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Abstract 

Background:  In modern sequencing experiments, quickly and accurately identifying 
the sources of the reads is a crucial need. In metagenomics, where each read comes 
from one of potentially many members of a community, it can be important to identify 
the exact species the read is from. In other settings, it is important to distinguish which 
reads are from the targeted sample and which are from potential contaminants. In 
both cases, identification of the correct source of a read enables further investigation 
of relevant reads, while minimizing wasted work. This task is particularly challenging 
for long reads, which can have a substantial error rate that obscures the origins of each 
read.

Results:  Existing tools for the read classification problem are often alignment or index-
based, but such methods can have large time and/or space overheads. In this work, we 
investigate the effectiveness of several sampling and sketching-based approaches for 
read classification. In these approaches, a chosen sampling or sketching algorithm is 
used to generate a reduced representation (a “screen”) of potential source genomes for 
a query readset before reads are streamed in and compared against this screen. Using 
a query read’s similarity to the elements of the screen, the methods predict the source 
of the read. Such an approach requires limited pre-processing, stores and works with 
only a subset of the input data, and is able to perform classification with a high degree 
of accuracy.

Conclusions:  The sampling and sketching approaches investigated include uniform 
sampling, methods based on MinHash and its weighted and order variants, a mini-
mizer-based technique, and a novel clustering-based sketching approach. We demon-
strate the effectiveness of these techniques both in identifying the source microbial 
genomes for reads from a metagenomic long read sequencing experiment, and in dis-
tinguishing between long reads from organisms of interest and potential contaminant 
reads. We then compare these approaches to existing alignment, index and sketching-
based tools for read classification, and demonstrate how such a method is a viable 
alternative for determining the source of query reads. Finally, we present a reference 
implementation of these approaches at https://​github.​com/​arun96/​sketc​hing.
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Background
Metagenomics has become an increasingly popular area of study over the past two 
decades, and has enabled us to better understand the diversity, interactions and evo-
lution of microbial communities in a plethora of environments [1–3]. Metagenom-
ics has highlighted the problem of being able to quickly and accurately identify the 
source of a given DNA sequence from all the genomic material in a given sample. This 
is needed to classify and sort reads for further downstream analysis, and to identify 
and remove potential contaminants that are present in a sample. Efficient solutions 
to such problems are especially important in metagenomics, where the scale of these 
microbial communities can be extremely large. Individual metagenomics datasets can 
contain thousands of genomes, and large sequence repositories such as Refseq [4, 5] 
contain hundreds of thousands of microbial genomes against which metagenomic 
sequencing reads may need to be compared. The scale of the metagenomics sequenc-
ing experiments themselves are also massive; initiatives like the Tara Oceans Project 
[6, 7], the MetaSUB Research Consortium [8] and the Twitchell Wetlands sequencing 
effort have generated 7.2 trillion, 8 trillion and 2.6 trillion bases of sequencing data 
respectively across thousands of samples.

The read classification problem is to identify the source genome of a given input 
read, usually by comparing the read to a list of potential source genomes and choosing 
the one with the highest similarity. This comparison may be done naively by compar-
ing the entirety of each read to the entirety of each genome to find the best align-
ment or through an exhaustive analysis of k-mers present. While these approaches 
are highly accurate they can incur high computational overheads, which presents an 
opportunity for lower overhead techniques such as sketching or sampling, especially 
for long read data.

Sketching is the process of generating an approximate, compact summary of the 
data (a “sketch”), which retains properties of interest and can be used as a proxy for 
the original data [9]. Sampling selects a subset of the data, either systematically or 
randomly, but does not guarantee the preservation of these properties. Each has 
unique advantages: sketching has been shown to bound error better than sampling [9, 
10], while systematic sampling (such as uniform sampling) can provide bounds on the 
number of samples from specific sections of the original data included in the gener-
ated subset. Both sketching and sampling provide simple routes to greatly reduce the 
size of an input set, while retaining the characteristics and features that identify the 
set, thus allowing a comparable level of accuracy.

One of the most well-known sketching approaches, and the main one we employ 
in our work, is MinHash, which was first presented as a method to estimate docu-
ment similarity using the similarity between their hashed sub-parts [11]. It is now 
widely used in genomics, such as in Mash [12], which performs fast similarity and 
distance estimation between two input sequences, and tools such as Mash Screen [13] 
which uses MinHash to predict which organisms are contained in a mixture. Other 
tools include MashMap [14], which blends minimizers and MinHash for fast, approx-
imate alignment of DNA sequences, and MHAP [15] to accelerate genome assem-
bly. Beyond MinHash, several related approaches have been proposed, such as bloom 
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filters [16, 17], the HyperLogLog sketch [18, 19], and other sketching approaches to 
estimate similarity, containment or cardinality [20].

