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Abstract Large genomic insertions and deletions are a potent source of functional variation, 

but are challenging to resolve with short- read sequencing, limiting knowledge of the role of such 

structural variants (SVs) in human evolution. Here, we used a graph- based method to genotype 

long- read- discovered SVs in short- read data from diverse human genomes. We then applied an 

admixture- aware method to identify 220 SVs exhibiting extreme patterns of frequency differenti-

ation – a signature of local adaptation. The top two variants traced to the immunoglobulin heavy 

chain locus, tagging a haplotype that swept to near fixation in certain southeast Asian populations, 

but is rare in other global populations. Further investigation revealed evidence that the haplotype 

traces to gene flow from Neanderthals, corroborating the role of immune- related genes as promi-

nent targets of adaptive introgression. Our study demonstrates how recent technical advances can 

help resolve signatures of key evolutionary events that remained obscured within technically chal-

lenging regions of the genome.

Introduction
Rapid global dispersal and cultural evolution have exposed modern humans to a striking diversity 

of environments, to which they have developed numerous genetic adaptations (Fan et al., 2016). 

The vast majority of genomic research on human adaptation has focused on single- nucleotide poly-

morphisms (SNPs) and short insertions and deletions (indels) due to their ease of discovery by high- 

throughput short- read DNA sequencing (e.g., The 1000 Genomes Project Consortium, 2015; The 

International HapMap Consortium, 2007). This focus overlooks the potential impacts of larger inser-

tions, deletions, and inversions – collectively termed structural variants (SVs) – whose abundance and 

complexity are now being appreciated with the advent of long- read DNA sequencing (Audano et al., 

2019; Chaisson et al., 2015; Sedlazeck et al., 2018a). SVs impact more total sequence per genome 

than SNPs and may severely disrupt genes and regulatory elements to confer large effects on gene 

expression (Chiang et al., 2017). The size, modularity, and functional potential of SVs may offer a rich 

substrate for natural selection, as supported by several specific examples of adaptive insertions and 

deletions in diet and pigmentation- related genes (Hsieh et al., 2019; Kothapalli et al., 2016; Perry 

et al., 2007; Saitou and Gokcumen, 2019), as well as genome- wide evidence from primarily short- 

read data (Almarri et al., 2020; Sudmant et al., 2015).

More comprehensive analysis of SV evolution has been limited by the long and repetitive nature of 

many SVs. Short- read approaches to SV discovery depend on abnormalities in depth of coverage or 

other characteristics of read alignments (Kosugi et al., 2019) but achieve sensitivity of only 10–50% 

(Chaisson et al., 2019; Jakubosky et al., 2020b). In contrast, the recent development of long- read 
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sequencing methods has revolutionized SV discovery, achieving high sensitivity and specificity by 

spanning SV sequences and their unique flanking regions (Sedlazeck et al., 2018a). This application 

of long- read sequencing to human samples has dramatically expanded the catalog of known human 

variation, generating databases of hundreds of thousands of SVs discovered in globally diverse indi-

viduals (Audano et al., 2019; Ebert et al., 2021). Yet with rare exceptions (Beyter et al., 2021), these 

sequencing methods remain impractical for population- scale applications due to their high costs and 

low throughput.

We addressed this limitation by applying a hybrid approach to integrate SV discovery from long- 

read sequencing and SV genotyping in short- read sequenced datasets. Using a graph- based method, 

we genotyped a catalog of long- read discovered SVs in high- coverage short- read sequencing data 

from the 1000 Genomes Project (1KGP) (Byrska- Bishop et al., 2021). By intersecting these genotype 

data with existing RNA- seq data from human cell lines, we discovered 1121 significant associations 

between SVs and the expression of nearby genes, including several components of the human leuko-

cyte antigen (HLA) gene cluster and its interaction partners. We then applied an admixture- aware 

method to identify 220 SVs that exhibit strong allele frequency differentiation across human popula-

tions. Among the top hits, we discovered an extreme signature of local adaptation tagged by sepa-

rate insertion and deletion polymorphisms at the immunoglobulin heavy chain locus, which encodes 

key components of the adaptive immune system. Alternative alleles defining this haplotype achieve 

high frequencies in certain southeast Asian populations, but are rare or absent from other global 

populations. Searching for signatures of archaic introgression within our set of highly differentiated 

SVs further revealed evidence that the adaptive haplotype entered the modern human population via 

ancient hybridization with Neanderthals. Together, our work highlights the role of structurally complex 

and repetitive regions of the genome as hidden sources of functional diversity and evolutionary inno-

vation in the hominin lineage.

Results
Graph genotyping of structural variation
To assess the role of SVs in human adaptive evolution, we sought to combine the accuracy of long- 

read sequencing with the scale and population diversity of short- read sequencing data. To this end, 

we reanalyzed long- read sequencing data of 15 individuals from five continents (Audano et al., 2019) 

to discover a set of 107,866 SVs (Figure 1—figure supplement 1). The diversity of the long- read 

sample set (sample ancestries: three African, two American, three East Asian, two European, two 

South Asian, two hydatidiform moles [likely European]) enables SV discovery across the five conti-

nental superpopulations of 1KGP. We found that 89,979 (83.4%) of the long- read- discovered variants, 

including 30,229 (72.3%) common SVs (allele frequency [AF] ≥ 0.05), are not represented in sets of 

SVs discovered with short- read sequencing by 1KGP or the Human Genome Diversity Project (HGDP) 

(Almarri et al., 2020; Sudmant et al., 2015). Despite the much smaller size of the long- read sample 

set, we were also able to rediscover 66.0% and 17.7% of common SVs found with short reads in the 

1KGP and HGDP datasets, respectively, in agreement with results reported in previous studies (Zhao 

et al., 2021; Figure 1—figure supplement 2 and Figure 1—figure supplement 3; see Materials 

and methods). We expect that the SVs unique to the short- read datasets reflect both differences in 

the discovery sample set (i.e., many of the long- read sequenced individuals are in 1KGP, while none 

are in HGDP) and high rates of false positives in short- read SV detection (Nattestad et al., 2018). 

We additionally discovered 2.3× and 3.5× more insertions than 1KGP and HGDP, respectively, with 

an improved insertion- to- deletion ratio (1.46 in the long- read dataset; 0.40 in 1KGP; 0.37 in HGDP). 

The dearth of insertions in the short- read SV sets reflects the challenge of insertion calling with short 

reads, which have difficulty mapping sequences not present in the reference genome (Aganezov 

et al., 2020), while the excess of insertions among long- read SVs reflects a known variant calling bias 

caused by missing sequences (e.g., collapsed tandem repeats) in the GRCh38 reference (Aganezov 

et al., 2021).

We then used the graph genotyping software Paragraph (Chen et al., 2019) to genotype this set 

of long- read discovered SVs in 2504 high- coverage (30×) short- read- sequenced samples from 1KGP 

(Byrska- Bishop et al., 2021; Figure 1A; see Materials and methods). Results from benchmarking, 

using ground truth SV data from the Genome in a Bottle Consortium (Zook et al., 2020), show that 
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Figure 1. Variant graph genotyping of SVs with Paragraph. (A) Genotyping of SVs was performed using a graph- based approach that represents the 

reference and alternative alleles of known SVs as edges. The SVs used for graph construction were originally identified from long- read sequencing of 

15 individuals (Audano et al., 2019). (B) At candidate SV loci, samples sequenced with short reads are aligned to the graph along the path of best 

fit, and individuals are genotyped as heterozygous (middle), homozygous for the reference allele (right), or homozygous for the alternative allele (not 

Figure 1 continued on next page
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among both graph- based and non- graph- based SV genotyping tools, Paragraph consistently attains 

the best balance of precision and recall for both insertions and deletions (Chen et al., 2019; Hickey 

et al., 2020). Paragraph averages precision and recall rates of 0.72 and 0.70, respectively, across all 

SV types and genomic regions, and an average precision and recall of 0.86 and 0.79 when repeat 

regions are excluded (Hickey et al., 2020), underscoring its effectiveness for SV genotyping. Para-

graph achieves such accuracy by generating graph representations of SV loci, which include diverging 

paths for known alternative alleles such as SVs. Short reads are aligned to the graph along the path 

of best fit, facilitating genotyping even in structurally complex and repetitive regions (Figure 1B). 

Informed by a large catalog of candidate SV alleles discovered by long- read sequencing, graph geno-

typing thus permits the study of variants that would be difficult or impossible to discover with short- 

read data alone (Chen et al., 2019; Hickey et al., 2020; Sibbesen et al., 2018; Sirén et al., 2021).

As quality control, we filtered the resulting data based on genotyping rates and adherence to 

Hardy–Weinberg equilibrium, in accordance with Chen et  al., 2019 (see Materials and methods). 

