
Streaming Algorithm for Monotone k-Submodular Maximization with
Cardinality Constraints

Alina Ene * 1 Huy L. Nguyen * 2

Abstract
Maximizing a monotone k-submodular function
subject to cardinality constraints is a general
model for several applications ranging from in-
fluence maximization with multiple products to
sensor placement with multiple sensor types and
online ad allocation. Due to the large problem
scale in many applications and the online nature
of ad allocation, a need arises for algorithms that
process elements in a streaming fashion and pos-
sibly make online decisions. In this work, we
develop a new streaming algorithm for maximiz-
ing a monotone k-submodular function subject to
a per-coordinate cardinality constraint attaining
an approximation guarantee close to the state of
the art guarantee in the offline setting. Though not
typical for streaming algorithms, our streaming
algorithm also readily applies to the online setting
with free disposal. Our algorithm is combinatorial
and enjoys fast running time and small number of
function evaluations. Furthermore, its guarantee
improves as the cardinality constraints get larger,
which is especially suited for the large scale ap-
plications. For the special case of maximizing
a submodular function with large budgets, our
combinatorial algorithm matches the guarantee of
the state-of-the-art continuous algorithm, which
requires significantly more time and function eval-
uations.

1. Introduction
In this paper, we study the problem of maximizing a k-
submodular function subject to size constraints. In this
problem, we have a finite set V of elements. The goal is to

*Equal contribution 1Department of Computer Science, Boston
University 2Khoury College of Computer and Information Sci-
ence, Northeastern University. Correspondence to: Alina Ene
<aene@bu.edu>, Huy Nguyen <hu.nguyen@northeastern.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

select a k-tuple (S1, . . . , Sk) of disjoint subsets of V that
maximizes an objective function f subject to the constraints
that each set Si has size at most a given budget Bi. In many
applications, the objective function f is monotone and k-
submodular: the function value can only increase as the sets
Si increase, and the function exhibits a natural analogue of
the diminishing returns property of submodular functions.
When k = 1, the problem coincides with the well-studied
problem of maximizing a monotone submodular function
subject to a cardinality constraint.

The problem is a general model for several applications
(Feldman et al., 2009; Ohsaka & Yoshida, 2015). One mo-
tivating application is the influence maximization problem
with multiple products or topics (Ohsaka & Yoshida, 2015).
In this setting, the goal is to select a seed set Si for each
product i ∈ [k] in order to maximize the total influence of
the seed sets (S1, . . . , Sk) subject to constraints on the sizes
of each of the seed sets. In the well-studied models of influ-
ence propagation — the independent cascades and the linear
threshold models — the influence function is monotone and
k-submodular (Ohsaka & Yoshida, 2015).

A second motivating application arises in sensor placement
with different types of sensors (Ohsaka & Yoshida, 2015).
Here we have k types of sensors, each of which provides
different measurements, and we have Bi sensors of type i for
each i ∈ [k]. The ground set V is a set of possible locations
for the sensors. The goal is to equip each location with at
most one sensor in order to maximize the total information
gained from the sensors.

A third motivating application arises in online advertising.
In the online ad allocation problem (Feldman et al., 2009),
we have k advertisers that are known in advance and n ad
impressions that arrive online one at a time. Each adver-
tiser i ∈ [k] has a contract of Bi impressions. For each
impression j and each advertiser i, there is a non-negative
weight wji that captures how much value advertiser i ac-
crues from being allocated impression j. When impression
j arrives, the values {wji : i ∈ [k]} are revealed, and the
algorithm needs to allocate impression j to at most one
advertiser. In the online ad allocation with free disposal,
the algorithm may allocate more than Bi impressions to
advertiser i, and advertiser i is charged for only the Bi

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

most valuable impressions allocated to it. Letting Xi denote
the set of impressions allocated to advertiser i, the total
revenue is

∑︁k
i=1 max

{︂∑︁
j∈Si

wji : Si ⊆ Xi, |Si| ≤ Bi

}︂
.

This problem is a special case of k-submodular maximiza-
tion and submodular maximization with a partition matroid
constraint.

In applications such as those discussed above, the size of
the data available as well as the nature of the problem make
it necessary to design algorithms that process each element
as it arrives, and are very efficient both in terms of time
and space. In this work, we design a novel algorithm for
monotone k-submodular maximization subject to size con-
straints that simultaneously meets all of these desiderata.
Our algorithm makes a single pass over the data, and it is
both a streaming algorithm as well as an online algorithm in
the free disposal setting. The running time and space usage
of the algorithm are optimal. The approximation guarantee
of the algorithm is at least 1

4 and it improves as the mini-
mum budget B = mini∈[k] Bi increases, and it approaches

1
2(1+ln 2) ≈ 0.2953 as B tends to infinity. In large scale
applications, like ads allocation, the budget (number of im-
pressions) tends to be large, which is precisely the setting
where our algorithm performs well. The state of the art algo-
rithms for the problem are offline algorithms that are based
on Greedy (Ohsaka & Yoshida, 2015). These algorithms
achieve a slightly higher approximation guarantee of 1

3 at
the cost of a significantly higher space usage and higher
running time. Table 1 presents a detailed comparison.

Our algorithm also readily applies to the related problem
of maximizing a monotone submodular function subject to
a partition matroid constraint. The submodular problem is
more restrictive than the k-submodular one and thus its mod-
eling power is more limited. However, several applications,
such as the ad allocation problem discussed above, can also
be modeled as submodular maximization. We show that
our algorithm achieves an improved approximation guaran-
tee for the submodular problem when the minimum budget
B = mini∈[k] Bi is sufficiently large. The approximation
guarantee approaches 0.3178 as B tends to infinity, match-
ing the recent result of (Feldman et al., 2021). The work
(Feldman et al., 2021) gives a streaming algorithm for a gen-
eral matroid constraint with an approximation guarantee of
0.3178 that holds regardless of the minimum budget. This
algorithm is a continuous one that is based on the multilinear
extension, which is more expensive to evaluate, leading to a
high polynomial running time. Additionally, the algorithm
stores multiple solutions in memory and it is not suitable
for the online setting with free disposal. In contrast, our
algorithm is combinatorial and more efficient both in terms
of time and space. Table 2 presents a detailed comparison
of our algorithms with the state of the art algorithms for sub-
modular maximization with a partition matroid constraint.

Other related work: The works (Ohsaka & Yoshida, 2015;
Nguyen & Thai, 2020) study the problem of maximizing
a monotone k-submodular function subject to a common
budget constraint B, i.e., the goal is to construct a solution
(S1, . . . , Sk) satisfying |S1 ∪ · · · ∪ Sk| ≤ B. The work
(Ohsaka & Yoshida, 2015) gives an offline algorithm based
on Greedy that achieves a 1

2 approximation, and (Nguyen
& Thai, 2020) gives a streaming algorithm based on single-
threshold Greedy that achieves a 1

3 − ϵ approximation. The
latter algorithm makes multiple guesses for the threshold
and stores multiple solutions in memory, and therefore it is
not suitable for the online setting with free disposal. The
recent work (Pham et al., 2021) extends the algorithm of
(Nguyen & Thai, 2020) to the setting where we have a com-
mon knapsack constraint. Several works give offline algo-
rithms for the unconstrained non-monotone k-submodular
maximization problem (Ward & Živnỳ, 2016; Iwata et al.,
2016; Oshima, 2017; Soma, 2019). The work (Santiago
& Shepherd, 2019) introduces a different generalization of
submodularity to the multivariate setting where the goal is
to select k sets that are not necessarily disjoint, and provides
offline and distributed greedy algorithms for general classes
of constraints.

2. Preliminaries
2.1. Notation and Definitions

We follow the notation used in prior work (Ward
& Živnỳ, 2016; Ohsaka & Yoshida, 2015). Let
[k] = {1, 2, . . . , k}. Let V be a finite ground set of
elements. We consider k-tuples X = (X1, . . . , Xk)
of disjoint subsets of V : Xi ⊆ V for all i ∈ [k],
and Xi ∩ Xj = ∅ for all i ̸= j. We let (k + 1)

V
=

{(X1, X2, . . . , Xk) : Xi ⊆ V ∀i,Xi ∩Xj = ∅ ∀i ̸= j}
be the set of all such k-tuples. For two k-tuples
X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk), we write
X ⪯ Y if and only if Xi ⊆ Yi for all i ∈ [k]. We let
supp (X) = X1 ∪ · · · ∪Xk.

Let f : (k + 1)
V → R+ be a non-negative function. The

function f is k-submodular if

f(X)+f(Y) ≥ f(X⊓Y)+f(X⊔Y) ∀X,Y ∈ (k + 1)
V

where X ⊓ Y is the k-tuple whose i-th set is Xi ∩ Yi

and X ⊔ Y is the k-tuple whose i-th set is (Xi ∪ Yi) \
(∪j ̸=i (Xj ∪ Yj)).

