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Abstract

Action detection is a significant and challenging task, es-
pecially in densely-labelled datasets of untrimmed videos.
Such data consist of complex temporal relations including
composite or co-occurring actions. To detect actions in
these complex settings, it is critical to capture both short-
term and long-term temporal information efficiently. To
this end, we propose a novel ‘ConvTransformer’ network
for action detection: MS-TCT'. This network comprises
of three main components: (1) a Temporal Encoder mod-
ule which explores global and local temporal relations at
multiple temporal resolutions, (2) a Temporal Scale Mixer
module which effectively fuses multi-scale features, creat-
ing a unified feature representation, and (3) a Classification
module which learns a center-relative position of each ac-
tion instance in time, and predicts frame-level classification
scores. Our experimental results on multiple challenging
datasets such as Charades, TSU and MultiTHUMOS, val-
idate the effectiveness of the proposed method, which out-
performs the state-of-the-art methods on all three datasets.

1. Introduction

Action detection is a well-known problem in computer
vision, which is aimed towards finding precise temporal
boundaries among actions occurring in untrimmed videos.
It aligns well with real-world settings, because every minute
of a video is potentially filled with multiple actions to be de-
tected and labelled. There are public datasets [1 1,42, 52]
which provide dense annotations to tackle this problem,
having an action distribution similar to the real-world.
However, such data can be challenging, with multiple ac-
tions occurring concurrently over different time spans, and
having limited background information. Therefore, under-
standing both short-term and long-term temporal dependen-
cies among actions is critical for making good predictions.
For instance, the action of ‘taking food’ (see Fig. 1) can
get context information from ‘opening fridge’ and ‘making
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Figure 1. Complex temporal relations in untrimmed videos:
Here, we show a typical distribution of actions in a densely-
labelled video, which consists of both long-term and short-term
dependencies among actions.

sandwich’, which correspond to the short-term and long-
term action dependencies, respectively. Also, the occur-
rence of ‘putting something on the table’ and ‘making sand-
wich’ provide contextual information to detect the compos-
ite action ‘cooking’. This example shows the need for an
effective temporal modeling technique for detecting actions
in a densely-labelled videos.

Towards modeling temporal relations in untrimmed
videos, multiple previous methods [9, 10, 12,13,31,39] use
1D temporal convolutions [31]. However, limited by their
kernel size, convolution-based methods can directly access
local information only, not learning direct relations between
temporally-distant segments in a video (here, we consider a
set of consecutive frames as a segment). Thus, such meth-
ods fail to model long-range interactions between segments
which may be important for action detection. With the suc-
cess of Transformers [17, 35,45, 57] in natural language
processing and more recently in computer vision, recent
methods [43, 44] have leveraged multi-head self-attention
(MHSA) to model long-term relations in videos for ac-
tion detection. Such attention mechanisms can build di-
rect one-to-one global relationships between each temporal
segment (i.e., temporal token) of a video to detect highly-
correlated and composite actions. However, existing meth-
ods rely on modeling such long-term relationships on input
frames themselves. Here, a temporal token covers only a
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few frames, which is often too short w.r.t. to the duration
of action instances. Also, in this setting, transformers need
to explicitly learn strong relationships between adjacent to-
kens which arise due to temporal consistency, whereas it
comes naturally for temporal convolutions (i.e., local induc-
tive bias). Therefore, a pure transformer architecture may
not be sufficient to model complex temporal dependencies
for action detection.

To this end, we propose Multi-Scale Temporal ConvTrans-
Jormer (MS-TCT), a model which benefits from both
convolutions and self-attention. We use convolutions in
a token-based architecture to promote multiple temporal
scales of tokens, and to blend neighboring tokens impos-
ing a temporal consistency with ease. In fact, MS-TCT is
built on top of temporal segments encoded using a 3D con-
volutional backbone [5]. Each temporal segment is consid-
ered as a single input token to MS-TCT, to be processed
in multiple stages with different temporal scales. These
scales are determined by the size of the temporal segment,
which is considered as a single token at the input of each
stage. Having different scales allows MS-TCT to learn both
fine-grained relations between atomic actions (e.g. ‘open
fridge’) in the early stages, and coarse relations between
composite actions (e.g. ‘cooking’) in the latter stages. To
be more specific, each stage consists of a temporal convo-
lution layer for merging tokens, followed by a set of multi-
head self-attention layers and temporal convolution layers,
which model global temporal relations and infuse local in-
formation among tokens, respectively. As convolution in-
troduces an inductive bias [16], the use of temporal con-
volution layers in MS-TCT can infuse positional informa-
tion related to tokens [22,24], even without having any po-
sitional embeddings, unlike pure transformers [17]. Fol-
lowed by the modeling of temporal relations at different
scales, a mixer module is used to fuse the features from each
stages to get a unified feature representation. Finally, to pre-
dict densely-distributed actions, we introduce a heat-map
branch in MS-TCT in addition to the usual multi-label clas-
sification branch. This heat-map encourages the network to
predict the relative temporal position of instances of each
action class. Fig. 2 shows the relative temporal position,
which is computed based on a Gaussian filter parameter-
ized by the instance center and its duration. It represents
the relative temporal position w.r.t. to the action instance
center at any given time. With this new branch, MS-TCT
can embed a class-wise relative temporal position in token
representations, encouraging discriminative token classifi-
cation in complex videos.