Specifically, we removed SVs that were not successfully genotyped in ≥50% of samples, as well as SVs 

that violated one- sided Hardy–Weinberg equilibrium expectations (excess of heterozygotes) in more 

than half of the 1KGP populations. The latter scenario, whereby nearly all individuals are genotyped as 

heterozygous, is a common artifact caused by slightly divergent repetitive sequences that are falsely 

interpreted as alternative alleles at a single locus (Graffelman et  al., 2017). These filtering steps 

removed 15,580 SVs, leaving 92,286 variants for downstream analysis.

Using this remaining set, we examined the allele frequency spectrum both to provide a general 

description of the data, as well as to quantify the impacts of our unique ascertainment approach 

(Figure  1C, Figure  1—figure supplement 5). Global alternative allele frequencies were strongly 

correlated with the number of long- read- sequenced samples in which they were originally discovered 

(Audano et al., 2019), broadly supporting the accuracy of our graph genotyping results (Figure 1—

figure supplement 4). A total of 25,201 (27.3%) alternative SV alleles were absent from all 1KGP 

samples, likely reflecting ultra- rare variation within the panel of long- read sequenced genomes, as 

well as the imperfect recall (i.e., true positive rate) of SV genotyping (Chen et al., 2019). This abun-

dance of rare variation is a known feature of human populations, which have experienced rapid demo-

graphic expansion over recent history (Keinan and Clark, 2012). In contrast, a total of 1139 (1.2%) 

alternative SV alleles were observed to be fixed in the 1KGP sample and likely reflect a combination 

of assembly errors and rare variation in the reference genome. Relaxing the criterion for fixation to 

90% alternative allele frequency (thus allowing for a modest rate of false negatives) resulted in a total 

of 4947 (5.4%) fixed or nearly fixed alternative SV alleles.

The frequency spectrum of segregating variation was meanwhile shaped by an ascertainment bias 

caused by variant discovery within a small sample and genotyping within a separate and larger sample. 

This bias, which is similar to that previously described for genotyping microarrays (Lachance and Tish-

koff, 2013), is characterized by an apparent depletion of rare variation, given that such variants are 

depicted). We applied this method to the 1KGP dataset to generate population- scale SV genotypes. (C) Allele frequency spectra of SVs genotyped with 

Paragraph. The left- most bin represents SVs where the alternative allele is absent from the 1KGP sample (AF = 0). Samples are stratified by their 1KGP 

superpopulation.

The online version of this article includes the following figure supplement(s) for figure 1:

Source data 1. Superpopulation- level allele frequencies of structural variants used to construct allele frequency spectra in Figure 1C.

Figure supplement 1. Distribution of long- read discovered SVs throughout the genome.

Figure supplement 2. Allele frequencies (AFs) of SVs discovered in 2504 short- read sequenced samples from 1KGP and in 15 long- read sequenced 

individuals.

Figure supplement 3. Allele frequencies (AFs) of SVs discovered in 929 short- read sequenced samples from the Human Genome Diversity Project 

(HGDP) and in 15 long- read sequenced individuals.

Figure supplement 4. Allele frequencies of SVs genotyped with Paragraph in short- read sequenced samples from 1KGP, compared to the number of 

PacBio long- read sequenced samples in which the SVs were originally discovered (Audano et al., 2019).

Figure supplement 5. Global minor allele frequency spectrum, stratified by SV type.

Figure supplement 6. Negative relationships between SV length and global minor allele frequency, stratified by SV type.

Figure supplement 7. Histogram of LD between SVs and neighboring SNPs and short indels.

Figure 1 continued
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not shared with the discovery sample. While important to note, our study should be largely unaffected 

by this bias, due to our focus on individual variants rather than the shape of the allele frequency spec-

trum. Moreover, positively selected variants are by definition locally common and thus enriched within 

a small but globally diverse sample (Audano et al., 2019).

We next sought to test whether different classes of SVs exhibited differences in allele frequencies 

as a potential consequence of purifying selection. Among SVs that were polymorphic within the 1KGP 

sample, we observed a negative correlation between SV length and minor allele frequency (Kendall’s τ 
= –0.140, p- value < 1 × 10–10), consistent with selection against longer SVs (Figure 1—figure supple-

ment 6). We similarly observed that deletions segregated at lower average minor allele frequencies 

than insertions (β = –0.555, p- value < 1 × 10–10).

Quantifying linkage disequilibrium with known SNPs and short indels
One intriguing question regards the extent to which SV genotypes are correlated with those of known 

SNPs and indels, which has implications for the novelty of any potential discoveries based on the SV 

data. To address this question, we quantified linkage disequilibrium (LD) between the catalog of long- 

read discovered SVs and known SNPs and short indels from 1KGP. For each of the 26 1KGP popula-

tions, we computed the maximum observed LD between each SV and the nearest 100 variants within 

a 1 Mb window. Depending on the population subject to measurement, 36–41% of segregating SVs 

were in strong LD (r2 > 0.8) with any known SNP or short indel, and 52–57% were in moderate LD (r2 > 

0.5) with one of these variants (Figure 1—figure supplement 7). These observations of maximum LD 

with SNPs are slightly lower than those computed by Jakubosky et al., 2020a, which may reflect our 

ability to discover SVs in regions that are less accessible to short reads. Levels of LD were lowest for 

African populations, in accordance with known patterns of haplotype structure (Conrad et al., 2006). 

As with SNPs, these lower levels of LD suggest that the accuracy of SV genotype imputation based 

on known SNPs will be lowest in African populations, but that resolution for fine- mapping SVs that are 

potentially causal in phenotypic associations will also be highest (Wojcik et al., 2019).

We emphasize that our LD observations are strongly affected by the challenge of small variant 

discovery and genotyping in repetitive regions of the genome that are enriched for SVs. Specifically, 

50,917 of all SVs (47.2%) intersect at least partially with one or more genomic intervals deemed 

inaccessible based on the 1KGP pilot mask, and 5214 SVs (4.8%) occur within regions of the genome 

identified as problematic by the ENCODE Consortium (Amemiya et al., 2019). Nevertheless, LD with 

known SNPs and indels is a meaningful metric for our study, because it quantifies the extent to which 

SVs represent independent and unexplored variation relative to previous evolutionary studies. Low 

observed levels of LD between a substantial fraction of SVs and known variants presents an oppor-

tunity to discover novel functional associations and signatures of adaptation at loci poorly tagged by 

easily genotyped markers.

Expression quantitative trait locus (eQTL) mapping
Seeking to first test the functional impacts of common structural variation, we intersected the SV 

genotype data with RNA- seq data from an overlapping set of 447 samples from the Geuvadis Consor-

tium, which was generated from lymphoblastoid cell lines (LCLs) derived from individuals from four 

European and one African population (Lappalainen et al., 2013). We tested for associations between 

levels of gene expression and genotypes for SVs within 1 Mb from the transcription start site (TSS). 

After filtering the data on genotyping call rate, minor allele frequency, and gene expression level (see 

Materials and methods), we identified a total of 1121 SV- gene pairs with significant gene expression 

associations at a 10% false discovery rate (FDR; Figure 2A), broadly consistent with expectations from 

previous eQTL studies when scaled to the number of tested SVs (Chiang et al., 2017). SVs with signif-

icant impacts on expression tended to occur near the genes that they regulate, with 62% of significant 

SV eQTLs occurring within 100 kb of the corresponding TSS (Figure 2B).

Top gene expression associations include several genes in the HLA complex (HLA- DQB2, HLA- 

DQA2, HLA- DRB6, and HLA- P), as well as ERAP2, which encodes an endoplasmic reticulum amino-

peptidase that processes HLA ligands to lengths suitable for their binding (Figure 2C). While gene 

expression data from LCLs provides a limited snapshot of the functional implications of SVs, it is 

notable that these immune loci also exhibit strong gene expression diversity mediated by genetic 

variation.
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Figure 2. eQTL mapping of SVs. We used RNA- seq data from the Geuvadis Consortium (Lappalainen et al., 2013), obtained from LCLs derived from 

individuals from four European and one African population of the 1KGP dataset, to test for associations between SV genotypes and gene expression. 

SV- eQTL pairs that were significant at a 10 % FDR are depicted in purple. (A) Q–Q plot of permutation p- values for all SV- gene pairs tested. (B) Volcano 

plot of eQTLs and the estimated effect of the alternative allele on expression (β). (C) Distribution of the distance of significant SV eQTLs from the 

transcription start site (TSS) of their associated genes. (D) Enrichment or depletion of expression associations for SVs that overlap various ChromHMM 

chromatin state annotations from the Roadmap Epigenomics Project (GM12878 Lymphoblastoid Cells). Chromatin states with ≤0.1 % genome- wide 

representation were omitted for visual clarity.

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Summarized eQTL data underlying Figure 2.

Figure supplement 1. Relationships between gene expression and genotype for 13 exon- intersecting SV eQTLs.