The function f is monotone if

f(X) ≤ f(Y) ∀X ⪯ Y

We let ∆e,if(X) denote the marginal gain of adding e to
the i-th set of X:

∆e,if(X) := f(X1, . . . , Xi ∪ {e}, . . . , Xk)

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

Table 1. Comparison of algorithms for monotone k-submodular maximization with size constraints. We let B = mini∈[k] Bi denote the
minimum budget, r =

∑︁k
i=1 Bi denote the total budget, and n = |V |.

Reference Setting Approximation Time Space

(Ohsaka & Yoshida, 2015) offline 1
3 O(nkr) O(n)

(Ohsaka & Yoshida, 2015) offline 1
3 with prob. ≥ 1 − δ O

(︁
nk2 log

(︁
r
k

)︁
log

(︁
r
δ

)︁)︁
O(n)

Theorem 3.1
online, streaming

1

2
(︂
1+B

(︂
21/B−1

)︂)︂ ≥ 1
4

O(nk) O(r)

(This paper) → 1
2(1+ln 2)

≈ 0.2953 as B → ∞

Table 2. Comparison of algorithms for monotone submodular maximization with a partition matroid constraint. We let B = mini∈[k] Bi

denote the minimum budget, r =
∑︁k

i=1 Bi denote the total budget, and n = |V |.

Reference Setting Approximation Time Space

(Fisher et al., 1978)
offline

1
2 O(nr) O(n)

discrete

(Chakrabarti & Kale, 2015) online, streaming
1
4 O(n log r) O

(︂
r logO(1) n

)︂
(Chekuri et al., 2015) discrete

Theorem 4.1 online, streaming maxx≥0

(︂
1

x+1

(︂
1 −

(︁
1 + x

B

)︁−B
)︂)︂

≥ 1
4

O(n) O(r)
(This paper) discrete →≈ 0.3178 as B → ∞

(Badanidiyuru & Vondrák, 2014)
offline

1 − 1
e − ϵ O

(︂
nr
ϵ4

log2
(︁
nr
ϵ

)︁)︂
O(n)

continuous

(Feldman et al., 2021)
streaming

≈ 0.3178 − ϵ O
(︂

nr log2 r

ϵ2

)︂
O

(︂
r logO(1) n

)︂
continuous

− f(X1, . . . , Xi, . . . , Xk)

Note that f being monotone is equivalent to ∆e,if(X) ≥ 0

for all X ∈ (k + 1)
V , i ∈ [k], and e /∈ supp(X).

The function f is pairwise monotone if

∆e,if(X) + ∆e,jf(X) ≥ 0

for all X ∈ (k + 1)
V , e /∈ supp(X), and i, j ∈ [k] such

that i ̸= j.

The function f is orthant submodular if

∆e,if(X) ≥ ∆e,if(Y)

for all X,Y ∈ (k + 1)
V such that X ⪯ Y, e /∈ supp(Y),

and i ∈ [k].

As shown in (Ward & Živnỳ, 2016), a function f is k-
submodular if and only if f is orthant submodular and
pairwise monotone.

2.2. Problem Definition

In the k-submodular maximization problem, we are given
an objective function f : (k + 1)

V → R+ that is mono-
tone, k-submodular, and non-negative, and positive in-
tegers B1, . . . , Bk. The goal is to find a solution
S ∈ (k + 1)

V that maximizes f subject to the con-
straint that |Si| ≤ Bi for all i ∈ [k]. We let S∗ ∈

argmax {f(S) : |Si| ≤ Bi ∀i ∈ [k]} denote an optimal so-
lution to the problem. We assume without loss of generality
that f(∅, . . . , ∅) = 0.

We also consider the problem of maximizing a submodu-
lar set function subject to a partition matroid constraint:
max {f(S) : |S ∩ Pi| ≤ Bi ∀i ∈ [k]} , where f : 2V →
R+ is a monotone submodular function,1 and P1, . . . , Pk

is a partition of the ground set V . We let S∗ ∈
argmax {f(S) : |S ∩ Pi| ≤ Bi ∀i ∈ [k]} denote an opti-
mal solution to the problem. We assume without loss of
generality that f(∅) = 0.

We study the above problems in the streaming setting where
the elements of the ground set V arrive one at a time, in
an arbitrary (adversarial) order. We order the elements
according to the stream arrival order, and we write e ≺ e′ if
and only if e arrives before e′.

The algorithms we propose in this work are also suitable for
the online setting with free disposal (Feldman et al., 2009).
In this setting, elements arrive online in an arbitrary order.
The algorithm maintains a single feasible solution. When
an element arrives, the algorithm either discards the element
or it adds it to the solution, after possibly discarding another
element in the current solution to make room for the new

1A set function f is submodular if it is 1-submodular, i.e., we
have f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) for any two sets
X,Y ⊆ V .

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

element.

2.3. Linear Programming Formulation

In this section, we introduce a linear programing formula-
tion for the k-submodular maximization that will form the
basis of our algorithm and its analysis. To this end, it is
convenient to view each k-tuple A ∈ (k + 1)

V as a partial
labeling of V using labels 1, 2, . . . , k as follows: element e
receives label i if and only if e ∈ Ai.

We start by writing down an integer program for the problem.
For each element e ∈ V and each i ∈ [k], we introduce a
variable xe,i ∈ {0, 1} that indicates whether element e is
assigned label i (i.e., xe,i = 1 if e is assigned label i and
xe,i = 0 otherwise). For each k-tuple A ∈ (k + 1)

V , we
introduce a variable yA ∈ {0, 1} that indicates whether A
is the selected k-tuple. The first set of constraints enforce
that e receives label i if and only if e ∈ Ai for the selected
labeling. The second set of constraints enforce that we select
exactly one k-tuple. The third set of constraints enforce that
each element receives at most one label. The fourth set
of constraints enforce the size constraints for the labels.
By relaxing the integrality constraints xe,i, yA ∈ {0, 1}
to xe,i, yA ∈ [0, 1], we obtain the LP relaxation for the
problem and its dual shown in Figure 1.

Note that the primal LP is a valid relaxation2 to the problem.
More precisely, given any solution S = (S1, . . . , Sk) ∈
(k + 1)

V satisfying |Si| ≤ Bi for all i ∈ [k], we can con-
struct a feasible solution to the primal LP with the same
objective value by setting yA = 1 if and only if A = S and
xe,i = 1 if and only if e ∈ Si. Thus the optimum value
of the primal LP is an upper bound on the value f(S∗) of
an optimal solution S∗ to the k-submodular maximization
problem.

3. Monotone k-Submodular Maximization
3.1. Algorithm

In this section, we give our algorithm for maximizing a
monotone k-submodular function subject to size constraints.
The algorithm is shown in Algorithm 1. The algorithm
follows a primal-dual approach based on the LPs shown
in Figure 1, and it constructs a feasible integral solution
S ∈ (k + 1)

V to the primal LP and a feasible dual solution
to the dual LP (the values γe and ϕi defined in the algorithm
can be extended to a dual solution as shown in Lemma 3.3).
In the analysis of the approximation guarantee, we will use
the dual solution to upper bound the optimal value f(S∗)

2One can show that the relaxation is exact, i.e., given a frac-
tional solution x, y to the primal LP, one can round it to an integral
solution S ∈ (k + 1)V of the same value. However, we will not
use this fact in this paper.

Primal LP

max
∑︂

A∈(k+1)V

yAf(A)

∀e ∈ V, i ∈ [k] :
∑︂

A∈(k+1)V : e∈Ai

yA = xe,i

∑︂
A∈(k+1)V

yA = 1

∀e ∈ V :

k∑︂
i=1

xe,i ≤ 1

∀i ∈ [k] :
∑︂
e∈V

xe,i ≤ Bi

∀e, i,A : xe,i, yA ≥ 0

Dual LP

min β +
∑︂
e∈V

γe +

k∑︂
i=1

Biϕi

∀A ∈ (k + 1)
V
:

k∑︂
i=1

∑︂
e∈Ai

αe,i + β ≥ f(A)

∀e ∈ V, i ∈ [k] : γe + ϕi ≥ αe,i

∀e ∈ V, i ∈ [k] : γe, ϕi ≥ 0

Figure 1. Primal and dual LPs for k-submodular maximization.

