines are the the performance of the models
trained with only past activity data, and the same of the models
trained with only engagement data. The first baseline is similar
to traditional forecasting models that use past data to predict
future data of the same type (i.e., here physical activity). The
second baseline is inherently different because it uses data of
different modalities for input and output.

(a) mean-absolute-error

(b) r2 value

Fig. 3: Comparing the performance of the regression-based
LSTM forecaster for different modalities on super users.

IV. RESULTS AND DISCUSSION

A. Activity Forecasting on Super Users

Fig. 3 shows the mean-absolute-error (MAE) and r2 values
of activity forecasting for multiple modalities (i.e., all features)
and single modality (i.e., either engagement features or activity
features) inputs using data from super users. When both phys-
ical activity and engagement features are used, the forecasting
model performs better on the regression problem where the
machine learning model estimates the number of steps that the
user will walk the next day. As shown in Fig. 3a, the forecast-
ing approach achieves MAE values of 1727, 1803, and 1832
for multimodal, engagement-based single-modal, and activity-
based single-modal prediction algorithms, respectively. These
results suggest that multimodal forecasting reduces the mean-
absolute-error of next-day step counts prediction by 4.2%–
5.7%. Similarly, as shown in Fig. 3b, the value of r2 is 0.57,



TABLE I: Performance of the LSTM model for activity
forecasting on all users.

Metric Multimodal Single Modality Single Modality
(Engagement) (Activity)

MAE 2081 2372 2090
r2 0.350 0.267 0.351

0.56, and 0.51 for multimodal, engagement-only, and activity-
only forecasting cases, respectively. This suggests a 2.2%
improvement in r2 value from the model with engagement-
only input features and an 11.1% increase in the r2 value
from the model with activity-only features.

(a) accuracy

(b) f-score

Fig. 4: Performance of the classification-based LSTM fore-
casting model for different modalilties on super users. The
threshold for classification is varied from 5000 to 10000 steps.

Fig. 4 shows accuracy and f-score results for the multimodal
model, single modality model with engagement features, and
single modality model with activity features. As Fig. 4b shows,
for the classification task of predicting a next-day step count
of 8000 steps, the multimodal forecasting model achieves the
highest f-score (i.e, 0.782), which is a 4.3% improvement in
the f-score of the two single modality model (i.e., 0.750).
We, however, note that for other step count thresholds (e.g.,
predicting a next-day step count of 6000 steps), the results
are not consistent with these findings, which suggests further
research in this area.

B. Activity Forecasting on All Users

Table I presents the result for forecasting on all 54 users.
Similar to Fig. 3a, we notice a performance improvement in
the multimodal approach. The multimodal forecasting reduces
the mean-absolute-error (MAE) by 0.4%–12.27%. Although
the r2 coefficient of the multimodal approach was 0.28% lower

than that of the activity-only approach, it is noteworthy that r2

coefficients can be adversely affected by outlier data points.
Finally, we note that overall, the forecasting on super users

was more effective than forecasting on all users for our dataset.
One possible reason for that observation can be the existence
of users who had very low engagement overall.

V. CONCLUSIONS AND FUTURE WORK

Time-series forecasting has been an active research area
with applications in domains including weather, traffic, and
the stock market. We formulated the problem of time-series
forecasting for activity prediction in the mHealth domain.
We presented an approach for multimodal forecasting that
combines behavioral data with user engagement with an inter-
vention app to provide insight into the relationship between
app usage and physical activity performance. Our study covers
fitness tracking, lifestyle intervention apps, and time-series
forecasting with neural networks. From the experiments, we
found that it is possible to forecast physical activity outcomes
with past app engagement and physical activity patterns. Our
findings imply the existence of a relationship between app
adherence and the physical activity of a person. The proposed
forecasting model can be used in a closed-loop system to
provide continuous, real-time, and personalized lifestyle inter-
ventions in mHealth. Our future work will focus on realizing
such a closed-loop system in active intervention studies.
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