To summarize, the main contributions of this work are
to (1) propose an effective and efficient ConvTransformer
for modeling complex temporal relations in untrimmed
videos, (2) introduce a new branch to learn the position rel-
ative to instance-center, which promotes action detection in
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Figure 2. Relative temporal position heat-map (G™): We
present a video clip which contains two overlapping action in-
stances. The Gaussians indicate the intensities of temporal heat-
maps, which are centered at the mid point of each action, in time.

densely-labelled videos, and (3) improve the state-of-the-art
on three challenging densely-labelled action datasets.

2. Related Work

Action detection has received a lot of interest in recent
years [8, 13,15,21,32,51,54]. In this work, we focus on
action detection in densely-labelled videos [11,42,52]. The
early attempts on modeling complex temporal relations tend
to use anchor-based methods [0, 50]. However, dense ac-
tion distributions require large amount of such anchors. Su-
perevent [38] utilizes a set of Gaussian filters to learn video
glimpses, which are later summed up with a soft attention
mechanism to form a global representation. However, as
these Gaussians are independent of the input videos, it can
not handle videos with minor frequencies of composite ac-
tions effectively. Similarly, TGM [39] is also a temporal
filter based on Gaussian distributions, which enables the
learning of longer temporal structures with a limited num-
ber of parameters. PDAN [10] is a temporal convolutional
network, with temporal kernels which are adaptive to the
input data. Although TGM and PDAN achieve state-of-the-
art performance in modeling complex temporal relations,
these relations are constrained to local regions, thus pre-
venting them to learn long-range relationships. Coarse-Fine
Networks [27] leverage two X3D [18] networks in a Slow-
Fast [19] fashion. This network can jointly model spatio-
temporal relations. However, it is limited by the number of
input frames in X3D backbone, and a large stride is required
to process long videos efficiently. This prevents Coarse-
Fine Networks from considering the fine-grained details in
long videos for detecting action boundaries. A concurrent
work [26] looks into detection pretraining with only clas-
sification labels, to improve downstream action detection.
Recently, some attempts have been proposed to model long-
term relationships explicitly: MTCN [29] benefits from the
temporal context of action and labels, whereas TQN [53]
factorizes categories into pre-defined attribute queries to
predict fine-grained actions. However, it is not trivial to
extend both approaches to action detection in untrimmed
videos.

Recent Transformer models have been successful in both
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Figure 3. Multi-Scale Temporal ConvTransformer (MS-TCT) for action detection consists of four main components: (1) a Visual
Encoder, (2) a Temporal Encoder, (3) a Temporal Scale Mixer (TS Mixer) and (4) a Classification Module. Here, T'C' indicates the 1D

convolutional layer with kernel size k.

image and video domain [2, 3,7, 17,35, 36, 40, 46,47, 49,

, 57].  Although Vision Transformers such as TimeS-
former [45] can consider frame-level input tokens to model
temporal relations, it is limited to short video clips which
is insufficient to model fine-grained details in longer real-
world videos. As a compromise, recent action detec-
tion methods use multi-head self-attention layers on top
of the visual segments encoded by 3D convolutional back-
bones [5]. RTD-Net [43], an extension of DETR [57], uses
a transformer decoder to model the relations between the
proposal and the tokens. However, this network is designed
only for sparsely-annotated videos [4,25], where only a sin-
gle action exists per video. In dense action distributions,
the module that detects the boundaries in RTD-Net fails to
separate foreground and background regions. MLAD [44]
learns class-specific features and uses a transformer en-
coder to model class relations at each time-step and tem-
poral relations for each class. However, MLAD struggles
with datasets that has complex labels [42], since it is hard
to extract class-specific features in such videos. In con-
trast to these transformers introduced for action detection,
we propose a ConvTransformer: MS-TCT, which inherits a
transformer encoder architecture, while also gaining bene-
fits from temporal convolution. Our method can model tem-
poral tokens both globally and locally at different temporal
scales. Although other ConvTransformers [16,22, 28, 48]
exist for image classification, our network is designed and
rooted for densely-labelled action detection.

3. Multi-Scale Temporal ConvTransformer

First, we define the problem statement of action detec-
tion in densely-labelled settings. Formally, for a video se-
quence of length 7', each time-step ¢ contains a ground-
truth action label y; . € {0,1}, where ¢ € {1,...,C} in-
dicates an action class. For each time-step, an action detec-

tion model needs to predict class probabilities ;. € [0, 1].
Here, we describe our proposed action detection network:
MS-TCT. As depicted in Fig. 3, it consists of four main
components: (1) a Visual Encoder which encodes a prelim-
inary video representation, (2) a Temporal Encoder which
structurally models the temporal relations at different tem-
poral scales (i.e., resolution), (3) a Temporal Scale Mixer,
dubbed as TS Mixer, which combines multi-scale tempo-
ral representations, and (4) a Classification Module which
predicts class probabilities. In the following sections, we
present the details of each these components of MS-TCT.

3.1. Visual Encoder

The input to our action detection network: MS-TCT,
is an untrimmed video which may span for a long dura-
tion [11] (e.g. multiple minutes). However, processing
long videos in both spatial and temporal dimensions can
be challenging, mainly due to computational burden. As
a compromise, similar to previous action detection mod-
els [10,39,44], we consider features of video segments ex-
tracted by a 3D CNN as inputs to MS-TCT, which embed
spatial information latently as channels. Specifically, we
use an I3D backbone [5] to encode videos. Each video is
divided into T" non-overlapping segments (during training),
each of which consists of 8 frames. Such RGB frames are
fed as an input segment to the I3D network. Each segment-
level feature (output of I3D) can be seen as a transformer
token of a time-step (i.e., temporal token). We stack the to-
kens along the temporal axis to form a 7" x Dy video token
representation, to be fed in to the Temporal Encoder.