Figure supplement 2. Stacked histogram of the number of variants in each 90 % credible causal set based on fine- mapping of 1121 significant SV 

eQTLs with CAVIAR (Hormozdiari et al., 2014).
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We next investigated the mechanisms through which SV eQTLs may impact gene expression. Using 

epigenetic state annotations generated by the Roadmap Epigenetics Consortium (Roadmap Epig-

enomics Consortium et al., 2015), we found a strong enrichment of significant gene expression asso-

ciations for SVs that intersect annotated enhancer elements, as well as a strong depletion of expression 

associations for SVs that intersect ‘quiescent’ sequences that are devoid of important epigenetic 

marks (Figure 2D). We also further investigated the 13 significant SV eQTLs that intersected one or 

more exons of their associated gene. Of the nine such deletions, 8 exhibited associations consistent 

with direct dosage effects on expression (i.e., a linear association between expression and deletion 

copy number; Figure 2—figure supplement 1A). Meanwhile, the three exon- intersecting insertions 

exhibited associations in both directions (one positive and two negative associations; Figure  2—

figure supplement 1B). Together, these intuitive results shed light on functional mechanisms through 

which SVs may mediate impacts on phenotypes and fitness.

Lastly, we performed fine- mapping of SV and SNP eQTLs with CAVIAR (Hormozdiari et al., 2014) 

with the goal of homing in on candidate causal variants at SV eQTL loci. Of the 1121 loci with a signif-

icant SV eQTL, 345 (30.8%) contained the SV within the 90% credible causal set. While the median 

size of the credible causal sets was 19 variants, we identified 15 loci where an SV occurred among a 

credible causal set of five or fewer variants (Figure 2—figure supplement 2). These include a 37 Kb 

deletion (27005_CHM13_del) that is among just two variants in a credible causal set for expression 

effects on MIF- AS1, a lncRNA partially encompassed by the deletion. The expression of this lncRNA 

has been previously associated with breast and gastric cancer proliferation (Ding et  al., 2019; Li 

et al., 2018). Similarly, a 3 kb insertion (20290_HX1_ins) is among two variants in a credible causal 

set for expression effects on CSF2RB, the dysfunction of which has been associated with pulmonary 

disease (Suzuki et al., 2011). While this approach offers a roadmap for future fine- mapping studies 

investigating the relative impacts of different variant classes on gene expression, we caution that the 

present analysis may still underestimate the potential causal role of SVs, due to a modestly higher 

error rate for genotyping of SVs versus SNPs (Chen et al., 2019).

Admixture-aware scan for signatures of local adaptation
We next sought to use our set of population- scale SV genotypes to search for SVs with signatures of 

local adaptation. Such locus- specific scans for local adaptation can be broadly classified into frequency 

differentiation- based and LD- based approaches (Vitti et  al., 2013). While powerful, LD- based 

methods generally require haplotype phasing and/or dense and accurate genotyping – a requirement 

that is infeasible for many of the complex and repetitive regions of the genome investigated in our 

study. In contrast, frequency differentiation- based approaches can be applied to individual loci and 

are based on the logic that positive selection tends to cause a particular allele to increase in frequency 

only in the population(s) where it became established and was advantageous. However, a limitation 

of these methods is the requirement that individuals are grouped into pre- defined populations that 

may not reflect genetic patterns or the substantial admixture exhibited by many human populations.

To overcome these limitations, we used Ohana (Cheng et al., 2017; Ilardo et al., 2018; Cheng 

et al., 2019), a maximum likelihood- based method that models individuals as possessing ancestry 

from combinations of k ancestry components, inspired by related methods (Alexander et al., 2009; 

Falush et al., 2003). The method then tests whether individual variants adhere to this genome- wide 

null model, or are better explained by an alternative model in which frequencies are allowed to vary in 

one or more populations by consequence of local adaptation. Following the precedent set by 1KGP 

(The 1000 Genomes Project Consortium, 2015), we modeled individual genomes as combinations 

of eight ancestry components, replicating known patterns of population structure at continental scales 

as well as prominent signatures of admixture within a subset of populations (e.g., African ancestry 

in Southwest US [ASW] and admixed American populations [AMR]; Figure 3A). The distribution of 

ancestry components across populations was qualitatively unaffected by the choice of k (Figure 3—

figure supplement 1).

Across all ancestry components, we identified 220 unique SVs exhibiting significant deviation from 

genome- wide patterns of allele frequency differentiation (99.9th percentile of matched distribution 

for SNPs and short indels; see Materials and methods; Figure 3B; Supplementary file 1; Figure 3—

figure supplement 1). These included 139 SVs with coordinates overlapping with annotated genes, of 

which 13 intersected with annotated exons. Seven SVs at these frequency- differentiated loci were also 
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Figure 3. Quantifying allele frequency differentiation among ancestry components. (A) To conduct an admixture- aware scan for local adaptation, 

we used Ohana (Cheng et al., 2017; Ilardo et al., 2018) to infer genome- wide patterns of ancestry in the 1KGP samples. This method models each 

individual as a combination of k ancestry components and then searches for evidence of local adaptation on these component lineages. Admixture 

proportions (k = 8) for all samples in the 1KGP dataset, grouped by population. Vertical bars represent individual genomes. (B) Using Ohana, we 

searched for evidence of local adaptation by testing whether the allele frequencies of individual variants were better explained by the genome- wide 

covariance matrix, or by an alternative covariance matrix where allele frequencies were allowed to vary in one ancestry component. The likelihood 

ratio statistic (LRS) reflects the relative support for the latter selection hypothesis. For each ancestry component, SVs with LRS > 32 are colored by their 

maximum linkage disequilibrium (r2) with any known SNP in the corresponding 1KGP superpopulation.

The online version of this article includes the following figure supplement(s) for figure 3:

Source data 1. Ancestry component results underlying Figure 3A.

Figure 3 continued on next page



 Research article      Evolutionary Biology | Genetics and Genomics

Yan et al. eLife 2021;10:e67615. DOI: https:// doi. org/ 10. 7554/ eLife. 67615  9 of 29

significant eQTLs based on our previous analysis of the Geuvadis LCL data (Supplementary file 2). 

Through comparison to results for SNPs and indels, we found that 88 of the outlier SVs we identified 

were among the top 10 most frequency- differentiated variants within a 1 Mb window, suggesting that 

these represent examples where SVs may be causal targets of selection at adaptive loci. Finally, only 

119 (54.1%) highly differentiated SVs possessed strong LD with known SNPs or short indels (r2 > 0.8; 

Figure 1—figure supplement 2), indicating that many of these loci constitute novel candidate targets 

of selection that may have been missed by previous scans.

Known and novel targets of local adaptation
Notable examples of highly differentiated loci included rs333, the Δ32 allele of the chemokine 

receptor CCR5, which is known to confer resistance to HIV infection and progression (Dean et al., 

1996). Among our results, this deletion polymorphism is the 14th most frequency- differentiated SV 

with respect to ancestry component 3, which is highly represented in Europe. The CCR5-Δ32 allele 

segregates at moderate frequencies in European populations (MAF = 10.9%) and achieves its highest 

frequency of 15.6% in the Finnish population, but segregates at low frequencies elsewhere. The 

case for historical positive selection at this locus has been contentious, with initial studies citing a 

geographic cline in allele frequencies and strong LD with adjacent microsatellite markers (Stephens 

et al., 1998), potentially driven by epidemics such as the bubonic plague or smallpox (Galvani and 

Slatkin, 2003). However, subsequent studies argued that patterns of long- range LD (Sabeti et al., 

2005) and temporal allele frequency changes based on ancient DNA (aDNA) samples (Bollback et al., 

2008) could not exclude models of neutral evolution.

Our study also identified numerous novel hits, such as a 309 bp intronic insertion in TMEM131 

(ancestry component 3), which segregates at a frequency of 63% in Finnish populations, but at a mean 

frequency of 24%   in non- European populations. This gene encodes proteins involved in collagen 

cargo trafficking from the endoplasmic reticulum to the Golgi (Zhang et al., 2020). Collagen is the 

most abundant protein in the human body and the major component of human skin. Recurrent posi-

tive selection shaping skin pigmentation and other phenotypes is one of the best described examples 

of local adaptation across human populations (Crawford et al., 2017; Jablonski, 2004).

We also identified a 2.8 kb insertion in an intron of CLEC16A, inferred to be under selection in 

ancestry component 4, which corresponds to the Peruvian (PEL), Mexican (MXL), and Colombian 

(CLM) populations of 1KGP. The insertion, which is among the strongest frequency- differentiated 

variants at its respective locus and segregates in LD with several SNPs and short indels (maximum r2 

= 0.81; Figure 3—figure supplement 3), occurs at frequencies of 52.4%, 38.3%, and 15.4%, respec-

tively, in these three populations, but is rare in others (AF < 0.04). CLEC16A is thought to impact 

susceptibility to autoimmune disorders, and SNPs in this gene have been associated with diseases 

such as type I diabetes, multiple sclerosis, and rheumatoid arthritis (Pandey et al., 2019). Notably, 

this same SV was also identified in a recent study of structural variation, which similarly reported that 

it achieves high frequency in Peruvian populations (Ebert et al., 2021).