Algorithm 1 Algorithm for monotone k-submodular maxi-
mization.
Parameters: C,D
S = (S1, S2, . . . , Sk) ← (∅, ∅, . . . , ∅) // store each Si in a
deque
ϕi ← 0 ∀i ∈ [k]
for t = 1, 2, . . . , |V |:

let e be t-th element to arrive
i← argmaxj∈[k] {∆e,jf(S)− ϕj}
if ∆e,if(S)− ϕi ≥ 0:

γe ← ∆e,if(S)− ϕi // defined for analysis purposes,
does not need to be stored

ϕi ←
(︂
1 + D

Bi

)︂
ϕi +

C
Bi

γe = ϕi +
D
Bi

∆e,if(S) +
C−D
Bi

γe
if |Si| < Bi:
Si ← Si ∪ {e} // Si.push back(e)

else:
let e′ be the earliest element of Si // e′ = Si.front()
Si ← (Si \ {e′}) ∪ {e} // Si.pop front();

Si.push back(e)
return S

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

via weak duality. The dual values ϕi can be interpreted
as threshold values for the marginal gains. Each threshold
ϕi is dynamically adjusted by the algorithm based on the
marginal gains and the budgets, and ϕi is increasing ex-
ponentially (the update rule ensures that ϕi increases by at
least a factor of 1+ D

Bi
with each update). The growth rate is

chosen so that, intuitively, the threshold grows by a constant
factor every time the old solution is completely replaced.
Furthermore, for larger budgets, the growing thresholds
are able to mimic some aspect of a continuous algorithm
without the computational cost.

The algorithm maintains the feasibility of the solution by
removing the earliest element from the solution when the
budget is exceeded. Intuitively, since the threshold increases
over time, the elements meeting the earlier thresholds are
also ones with smaller gains. However, this intuition does
not always hold and thus an alternative practical choice is
to remove the element with the lowest gain. Removing
the earlier element leads to a simpler analysis, and it is the
version we consider in this paper.

The following theorem states the theoretical guarantees for
our algorithm. We give an outline of the analysis in this
section; the omitted proofs can be found in Section A. We
note that the space usage is dominated by the space needed
to store the solution, and therefore the space is optimal.
Additionally, the running time of the algorithm is optimal
as well. To see this, consider the ad allocation problem
discussed in the introduction. In this setting, the elements
V are the ad impressions, and the labels [k] correspond to k
advertisers. Consider an instance of this problem where we
have k impressions eσ(1), . . . , eσ(k), where σ is an arbitrary
permutation, and impression eσ(i) provides a large value vi
to the i-th advertiser and it provides value 0 to all of the
other advertisers. Any algorithm that achieves a non-trivial
approximation guarantee requires O (k |V |) time to identify
the mapping σ matching the impressions to the advertisers.

Theorem 3.1. Consider Algorithm 1. Suppose we set
B = mini∈[k] Bi, D = B

(︁
21/B − 1

)︁
, and C = 2D.

The algorithm uses O
(︂∑︁k

i=1 Bi

)︂
space, O (k |V |) func-

tion evaluations, and O (|V |) additional time. Moreover,
the algorithm returns a solution S satisfying

f(S)

f(S∗)
≥ 1

2
(︁
1 +B

(︁
21/B − 1

)︁)︁
where f(S∗) is the value of an optimal solution. The ap-
proximation guarantee is an increasing function of B; it is
1
4 when B = 1 and it approaches 1

2(1+ln 2) ≈ 0.2953 as
B →∞.

The algorithm is inspired by the algorithm proposed in
(Levin & Wajc, 2021) for the submodular matching problem.
In the submodular matching problem, the edges of a bipar-

tite graph arrive in a stream one edge at a time. The goal
is to select a matching M of maximum value f(M), where
f : 2E → R+ is a submodular function defined on the set
of edges of the graph. Our algorithm can be viewed as con-
structing a matching in the bipartite graph with the elements
V on the left and the labels [k] on the right, in the setting
where the vertices on the left arrive one at a time. However,
the algorithm and analysis of (Levin & Wajc, 2021) do not
apply to our setting due to the inherent differences between
k-submodular and submodular functions. The main simi-
larities between our algorithm and theirs are the use of the
primal-dual approach and the general form of the update rule
for ϕi. The algorithm of (Levin & Wajc, 2021) constructs
a set of elements that is not a feasible matching, and this
set is used to construct a feasible solution at the end of the
stream. The dual values are updated based on the marginal
gains of this larger (infeasible) set. This set is larger than a
feasible solution by a factor of Θ(log∆), where ∆ is the
ratio of the largest and smallest marginal gains. In contrast,
our algorithm maintains a feasible solution at all times, and
our time and space usage do not have additional logarithmic
factors.

3.2. Space and Time Analysis

The algorithm stores the O
(︂∑︁k

i=1 Bi

)︂
elements in the so-

lution S and the k dual variables {ϕi : i ∈ [k]}. Thus the
total space usage is O

(︂∑︁k
i=1 Bi

)︂
. In each iteration t, the

algorithm evaluates the function O(k) times in order to com-
pute the marginal gains ∆e,if(S) for each i ∈ [k], and it
performs O(1) additional operations. We maintain each set
Si in a deque, and thus removing the earliest element of Si

and adding an element to the back of Si can be performed in
O(1) time. Thus the algorithm performs O (k |V |) function
evaluations and O (|V |) additional time.

3.3. Analysis of the Approximation Guarantee

For analysis purposes, we annotate the main quantities in
the algorithm using the superscript (t): ϕ(t)

i ,S(t) denote the
respective quantities at the end of iteration t; e(t) denotes
the element that arrives in iteration t; i(t) denotes the label
selected in iteration t. We also let X(t)

i = S
(1)
i ∪ · · · ∪ S

(t)
i

denote the set of elements that were added to Si in the first
t iterations, and X(t) =

(︂
X

(t)
1 , . . . , X

(t)
k

)︂
.

Our main analysis approach is to relate the marginal
gains

∑︁
e(t)∈supp(X(n)) ∆e(t),i(t)f(S

(t−1)), the final so-
lution value f(S(n)), and the optimum solution value
f(S∗) to suitable linear combinations of the dual values{︁
γe : e ∈ supp(X(n))

}︁
defined in the algorithm. We then

derive our approximation guarantee by analyzing the coeffi-
cients of each γe in the respective linear combinations.

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

We start by deriving the linear combinations for∑︁
e(t)∈supp(X(n)) ∆e(t),i(t)f(S

(t−1)) and f(S(n)).

Lemma 3.2. We have∑︂
e(t)∈supp(X(n))

∆e(t),i(t)f(S
(t−1)) =

∑︂
e(t)∈supp(X(n))

ctγe(t)

and
f(S(n)) ≥

∑︂
e(t)∈supp(X(n))

˜︁ctγe(t)
where

st =
⃓⃓⃓{︂
e ∈ X

(n)

i(t)
: e ≻ e(t)

}︂⃓⃓⃓
ct =

C

D

(︃
1 +

D

Bi(t)

)︃st

− C

D
+ 1

˜︁ct =
⎧⎪⎪⎨⎪⎪⎩

C
D

(︂
1 + D

B
i(t)

)︂st (︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
if st ≥ Bi(t)

ct otherwise

Next, we upper bound f(S∗) using a linear combina-
tion of the γe values. To this end, we define a feasi-
ble dual solution based on the values

{︂
ϕ
(n)
i : i ∈ [k]

}︂
and{︁

γe : e ∈ supp(X(n))
}︁

defined in the algorithm.

Lemma 3.3. For each e ∈ supp(X(n)), we let γe be the
dual value set by the algorithm, and we let γe = 0 for all
e /∈ supp(X(n)). For each i ∈ [k], we let ϕi be equal to
the final value ϕ

(n)
i . We set the remaining dual variables as

follows:

β = f(X(n))

αe,i = γe + ϕ
(n)
i ∀e ∈ V, i ∈ [k]

The above setting is a feasible solution to the dual LP shown
in Figure 1.

Proof. (Sketch) We have γe ≥ 0 and ϕ
(n)
i ≥ 0 for all e ∈ V

and i ∈ [k]. The definition of αe,i ensures that the dual
constraint γe +ϕ

(n)
i ≥ αe,i is satisfied with equality. There-

fore it only remains to verify that the first set of constraints
are satisfied, i.e., for any A ∈ (k + 1)

V , we need to ver-
ify that f(A) − f(X(n)) ≤

∑︁k
i=1

∑︁
e∈Ai

αe,i. Consider
a k-set A ∈ (k + 1)

V , and let X = X(n). We start by
augmenting A so that it contains every element in the sup-
port of X, and let ˜︁A denote the resulting k-set (elements
are added to the same part as in X). Since f is monotone,
it follows that f(A) ≤ f(˜︁A) and it suffices to show that
f(˜︁A) − f(X) ≤

∑︁k
i=1

∑︁
e∈Ai

αe,i. Our definition of ˜︁A
ensures that supp(X) ⊆ supp(˜︁A). However, elements may
be assigned to different parts by X and ˜︁A, which prevents

us from directly comparing f(˜︁A) to f(X). Our approach is
to modify ˜︁A so that it agrees with X on the placement of
all the elements in X. By exploiting the way in which the
algorithm selects the part i to which to assign an element,
we can upper bound the loss in function value due to these
swaps to the dual values αe,i. Additionally, we relate the
contribution to f(˜︁A) of the elements in supp(˜︁A)\supp(X)
to the dual values αe,i. We now sketch the formal argument.