3.2. Temporal Encoder

As previously highlighted in Section 1, efficient tempo-
ral modeling is critical for understanding long-term tem-
poral relations in a video, especially for complex action
compositions. Given a set of video tokens, there are two
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a Temporal Merging Block and (2) x B Global-Local Relational
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main ways to model temporal information: using (1) a 1D
Temporal Convolutional layer [31], which focuses on the
neighboring tokens but overlooks the direct long-term tem-
poral dependencies in a video, or (2) a Transformer [45]
layer that globally encodes one-to-one interactions of all
tokens, while neglecting the local semantics, which has
proven beneficial in modeling the highly-correlated visual
signals [20, 23]. Our Temporal Encoder benefits from the
best of both worlds, by exploring both local and global con-
textual information in an alternating fashion.

As shown in Fig. 3, Temporal Encoder follows a hi-

erarchical structure with N stages: Earlier stages learn a
fine-grained action representation with more temporal to-
kens, whereas the latter stages learn a coarse representation
with fewer tokens. Each stage corresponds to a semantic
level (i.e., temporal resolution) and consists of one Tempo-
ral Merging block and x B Global-Local Relational Blocks
(see Fig. 4):
Temporal Merging Block is the key component for intro-
ducing network hierarchy, which shrinks the number of to-
kens (i.e., temporal resolution) while increasing the feature
dimension. This step can be seen as a weighted pooling op-
eration among the neighboring tokens. In practice, we use a
single temporal convolutional layer (with a kernel size of k,
and a stride of 2, in general) to halve the number of tokens
and extend the channel size by x~. In the first stage, we
keep a stride of 1 to maintain the same number of tokens as
the 13D output, and project the feature size from Dy to D
(see Fig. 3). This is simply a design choice.

Global-Local Relational Block is further decomposed in
to a Global Relational Block and a Local Relational Block
(see Fig. 4). In Global Relational Block, we use the stan-
dard multi-head self-attention layer [45] to model long-term
action dependencies, i.e., global contextual relations. In Lo-
cal Relational Block, we use a temporal convolutional layer
(with a kernel size of k) to enhance the token representation
by infusing the contextual information from the neighboring

tokens, i.e., local inductive bias. This enhances the tempo-
ral consistency of each token while modeling the short-term
temporal information corresponding to an action instance.
In the following, we formulate the computation flow in-
side the Global-Local Relational Block. For brevity, here,
we drop the stage index n. For a block j € {1,..., B},
we represent the input tokens as X; € RT' %D’ First, the
tokens go through multi-head attention layer in Global Re-
lational Block, which consists of H attention heads. For
each head i € {1,...,H}, an input X is projected in to
Qij = WX, Ky = WEX; and Vi; = WY X, where

Wi?, WE, WY e RP»*D" represent the weights of lin-

ear layers and Dy, = % represents the feature dimension
of each head. Consequently, the self-attention for head ¢ is
computed as,

Qi K
v Dy,

Then, the output of different attention heads are mixed with
an additional linear layer as,

Att;; = Softmax( Wi )]

M; = WJ-OConcat(Attlj7 wy Attrs) + X5 (2)

where WP € RP "*D" represents the weight of the linear
layer. The output feature size of multi-head attention layer
is the same as the input feature size.

Next, the output tokens of multi-head attention are fed
in to the Local Relational Block, which consists of two lin-
ear layers and a temporal convolutional layer. As shown
in Fig. 4, the tokens first go through a linear layer to in-
crease the feature dimension from D’ to D', followed by a
temporal convolutional layer with a kernel size of k, which
blends the neighboring tokens to provide local positional in-
formation to the temporal tokens [24]. Finally, another lin-
ear layer projects the feature dimension back to D’. The two
linear layers in this block enable the transition between the
multi-head attention layer and temporal convolutional layer.
The output feature dimension remains the same as the input
feature for the Local Relational Block. This output is fed to
the next Global Relational Block if block j < B.

The output tokens from the last Global-Local Relational
Block from each stage are combined and fed to the follow-
ing Temporal Scale Mixer.

3.3. Temporal Scale Mixer

After obtaining the tokens at different temporal scales,
the question that remains is, how fo aggregate such multi-
scale tokens to have a unified video representation? To
predict the action probabilities, our classification module
needs to make predictions at the original temporal length
as the network input. Thus, we require to interpolate the
tokens across the temporal dimension, which is achieved
by performing an up-sampling and a linear projection step.
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Figure 5. Temporal Scale Mixer Module: The output tokens F3,
of stage n is resized and up-sampled to 7" x D,,, then summed with
the tokens from the last stage V.

As shown in Fig. 5, for the output F,, from stage n €
{1,..., N}, this operation can be formulated as,

gn(Fn) = UpSampling, (F,W"), 3)

where W™ € RPv*7" "D with an upsampling rate of n. In
our hierarchical architecture, earlier stages (with lower se-
mantics) have higher temporal resolution, whereas the latter
stages (with high semantics) have lower temporal resolu-
tion. To balance the resolution and semantics, upsampled
tokens from the last stage N is processed through a linear
layer and summed with the upsampled tokens from each
stage (n < NN). This operation can be formulated as,

Fr/L:gn(Fn)@gN(FN)Wn ) 4)

where F is the refined tokens of stage n, @ indicates the
element-wise addition and W,, € RP»*Dv Here, all the re-
fined token representations have the same temporal length.
Finally, we concatenate them to get the final multi-scale
video representation F,, € RT*NDv,

F, = concat(Fy, ..., Fy_1,Fn) . 5)

Note that more complicated fusion methods [14,34] can be
built on top of these multi-scale tokens. However, we see
that the simple version described above performs the best.