In rare cases, multiple SVs in LD with one another captured the same underlying signature of 

frequency differentiation. One such example from South Asian populations (ancestry component 5) 

involved a linked intronic insertion and deletion in the cellular growth and morphogenesis related 

gene CSNK1G1. In this case, the reference genome carries the global minor allele, such that the 

signature of local adaptation presents as a lower frequency of the alternative allele in South Asian 

populations (60–71% for 22980_HG00514_ins; 60%–72% for 25014_HG02106_del) compared to 

other global populations (91% and 92%, respectively).

Figure supplement 1. Comparison of admixture proportions inferred by Ohana for samples in the 1KGP dataset.

Figure supplement 2. Visualization of the likelihood ratio statistic for SNPs and short indels in the genomic vicinity of the top SV hit for each ancestry 

component.

Figure supplement 3. Visualization of the likelihood ratio statistic for SNPs and short indels in the genomic vicinity of a 2.8 kb insertion in the gene 

CLEC16A.

Figure 3 continued
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Extreme signatures of adaptation at the immunoglobulin locus in 
southeast Asian populations
The SV with the strongest evidence of local adaptation across all populations was an insertion polymor-

phism in an intron of IGHG4, which codes for a constant domain of the immunoglobulin heavy chain. 

These heavy chains pair with light chains, the latter of which include a domain composed of variable 

(V), diversity (D), and joining (J) segments. Complementing their substantial germline variation, V(D)J 

loci experience somatic recombination and hypermutation to generate vast antibody repertoires – the 

defining feature of the adaptive immune system (Watson et al., 2017). This insertion polymorphism 

identified by our scan exhibits strong allele frequency differentiation in ancestry component 2, which 

is highly represented in the Chinese Dai in Xishuangbanna, China (CDX) and Kinh in Ho Chi Minh 

City, Vietnam (KHV) populations, where it achieves frequencies of 88% and 65%, respectively, while 

remaining at much lower allele frequencies in other global populations (Figure 4A,B).

The SV was originally reported as a 34 bp insertion based on long- read sequencing of the genome 

of a Vietnamese individual (HG02059) (Audano et al., 2019). Based on realignment to a modified 

version of the reference genome that includes the alternative allele, we revised the sequence of this 

insertion to 33 bp, but found that it is well supported by patterns of coverage, split reads, and soft 

clipped alignments at the SV breakpoints (Figure 4—figure supplement 1). The sequence of the 

insertion itself is repetitive within the human reference genome, with two identical copies of the 

sequence occurring ~44 and ~117 kb downstream, respectively, also within the IGH gene cluster. This 

SV is included among sets of indels called by gnomAD (Karczewski et al., 2020), 1KGP, and HGDP, 

with a slightly altered position and insertion sequence. However, it exhibits a highly skewed allele 

balance (centered on 0.2, in contrast to the expectation of 0.5) – a symptom of reference bias in read 

mapping (Chen et al., 2019) – as well as low genotyping rates (31% for CDX in 1KGP, compared with 

85% in our study). These biases result in lower estimates of the insertion’s allele frequency in East 

Asian populations (AF = 0.73 in CDX) and underscore the technical challenges of genotyping at this 

locus with traditional short- read approaches (Chin et al., 2020; Zhang et al., 2021).

Interestingly, the second strongest signature of adaptation across all populations traced to a 

nearby 135 bp deletion, which overlaps with two transcription factor binding sites for IGHE, another 

component of the constant region of immunoglobulin heavy chains. This deletion, which lies only 

33 kb upstream of the IGHG4 insertion (Figure 4A), again achieves high frequencies in the CDX and 

KHV populations (70% and 54%, respectively) but segregates at low frequencies in most other global 

populations. Despite their genomic proximity and similar patterns of frequency differentiation, these 

two SVs exhibit only modest levels of LD (r2 = 0.17), likely reflecting recombination occurring during 

or after the episode of selection.

Evidence of Neanderthal-introgressed origin of the high-frequency IGH 
haplotype
Approximately 2% of the genome of all non- African individuals traces to admixture with Neanderthals 

between 47 and 65 kya, while Oceanian populations (and Asian populations to a lesser extent) also 

possess sequences introgressed from Denisovans (Green et al., 2010; Sankararaman et al., 2012; 

Sankararaman et al., 2016; Vernot et al., 2016). Introgressed alleles, including some SVs (Almarri 

et al., 2020; Hsieh et al., 2019), are thought to have conferred both beneficial and deleterious effects 

on modern human populations, especially with respect to immune- related phenotypes (Rotival and 

Quintana- Murci, 2020). Motivated by these findings, we tested our set of highly differentiated SVs 

for evidence of archaic hominin introgression. Using results from the method Sprime (Browning et al., 

2018), which leverages patterns of divergence and haplotype structure to classify archaic introgressed 

sequences, we identified SVs that segregate in LD with putative introgressed SNPs (see Materials and 

methods). Of the 220 highly differentiated SVs, 26 (12%) exhibited moderate LD (r2 > 0.5) with puta-

tive introgressed haplotypes, while simultaneously exhibiting low allele frequencies (AF < 0.01) within 

African populations of 1KGP (Figure 4—figure supplement 2; Supplementary file 3). Notably, this 

set of candidate introgressed SVs included the IGHG4 insertion and nearby deletion, which, despite 

their low LD with one another, each tag multiple putative introgressed SNPs within the CDX popula-

tion. Indeed, the original Sprime publication reported that putative introgressed variants of IGHA1, 

IGHG1, and IGHG3 achieve high frequencies in Eurasian populations (Browning et al., 2018). The 

variants identified by Browning et al., 2018 are located in a subregion of the broader IGH locus, 
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Figure 4. Evidence for Neanderthal introgression of the adaptive IGH haplotype. (A) Local analysis of likelihood ratio statistics (LRS) in the region near 

the 33 bp insertion (red point) reveals a 325 kb haplotype encompassing 94 SNPs with strong allele frequency differentiation within ancestry component 

2. Points where the alternative allele matches an allele observed in the Chagryskaya Neanderthal genome but at a frequency of 1 % or less in African 

populations are highlighted in purple. (B) Individual haplotypes defined by the highly differentiated SNPs (LRS > 450). Four archaic hominin genomes 

are plotted at the top, while 30 randomly sampled haplotypes from each of 6 populations from 1KGP are plotted below. Archaic hominins samples 

are colored according to whether they possess more than one aligned read supporting the alternative allele at a given site. ESN refers to the Esan in 

Nigeria population of 1KGP. Other 1KGP population codes are provided in the main text.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Visualization of read alignments to a modified version of the reference genome at the IGHG4 locus including the intronic 33 bp 

insertion sequence.

Figure supplement 2. Distribution of LD between adaptive SVs and introgressed SNPs called by Sprime.

Figure supplement 3. Population- specific allele frequencies in the broader IGH region.

Figure supplement 4. Filtering of Neanderthal- introgressed alleles at the IGH locus.

Figure supplement 5. Population distribution of IGHG4 insertion using a diagnostic sequence.

Figure 4 continued on next page
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downstream of the introgressed SVs, and segregate at high allele frequency in East Asian, European, 

and American populations (Figure 4—figure supplement 3). The southeast Asian- specific haplotype 

we identify, which includes the IGHG4 insertion and nearby deletion, may have been challenging to 

discover due to the difficulties of short- read alignment and genotyping in this region of the genome 

(Zhang et al., 2021). Indeed, 80.7% of the sequence in the broader IGH locus was filtered out by 

Browning et al., 2018 through strict masking of aDNA genotypes to remove low- coverage, poorly 

mapping, or repeat- associated reads (Figure 4—figure supplement 4).

Most candidate introgressed SVs fall within complex regions of the genome, such that genotyping 

directly from fragmented and degraded aDNA data remains infeasible. However, the IGHG4 intronic 

insertion is short enough to be spanned by individual sequencing reads, thus allowing us to validate 

our genotyping results and further investigate introgression at this locus by directly searching for an 

exact match to a diagnostic sequence. Specifically, we identified a 48 bp sequence that is unique to 

individuals with the insertion, but not observed in the reference genome (see Materials and methods), 

thereby facilitating rapid searches for the insertion allele in any sequencing dataset. Application of this 

approach to the 1KGP data broadly validated our graph genotyping results and supported the strong 

allele frequency differences that we had previously described (Figure 4—figure supplement 5). We 

then extended this scan to published short- read sequencing data from four high- coverage (~30×) 

archaic hominin genomes (Mafessoni et al., 2020; Meyer et al., 2012; Prüfer et al., 2017; Prüfer 

et al., 2014). While the diagnostic sequence was absent from the Denisovan genome, we observed 

one or more perfect matches in the sequences of each of three Neanderthals, which we found notable 

given its absence among African populations (Figure 4—figure supplement 5).