Starting with ˜︁A(0) = ˜︁A, we iteratively define a sequence
of k-sets ˜︁A(t) such that X and ˜︁A(t) agree on the first t
elements. Consider the element e(t) that arrives in iteration
t. Since supp(X) ⊆ supp(˜︁A), we have the following
cases:

Suppose e(t) is in the support of X. Since all elements
in X are also in ˜︁A, e(t) is also in the support of ˜︁A, but
possibly in a different part. Suppose e(t) ∈ ˜︁Aj , and recall
that e(t) ∈ Xi(t) . To make ˜︁A(t) and X agree on e(t), we
obtain ˜︁A(t) by taking ˜︁A(t−1) and moving e(t) from part j
to part i(t). Using the monotonicity and orthant submod-
ularity of f , we can show that the decrease in function
value f(˜︁A(t−1)) − f(˜︁A(t)) is at most the marginal gain
∆e(t),jf(S

(t−1)). Using the choice of i(t) and the defini-
tion of the dual values, we can show that the marginal
gain ∆e(t),jf(S

(t−1)) is at most αe(t),j . Thus we have
f(˜︁A(t−1))− f(˜︁A(t)) ≤ αe(t),j , as needed.

Suppose e(t) is in the support of ˜︁A but not X. To make˜︁A(t) and X agree on e(t), we obtain ˜︁A(t) by taking ˜︁A(t−1)

and removing e(t) from it. Suppose e(t) ∈ ˜︁Aj ; since
e(t) /∈ X, we have e(t) ∈ Aj . Using the orthant sub-
modularity of f , we can show that the decrease in func-
tion value f(˜︁A(t−1)) − f(˜︁A(t)) is at most the marginal
gain ∆e(t),jf(S

(t−1)). Since e(t) /∈ supp(X), e(t) did
not meet the condition required by the algorithm. There-
fore we have ∆e(t),jf(S

(t−1)) ≤ ϕ
(t−1)
j and γe(t) = 0,

and hence ∆e(t),jf(S
(t−1)) ≤ αe(t),j . Thus we have

f(˜︁A(t−1))− f(˜︁A(t)) ≤ αe(t),j , as needed.

Suppose e(t) is not in the support of ˜︁A. Thus e(t) is not in
the suppot of X either, and we can set ˜︁A(t) = ˜︁A(t−1). We
have f(˜︁A(t−1))− f(˜︁A(t)) = 0, as needed.

By combining the above lemmas with weak duality, we
obtain the following upper bound on f(S∗).

Lemma 3.4. We have

f(S∗) ≤
∑︂

e(t)∈supp(X(n))

ˆ︁ctγe(t)
where ˆ︁ct = (D + 1) ct + C −D + 1

and ct is the coefficient from Lemma 3.2.

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

Proof. (Sketch) Lemma 3.3 and weak duality gives us
the following upper bound on the optimum function
value: f(S∗) ≤ f(X(n)) +

∑︁
e(t)∈supp(X(n)) γe(t) +∑︁k

i=1 Biϕ
(n)
i . Using that S(t) ⪯ X(t) and the or-

thant submodularity of f , we can show that f(X(n)) ≤∑︁
e(t)∈supp(X(n)) ∆e(t),i(t)f(S

(t−1)). Using the update

rule for ϕi, we can show that
∑︁k

i=1 Biϕ
(n)
i =∑︁

e(t)∈supp(X(n))

(︁
D∆e(t),i(t)f(S

(t−1)) + (C −D) γe(t)
)︁

.
Putting everything together and using Lemma 3.2 gives the
result.

We now set the parameters C and D and derive the approxi-
mation guarantee.

Lemma 3.5. Let B = mini∈[k] Bi be the smallest budget
among the k labels. Let C = 2D. We have:

f(S)

f(S∗)
≥ min

t : e(t)∈X(n)

˜︁ctˆ︁ct
≥ 1

D + 1
min

{︄
1

2
, 1−

(︃
1 +

D

B

)︃−B
}︄

where ˜︁ct and ˆ︁ct are the coefficients from Lemmas 3.2 and
3.4.

Setting D = B
(︁
21/B − 1

)︁
gives

f(S)

f(S∗)
≥ 1

2
(︁
1 +B

(︁
21/B − 1

)︁)︁
4. Monotone Submodular Maximization with

a Partition Matroid Constraint
In this section, we adapt Algorithm 1 and its analysis to the
problem of maximizing a monotone submodular function
subject to a partition matroid constraint. The algorithm is
shown in Algorithm 2. We will show that the approximation
of the algorithm improves in this more restricted setting.

The following theorem states the theoretical guarantees for
the algorithm. We prove the theorem in Section B. The
analysis is similar to that of Algorithm 1, with the main
difference being that we show a stronger upper bound on
the optimal solution value f(S∗) (Lemma B.2).

Theorem 4.1. Consider Algorithm 2. Suppose we set
C = D. The algorithm uses O

(︂∑︁k
i=1 Bi

)︂
space, O (|V |)

function evaluations, and O (|V |) additional time. More-
over, the algorithm returns a solution S satisfying

f(S)

f(S∗)
≥ 1

D + 1

(︄
1−

(︃
1 +

D

B

)︃−B
)︄

where f(S∗) is the value of an optimal solution, and B =
mini∈[k] Bi is the minimum budget.

Algorithm 2 Algorithm for monotone submodular max-
imization with a partition matroid constraint. We let
∆ef(S) := f(S ∪{e})− f(S) denote the marginal gain of
e on top of S.
Parameters: C,D
Si ← ∅ ∀i ∈ [k] // Si = S ∩ Pi, store Si in a deque
ϕi ← 0 ∀i ∈ [k]
for t = 1, 2, . . . , |V |:

let e be t-th element to arrive
let i be the index of the part containing e, i.e., e ∈ Pi

let S = S1 ∪ · · · ∪ Sk

if ∆ef(S)− ϕi ≥ 0:
γe ← ∆ef(S) − ϕi // defined for analysis purposes,

does not need to be stored
ϕi ←

(︂
1 + D

Bi

)︂
ϕi +

C
Bi

γe = ϕi +
D
Bi

∆ef(S) +
C−D
Bi

γe
if |Si| < Bi:
Si ← Si ∪ {e} // Si.push back(e)

else:
let e′ be the earliest element of Si // e′ = Si.front()
Si ← (Si \ {e′}) ∪ {e} // Si.pop front();

Si.push back(e)
return S = S1 ∪ · · · ∪ Sk

Setting D = 1 gives

f(S)

f(S∗)
≥ 1

2

(︄
1−

(︃
1 +

1

B

)︃−B
)︄

Remark 4.2. The above approximation for C = D = 1 is
least 1

4 for every B ≥ 1 and it approaches 1
2

(︁
1− 1

e

)︁
≈

0.316 as B → ∞. For sufficiently large B, we have 1 −(︁
1 + D

B

)︁−B ≈ 1 − exp (−D). In this case, we can set D
to the value satisfying the equation ex = x + 2, which is
x ≈ 1.146, and obtain an approximation of ≈ 0.3178.

5. Experimental Evaluation
In this section, we experimentally evaluate our algorithm
for k-submodular maximization (Algorithm 1). Following
previous work (Ohsaka & Yoshida, 2015; Nguyen & Thai,
2020), we evaluate the algorithms on instances of influence
maximization with k topics and sensor placement with k
measurements. We follow the experimental setup of these
prior works.

Influence maximization with k topics: We consider the
k-topic independent cascade model introduced in (Ohsaka
& Yoshida, 2015). In this model, we have a social net-
work represented as a directed graph G = (V,E) on a set
V of users. Each edge (u, v) ∈ E is associated with k

probabilities
{︂
p
(i)
u,v : i ∈ [k]

}︂
, where p

(i)
u,v represents the

strength of the influence of user u on user v for topic i ∈ [k].

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

Figure 2. We report the mean and standard deviation over 5 runs.
Greedy is the offline Greedy algorithm of (Ohsaka & Yoshida,
2015) implemented using lazy evaluations. PrimalDual is our
Algorithm 1.