Approaches to read classification

The simplest approach to read classification is to align each query read to all poten-
tial source genomes, and using the genome with the best alignment as the predicted 
source. While the most accurate approach would be exhaustive sequence-to-sequence 
alignment with dynamic programming, this is impractically slow, so aligners typically 
use some form of seed-and-extend that start with exact matches and build out longer 
regions of high similarity. Tools such as Minimap2 [21], Winnowmap [22] and Win-
nowmap2 [23] use a variation of this approach in the anchor chaining strategy, where 
sets of exactly matched seeds are chained together to aid in alignment. However, even 
with these optimizations, alignment still remains computationally expensive, and offers 
a level of detail not always necessary in read classification.

A more sophisticated approach is index-based analysis, where a pre-computed index 
is constructed with sequences that are specific or important to each genome or group of 
interest. Then each query read is classified by the presence or absence of these pre-iden-
tified markers. The foremost examples of this form of read classification are the Kraken 
[24, 25] set of tools, as well as tools such as CLARK [26] and Centrifuge [27]. While the 
read classification process in index-based approaches can be extremely fast, there is sub-
stantial time and space overhead associated with the construction of the index.

The space, time and computational overhead associated with alignment- and index-
based read classification has motivated the need for faster, more accurate, and lower 
overhead alternatives. Sketching has proven to be a viable solution instead of whole 
genome comparisons as it provides the level of accuracy required for less demanding 
tasks such as read classification, while substantially reducing overhead. Examples of 
this are MashMap [14] and MetaMaps [28], which use approximate similarity instead of 
exact alignment between regions of two sequences to perform alignment.

In this work, we critically evaluate several sketching and sampling methods that aim 
to reduce the computational overhead of read classification. We apply sketching, using 
MinHash- and minimizer-based approaches, as well as uniform sampling, to generate 
compact, approximate representations of potential source genomes for a given readset. 
We then classify reads against these representations, and demonstrate that we are able 
to classify, with a high degree of accuracy, reads from a microbial community and detect 
contaminants in real and simulated sequencing experiments.

Methods
In our methods, we consider several sketching and sampling approaches to generate 
reduced representations of the source genomes. We refer to this collection of reduced 
representations, and any auxiliary information generated alongside them, as a “screen” 
of the genomes, inspired by the use of the term to describe a collection of MinHash 
sketches in Mash Screen [13]. The screen acts as a proxy for the source genomes, remov-
ing the need to store or use the original sequences. In our work, a screen comprises 
sets of k-mers, one for each potential source genome, with each set of k-mers being the 
reduced representation for the original genome they were generated from.
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reads unrelated to the genomes of interest are mistakenly classified as being of inter-
est, and will cause a decrease in recall if reads of interest are incorrectly classified to 
genomes filtered out from later analysis.

Impact of novel sequences on read classification

In practice, the readset being classified may contain reads from novel species or strains 
not present in the set of potential source genomes. To model this situation, and to 
understand where reads from such a novel source genome may go when classified using 
our approaches, we removed selected genomes from our set of potential sources. We did 
this for genomes with three different levels of Mash similarity to other members of the 
community: one genome with no other members with > 50% similarity to it, a second 
with members that it had between 50 and 90% similarity with, and a third with members 
with greater than 90% similarity to it.

We find that for the first scenario, with no similar genomes in the reference collection, 
removal from the set of potential source genomes results in the vast majority of its reads 
remaining unclassified. For the second scenario, which retains some similar genomes 
but no highly similar genomes, the majority of its reads remain classified, but approxi-
mately 25% of its reads are incorrectly classified to one of its most similar counterparts. 
Finally, for the third scenario with a number of highly similar genomes, the vast majority 
of its reads are classified to these highly similar genomes, with only a few reads remain-
ing unclassified.

These results are in line with what we expect from a similarity-based classification 
method, and indicates that the classification of reads from a novel strain not represented 
in our set of potential source genomes depends on the similarity of the novel strain to 
the genomes its reads are being compared against.

Effect of experimental parameters on read classification

Read length

We see increases in performance as read lengths get longer (Fig. 3a, Additional file 1: 
Table  1), as we have more opportunities for the screen k-mers to match error-free 
k-mers in the read. Read length also affects the size of the screen, as longer reads mean 
smaller screens are necessary to achieve the desired number of shared hashes between 
a read and its source (Fig. 3c). Conversely, with shorter reads, the screen sizes must be 
proportionally larger to maintain the similar levels of accuracy.