We next expanded our analysis to the genomic region around the IGHG4 insertion, investigating 

the archaic hominin allelic states at each of the 109 highly differentiated variants (2 SVs, 14 short indels, 

and 93 SNPs) defining the 325 kb LRS peak at the IGH locus. Focusing on the 93 SNPs where archaic 

alleles are easily compared, we observed that the Denisovan genome exhibited a modest degree of 

matching (39 shared alleles [42%]), while the Altai, Vindija, and Chagyrskaya Neanderthal genomes 

exhibited near perfect matching over the entirety of the differentiated region (77 [83%], 88 [95%], and 

89 [96%] shared alleles, respectively) (Figure 4B). Additionally, of these 93 highly differentiated SNPs, 

64 were called as introgressed in CDX by Sprime (Figure 4—figure supplement 6). Combined with 

the near absence of these alleles from other global populations and the length of the differentiated 

haplotype, our observations strongly support the conclusion that this sequence originated via ancient 

introgression from a Neanderthal population related to the Chagyrskaya and Vindija Neanderthals.

Examination of the haplotype structure at the IGH locus revealed four discrete blocks of LD within 

the highly differentiated region (Figure 4—figure supplement 7), consistent with substantial recom-

bination after the original haplotype achieved high frequency. The deletion SV (22231_HG02059_del) 

falls within the largest LD block, while the insertion SV (22237_HG02059_ins) falls within a smaller LD 

block that exhibits the greatest allele frequency differences. The latter block includes the tag SNP 

rs150526114, where the global minor allele matches the Neanderthal genomes and segregates at 

91% frequency in CDX, 73% frequency in KHV, and 59% frequency in CHS, but is rare or absent in most 

other populations from 1KGP. Data from HGDP (Bergström et al., 2020) and the Simons Genome 

Diversity Panel (SGDP) (Mallick et al., 2016) shed additional light on the geographic distribution of 

the putative Neanderthal- introgressed allele and confirmed its extreme pattern of frequency differen-

tiation specific to southeast Asian populations (Figure 4—figure supplement 8). Notably, the allele 

is absent from the HGDP populations from the Americas, which are thought to have split from East 

Asian populations approximately 26 kya (Moreno- Mayar et al., 2018), further supporting the recency 

and geographically restricted nature of this positive selection event.

Figure supplement 6. Signatures of archaic introgression based on calls from Sprime.

Figure supplement 7. Local LD at the IGH locus.

Figure supplement 8. Global allele frequencies of the introgressed IGH haplotype.

Figure 4 continued
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Strength and timing of adaptive introgression at the IGH locus
The challenge of dense genotyping and phasing within the broader IGH region (Zhang et al., 2021) 

hinders haplotype- based approaches for inferring the timing of selection. Nevertheless, the global 

patterns of allele frequencies we observe (Figure 5A,B) can be interpreted in the context of known 

population demographic histories, providing a rough estimate of such timing. For example, pairwise 

divergence times among East Asian populations inferred by Wang et al., 2018 constrain the plausible 

timing of selection at the IGH locus between approximately 60 generations (1740  years) and 400 

generations (11,600 years) ago (assuming a 29 - year generation time Tremblay and Vézina, 2000): 

after the divergence of the Chinese Dai and Vietnamese populations from the Japanese (JPT) popula-

tion, but before the divergence of CDX and KHV. These divergence time estimates are roughly consis-

tent with those inferred using an alternative approach based on the joint allele frequency spectrum 

by Jouganous et al., 2017.

To achieve further insight into this episode of selection, we conducted forward genetic simula-

tions of a simplified five- population demographic model based on parameters obtained from the 

literature (The 1000 Genomes Project Consortium, 2015; Jouganous et al., 2017; Wang et al., 

2018; Figure 5C). For simplicity, we began the simulations 46 kya, after Neanderthal introgression 

has occurred and the introgressed haplotype is segregating within the modern human population. 

Our model makes an additional simplification by not including migration, but we note that this omis-

sion should make our estimates of the selection coefficient conservative, as stronger selection is 

required to generate allele frequency differences between populations exchanging migrants. We first 

performed 100,000 neutral simulations (selection coefficient [s] = 0), finding that the magnitudes of 

allele frequency differentiation, especially in southeast Asia, far exceed those expected under the null 

(Figure 5—figure supplement 1). In order to formally estimate the parameters of the selection event, 

we next applied approximate Bayesian computation (ABC) to an additional 175,000 simulations in 

which we varied relevant parameters (see Materials and methods). In line with our previous intuition, 

the results of this analysis indicated a recent onset of extremely strong selection, with the selection 

coefficient parameter (s) inferred to be 0.06 (95% credible interval [CI] [0.02, 0.12]), the selection 

onset time parameter (Tadaptive) inferred to be 4400 years ago (95% CI [1700, 8400]), and the initial 

frequency of the adaptive allele in the ancestral Eurasian population (p0) to be 0.18 (95% CI [0.04, 

0.35]) (Figure 5D–F). We observed a strong correlation between estimates of the selection coeffi-

cient and timing of selection. Specifically, older, weaker selection could produce the same frequency 

differences as stronger and more recent selection (Figure 5G), though even the lower bound on our 

estimate of s places it among the strongest episodes of positive selection documented in humans.

Discussion
Long- read sequencing is starting to provide more comprehensive views of the landscape of human 

genetic variation, drawing novel links to phenotypes and diseases. However, long- read sequencing 

methods remain impractical for most population- scale studies due to their low throughput and high 

cost. We sought to overcome these limitations by applying variant graph genotyping of a large catalog 

of long- read- discovered SVs to short- read sequencing data from globally diverse individuals of 1KGP. 

By mapping eQTLs and scanning for evidence of local adaptation and adaptive introgression, we 

highlighted the role of SVs as largely unexplored contributors to variation in human genome function 

and fitness.

Despite the scale and diversity of SVs and samples used in our study, we anticipate that additional 

SV targets of selection remain undiscovered, either because they were not present in the set of long- 

read sequenced individuals or because they remain inaccessible to genotyping using graph- based 

approaches (e.g., tandem repeats) (Chen et al., 2019). Studying the evolutionary impacts of such SVs 

will require the application of long- read sequencing at population scales (Ebert et al., 2021), which is 

still infeasible for most genetics studies. Moreover, SV loci exhibiting expression associations or signa-

tures of selection may not themselves be the causal targets, but rather tag nearby causal variation by 

consequence of LD. Methods such as fine mapping (Schaid et al., 2018) and multiplex reporter assays 

(Tewhey et al., 2018; van Arensbergen et al., 2019) will be invaluable for disentangling LD to reveal 

causal relationships and contrast the relative impacts of various forms of genetic variation.
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Figure 5. Local adaptation at the IGH locus. (A) Population- specific frequencies of the putative Neanderthal- introgressed insertion allele in each 

of the 1KGP populations, in the style of the Geography of Genetic Variants browser (Marcus and Novembre, 2017). (B) Tree representation of the 

best- fit selection hypothesis for Neanderthal- introgressed haplotype tagged by the IGHG4 insertion polymorphism, as computed by Ohana. (C) Five- 

population demographic model used for simulation and parameter inference via approximate Bayesian computation (ABC). Population sizes and split 

times are further described in Materials and methods. (D) Posterior distribution of the selection coefficient (s). (E) Posterior distribution of the timing of 

the onset of selection (Tadaptive). (F) Posterior distribution of the initial allele frequency at the beginning of the simulation (p0). (G) Negative relationship 

between s and Tadaptive for simulations retained by ABC.

The online version of this article includes the following figure supplement(s) for figure 5:

Source data 1. Parameters and summary statistics for the simulations retained in the ABC analysis, underlying Figure 5D–G.

Figure supplement 1. Distribution of FST and population branch statistic (PBS) for the IGHG4 insertion from 100,000 neutral simulations.

Figure 5 continued on next page
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The two strongest signatures of local adaptation in our study traced to the immunoglobulin heavy 

chain locus. While the precise phenotypic impacts of these variants remain unknown (Figure 5—figure 

supplement 2), their potential effects on adaptive immunity is intriguing given the established role 

of immune- related genes as common targets of local adaptation in human populations (Barreiro and 

Quintana- Murci, 2020). The human IGH locus is highly polymorphic (Mikocziova et al., 2020), with 

examples of SNPs and copy number variants exhibiting frequency differences between populations 

(Watson et al., 2013). In developing lymphocytes, this locus undergoes somatic V(D)J recombination 

and hypermutation to produce antibodies that drive the immune response—processes that may be 

influenced by nearby germline variation (Watson et al., 2017). The combination of these forms of 

variation makes the region difficult to probe with traditional sequencing methods (Chin et al., 2020; 

Zhang et al., 2021), in turn highlighting the power of long- read sequencing and graph genotyping.