Given seed sets (S1, S2, . . . , Sk), where Si is the seed set
for topic i, nodes are activated independently for each topic
according to the independent cascade model. More pre-
cisely, the activation process for topic i is the following.
Each edge (u, v) of the graph is realized with probability
p
(i)
u,v, independently of other edges. The set of activated

nodes for topic i are the nodes reachable from the seed
set Si in this realized graph. Nodes are activated indepen-
dently for each topic. The objective function is the expected
number of nodes activated in at least one topic. More pre-
cisely, if we let Ai(Si) be the random variable equal to
the set of nodes activated for topic i starting with seed set
Si, we have f(S1, . . . , Sk) = E

[︂⃓⃓⃓⋃︁
i∈[k] Ai(Si)

⃓⃓⃓]︂
. It was

shown in (Ohsaka & Yoshida, 2015) that f is monotone
k-submodular.

We used the Facebook dataset from the SNAP database
(Leskovec & Krevl, 2014). The graph has 4,039 nodes
and 88,234 undirected edges. We replaced each undi-
rected edge uv by two directed edges, (u, v) and (v, u).
For each directed edge (u, v), we set the k probabili-
ties

{︂
p
(i)
u,v : i ∈ [k]

}︂
by randomly permuting the values{︂

2i
k·dv

: i ∈ [k]
}︂

, where dv is the in-degree of v. We approx-
imated f using the random sampling procedure of (Borgs
et al., 2014). We set k = 3. We obtained similar experimen-
tal results for larger values of k, and we report the results
for k = 10 in Section C. We set the same budget constraint
B for each topic i, i.e., we set Bi = B for all i ∈ [k].

Sensor placement with k measurements: We consider the
sensor placement problem introduced in (Ohsaka & Yoshida,
2015). There are k types of sensors and a set V of n sensor
locations. We want to place at most one sensor in each
possible location and at most Bi sensors of type i across
all locations. We can represent the information collected
by a sensor of type i when placed at location e ∈ V using
a random variable X

(i)
e . Let Ω =

{︂
X

(i)
e : e ∈ V, i ∈ [k]

}︂
.

The entropy of a subset X ⊆ Ω is defined as H(X) =
−
∑︁

x∈dom(X) Pr[x] log Pr[x]. The goal is to select sensor
locations (S1, . . . , Sk), where Si ⊆ V is the set of locations
of the sensors of type i, in order to maximize the entropy
H
(︂⋃︁{︂

X
(i)
e : i ∈ [k], e ∈ Si

}︂)︂
of the corresponding ran-

dom variables. It was shown in (Ohsaka & Yoshida, 2015)
that f is monotone k-submodular.

We used the Intel Lab dataset (Bodik et al., 2004) which
contains approximately 2.3 million readings from 58 sen-
sors deployed in the Intel Berkeley research lab. As in
(Ohsaka & Yoshida, 2015; Nguyen & Thai, 2020), we ex-
tracted temperature, humidity, and light values from each
reading and discretized them into bins of 2 degrees Celsius
each, 5 points each and 100 luxes each, respectively. A
type of measurement such as temperature at a particular

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

location has a certain amount of uncertainty, measured by
the entropy of its empirical distribution in the dataset. We
treat the temperature measurements at different locations as
independent and H(X) is the sum of the entropy of all sen-
sors in X . The different measurement types are also treated
as independent. We have k = 3 types of measurements, and
we set a budget constraint Bi for each measurement i ∈ [k].
We set the same budget constraint B for each measurement,
i.e., we set Bi = B for all i ∈ [k].

Algorithms: We compare our algorithm with the state of
the art Greedy algorithm proposed in (Ohsaka & Yoshida,
2015), which is an offline algorithm that makes multiple
passes over the data. We implemented the Greedy algorithm
using lazy evaluations. The work (Ohsaka & Yoshida, 2015)
also proposed a stochastic variant of the Greedy algorithm.
In our experiments, the stochastic Greedy with lazy evalua-
tions performed worse than the deterministic Greedy with
lazy evaluation both in terms of function value and number
of evaluations. This is due to the fact that the Greedy al-
gorithm allows for a more efficient implementation using
lazy evaluations. For this reason, we omitted the stochastic
Greedy algorithm from the plots shown in Figure 2. In all
experiments, we set the parameters C and D of Algorithm
1 as follows: D = B

(︁
21/B − 1

)︁
, where B = mini∈[k] Bi

is the minimum budget, and C = 0.5D.

Results: The results are shown in Figure 2. We report the
average and standard deviation over 5 runs of the algorithms.

Acknowledgments
AE was supported in part by NSF CAREER grant CCF-
1750333, NSF grant III-1908510, and an Alfred P. Sloan
Research Fellowship. HN was supported in part by NSF CA-
REER grant CCF-1750716 and NSF grant CCF-1909314.

References
Badanidiyuru, A. and Vondrák, J. Fast algorithms for maxi-

mizing submodular functions. In ACM-SIAM symposium
on Discrete algorithms (SODA), pp. 1497–1514. SIAM,
2014.

Bodik, P., Hong, W., Guestrin, C., Madden, S., Paskin, M.,
and Thibaux, R. Intel Lab Data. http://db.csail.
mit.edu/labdata/labdata.html, 2004.

Borgs, C., Brautbar, M., Chayes, J., and Lucier, B. Maximiz-
ing social influence in nearly optimal time. In Proceed-
ings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pp. 946–957. SIAM, 2014.

Chakrabarti, A. and Kale, S. Submodular maximization
meets streaming: Matchings, matroids, and more. Mathe-
matical Programming, 154(1):225–247, 2015.

Chekuri, C., Gupta, S., and Quanrud, K. Streaming al-
gorithms for submodular function maximization. In In-
ternational Colloquium on Automata, Languages, and
Programming, pp. 318–330. Springer, 2015.

Feldman, J., Korula, N., Mirrokni, V. S., Muthukrishnan,
S., and Pál, M. Online ad assignment with free disposal.
In WINE, volume 5929 of Lecture Notes in Computer
Science, pp. 374–385. Springer, 2009.

Feldman, M., Norouzi-Fard, A., Svensson, O., and Zen-
klusen, R. Streaming submodular maximization with
matroid and matching constraints. arXiv preprint
arXiv:2107.07183, 2021.

Fisher, M. L., Nemhauser, G. L., and Wolsey, L. A. An
analysis of approximations for maximizing submodular
set functions-ii. In Polyhedral combinatorics, pp. 73–87.
Springer, 1978.

Iwata, S., Tanigawa, S.-i., and Yoshida, Y. Improved approx-
imation algorithms for k-submodular function maximiza-
tion. In ACM-SIAM symposium on Discrete algorithms,
pp. 404–413. SIAM, 2016.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014.

Levin, R. and Wajc, D. Streaming submodular matching
meets the primal-dual method. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1914–1933. SIAM,
2021.

Nguyen, L. and Thai, M. T. Streaming k-submodular maxi-
mization under noise subject to size constraint. In Inter-
national Conference on Machine Learning (ICML), pp.
7338–7347. PMLR, 2020.

Ohsaka, N. and Yoshida, Y. Monotone k-submodular func-
tion maximization with size constraints. In Neural Infor-
mation Processing Systems NeurIPS, pp. 694–702, 2015.

Oshima, H. Derandomization for k-submodular maximiza-
tion. In International Workshop on Combinatorial Algo-
rithms, pp. 88–99. Springer, 2017.

Pham, C. V., Vu, Q. C., Ha, D. K. T., and Nguyen, T. T.
Streaming algorithms for budgeted k-submodular maxi-
mization problem, 2021.

Santiago, R. and Shepherd, F. B. Multivariate submodular
optimization. In International Conference on Machine
Learning, pp. 5599–5609. PMLR, 2019.

Soma, T. No-regret algorithms for online k-submodular
maximization. In The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 1205–1214.
PMLR, 2019.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

Ward, J. and Živnỳ, S. Maximizing k-submodular functions
and beyond. ACM Transactions on Algorithms (TALG),
12(4):1–26, 2016.

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

A. Analysis of Algorithm 1
A.1. Proof of Lemma 3.2

Proof. (Lemma 3.2) For each e(t) ∈ supp(X(n)), by rearranging the definition of γe(t) , we obtain

∆e(t),i(t)f(S
(t−1)) = γe(t) + ϕ

(t−1)

i(t)
(1)

By unrolling the update rule for ϕi, we obtain

ϕ
(t)
i =

C

Bi

∑︂
e(τ)∈X

(t)
i

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t)
i : e≻e(τ)

}︂⃓⃓⃓
γe(τ) (2)

We first consider
∑︁

e(t)∈supp(X(n)) ∆e(t),i(t)f(S
(t−1)). We have∑︂

e(t)∈supp(X(n))

∆e(t),i(t)f(S
(t−1))

(1)
=

∑︂
e(t)∈supp(X(n))

(︂
γe(t) + ϕ

(t−1)

i(t)

)︂

(2)
=

∑︂
e(t)∈supp(X(n))

⎛⎜⎝γe(t) +
C

Bi(t)

∑︂
e(τ)∈X

(t−1)

i(t)

(︃
1 +

D

Bi(t)

)︃⃓⃓⃓{︂
e∈X

(t−1)

i(t)
: e≻e(τ)

}︂⃓⃓⃓
γe(τ)

⎞⎟⎠

=

k∑︂
i=1

∑︂
e(t)∈X

(n)
i

⎛⎜⎝γe(t) +
C

Bi

∑︂
e(τ)∈X

(t−1)
i

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓
γe(τ)

⎞⎟⎠
=

k∑︂
i=1

⎛⎜⎝ ∑︂
e(t)∈X

(n)
i

γe(t) +
C

Bi

∑︂
e(τ)∈X

(n)
i

γe(τ)

∑︂
e(t)∈X

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓⎞⎟⎠
where in the last equality we performed an exchange of summation.