The multi-scale video representation F), is then sent to
the classification module for making predictions.

3.4. Classification Module

Training MS-TCT is achieved by jointly learning two
classification tasks. As mentioned in Section 1, in this work,
we introduce a new classification branch to learn a heat-map
of the action instances. This heat-map is different from the
ground truth label as it varies across time, based on the ac-
tion center and duration. The objective of using such heat-
map representation is to encode temporal relative position-
ing in the learned tokens of MS-TCT.

In order to train the heat-map branch, we first need to
build the class-wise ground-truth heat-map response G* €
[0, 1]T*€, where C indicates the number of action classes.

In this work, we construct G* by considering the maximum
response of a set of one-dimensional Gaussian filters. Each
Gaussian filter corresponds to an instance of action class
in a video, centered at the specific action instance, in time.
More precisely, for every temporal location ¢ the ground-
truth heat-map response is formulated as,

Gi(t) = _max Gaussian(t, ta,c;o) , 6)
1 (t*ta,c)2
Gaussian(t,te,c;0) = ——exp 202 . (@)
( ) \V2mo

Here, Gaussian(-,-;0) provides an instance-specific
Gaussian activation according to the center and instance du-
ration. Moreover, o is equal to % of each instance dura-
tion and ¢, . represents the center for class ¢ and instance
a. A, is the total number of instances for class ¢ in the
video. As shown in Fig. 3, heat-map G is computed us-
ing a temporal convolutional layer with a kernel size of k
and a non-linear activation, followed by another linear layer
with a sigmoid activation. Given the ground-truth G* and
the predicted heat-map GG, we compute the action focal loss
[33,56] which is formulated as,

(1 = Gi.e)*109(Gr.e) if Gi.=1
EFocal A Z { 1-G* 2 . _
7o) (G,c)?Log(l — Gy,c) Otherwise
(®)
where A is the total number of action instances in a video.
Similar to the previous work [10, 44], we leverage an-
other branch to perform the usual multi-label classification.
With video features F),, the predictions are computed us-
ing two linear layers with a sigmoid activation, and Bi-
nary Cross Entropy (BCE) loss [37] is computed against
the ground-truth labels. Only the scores predicted from this
branch are used in evaluation. Input to both the branches
are the same output tokens F,. The heat-map branch en-
courages the model to embed the relative position w.r.t. the
instance center in to video tokens F,. Consequently, the
classification branch can also benefit from such positional
information to make better predictions.
The overall loss is formulated as a weighted sum of the
two losses mentioned above, with the weight « is chosen
according to the numerical scale of losses.

Lol = L£BCE + @ LEocal - )

4. Experiments

Datasets: We evaluate our framework on three challeng-
ing multi-label action detection datasets: Charades [42],
TSU [11] and MultiTHUMOS [52]. Charades [42] is a
large dataset with 9848 videos of daily indoor actions. The
dataset contains 66K+ temporal annotations for 157 action
classes, with a high overlap among action instances of dif-
ferent classes. This is in contrast to other action detection



datasets such as ActivityNet [4], which only have one ac-
tion per time-step. We evaluate on the localization setting
of the dataset [41]. Similar to the Charades, TSU [11] is
also recorded in indoor environment with dense annota-
tions. Up to 5 actions can happen at the same time in a
given frame. However, different from Charades, TSU has
many long-term composite actions. MultiTHUMOS [52]
is an extended version of THUMOS’ 14 [25], containing
dense, multi-label action annotations for 65 classes across
413 sports videos. By default, we evaluate the per-frame
mAP on these densely-labelled datasets following [4 1, 52].
Implementation Details: In the proposed network, we use
number of stage N = 4 the number of Global-Local Re-
lational Blocks B = 3 for each stage. Note that for small
dataset as MultiTHUMOS, B = 2 is sufficient. The number
of attention heads for the Global Relational Block is set to
8. We use the same output feature dimension of I3D (after
Global Average Pooling as input to MS-TCT, and
thus Dy = 1024. Input features are then projected in to
D = 256 dimensional feature using the temporal merging
block in the first stage. We consider feature expansion rate
v = 1.5 and § = 8. Kernel size k of temporal convolu-
tional layer is set to be 3, with zero padding to maintain the
resolution. The loss balance factor a = 0.05. The num-
ber of tokens is fixed to T = 256 as input to MS-TCT.
During training, we randomly sample consecutive 7' tokens
from a given I3D feature representation. At inference, we
follow [44] to use a sliding window approach to make pre-
dictions. Our model is trained on two GTX 1080 Ti GPUs
with a batch-size of 32. We use Adam optimizer [30] with
an initial learning rate of 0.0001, which is scaled by a factor
of 0.5 with a patience of 8 epochs.

4.1. Ablation Study

In this section, we study the effectiveness of each com-
ponent in the proposed network on Charades dataset.
Importance of Each Component in MS-TCT: As shown
in Table 1, I3D features with the classification branch only,
is considered as the representative baseline. This baseline
consists in a classifier that discriminates the I3D features at
each time-step without any further temporal modeling. On
top of that, adding our Temporal Encoder significantly im-
proves the performance (+ 7.0%) w.r.t. 13D feature baseline.
This improvement reflects the effectiveness of the Tempo-
ral Encoder in modeling the temporal relations within the
videos. In addition, if we introduce a Temporal Scale Mixer
to blend the features from different temporal scales, it gives
a + 0.5% improvement, with minimal increase in computa-
tions. Finally, we study the utility of our heat-map branch
in the classification module. We find that the heat-map
branch is effective when optimized along with the classi-
fication branch, but fails to learn discriminative represen-
tations when optimized without it (25.4% vs 10.7%). The

Table 1. Ablation on each component in MS-TCT: The evalua-
tion is based on per-frame mAP on Charades dataset.