Our observation of the IGHG4 insertion within the Neanderthal genomes allowed us to connect 

and build upon initial evidence of selection and introgression at the IGH locus. Specifically, 1KGP 

previously reported SNPs in several immunoglobulin genes as allele frequency outliers with respect 

to the CDX population (The 1000 Genomes Project Consortium, 2015). Browning et  al., 2018 

later noted that a Neanderthal- introgressed haplotype at the IGH locus achieves high frequencies in 

Eurasian populations, although they focused on a separate haplotype in the region, split by recombi-

nation, that is not specific to southeast Asia. Our findings further expand the evolutionary history of 

this region of the genome, as well as adding to a growing list of examples of adaptive introgression 

from archaic hominins (Gittelman et al., 2016; Hsieh et al., 2019; Huerta- Sánchez et  al., 2014; 

Racimo et al., 2017), several of which are thought to have targeted immune- related phenotypes (Abi- 

Rached et al., 2011; Dannemann et al., 2016; Enard and Petrov, 2018; Gouy and Excoffier, 2020; 

Mendez et al., 2012a; Mendez et al., 2012b; Sams et al., 2021).

Based on forward genetic simulations, we estimated that selection on the introgressed IGH haplo-

type initiated between 1700 and 8400 years ago, before the divergence of the CDX and KHV popula-

tions and in line with our intuition based on patterns of allele frequencies. This recent onset of selection 

is intriguing given that introgression from Neanderthals into the ancestors of Eurasian modern human 

populations dates to 47–65 kya (Sankararaman et al., 2012). Our findings thus suggest that persisting 

archaic introgressed haplotypes provided a reservoir of functional variation to the ancestors of CDX 

and KHV that proved adaptive during a period of environmental change, for example in response to 

local pathogens (Rasmussen et al., 2015). Recent reports that Neanderthal- introgressed sequences 

mediate individual outcomes of SARS- CoV- 2 infections to this day lend plausibility to this hypothesis 

(Zeberg and Pääbo, 2021; Zeberg and Pääbo, 2020; Zhou et al., 2021), as does polygenic evidence 

of adaptation in response to ancient viral epidemics, including in East Asia (Souilmi et al., 2021). 

Moreover, the delayed onset of selection inferred in our study is consistent with recent evidence of 

time lags between introgression and adaptation favoring other Neanderthal- introgressed alleles (Yair 

et al., 2021).

Our simulations additionally demonstrated that a selection coefficient between 0.02 and 0.12 

best explains the observed frequency differences, comparable to other episodes of strong selec-

tion in humans. These include examples such as lactase persistence mutations near LCT (0.01–0.15) 

(Bersaglieri et al., 2004) and malaria resistance mutations affecting DARC (0.08) (Hamid et al., 2021) 

and HBB (0.1) (Elguero et al., 2015). We caution against overinterpretation of these parameter esti-

mates given the uncertainty in the underlying demographic model, which relies on estimates of popu-

lation size and divergence time from two studies (Jouganous et al., 2017; Wang et al., 2018) and 

does not incorporate admixture between populations. However, our results are broadly consistent 

with the observation of extreme allele frequency differences among closely related populations in 

East Asia. Future studies incorporating more complex evolutionary models and fully resolved IGH 

haplotypes (Rodriguez et al., 2020) will be essential for further refining the complex evolutionary 

history of selection and recombination at the immunoglobulin locus. Nevertheless, the coexistence of 

V(D)J recombination, somatic hypermutation, and local adaptation at this locus presents a remarkable 

Figure supplement 2. Annotated Q–Q plot from a phenome- wide association analysis of putative Neanderthal- introgressed variants at the IGH locus, 

using summary statistics from East Asian individuals from the pan- ancestry GWAS of the UK Biobank dataset.

Figure 5 continued



 Research article      Evolutionary Biology | Genetics and Genomics

Yan et al. eLife 2021;10:e67615. DOI: https:// doi. org/ 10. 7554/ eLife. 67615  16 of 29

example of diversifying selection at multiple scales of biological organization, generating allelic diver-

sity both within individuals and across populations.

Together, our study demonstrates how new sequencing technologies and bioinformatic algorithms 

are facilitating understanding of complex and repetitive regions of the genome – a new frontier for 

human population genetics. Our study also demonstrates how the integration of short and long- read 

datasets allows for investigation of these regions at population scales. Combined with studies of 

diverse populations, these technologies are providing a more complete picture of human genomes 

and the evolutionary forces by which they are shaped.

Materials and methods
Structural variant calling and comparison with short-read datasets
We used published long- read sequencing data from 15 individuals to generate a set of 107,866 SVs for 

graph genotyping (Audano et al., 2019). Raw reads were downloaded using the accessions provided 

in the original publication and aligned with NGM- LR (Sedlazeck et al., 2018b) using default PacBio 

parameters to the main chromosomes of GRCh38. Variants were called with Sniffles (Sedlazeck et al., 

2018b), requiring a minimum SV length of 30 bp and a minimum of 10 supporting reads. Resulting VCFs 

were refined with Iris (Alonge et al., 2020) to polish the reported SV sequences. Variants were then 

merged with SURVIVOR v1.0.7 (Jeffares et al., 2017), using a merge distance of 50 bp and requiring 

strand and type to match. For each merged variant, a representative variant was then obtained from 

the original pre- merged call set to improve accuracy. Such representative variants were selected by 

first prioritizing homozygous over heterozygous calls, and then by prioritizing variants with greater 

proportions of reads supporting the non- reference allele. To prepare the variants for input into Para-

graph, translocations, mitochondrial DNA variants, inversions and duplications over 5 kb, and variants 

without a ‘PASS’ filter were removed from the VCF. This resulted in a set of 107,866 SVs.

We compared this set of long- read discovered SVs with SVs discovered from short- read sequencing 

in 1KGP (Sudmant et  al., 2015; http:// ftp. 1000genomes. ebi. ac. uk/ vol1/ ftp/ phase3/ integrated_ sv_ 

map/ supporting/ GRCh38_ positions/) and HGDP (Almarri et al., 2020; ftp:// ngs. sanger. ac. uk/ produc-

tion/ hgdp/ hgdp_ structural_ variation). We merged long- read and short- read SV sets using parameters 

from Aganezov et al., 2020 (maximum distance of 500 bp between SV start sites, maximum differ-

ence of 10% between SV lengths). We chose not to require matching on SV type, strand orientation, or 

insertion sequence due to inconsistencies in SV representations across the short- read and long- read 

variant callers (Aganezov et al., 2020). In order to match the minimum SV length used by the short- 

read datasets, we also removed all long- read discovered SVs shorter than 50 bp. For the purpose of 

broad allele frequency binning for SVs called in each of these sets, we then calculated dataset- wide 

allele frequencies with PLINK v1.90b6.4 (Purcell et al., 2007).

Graph genotyping of structural variation
High- coverage 30× short- read sequencing data for the core 2504 individuals in 1KGP, sequenced by 

the New York Genome Center (Byrska- Bishop et al., 2021), was obtained from ENA (PRJEB31736). 

We genotyped SVs in these samples with Paragraph v2.2 (Chen et al., 2019). In accordance with 

Paragraph’s recommendations, we set the maximum permitted read count for variants to 20 times the 

mean sample depth in order to limit runtime for repetitive regions. Genotypes from all samples were 

combined using bcftools v1.9 (Danecek et al., 2021).

To obtain a high- quality set of genotyped SVs, we filtered the resulting data based on dataset- 

wide genotyping rates and within- population Hardy–Weinberg equilibrium. We determined an SV’s 

overall genotyping rate with cyvcf2 (Pedersen and Quinlan, 2017) and removed variants that were 

not genotyped in ≥50 % of samples. We additionally calculated one- sided Hardy–Weinberg equilib-

rium p- values (excess of heterozygotes) for variants within each of the 26 1KGP populations, using the 

Hardy–Weinberg package from R (Graffelman, 2015). We filtered out SVs that violated equilibrium 

expectations (Fisher’s exact test, p < 1 ×  10–4) in ≥13 populations. Unfolded, within- population allele 

frequencies were calculated with PLINK.
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Quantifying linkage disequilibrium with known SNPs and short indels
To calculate linkage disequilibrium (LD) between SVs and SNPs or short indels in 1KGP samples, we 

used small variant genotypes produced by the 1000 Genomes Consortium. These genotypes were 

generated by aligning the 1KGP Phase 3 data to GRCh38 and then calling variants against the GRCh38 

reference and are restricted to biallelic SNVs and indels (http:// ftp. 1000genomes. ebi. ac. uk/ vol1/ ftp/ 

data_ collections/ 1000_ genomes_ project/ release/ 20190312_ biallelic_ SNV_ and_ INDEL/). Y chromo-

some genotypes, not included in the former data release, were obtained from Phase 3 variant calls 

lifted over to GRCh38 (http:// ftp. 1000genomes. ebi. ac. uk/ vol1/ ftp/ release/ 20130502/ supporting/ 

GRCh38_ positions/). We combined the 1KGP SNP and indel genotypes with our SV genotypes and 

calculated r2 within each population, using a 100- variant and 100 Mb window, with PLINK v1.90b6.4.