Error rates

We see decreases in accuracy at high error rates (Fig. 3a, Additional file 1: Table 1), as 
fewer k-mers remain unaffected by error, accompanied by sharp increases in screen 
size. With an error rate of 1% (as found in PacBio HiFi reads), we estimate that 81% of 
21-mers will remain error free, while at an error rate of 5% (as is found in Oxford Nano-
pore reads) just 34% of the 21-mers will remain error free. This is even more pronounced 
at error rates close to 10% (as is found in CLR PacBio data and older Oxford Nanopore 
reads), where just 10% of the 21-mers can be expected to be unaffected by error. As our 
approach adjusts screen size to compensate for error rate, this results in extremely large 
screen sizes to compensate for high error rate (Fig. 3c).
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little as 1% of the original k-mers, with a slight decrease to 98% when storing 0.2% of 
the k-mers and 96% when storing 0.1% (Additional file 1: Table 3). Below this threshold, 
accuracy starts to drop sharply; when storing just one of every 2000 k-mers, we are able 
to differentiate between 89% of human and microbial reads, and 60–70% when we fur-
ther halve the number of stored k-mers (Additional file 1: Table 3).

After distinguishing between human reads and contaminants, we then attempt to clas-
sify the contaminant reads to the exact source genome. The results match what we pre-
sent in the classification experiments; approximately 75% of the contaminant reads are 
mapped to the correct genome, with the misclassified reads coming from the genomes 
discussed in the previous section. We also classify human reads to the chromosome they 
are drawn from, and are able to do this with > 95% accuracy.

Comparison to existing tools

To evaluate the performance of the sketching and sampling approaches, we also tested 
several widely used approaches for read classification on the same dataset and experi-
mental settings. Versions of all tools used can be found in Additional file 1: Note 1.

In order to compare these existing tools to both our reference implementations of the 
sketching and sampling approaches and to each other, these comparisons are done using 
accuracy instead of runtime. This is done to simplify the comparison between tools with 
different levels of optimization, and allows us to focus simply on the ability of these 
approaches to correctly perform the task at hand. However, some details on the over-
head of the index-based approaches can be found in Additional file 1: Table 6, and com-
parisons between the runtime of selected index- and alignment-based approaches can 
be found in Additional file 1: Table 7. These results highlight the wide range in practical 
requirements between even highly similar approaches, further emphasizing why we have 
chosen to focus on accuracy as the key metric for comparison.

As before, accuracy in classification experiments is measured as the number of reads 
correctly classified as from the microbial genomes they were drawn from, and accuracy 
in contaminant detection experiments is measured as the number of human and micro-
bial reads identified as human or from any microbial genome respectively.

Alignment‑based

To test the effectiveness of alignment-based approaches to read classification, we test 
Minimap2 [21] and Winnowmap [38]. Minimap2 uses query minimizers as seeds for 
the alignment, while Winnowmap2 adds a preprocessing step to downweight repeti-
tive minimizers to reduce the chance of them being selected. In both approaches, we 
align our read sets against the genomes of the selected community, and calculate the 
predicted source of the read as the sequence to which it is mapped. For microbial 
classification, we find that both these tools perform slightly better than our Min-
Hash and minimizer based approaches. Compared to an accuracy of 77% and 79% in 
our MinHash and minimizer approaches with two shared hashes every 100 bp, Mini-
map2 and Winnowmap both achieve an accuracy of 81% (Table 3). Both alignment 
approaches achieve low accuracy on the same genomes that our sketching and sam-
pling approaches struggle on; namely, genomes with high-similarity relatives in the 
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community. These misclassifications are amplified at higher error rates, where the 
ability to distinguish between similar genomes is reduced. For contaminant detec-
tion, both tools are able to correctly distinguish 99.5% of the human and contami-
nant reads at a 1% sequencing error rate, and over 98% at higher error rates.

Index‑based

Kraken2 [25] and Centrifuge [27] use a preprocessed index of shared k-mers or 
compressed genomes respectively to determine the source of a query sequence. 
Each k-mer in the query sequence is classified to an element in the index, and we 
determine the source of the query as the element to which a plurality of k-mers 
are assigned.When using both a pre-built RefSeq database and a custom database 
built over our test community, we find that genome level identification is difficult 
between the highly similar members (Table  3). We observe large numbers of mis-
classifications between reads from these similar genomes, as well as classifying 
many of these reads only to higher taxa, and not to one of the specific genomes. For 
genomes without similar members in the community, the majority of their reads are 
correctly classified, giving Kraken2 and Centrifuge an overall classification accuracy 
of 72% with 1% error reads. At higher error rates, this performance drops sharply, 
with more reads left unclassified due to a lack of matched k-mers to the generated 
index. When distinguishing between human and microbial reads, both methods are 
able to correctly identify > 95% of the reads, even at high error rates.