Temporal TS Heat-Map Classification | mAP

Encoder  Mixer Branch Branch (%)
X X X v 15.6
v X X v 23.6
v v X v 24.1
v v v X 10.7
v v v v 254

Table 2. Ablation on the design of a single stage in our Tempo-
ral Encoder, evaluated using per-frame mAP on Charades dataset.

Temporal Global Local mAP
Merge Layer Layer (%)
4 v X 24.0

v X v 20.9

X v 4 22.7

4 v 4 254

heat-map branch encourages the tokens to predict the ac-
tion center while down-playing the tokens towards action
boundaries. In comparison, the classification branch im-
proves the token representations equally for all tokens, de-
spite action boundaries. Thus, when optimized together,
both branches enable the model to learn a better action rep-
resentation. While having all the components, the proposed
network achieves a significant + 9.8% improvement w.r.t.
13D feature baseline validating that each component in MS-
TCT is instrumental for the task of action detection.
Design Choice for a Stage: In Table 2, we present the abla-
tion related to the design choices of a stage in the Temporal
Encoder. Each row in Table 2 indicates the result of re-
moving a component in each stage. Note that, removing
the Temporal Merge block indicates replacing this block
with a temporal convolutional layer of stride 1, i.e., only
the channel dimension is modified across stages. In Ta-
ble 2, we find that removing any component can drop the
performance with a significant margin. This observation
shows the importance of jointly modeling both global and
local relations in our method, and the effectiveness of the
multi-scale structure. These properties in MS-TCT make it
easier to learn complex temporal relationships which span
across both (1) neighboring temporal segments, and (2) dis-
tant temporal segments.

Analysis of the Local Relational Block: We also dig
deeper in to the Local Relational Block in each stage. As
shown in Fig. 4, there are two linear layers and one temporal
convolutional layer in a Local Relational Block. In Table 3,
we further perform ablations of these components. First, we
find that without the temporal convolutional layer, the de-
tection performance drops. This observation shows the im-
portance of mixing the transformer tokens with a temporal
locality. Second, we study the importance of the transition



Table 3. Ablation on the design of Local Relational Block: Per-
frame mAP on Charades using only RGB input. X indicates we
remove the linear or temporal convolutional layer. Feature expan-
sion rate 1 indicates that the feature-size is not changed in the Lo-
cal Relational Block.

Feature Expansion Temporal mAP
Rate (0) Convolution (%)

8 X 22.3

X 4 22.4

1 v 242

4 v 249

8 v 254

Table 4. Comparison with the state-of-the-art methods on three
densely labelled datasets. Backbone indicates the visual encoder.
Note that the evaluation for the methods is based on per-frame
mAP (%) using only RGB videos.

Backbone | GFLOPs|Charades MultiTHUMOS TSU
R-C3D [50] C3D - 12.7 - 8.7
Super-event [38] 13D 0.8 18.6 36.4 17.2
TGM [39] 13D 1.2 20.6 37.2 26.7
PDAN [10] 13D 32 23.7 40.2 32.7
Coarse-Fine [27]| X3D - 25.1 - -
MLAD [44] 13D 44.8 18.4 42.2 -
MS-TCT | 13D | 66 | 254 43.1 337

layer (i.e., linear layer). When the feature size remains con-
stant, having the transition layer can boost the performance
by + 1.8%, which shows the importance of such transition
layers. Finally, we study how the expansion rate affects the
network performance. While setting different feature ex-
pansion rates, we find that temporal convolution can better
model the local temporal relations when the input feature is
in a higher dimensional space.

4.2. Comparison to the State-of-the-Art

In this section, we compare MS-TCT with the state-
of-the-art action detection methods (see Table 4). Pro-
posal based methods, such as R-C3D [50] fail in multi-label
datasets due to the highly-overlapping action instances,
which challenge the proposal and NMS-based methods. Su-
perevent [38] superimposes a global representation to each
local feature based on a series of learnable temporal filters.
However, the distribution of actions varies from one video
to the other. As super-event learns a fixed filter location
for all the videos in the training distribution, this location is
suitable to mainly actions with high frequency. TGM [39]
and PDAN [10] are methods based on temporal convolution
of video segments. Nevertheless, those methods only pro-
cess videos locally at a single temporal scale. Thus, they are
not effective in modeling long-term dependencies and high-
level semantics. Coarse-Fine Network [27] achieves 25.1%
on Charades. However, this method is built on top of the
video encoder X3D [ 18], which prevents the usage of higher
number of input frames. Moreover, it relies on a large

. Ground truth . PDAN . MSTCT
Hold sandwich L - 3
Put sandwich =
Walk = —
Drink L
Hold cup .|
Take cup -]
Take dish -

Figure 6. Visualization of the detection results on an example
video along time axis. In this figure, we visualize the ground truth
and the detection of PDAN and MS-TCT.

stride between the frames. Therefore, it fails to model fine-
grained action relations, and can not process long videos in
MultiTHUMOS and TSU. MLAD [44] jointly models ac-
tion class relations for every time-step and temporal rela-
tions for every class. This design leads to a huge computa-
tional cost, while under-performing on datasets with a large
number of action classes (e.g. Charades). Thanks to the
combination of transformer and convolution in a multi-scale
hierarchy, the proposed MS-TCT consistently outperforms
previous state-of-the-art methods in all three challenging
multi-label action detection datasets that we considered. We
also compare the computational requirement (FLOPs) for
the methods built on top of the same Visual Encoder (i.e.,
13D features), taking as input the same batch of data. We
observe that the FLOPs of MS-TCT is higher with a reason-
able margin than pure convolutional methods (i.e., PDAN,
TGM, super-event). However, compared to a transformer
based action detection method MLAD, MS-TCT uses only
Lth of the FLOPs.