Genome accessibility masks from 1KGP were obtained from http:// ftp. 1000genomes. ebi. ac. uk/ 

vol1/ ftp/ data_ collections/ 1000_ genomes_ project/ working/ 20160622_ genome_ mask_ GRCh38/, 

and ENCODE blacklisted regions were obtained from https://www. encodeproject. org/ files/ 

ENCFF356LFX/.

We note peaks of r2 around discrete values of 1, 0.5, 0.33, 0.25, etc. (Figure 1—figure supplement 

7), which occur due to the properties of the r2 statistic for various allele frequency combinations. 

Specifically, the maximum possible value of r2 for a pair of rare alleles with frequencies pa and pb is 

described by VanLiere and Rosenberg, 2008 as:

 
r2

max

(

pa, pb
)

= pa
(

1−pb
)

(

1−pa
)

pb   

Assuming a sample size of 198 chromosomes (the most common sample size for a given 1KGP 

population), the maximum possible value of r2 for a pair of singletons is therefore:

 pa = 1/198  

 pb = 1/198  

 r2
max = 1  

Meanwhile, the maximum possible value of r2 for a singleton- doubleton pair is:

 pa = 1/198  

 pb = 2/198  

 r2
max = 0.497  

And the maximum possible value of a singleton- tripleton pair is:

 pa = 1/198  

 pb = 3/198  

 r2
max = 0.330  

Given that the most common allele frequency of a SNP or SV is 1/N (i.e., singletons), followed 

by 2/N (doubletons), 3/N (tripletons), etc., the aforementioned allele frequency combinations occur 

frequently, resulting in some common discrete values of the maximum r2.

eQTL mapping
To conduct eQTL analysis, we used gene expression data generated by the Geuvadis Consortium 

(Lappalainen et al., 2013), which includes 447 intersecting samples from the following 1KGP popu-

lations: CEU, FIN, GBR, TSI, and YRI. Using the recount3 package from R/Bioconductor (Collado- 

Torres et  al., 2017), we extracted gene expression counts for all corresponding samples. Counts 

were normalized across samples using the trimmed mean of M values (TMM) method from edgeR 
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(Robinson et al., 2010). TPM values were also computed from raw counts. In accordance with the 

methods employed for eQTL mapping in the GTEx Project (The GTEx Consortium, 2020), we retained 

all genes with TPM values greater than or equal to 0.1, as well as raw read counts greater than or 

equal to six in at least 20% of samples. We then applied rank normalization to the TMM values for each 

remaining gene. We then performed cis- eQTL mapping with a modified version of fastQTL (https:// 

github. com/ hall- lab/ fastqtl, Colby, 2016, Ongen et al., 2016), which accounts for SV size when deter-

mining the appropriate cis window. We conducted nominal and permutation passes with genotype 

principal components and sex included as covariates. Beta- distribution- approximated permutation 

p- values from fastQTL were used as input to estimate q- values and control the false discovery rate 

(FDR) with the qvalue package (http:// github. com/ jdstorey/ qvalue, Storey et al., 2020, Storey and 

Tibshirani, 2003).

Next, we used the ChromHMM epigenetic state annotations generated by the Roadmap Epig-

enomics Project (Roadmap Epigenomics Consortium et al., 2015) for the E116 B lymphocyte cell 

line to determine whether SVs eQTLs were enriched for regulatory elements. For each of the 15 

ChromHMM epigenetic states, we identified the SVs that overlapped with its epigenetic state anno-

tations and determined its enrichment for SV eQTLs using Fisher’s exact test.

To identify potential causal variants for the 1121 significant gene- SV pairs, we performed eQTL 

fine- mapping using CAVIAR v2.2 (Hormozdiari et al., 2014). Nominal pass output of fastQTL was 

combined for SNPs and SVs, and p- values were back- converted to z- scores while also accounting 

for the sign of the association (i.e., positive or negative). For each significant eQTL, we extracted all 

tested variants within a 1 Mb window, excluding any variants with a nominal p- value > 0.05. We then 

used PLINK to calculate the LD matrix relating this set of variants. Using these two inputs, we then 

ran CAVIAR for each of the 1121 significant gene- SV pairs, recording the 90% credible causal set for 

each eQTL.

Admixture-aware scan for signatures of local adaptation
Common examples of frequency differentiation- based metrics to search for selection include Wright’s 

fixation index (FST) (Wright, 1949), as well as tree- based extensions of this concept such as the locus- 

specific branch length (LSBL) (Shriver et al., 2004) and population branch statistic (PBS) (Yi et al., 

2010). While useful for polarizing frequency changes on particular lineages, these tree- based tests 

still require the specification of (typically three) populations for comparison. The number of possible 

comparisons thus grows in a combinatorial manner with the number of populations in the study. 

Specifically, for the 26 populations of 1KGP, there are 2600 (26 choose 3) possible comparisons. A 

second limitation of such tests is the definition of population, which may or may not reflect genetic 

patterns of population structure that occur at multiple scales. Moreover, many human populations 

exhibit substantial admixture, which is ignored by, and may confound, some frequency differentiation- 

based tests.

We overcame these limitations by using the software package Ohana (Cheng et al., 2019) to scan 

SVs for signatures of positive selection, that is extreme frequency differentiation between popula-

tions. Ohana uses allele frequency to model individuals as an admixed combination of k ancestral 

populations, constructing a genome- wide covariance matrix to describe the relationship between 

these ancestry components. Variants are then assessed to determine whether their allele frequencies 

are better explained by the genome- wide ‘neutral’ matrix, or by an alternative matrix that allows allele 

frequencies to vary in one ancestry component.

In accordance with Ohana’s recommended workflow, we conducted admixture inference on the 

1KGP dataset with a set of  ~100,000 variants, downsampled from Chromosome 21 of the 1KGP 

SNV/indel callset used for LD calculations above. Downsampling was performed with PLINK’s variant 

pruning function. Inference of admixture proportions in the dataset was allowed to continue until 

increased iterations produced qualitatively similar results (50 iterations). The covariance matrix gener-

ated from this downsampled dataset was used as a neutral input for downstream scans for selection 

on SVs.

In order to generate ‘selection hypothesis’ matrices to search for selection in a specific ancestry 

component, we modified the neutral covariance matrix by allowing one component at a time to 

have a greater covariance. A scalar value of 10, representing the furthest possible deviation that a 

variant could have in a population under selection, was added to elements of the neutral covariance 



 Research article      Evolutionary Biology | Genetics and Genomics

Yan et al. eLife 2021;10:e67615. DOI: https:// doi. org/ 10. 7554/ eLife. 67615  19 of 29

matrix depending on the population of interest. For each variant of interest, Ohana then computes 

the likelihood of the observed ancestry- component- specific allele frequencies under the selection 

and neutral models, then compares them by computing a likelihood ratio statistic (LRS), which quan-

tifies relative support for the selection hypothesis. We note that the ‘selection hypothesis’ matrices 

we generated for our study enable us to perform tests for frequency differentiation in one ancestry 

component at a time. Testing for selection in multiple ancestry components would require modifying 

multiple components in the neutral covariance matrix. While some variants have outlier LRS values in 

multiple ancestry components, this reflects a combined signature of extremely high allele frequency 

in one ancestry component and extremely low allele frequency in another (e.g., the IGHG4 insertion 

we highlight is an outlier in both ancestry component 2, where it reaches high allele frequencies, and 

ancestry component 6, where it is much rarer than expected from the null model [Figure 3B, panel 

for ancestry component 6]).

We filtered our results to remove extreme outliers in null model log- likelihoods (global log like-

lihood [LLE] < −1000), which were unremarkable in their patterns of allele frequency and instead 

indicated a failure of the neutral model to converge for a small subset of rare variants. To calculate 

p- values, we then compared the LRS to a chi- square distribution with one degree of freedom (Wojcik 

et al., 2019) and adjusted for multiple hypothesis testing using a Bonferroni correction. To further 

refine the list of candidate selected loci, we also compared the ancestry component- specific LRS 

computed for each SV to the observed distribution of LRS computed from SNPs and short indels 

matched on global minor allele frequency (in 1% frequency bins). Specifically, we identified SVs with 

LRS exceeding the 99.9 percentile of the empirical LRS distribution for frequency- matched SNPs and 

short indels as calculated using identical methods. These background SNPs and indels were limited 

to Chromosome 1 for computational efficiency, but results were qualitatively unaffected by the choice 

of chromosome.