CLARK [26] uses a pre-compiled list of discriminative k-mers for the community 
it is indexing, and performs classification based on query similarity to this list. While 
there are still misclassifications and unclassified reads at rates comparable to other 
tools, CLARK’s use of discriminative k-mers slightly reduces the impact of highly similar 
genomes in the community, allowing it to identify the few differences between them, 
achieving a classification accuracy of 73.5% with 1% error reads, and making it more 
resilient against misclassification at higher error rates (Table 3). For contaminant detec-
tion, CLARK is also able to distinguish over 97% of both human and microbial reads 
across a range of error rates.

Sketching‑based

MashMap [14] computes alignments by estimating k-mer based Jaccard similar-
ity between query sequences with MinHash sketches. We find that MashMap per-
forms worse than classic alignment-based approaches, and similarly to our MinHash 
approaches, with 74.5% classification on 1% error reads and steady decreases at higher 
error rates. Alignment boundaries in MashMap are determined through the Jaccard 
similarities of sketches. As a result, just as in the MinHash approach, it is susceptible to 
misclassifications between highly similar genomes. For contaminant detection, Mash-
Map is able to distinguish more than 96% of the human and microbial reads, even at 
higher error rates (Table 3).
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Analysis of genuine metagenomics sequencing data

To test the accuracy of our approaches on real sequencing data, we analyzed PacBio 
HiFi reads from the Human Gut Microbiome Pooled Standards [39] with the CGR com-
munity database. For this analysis, we used one omnivore and one vegan dataset, with 
1.79  M and 1.90  M reads respectively of length ~ 10  Kb and median quality of ~ Q40. 
We first align these reads to the CGR community database using Minimap2, and find 
that 78% of the reads from the vegan dataset and 85% of the reads from the omnivore 
dataset align at all. Of these alignments, 56% of reads from the vegan dataset and 63% of 
reads from the omnivore dataset have alignments that span > 50% of the read (Table 4), 
with this fraction dropping to 44% and 48% respectively when looking for alignments 
that span > 90% of the read length (Additional file 1: Fig. 2). For reads with alignments to 
multiple genomes, we take the sequence with the longest alignment to be their predicted 
source. This is less of a concern for reads with longer alignments, which we find are less 
likely to be mapped to multiple genomes.

We then classify these reads using our sketching and sampling approaches against a 
generated screen of the CGR community, built for 10 Kb, 1% error reads and 100 shared 

Table 4  Performance on real sequencing data

Comparison of the classification of our sketching and sampling approaches against Kraken2 and Minimap2 classifications 
across two PacBio HiFi Gut Microbiome datasets. The addition of a threshold requiring that > 50% of a read is aligned seems 
to remove a number of more spurious or insignificant calls, increasing concordance between Minimap2 and the other 
benchmarked approaches

Total number 
of reads 
classified

Number 
of reads 
classified 
to multiple 
genomes

Number of 
unclassified 
reads

Number of reads with 
same prediction as 
Minimap2

No Threshold  > 50% 
of read 
aligned

Vegan (1.90 M 
Reads)

Minimap2 (No 
threshold)

1,490,713 
(78.3%)

485,233 (25.4%) 413,446 (21.7%) N/A

Minimap2 
(> 50% of read 
aligned)

1,069,306 
(56.1%)

23,199 (1.2%) 834,853 (43.9%) N/A

Kraken2 1,399,341 
(73.5%)

562,744 (29.6%) 504,818 (26.5%) 827,572 816,331

MinHash 1,032,396 
(54.2%)

261,732 (13.7%) 871,763 (45.8%) 890,766 821,556

Minimizer 1,029,996 
(54.1%)

262,514 (13.8%) 874,163 (45.9%) 891,388 820,493

Uniform 1,021,555 
(53.6%)

264,867 (13.9%) 882,604 (46.7%) 883,465 819,017

Omnivore 
(1.79 M Reads)

Minimap2 (No 
threshold)

1,530,795 
(85.4%)

490,501 (27.4%) 261,351 (14.6%) N/A

Minimap2 
(> 50% of read 
aligned)

1,144,452 
(63.8%)