Fix e(τ) ∈ X
(n)
i . Let e(t1), e(t2), . . . , e(tm) be the elements of X(n)

i that arrived after e(τ), in the order in which they arrived.

More precisely, we have
{︂
e(t) ∈ X

(n)
i : t > τ

}︂
=
{︁
e(t1), e(t2), . . . , e(tm)

}︁
and t1 < t2 < · · · < tm. Let t0 = τ . We have

∑︂
e(t)∈X

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓

=

m∑︂
j=1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=1

(︃
1 +

D

Bi

)︃j−1

=
Bi

D

(︃(︃
1 +

D

Bi

)︃m

− 1

)︃

=
Bi

D

⎛⎝(︃1 + D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
− 1

⎞⎠

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

In the second equality, we used the fact that no elements were added to Si in iteration t ∈ (tj−1, tj), and thus X(tj−1)
i =

X
(tj−1)
i .

Putting everything together, we obtain∑︂
e(t)∈supp(X(n))

∆e(t),i(t)f(S
(t−1))

=

k∑︂
i=1

∑︂
e(t)∈X

(n)
i

⎛⎝C

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(t)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠ γe(t)

=
∑︂

e(t)∈supp(X(n))

⎛⎝C

D

(︃
1 +

D

Bi(t)

)︃⃓⃓⃓{︂
e∈X

(n)

i(t)
: e≻e(t)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠ γe(t)

Next, we consider f(S(n)). Let

˜︁S(t) :=
(︂
S
(n)
1 ∩

{︂
e(1), . . . , e(t)

}︂
, . . . , S

(n)
k ∩

{︂
e(1), . . . , e(t)

}︂)︂
Note that we have ˜︁S(t) ⪯ S(t) for all t. We have

f(S(n)) = f(˜︁S(n))− f(˜︁S(0))

=
∑︂

e(t)∈supp(S(n))

∆e(t),i(t)f(˜︁S(t−1))

(˜︁S(t−1)⪯S(t−1))
≥

∑︂
e(t)∈supp(S(n))

∆e(t),i(t)f(S
(t−1))

=

k∑︂
i=1

∑︂
e(t)∈S

(n)
i

∆e(t),if(S
(t−1))

where the inequality follows from orthant submodularity.

Using the update rules for the dual variables, we obtain

f(S(n)) ≥
k∑︂

i=1

∑︂
e(t)∈S

(n)
i

∆e(t),if(S
(t−1))

(1)
=

k∑︂
i=1

∑︂
e(t)∈S

(n)
i

(︂
γe(t) + ϕ

(t−1)
i

)︂

(2)
=

k∑︂
i=1

∑︂
e(t)∈S

(n)
i

⎛⎜⎝γe(t) +
C

Bi

∑︂
e(τ)∈X

(t−1)
i

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓
γe(τ)

⎞⎟⎠
=

k∑︂
i=1

⎛⎜⎝ ∑︂
e(t)∈S

(n)
i

γe(t) +
C

Bi

∑︂
e(τ)∈X

(n)
i

γe(τ)

∑︂
e(t)∈S

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓⎞⎟⎠
where in the last equality we performed an exchange of summation.

Fix e(τ) ∈ X
(n)
i . Let e(t1), e(t2), . . . , e(tm) be the elements of X(n)

i that arrived after e(τ), in the order in which they arrived.

More precisely, we have
{︂
e(t) ∈ X

(n)
i : t > τ

}︂
=
{︁
e(t1), e(t2), . . . , e(tm)

}︁
and t1 < t2 < · · · < tm. Let t0 = τ . We

consider each of the following cases in turn: m ≤ Bi and m > Bi.

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

Suppose that m < Bi. Note that S(n)
i is comprised of the last (at most) Bi elements of X(n)

i . Thus we have{︂
e(t) ∈ Si : e

(t) ≻ e(τ)
}︂
=
{︂
e(tj) : 1 ≤ j ≤ m

}︂
Using the same calculation as above, we obtain

∑︂
e(t)∈S

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓

=
Bi

D

⎛⎝(︃1 + D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
− 1

⎞⎠
Suppose that m ≥ Bi. We have{︂

e(t) ∈ S
(n)
i : e(t) ≻ e(τ)

}︂
=
{︂
e(tj) : m−Bi + 1 ≤ j ≤ m

}︂
and thus

∑︂
e(t)∈S

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓

=

m∑︂
j=m−Bi+1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=m−Bi+1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=m−Bi+1

(︃
1 +

D

Bi

)︃j−1

=
Bi

D

(︃
1 +

D

Bi

)︃m
(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄

=
Bi

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄

In the second equality, we used the fact that no elements were added to Si in iteration t ∈ (tj−1, tj), and thus X(tj−1)
i =

X
(tj−1)
i .

Since S
(n)
i is comprised of the last (at most) Bi elements of X(n)

i , we have∑︂
e(t)∈Si

γe(t) =
∑︂

e(t)∈X
(n)
i :

⃓⃓⃓{︂
e∈X

(n)
i : e≻e(t)

}︂⃓⃓⃓
<Bi

γe(t)

Putting everything together, we obtain

f(S(n)) ≥
k∑︂

i=1

∑︂
e(τ)∈X

(n)
i :

⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
<Bi

γe(τ)

⎛⎝C

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠

+

k∑︂
i=1

∑︂
e(τ)∈X

(n)
i :

⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
≥Bi

γe(τ)

C

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

=
∑︂

e(τ)∈supp(X(n)) :
⃓⃓⃓{︂

e∈X
(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓
<B

i(τ)

γe(τ)

⎛⎝C

D

(︃
1 +

D

Bi(τ)

)︃⃓⃓⃓{︂
e∈X

(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠

+
∑︂

e(τ)∈supp(X(n)) :
⃓⃓⃓{︂

e∈X
(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓
≥B

i(τ)

γe(τ)

C

D

(︃
1 +

D

Bi(τ)

)︃⃓⃓⃓{︂
e∈X

(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓(︄
1−

(︃
1 +

D

Bi(τ)

)︃−B
i(τ)

)︄

as needed.

A.2. Proof of Lemma 3.3

Proof. (Lemma 3.3) We have γe ≥ 0 and ϕ
(n)
i ≥ 0 for all e ∈ V and i ∈ [k]. The definition of αe,i ensures that the dual

constraint γe + ϕ
(n)
i ≥ αe,i is satisfied with equality. Therefore it only remains to verify that the first set of constraints are

satisfied, i.e., for any A ∈ (k + 1)
V , we need to verify that

f(A)− f(X(n)) ≤
k∑︂

i=1

∑︂
e∈Ai

αe,i

Fix a k-set A ∈ (k + 1)
V . Let X = X(n). We define a k-set ˜︁A by augmenting A with the elements in supp(X) \ supp(A).

More precisely, we consider ˜︁A =
(︂ ˜︁A1, . . . , ˜︁Ak

)︂
where ˜︁Ai = Ai∪ (Xi \ supp(A)) for all i ∈ [k]. Note that ˜︁A ∈ (k + 1)

V

and A ⪯ ˜︁A. Since f is monotone, it follows that f(A) ≤ f(˜︁A). Thus it suffices to show that

f(˜︁A)− f(X) ≤
k∑︂

i=1

∑︂
e∈Ai

αe,i

Note that we have supp(X) ⊆ supp(˜︁A). However, an element e ∈ supp(X) may be assigned to different parts by X and˜︁A, which prevents us from directly comparing f(˜︁A) to f(X). In the following, we modify ˜︁A so that it agrees with X on
the placement of the elements in supp(X). By exploiting the way in which the algorithm selects the part i to which to
assign an element, we will upper bound the loss in function value due to these swaps to the dual values αe,i. Additionally,
we will relate the contribution to f(˜︁A) of the elements in supp(˜︁A) \ supp(X) to the dual values αe,i. We now give the
formal argument.