Assessment of archaic introgression
To identify candidate archaic introgressed SVs among the set of highly differentiated variants, we 

tested each SV for LD with putative introgressed SNPs as identified based on published results from 

the method Sprime, which is based on signatures of LD and divergence from an African outgroup 

population (Browning et al., 2018). Specifically, we computed pairwise LD between the SV and all 

SNPs in a 100 kb window, matching the ancestry component to a corresponding population from 

1KGP. We additionally computed the allele frequencies of SVs in African populations, excluding the 

ASW (Americans of African Ancestry in SW USA) and ACB (African Caribbeans in Barbados) popu-

lations which exhibit substantial non- African admixture. We reported all highly differentiated SVs 

possessing r2 > 0.5 with any putative introgressed SNP and AF < 0.01 in non- admixed African popu-

lations (Supplementary file 2).

We obtained masks for the Altai Neanderthal sequence, which were used in filtering by Browning 

et al., 2018, from http:// cdna. eva. mpg. de/ neandertal/ Vindija/ FilterBed/. These masked regions filter 

for coverage (stratified by GC content), require a minimum coverage of 10× , require all 35- mers in 

the region to be unique, and exclude tandem repeats and indels.

To efficiently search for the IGHG4 insertion in additional datasets, we designed a 48 bp sequence 

( TGGA GAGA GTGG GGGA CAGC GTCA GGGA CAGG TGGG GACA GCCTGGGG) that spans the inser-

tion breakpoint, extending across the entire 33 bp of the insertion itself as well as 11 bp and 4 bp, 

into the respective upstream and downstream flanking regions. BLAST searches for this sequence 

in the hg19 and GRCh38 human reference genomes returned no exact matches, but the diagnostic 

sequence was sufficiently similar to the reference sequence that reads containing it still mapped to the 

same locus. Sequence alignments from four high- coverage archaic hominin samples (Altai Neander-

thal, Vindija Neanderthal, Chagyrskaya Neanderthal, and Denisovan) were obtained from http:// cdna. 

eva. mpg. de/ neandertal and http:// cdna. eva. mpg. de/ denisova. Forward strand sequences of unique 

reads were extracted from reads aligned to the hg19 reference genome, and exact matches to the 

48 bp query sequence were identified using grep.

Evidence of introgression at the IGH locus was further examined by counting observed alleles at 

highly differentiated SNPs from sequenced alignments for each high- coverage archaic sample (see 

above). Sites with two or more reads supporting the alternative allele were used to define matching 
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and color Figure 4. further conditions on alternative allele frequency ≤ 1 % within African populations 

of 1KGP.

Inference of selection parameters with approximate Bayesian 
computation
We used a sequential algorithm for approximate Bayesian computation (Lenormand et al., 2013; 

Pritchard et al., 1999), implemented with the R package EasyABC (Jabot et al., 2013), to infer the 

strength and timing of selection at the IGHG4 locus, as well as the initial frequency of the adaptive 

allele. This approach consisted of drawing model parameters from prior distributions as input to 

the forward evolutionary simulation software package SLiM (Haller and Messer, 2019), computing 

summary statistics from each simulation, and comparing to those observed from our data. Simula-

tions with summary statistics most closely matching the observed data are then used to construct 

posterior distributions of the model parameters. The sequential algorithm automatically determines 

the tolerance level and uses a predetermined stopping criterion (paccmin = 0.05), thereby reducing the 

necessary number of simulations and improving estimates of the posterior distribution (Lenormand 

et al., 2013).

We constructed a simplified five- population demographic model based on parameters obtained 

from Jouganous et al., 2017 and Wang et al., 2018, as well as population size estimates from 1KGP 

(The 1000 Genomes Project Consortium, 2015; Figure 5C). Specifically, our model consisted of an 

initial divergence event between the CEU and East Asian populations at 46 kya, subsequent diver-

gence between the population ancestral to CHB/JPT and the population ancestral to KHV/CHX at 9.8 

kya, and final splits between CHB/JPT and KHV/CHX at 9.0 kya and 1.7 kya, respectively. Each new 

population was drawn from its originating population at the same size of the originating population. 

The size of the ancestral population was set at 2831 (Jouganous et al., 2017) and allowed to expand 

exponentially at a rate of 1.25 × 10–3 per generation, resulting in a final size of 17,883 in each subpop-

ulation, broadly consistent with pairwise sequential Markovian coalescent (PSMC) results presented 

by 1KGP for these populations (The 1000 Genomes Project Consortium, 2015). We allowed the 

initial allele frequency of the selected variant (p0) to vary between 0 and 1, the timing of the onset of 

selection (Tadaptive) to vary between 1 and 1686 generations ago (i.e., the entire simulated timespan), 

and the selection coefficient (s) to vary between –0.01 and 0.2 – all drawn from uniform distributions. 

We used the selected variant’s end- of- simulation allele frequencies as a summary statistic for the 

model, comparing these frequencies to the observed allele frequencies of the IGHG4 insertion in 

these five populations.

To obtain a background distribution of the expected frequencies of the introgressed haplotype in 

the absence of selection, we performed 100,000 of the simulations described above with a selection 

coefficient of 0. For ease of comparison to the observed data, we used the end- of- simulation popu-

lation branch statistic (PBS) (Yi et al., 2010), calculated between the CDX, JPT, and CEU populations, 

as a summary statistic. We compared these PBS values, as well as the inter- population FST, to those 

observed for the IGHG4 insertion in these populations.

Phenotype-wide association analysis
We examined potential phenotype associations with the putative Neanderthal- introgressed haplo-

type at the IGH locus by extracting summary statistics from the pan- ancestry analysis of the UK 

Biobank (https:// pan. ukbb. broadinstitute. org/). Specifically, we obtained association p- values for two 

SNPs, which each tag one of the two major LD blocks (rs115091999 and rs150526114). We restricted 

analysis to individuals of East Asian ancestry. No variants were significant after Bonferroni correction 

(Figure 5—figure supplement 2).
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Yan SM, McCoy RC 2021 Data from: Local adaptation 
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shape global diversity at 
human structural variant 
loci

https:// doi. org/ 10. 
5281/ zenodo. 5509980

Zenodo, 10.5281/
zenodo.5509980

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Audano PA 2019 Long- read sequencing of 
a Puerto Rican individual 
(HG00733)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
300840

NCBI BioProject, 
PRJNA300840

Audano PA 2019 Long- read sequencing 
of a Yoruban individual 
(NA19240)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
288807

NCBI BioProject, 
PRJNA288807

Audano PA 2019 Long- read sequencing 
of a Gambian individual 
(HG02818)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
339722

NCBI BioProject, 
PRJNA339722

Audano PA 2019 Long- read sequencing of a 
Luhya individual (NA19434)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
385272

NCBI BioProject, 
PRJNA385272

Audano PA 2019 Long- read sequencing of 
a Vietnamese individual 
(HG02059)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
339726

NCBI BioProject, 
PRJNA339726

Audano PA 2019 Long- read sequencing 
of a Utah individual with 
Northern and Western 
European ancestry 
(NA12878)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
323611

NCBI BioProject, 
PRJNA323611

Audano PA 2019 Long- read sequencing 
of a Telugu individual 
(HG04217)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
481794

NCBI BioProject, 
PRJNA481794

Audano PA 2019 Long- read sequencing 
of a Peruvian individual 
(HG02106)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
480858

NCBI BioProject, 
PRJNA480858

Audano PA 2019 Long- read sequencing 
of a Finnish individual 
(HG00268)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
480712

NCBI BioProject, 
PRJNA480712

Audano PA 2019 Long- read sequencing of 
a Han Chinese individual 
(HG00514)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
PRJNA300843

NCBI BioProject, 
PRJNA300843

Byrska- Bishop M 2019 1000 Genomes Project 
phase 3: 30X coverage 
whole genome sequencing

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
527456

NCBI BioProject, 
PRJEB31736

Huddleston J 2017 Long- read sequencing of a 
hydatidiform mole (CHM1)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
246220

NCBI BioProject, 
PRJNA246220

Huddleston J 2017 Long- read sequencing of a 
hydatidiform mole (CHM13)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
269593

NCBI BioProject, 
PRJNA269593

Lappalainen T 2013 RNA- sequencing of 465 
lymphoblastoid cell lines 
from the 1000 Genomes

https://www. ebi. ac. 
uk/ arrayexpress/ 
experiments/ E- GEUV- 
1/

ArrayExpress, E- GEUV- 1
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Author(s) Year Dataset title Dataset URL Database and Identifier

Seo J- S 2016 Long- read sequencing of a 
Korean individual (AK1)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
298944

NCBI BioProject, 
PRJNA298944

Shi L 2016 Long- read sequencing of a 
Chinese individual (HX1)

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
301527

NCBI BioProject, 
PRJNA301527
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