24,271 (1.3%) 647,694 (36.2%) N/A

Kraken2 1,442,671 
(80.5%)

578,113 (32.2%) 349,475 (19.5%) 855,670 835,888

MinHash 1,111,102 
(62.0%)

275,344 (15.4%) 681,044 (38.0%) 915,634 873,901

Minimizer 1,105,356 
(61.7%)

278,654 (15.5%) 686,790 (38.3%) 916,998 872,955

Uniform 1,098,244 
(61.3%)

281,745 (15.7%) 693,902 (38.7%) 911,554 871,675
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matches per read. We consider a read to be classified if it has at least 5 shared hashes 
with a genome, and unclassified if it does not share 5 hashes with any genome. With this 
threshold, approximately 60% of all reads are classified in each of the approaches, with 
approximately 25% of the classified reads tied between multiple sources (Table 4).

We compare these classification results against the alignments generated with Mini-
map2. Our classification results agree with approximately 60% of the reads classified 
by Minimap2 with no minimum alignment length, and approximately 76% of reads 
who have an alignment > 50% of their read length. (Table  4). This increase in consist-
ency is expected, as this threshold limits Minimap2 classification to reads that share a 
significant amount of sequence with potential source genomes, and are therefore more 
likely to share a significant amount of similarity with elements in the screen. Without 
this threshold, some reads are classified based on small, potentially unreliable, regions of 
alignment, and any similarity with elements in the screen must come from shared hashes 
drawn from these short aligned regions; such reads are likely to be misclassified between 
multiple low scoring genomes, or not classified at all. An alternate threshold would be 
to require the alignment to be over a particular length (e.g. 5 Kb), but the variance in 
read length causes this to be skewed against well-aligned shorter reads (Additional file 1: 
Fig.  3). Investigating the classifications that still do not agree with Minimap2, we see 
that almost 90% of these reads are instead classified to genomes that are > 95% similar to 
Minimap2’s predicted source.

We also classified these reads using Kraken2, with the predicted source of a read 
being the sequence to which a plurality of its k-mers are assigned. We find that approxi-
mately 77% of reads are classified by Kraken2, but approximately 40% of classified reads 
are only classified to a lowest common ancestor (LCA) instead of a single genome; we 
count these reads as classified to multiple genomes. We find that Kraken2’s classifica-
tion results agree with approximately 56% of the reads classified by Minimap2 with no 
alignment threshold, and approximately 75% of the reads classified by Minimap2 with 
the > 50% read length alignment threshold (Table  4). As expected, Kraken2 classified 
very few reads that fall below the 50% read length alignment threshold Minimap2 align-
ments, leaving those reads unclassified or only classified to a LCA; the majority of Krak-
en2’s classifications being reads that have significant similarity to a single genome. The 
remaining reads that do not agree with Minimap2 are either classified only to a LCA, or 
classified to genomes that are highly similar to Minimap2’s predicted source. As with the 
sketching and sampling approaches, we find that almost 90% of these reads are classi-
fied to genomes that are > 95% similar genome-wide. The remaining mis-classified reads 
originate from localized regions of the target genome showing high similarity to other 
genomes.

Conclusions and discussion
In this work, we presented and analyzed a range of sketching and sampling approaches 
for read classification, designed to reduce the space and time overhead for accurate clas-
sification across large collections of genomes. Overall, we find sampling and sketching 
are highly effective compared to index-based approaches, and are within a few percent 
accuracy of alignment-based approaches. Alignment-based approaches have the advan-
tage that they can assess the entire input sequence, although this increases runtime. 
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Minimizers generally lead to improved accuracy over MinHash-based approaches, 
chiefly because there is a stronger guarantee on the distance between selected k-mers. 
Among MinHash-based techniques, weighted MinHash enabled modest but measur-
able improvements while Ordered MinHash enabled minimal performance gains. All 
approaches correctly distinguished reads from dissimilar genomes but struggled with 
the classification of reads from highly similar genomes.

Sketching and sampling approaches are able to perform well, however there are still 
scenarios where these approaches are challenged. The current methods are best suited 
for longer, low-error reads, and incur a higher footprint and decreased performance 
when classifying shorter, higher error rate reads. Consequently, a major need for future 
work is the continued development of sketching and sampling techniques better suited 
for high error rate environments. This includes the use of approaches such as gap k-mers 
[40] to increase error tolerance, or the use of more auxiliary information, such as pre-
computed indexes of unique k-mers [41] or augmented MinHash or minimizer-based 
methods [42, 43], to distinguish between similar sequences.
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