We say that two k-sets Y = (Y1, . . . , Yk) and Z = (Z1, . . . , Zk) agree on an element e if either e ∈ (V \ supp(Y)) ∩
(V \ supp(Z)) or e ∈ Yi ∩ Zi for some i ∈ [k]. We will iteratively define a sequence of k-sets ˜︁A(0) =˜︁A, ˜︁A(1), . . . , ˜︁A(n−1), ˜︁A(n) = X that satisfies the following two properties for every t: (i) ˜︁A(t) and X agree on ev-
ery element in

{︁
e(1), . . . , e(t)

}︁
, and (ii) ˜︁A(t)and ˜︁A agree on every element in

{︁
e(t+1), . . . , e(n)

}︁
. We set ˜︁A(0) = ˜︁A.

Consider t ≥ 1, and suppose we have already defined ˜︁A(t−1). Consider the element e(t) that arrives in iteration t. We have
the following cases (recall that supp(X) ⊆ supp(˜︁A)):

• e(t) ∈ supp(X): Recall that e(t) ∈ Xi(t) . Let j be such that e(t) ∈ ˜︁Aj .
If j = i(t), we let ˜︁A(t) = ˜︁A(t−1), and we have

f(˜︁A(t−1))− f(˜︁A(t)) = 0

Therefore we may assume that j ̸= i(t). Since e(t) ∈ ˜︁Aj \Xj , we have e(t) ∈ Aj . We obtain ˜︁A(t) from ˜︁A(t−1) by
moving e(t) from part j to part i(t), i.e., we set

˜︁A(t)
p =

⎧⎪⎨⎪⎩
˜︁A(t−1)
p p ̸= i(t), j˜︁A(t−1)

i(t)
∪
{︁
e(t)
}︁

p = i(t)˜︁A(t−1)
j \

{︁
e(t)
}︁

p = j

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

For analysis purposes, we define the following intermediate k-set B = (B1, . . . , Bk):

Bp =

{︄ ˜︁A(t−1)
p p ̸= j˜︁A(t−1)
j \

{︁
e(t)
}︁

p = j

Note that B and ˜︁A(t−1) only differ on e(t), and e(t) /∈ supp(B) and e(t) ∈ ˜︁A(t−1)
j . Additionally, B and ˜︁A(t) only

differ on e(t), and e(t) /∈ supp(B) and e(t) ∈ ˜︁A(t)

i(t)
. Since S(t−1) ⪯ X(t−1) ⪯ ˜︁A(t−1) and e(t) /∈ supp(S(t−1)), we

have S(t−1) ⪯ B. Thus we have

f(˜︁A(t−1))− f(˜︁A(t))

=
(︂
f(˜︁A(t−1))− f(B)

)︂
−
(︂
f(˜︁A(t))− f(B)

)︂
= ∆e(t),jf(B)−∆e,i(t)f(B)

≤ ∆e(t),jf(B) (monotonicity)

≤ ∆e(t),jf(S
(t−1)) (orthant submodularity)

In the first inequality, we used that ∆e,if(B) ≥ 0 since f is monotone. In the second inequality, we used the fact that
f is orthant submodular: since S(t−1) ⪯ B, we have ∆e(t),jf(S

(t−1)) ≥ ∆e(t),jf(B).
Using the choice of i(t) and the definitions of the dual values, we obtain:

∆e(t),jf(S
(t−1)) ≤ ϕ

(t−1)
j +∆e(t),i(t)f(S

(t−1))− ϕ
(t−1)

i(t)

(︂
definition of i(t)

)︂
= ϕ

(t−1)
j + γe(t) (definition of γe(t))

≤ ϕ
(n)
j + γe(t)

= αe(t),j

Therefore
f(˜︁A(t−1))− f(˜︁A(t)) ≤ αe(t),j

• e(t) ∈ supp(˜︁A) \ supp(X): Let j be such that e(t) ∈ ˜︁Aj . Note that we have e(t) ∈ ˜︁A(t−1)
j . We obtain ˜︁A(t) from˜︁A(t−1) by discarding e(t), i.e.,

˜︁A(t)
p =

{︄ ˜︁A(t−1)
p p ̸= j˜︁A(t−1)
j \

{︁
e(t)
}︁

p = j

Since S(t) = S(t−1) ⪯ X(t) = X(t−1) ⪯ ˜︁A(t−1) and e(t) /∈ supp(S(t−1)), we have S(t−1) ⪯ ˜︁A(t). Thus

f(˜︁A(t−1))− f(˜︁A(t)) = ∆e(t),jf(˜︁A(t))

≤ ∆e(t),jf(S
(t−1)) (orthant submodularity)

Since e(t) /∈ supp(X), we have

∆e(t),jf(S
(t−1)) ≤ ϕ

(t−1)
j ≤ ϕ

(n)
j + γe(t) = αe(t),j

Therefore
f(˜︁A(t−1))− f(˜︁A(t)) ≤ αe(t),j

Since e(t) ∈ ˜︁Aj \Xj , we have e(t) ∈ Aj .

• e(t) /∈ supp(˜︁A): We have e(t) /∈ supp(X) as well, and we can set ˜︁A(t) = ˜︁A(t−1). We have

f(˜︁A(t−1))− f(˜︁A(t)) = 0

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

Thus we obtain

f(˜︁A)− f(˜︁X) = f(˜︁A(0))− f(˜︁A(n))

=

n∑︂
t=1

(︂
f(˜︁A(t−1))− f(˜︁A(t))

)︂
≤

k∑︂
j=1

∑︂
e∈Aj

αe,j

as needed.

A.3. Proof of Lemma 3.4

Proof. (Lemma 3.4) Consider the dual solution from Lemma 3.3. By weak duality, the objective value of the dual solution
is an upper bound on the objective value of any primal solution, and in particular f(S∗). Thus we obtain

f(S∗) ≤ f(X(n)) +
∑︂

e(t)∈supp(X(n))

γe(t) +

k∑︂
i=1

Biϕ
(n)
i

Using that S(t) ⪯ X(t) for all t and that f is orthant submodular, we can upper bound f(X(n)) as follows:

f(X(n)) = f(X(n))− f(X(0))

=
∑︂

e(t)∈supp(X(n))

∆e(t),i(t)f(X
(t−1))

(S(t−1)⪯X(t−1))
≤

∑︂
e(t)∈supp(X(n))

∆e(t),i(t)f(S
(t−1))

Additionally, we have

k∑︂
i=1

Biϕ
(n)
i

=

k∑︂
i=1

Bi

n∑︂
t=1

(︂
ϕ
(t)
i − ϕ

(t−1)
i

)︂
=

n∑︂
t=1

k∑︂
i=1

Bi

(︂
ϕ
(t)
i − ϕ

(t−1)
i

)︂
=

∑︂
e(t)∈supp(X(n))

Bi(t)

(︂
ϕ
(t)

i(t)
− ϕ

(t−1)

i(t)

)︂ (︂
ϕ
(t)
i = ϕ

(t−1)
i if i ̸= i(t) or e(t) /∈ supp(X(n))

)︂
=

∑︂
e(t)∈supp(X(n))

(︂
D∆e(t),i(t)f(S

(t−1)) + (C −D) γe(t)
)︂

(update rule for ϕi)

Plugging into the first inequality and using Lemma 3.2, we obtain

f(S∗) ≤ (D + 1)
∑︂

e(t)∈supp(X(n))

∆e(t),i(t)f(S
(t−1)) + (C −D + 1)

∑︂
e(t)∈supp(X(n))

γe(t)

=
∑︂

e(t)∈supp(X(n))

((D + 1) ct + C −D + 1) γe(t)

as needed.

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

A.4. Proof of Lemma 3.5

Proof. (Lemma 3.5) We will use the following standard inequality:∑︁n
i=1 ai∑︁n
i=1 bi

≥ min
i∈[n]

ai
bi

By applying the above inequality, we obtain

f(S)

f(S∗)
≥ min

t : e(t)∈supp(X(n))

˜︁ctˆ︁ct
We now lower bound the ratio of the coefficients. We will set C = 2D and we will find the best choice for D.