We also evaluate our network with the action-conditional
metrics introduced in [44] on Charades dataset in Table 5.
These metrics are used to measure a method’s ability to
model both co-occurrence dependencies and temporal de-
pendencies of action classes. Although our network is not
specifically designed to model cross-class relations as in
MLAD, it still achieves higher performance on all action-
conditional metrics with a large margin, showing that MS-
TCT effectively models action dependencies both within a
time-step (i.e., co-occurring action, 7 = 0) and throughout
the temporal dimension (7 > 0).

Finally, we present a qualitative evaluation for PDAN
and MS-TCT on the Charades dataset in Fig. 6. As the pre-
diction of the Coarse-Fine Network is similar to the X3D
network which is limited to dozens of frames, thus we can
not compare with the Coarse-Fine network on the whole
video. Here, we observe that MS-TCT can predict action
instances more precisely compared to PDAN. This compar-
ison reflects the effectiveness of the transformer architecture
and multi-scale temporal modeling.

4.3. Discussion and Analysis

Transformer, Convolution or ConvTransformer? To
confirm the effectiveness of our ConvTransformer, we com-



Table 5. Evaluation on the Charades dataset using the action-conditional metrics [44]: Similar to MLAD, both RGB and Optical flow
are used for the evaluation. Pac - Action-Conditional Precision, R a¢ - Action-Conditional Recall, F'1 4¢ - Action-Conditional F1-Score,
mAPac - Action-Conditional Mean Average Precision. 7 indicates the temporal window size.

7=0 7=20 T=40
Pac Rac Flac mAPac | Pac Rac Flac mAPac | Pac Rac Flac mAPac

13D 14.3 1.3 2.1 15.2 12.7 1.9 2.9 21.4 14.9 2.0 3.1 20.3

CF 10.3 1.0 1.6 15.8 9.0 1.5 2.2 22.2 10.7 1.6 2.4 21.0

MLAD [44] | 19.3 7.2 8.9 28.9 18.9 8.9 10.5 35.7 19.6 9.0 10.8 34.8

MS-TCT 263 155 195 30.7 27.6 184 221 37.6 279 183 221 36.4
Table 6. Study on stage type Table 7. Study on o show- Close Book
showing the effect of having both  ing the effect of scale of Hold book
convolutions and self-attention. Gaussians in heat-maps. Take laptop
Stage-Type mAP Variance: o mAP Run

Pure Transformer 22.3 1/8 duration 24.6 Ground truth heat map (G¥)

Pure Convolution 214 1/4 duration 24.8 Close Book
ConvTransformer 254 1/2 duration 254 Hold book
Take laptop

pare with a pure transformer network and a pure convo-
lution network. Each network has the same number of
stages as MS-TCT with similar settings (e.g. blocks, fea-
ture dimension). In pure transformer, a pooling layer and
a linear layer constitute the temporal merging block, fol-
lowed by B transformer blocks in each stage. A transformer
block is composed of a multi-head attention layer, norm-
add operations and a feed-forward layer. A learned posi-
tional embedding is added to the input tokens to encode the
positional information. This pure transformer architecture
achieves 22.3% on Charades. In pure convolution-based
model, we retain the same temporal merging block as in
MS-TCT, followed by a stack of B temporal convolution
blocks. Each block consists of a temporal convolution layer
with a kernel-size of k, a linear layer, a non-linear activation
and a residual link. This pure temporal convolution archi-
tecture achieves 21.4% on Charades. In contrast, the pro-
posed ConvTransformer outperforms both the pure trans-
former and the pure convolutional network by a large mar-
gin (+ 3.1%, and + 4.0% on Charades, respectively. See
Table 6). It shows that ConvTransformer can better model
the temporal relations of complex actions.

Heat-map Analysis: We visualize the ground truth heat-
map (G*) and the corresponding predicted heat-map (G) in
Fig. 7. We observe that with the heat-map branch, MS-TCT
predicts the center location of the action instances, showing
that MS-TCT embeds the center-relative information in to
the tokens. However, as we optimize with the focal loss to
highlight the center, the boundaries of the action instance
in this heat-map are less visible. We then study the impact
of o on performance. As shown in Table 7, we set o to
be either %, i or % of the instance duration while generat-
ing the ground-truth heat-map G*. MS-TCT improves by +
0.5%, + 0.7%, + 1.3% respectively w.r.t. the MS-TCT with-
out the heat-map branch, when G* set to different o. This

Run

Learned heat map (G)

Figure 7. Heat-map visualization along time axis: On the top,
we show the ground truth heat-map (G™) of the example video. On
the bottom is the corresponding learned heat-map (G) of MS-TCT.
As the heat-map is generated by a Gaussian function, the lighter
region indicates closer to the center of the instance.

result reflects that a larger o can better provide the center-
relative position. We investigate further by adding a heat-
map branch to another action detection model: PDAN [10].
Although the heat-map branch also improves PDAN (+ 0.4
%), the relative improvement is lower compared to MS-
TCT (+ 1.3 %). Our method features a multi-stage hierarchy
along with a TS Mixer. As the heat-map branch takes input
from all the stages, the center-relative position is embedded
even in an early stage. Such tokens with the relative po-
sition information, when fed through the following stages,
benefits the multi-head attention to better model temporal
relations among the tokens. This design makes MS-TCT to
better leverage the heat-map branch compared to PDAN.

Temporal Positional Embedding: We further study
whether the Temporal Encoder of MS-TCT benefits from
positional embedding. We find that the performance drops
by 0.2% on Charades when a learnable positional embed-
ding [17] is added to the input tokens before processing
them with the Temporal Encoder. This shows that the cur-
rent design can implicitly provide a temporal positioning
for the tokens. Adding further positional information to the
tokens makes it redundant, leading to lower detection per-
formance.



5. Conclusion

In this work, we proposed a novel ConvTransformer net-
work: MS-TCT for action detection. It benefits from both
convolutions and self-attention to model local and global
temporal relations respectively, at multiple temporal scales.
Also, we introduced a new branch to learn class-wise rel-
ative positions of the action instance center. MS-TCT is
evaluated on three challenging densely-labelled action de-
tection benchmarks, on which it achieves new state-of-the-
art results.
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Appendix

In the following sections, we provide further experimental
results on MS-TCT along four aspects: (1) temporal action
relation, (2) blurred videos, (3) heat-map branch (4) hyper-
parameters. In addition, we provide the limitation of our
method and more details on the Temporal Encoder archi-
tecture.

Al. Analysis of Temporal Action Relations

Firstly, we analyse how different types of layers in the
stages affect the range of temporal relations. We utilize the
action-conditional metrics [44] for this analysis as it pro-
vides the dependencies between the video tokens at differ-
ent temporal ranges. Similar to Section 4.3 in the main pa-
per, we construct three types of stage based on the tempo-
ral encoder: Pure Convolution, Pure Transformer and Con-
vTransformer (i.e., MS-TCT). As shown in table 8, we find
that Pure Convolution is better than Pure Transformer for
local temporal dependencies (7 = 5), but for the long-
term dependencies (7 = 100), the Transformer based model
achieves better performance. The ConvTransformer bene-
fits from both layers thus achieving better performance on
both short and long term dependencies.

Table 8. Studies on temporal dependencies. Evaluated with action
conditional mAP [44] on Charades using RGB.

Stage-Type T=5 71=100
Pure Convolution | 26.4 28.7
Pure Transformer | 24.6 30.8
ConvTransformer | 28.9 33.1

A2. Performance on Blurred Videos

For the protection of personal privacy, the face of all the
subjects is blurred on TSU [11]. The proposed MS-TCT
outperforms the state-of-the-art methods on this dataset,
showing that MS-TCT is not relying on the information of
person id to conduct the action detection.

A3. More studies on Heat-map Branch

We first study how the location of the heat-map branch
affects the detection performance. Precisely, instead of
feeding the output features from all stages (i.e., MS-TCT),
here, we provide only the stage 1 or stage 4 features to the
heat-map branch. In table 9, we find that having the heat-
map branch either in the early stage (i.e., stage = 1) or at
late stage (i.e., stage = 4) can boost the performance of MS-
TCT compared to MS-TCT without the heat-map branch.
The model achieves the overall best performance, while ex-
ploiting features from all the stages (i.e., F3,) to the heat-
map branch.

12

Table 9. Location of heat-map branch on Charades dataset using
only RGB. Stage indicates the features from which stage is fed to
the heat-map branch. Xindicates not having the heat-map branch
and All indicates that we fed features from all the stages to the
heat-map branch (i.e., similar to MS-TCT).

Stage | mAP (%)
X 24.1
1 24.9
4 24.7
All 254

We then perform a qualitative analysis of the action de-
tection performance for MS-TCT, with or without the heat-
map branch. As shown in figure 8, we find that while hav-
ing the heat-map branch (i.e., MS-TCT), the prediction is
more continuous (e.g., sitting in bed, putting a pillow). This
reflects that with the heat-map branch, the tokens in MS-
TCT are embedded with the instance-center relative posi-
tion. Therefore, the tokens in the instance, especially the
ones close to the center region, are well detected.

B vstcr

W cround truth W vstcT_wonm
Holding a laptop
Opening a laptop

Taking a laptop
Holding a pillow
Putting a pillow
Throwing a pillow
Sitting on sofa

Throwing on the floor
Sitting in bed E—lr—

Figure 8. Qualitative study for the heat-map branch. Blue: the
proposed method MS-TCT. Red: MS-TCT without the heat-map
branch.

Ad4. More Studies on Hyper-parameters

In this section, we further study the hyper-parameters of
MS-TCT model on the Charades dataset.
Study on the number of heads H. Multi-head attention
layer divides the channels into several groups. Each group
of features is sent to an attention head to model the global
temporal relation. While changing the number of heads, we
find that the FLOPs number remains the same, thanks to
the group operations. With more heads, more complex re-
lationships can be modelled. However, increasing the heads
reduces the number of channels processed by each head.
As a balance between the number of channels for each head
and the number of relations to model, we set the number of
heads H to 8.
Study on the number of Blocks B. We then study how
the number of Global-Local Relational Blocks B affects
the network performance. From table 11, we find that the
FLOPs number is increasing with the number of blocks.
The network can achieve better performance when more



Table 10. Study on number of heads in Global Relational Blocks
on Charades dataset using only RGB.

#Heads H GFLOPs | mAP (%)
1 6.6 24.6
4 6.6 25.1
8 6.6 254
16 6.6 25.3

Table 11. Study on number of Global-Local Relational Blocks for
each stage on Charades dataset using only RGB.

# Block B GFLOPs | mAP (%)
1 34 24.3
2 5.0 24.7
3 6.6 254
4 8.2 25.5

Table 12. Study on the kernel size K for the temporal convolu-
tional layer in Local Relational Block on Charades dataset using
only RGB. Xindicates removing the temporal convolution layer in
the Local Relational Block.

# Kernel Size K | mAP (%)
X 22.3
3 25.4
5 25.1
7 25.4

Global and Local layers are involved for the temporal mod-
eling. As a balance between FLOPs and the number of
blocks, we utilize a three-block architecture.

Study on the kernel size K for Temporal Convolution.
After that, we study how the kernel size of the temporal
convolution in the Local Relational Block affects the ac-
tion detection performance. In table 12, we find that remov-
ing the temporal convolution layer in the Local Relational
Block causes a significant drop in the performance. While
having the convolution layer, there is not a large difference
between the model with different kernel sizes. As a larger
kernel size results in more weight parameters, in this work
we choose the kernel size as 3.

Number of Tokens 7. We randomly select consecutive T’
tokens for each video in the training phase and utilize the
sliding window at inference. Here, we have studied how
the number of tokens 7" affects the action detection perfor-
mance. When 7' is set to 128, 256 and 512 tokens, MS-TCT
achieves 25.0%, 25.4% and 25.5% on Charades. There is no
significant difference in the action detection performance
while changing the number of input tokens. However, in-
creasing the number of tokens 7" in MS-TCT increases the
FLOPs. For the trade-off between the computation cost and
performance precision, we set 1" to 256 tokens, which cor-
responds to 2048 frames (about 86 sec.) of video.
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Table 13. Study on the number of stage N for the temporal en-
coder.

N (#Stage) 1 2 3 4 5
Charades mAP | 204 229 246 254 256

Study on the kernel size N for Temporal Encoder. Fi-
nally, we analyse the hyper-parameter [V in table 13. Num-
ber of Stages (N) determines the level of semantic infor-
mation in our representations. Our experiment show that a
4-stage structure strikes a balance between the performance
and model size.

AS. Method Limitation

Although MS-TCT has outperformed state-of-the-art
methods on three challenging datasets, the performance is
still relatively low (e.g., less than 30% on Charades). One of
the reasons is that the Visual Encoder and the Temporal En-
coder in MS-TCT are not optimized jointly in our network,
due to hardware limitation. Our future work will focus on
modeling the temporal and spatial relations end-to-end for
long untrimmed videos.

A6. Which actions benefit the most?

In order to quantify the action types which are the most
benefited from MS-TCT, we present performance w.r.t. 3
action-class characteristics (Fig. 9): # instances, intra-class
variance of duration and normalized instance duration [1].
Note that, we normalize the length of the instance by the
duration of the video to have the normalized instance dura-
tion. Firstly, we find that as MS-TCT does not have a spe-
cific design for imbalanced data, this model is troubled in
few-sampled action classes. Secondly, we notice that MS-
TCT can perform better in the action class with high intra-
class variance of duration. Finally, by the analysis of action
classes with different instance duration, we find that MS-
TCT can consistently detect both long and short instances.

#Instances Intra-Class Var. Instance Duration

, l
<10

0 100-500 >500

Small Mid Large Short Mid Long

Figure 9. The sensitivity of MS-TCT’s mAP to three action char-
acteristics.

A7. Temporal Encoder Architecture

To better understand the computation flow, table 14
shows the detailed architecture along with the input and out-
put feature size of our Temporal Encoder Module. We have
also allocated different hyper-parameters as H, B for dif-
ferent stages. However, we do not observe further improve-
ments.



Table 14. Temporal Encoder architecture. The input and out feature size is following 7" x D format, where number of tokens (7") on the left
and feature dimension D on the right. Linear layer is the kernel size 1 convolution. For the hyper-parameters: H: heads, K: kernel size, S:
stride, P: zero-padding rate. Note that, for brevity, number of blocks (B) is not reflected in this table. Each Stage contains 3 Global-Local
Relational Blocks, i.e., the set of a Global Relational Block and a Local Relational Block repeated 3 times for each stage.

Stage | Components Learnable layers Hyper-parameters | Inputsize | Output size
Temporal Merge | Temporal Convolution K:3,S:1,P: 1 256x1024 | 256x256
Global Relation | Multi-head Self-Attention H: 8 256x256 256x256
Stage 1 Linear K:1,S: 1,P: 0 256x256 | 256x2048
Local Relation Temporal Convolution K:3,S:1,P: 1 256x2048 | 256x2048
Linear K:1,S:1,P: 0 256x2048 | 256x256
Temporal Merge | Temporal Convolution K:3,S:2,P: 1 256x256 128x384
Global Relation | Multi-head Self-Attention H: 8 128384 128x384
Stage 2 Linear K:1,S:1,P: 0 128 x384 128 %3072
Local Relation Temporal Convolution K:3,S:1,P: 1 1283072 | 128 %3072
Linear K:1,S:1,P: 0 128 x3072 128 x384
Temporal Merge | Temporal Convolution K:3,S:2,P: 1 128x384 64 %576
Global Relation | Multi-head Self-Attention H: 8 64x576 64x576
Stage 3 Linear K:1,S:1,P: 0 64x576 64 x4608
Local Relation Temporal Convolution K:3,S:1,P: 1 64 x4608 64 x4608
Linear K:1,S:1,P: 0 64 x4608 64 x576
Temporal Merge | Temporal Convolution K:3,S:2,P: 1 64x576 32x 864
Global Relation | Multi-head Self-Attention H: 8 32x 864 32x 864
Stage 4 Linear K:1,S:1,P:0 32x864 32x6912
Local Relation Temporal Convolution K:3,S:1,P: 1 32x6912 32x6912
Linear K:1,S:1,P: 32x6912 32x 864
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