Consider e(t) ∈ supp(X(n)), and let j =
⃓⃓⃓{︂
e ∈ X

(n)

i(t)
: e ≻ e(t)

}︂⃓⃓⃓
. If j ≥ Bi(t) , we have

˜︁ctˆ︁ct =

C
D

(︂
1 + D

B
i(t)

)︂j (︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
(D + 1)

(︃
C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

)︃
+ C −D + 1

=

C
D

(︂
1 + D

B
i(t)

)︂j (︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
(D + 1) C

D

(︂
1 + D

B
i(t)

)︂j
+ 2− C

D

=

2
(︂
1 + D

B
i(t)

)︂j (︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
2 (D + 1)

(︂
1 + D

B
i(t)

)︂j (︃
C

D
= 2

)︃

=

(︄
1−

(︃
1 +

D

Bi(t)

)︃−B
i(t)

)︄
1

D + 1

If j < Bi(t) , we have

˜︁ctˆ︁ct =

C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

(D + 1)

(︃
C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

)︃
+ C −D + 1

=

C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

(D + 1) C
D

(︂
1 + D

B
i(t)

)︂j
+ 2− C

D

=
2
(︂
1 + D

B
i(t)

)︂j
− 1

2 (D + 1)
(︂
1 + D

B
i(t)

)︂j (︃
C

D
= 2

)︃

=
2−

(︂
1 + D

B
i(t)

)︂−j

2 (D + 1)

≥ 1

2 (D + 1)

Therefore ˜︁ctˆ︁ct ≥ 1

D + 1
min

{︄
1

2
, 1−

(︃
1 +

D

Bi(t)

)︃−B
i(t)

}︄

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

and thus

min
t : e(t)∈X(n)

˜︁ctˆ︁ct ≥ 1

D + 1
min

{︄
1

2
,min
i∈[k]

(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄}︄

Letting B = mini∈[k] Bi and noting that 1−
(︁
1 + D

x

)︁x
is increasing with x, we obtain

min
t : e(t)∈X(n)

˜︁ctˆ︁ct ≥ 1

D + 1
min

{︄
1

2
, 1−

(︃
1 +

D

B

)︃−B
}︄

Putting everything together, we obtain

f(S)

f(S∗)
≥ 1

D + 1
min

{︄
1

2
, 1−

(︃
1 +

D

B

)︃−B
}︄

We choose D to make the two terms equal:

1

2
= 1−

(︃
1 +

D

B

)︃−B

⇒ D = B
(︂
21/B − 1

)︂
and obtain

f(S)

f(S∗)
≥ 1

2
(︁
1 +B

(︁
21/B − 1

)︁)︁
as needed.

B. Analysis of Algorithm 2
B.1. Space and Time Analysis

Analogously to Algorithm 1, Algorithm 2 stores the O
(︂∑︁k

i=1 Bi

)︂
elements in the solution S = S1 ∪ · · · ∪ Sk and the

k dual variables {ϕi : i ∈ [k]}. Thus the total space usage is O
(︂∑︁k

i=1 Bi

)︂
. In each iteration t, the algorithm evaluates

the function O(1) times in order to compute the marginal gain ∆ef(S), and it performs O(1) additional operations. We
maintain each set Si in a deque, and thus removing the earliest element of Si and adding an element to the back of Si can be
performed in O(1) time. Thus the algorithm performs O (|V |) function evaluations and O (|V |) additional time.

B.2. Analysis of the Approximation Guarantee

For analysis purposes, we annotate the main quantities in the algorithm using the superscript (t): ϕ
(t)
i , S(t) denote the

respective quantities at the end of iteration t; e(t) denotes the element that arrives in iteration t; i(t)denotes the index of the
part containing e(t) (i.e., e(t) ∈ Pi(t)). We also let X(t)

i = S
(1)
i ∪ · · · ∪ S

(t)
i denote the set of elements that were added to Si

in the first t iterations, and X(t) = X
(t)
1 ∪ · · · ∪X

(t)
k .

We proceed similarly to the analysis from Section 3.3, with the main difference being that we show a stronger upper bound
on the optimal solution value f(S∗) in Lemma B.2. As before, we relate

∑︁
e(t)∈X(n)) ∆e(t)f(S

(t−1)), f(S(n)), and f(S∗)
to suitable linear combinations of the dual values γe constructed by the algorithm. We then derive our approximation
guarantee by analyzing the coefficients of each γe in the respective linear combinations.

We start by deriving the linear combinations for
∑︁

e(t)∈X(n)) ∆e(t)f(S
(t−1)) and f(S(n)). The proof of the following

lemma is analogous to Lemma 3.2.

Lemma B.1. We have ∑︂
e(t)∈X(n)

∆e(t)f(S
(t−1)) =

∑︂
e(t)∈X(n)

ctγe(t)

and
f(S(n)) ≥

∑︂
e(t)∈X(n)

˜︁ctγe(t)

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

where

ct =
C

D

(︃
1 +

D

Bi(t)

)︃⃓⃓⃓{︂
e∈X

(n)

i(t)
: e≻e(t)

}︂⃓⃓⃓
− C

D
+ 1

˜︁ct =
⎧⎪⎨⎪⎩

C
D

(︂
1 + D

B
i(t)

)︂⃓⃓⃓{︂e∈X
(n)

i(t)
: e≻e(t)

}︂⃓⃓⃓(︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
if
⃓⃓⃓{︂

e ∈ X
(n)

i(t)
: e ≻ e(t)

}︂⃓⃓⃓
≥ Bi(t)

ct otherwise

Proof. For each e(t) ∈ X(n), by rearranging the definition of γe(t) , we obtain

∆e(t)f(S
(t−1)) = γe(t) + ϕ

(t−1)

i(t)
(3)

By unrolling the update rule for ϕi, we obtain

ϕ
(t)
i =

C

Bi

∑︂
e(τ)∈X

(t)
i

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t)
i : e≻e(τ)

}︂⃓⃓⃓
γe(τ) (4)

We first consider
∑︁

e(t)∈X(n) ∆e(t)f(S
(t−1)). We have∑︂

e(t)∈X(n)

∆e(t)f(S
(t−1))

(3)
=

∑︂
e(t)∈X(n)

(︂
γe(t) + ϕ

(t−1)

i(t)

)︂

(4)
=

∑︂
e(t)∈X(n)

⎛⎜⎝γe(t) +
C

Bi(t)

∑︂
e(τ)∈X

(t−1)

i(t)

(︃
1 +

D

Bi(t)

)︃⃓⃓⃓{︂
e∈X

(t−1)

i(t)
: e≻e(τ)

}︂⃓⃓⃓
γe(τ)

⎞⎟⎠

=

k∑︂
i=1

∑︂
e(t)∈X

(n)
i

⎛⎜⎝γe(t) +
C

Bi

∑︂
e(τ)∈X

(t−1)
i

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓
γe(τ)

⎞⎟⎠
=

k∑︂
i=1

⎛⎜⎝ ∑︂
e(t)∈X

(n)
i

γe(t) +
C

Bi

∑︂
e(τ)∈X

(n)
i

γe(τ)

∑︂
e(t)∈X

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓⎞⎟⎠
where in the last equality we performed an exchange of summation.

Fix e(τ) ∈ X
(n)
i . Let e(t1), e(t2), . . . , e(tm) be the elements of X(n)

i that arrived after e(τ). We have

∑︂
e(t)∈X

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓

=

m∑︂
j=1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=1

(︃
1 +

D

Bi

)︃j−1

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

=
Bi

D

(︃(︃
1 +

D

Bi

)︃m

− 1

)︃

=
Bi

D

⎛⎝(︃1 + D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
− 1

⎞⎠
In the second equality, we used the fact that no elements were added to Si in iteration t ∈ (tj−1, tj), and thus X(tj−1)

i =

X
(tj−1)
i .

Putting everything together, we obtain∑︂
e(t)∈X(n)

∆e(t)f(S
(t−1))

=

k∑︂
i=1

∑︂
e(t)∈X

(n)
i

⎛⎝C

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(t)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠ γe(t)

=
∑︂

e(t)∈X(n)

⎛⎝C

D

(︃
1 +

D

Bi(t)

)︃⃓⃓⃓{︂
e∈X

(n)

i(t)
: e≻e(t)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠ γe(t)

Next, we consider f(S(n)). Let

˜︁S(t) :=
(︂
S
(n)
1 ∩

{︂
e(1), . . . , e(t)

}︂
, . . . , S

(n)
k ∩

{︂
e(1), . . . , e(t)

}︂)︂
Note that we have ˜︁S(t) ⊆ S(t) for all t. We have

f(S(n)) = f(˜︁S(n))− f(˜︁S(0))

=
∑︂

e(t)∈S(n)

∆e(t)f(˜︁S(t−1))

(˜︁S(t−1)⪯S(t−1))
≥

∑︂
e(t)∈S(n)

∆e(t)f(S
(t−1))

=

k∑︂
i=1

∑︂
e(t)∈S

(n)
i

∆e(t)f(S
(t−1))

where the inequality follows from submodularity.

Using the update rules for the dual variables, we obtain

f(S(n)) ≥
k∑︂

i=1

∑︂
e(t)∈S

(n)
i

∆e(t)f(S
(t−1))

(3)
=

k∑︂
i=1

∑︂
e(t)∈S

(n)
i

(︂
γe(t) + ϕ

(t−1)
i

)︂

(4)
=

k∑︂
i=1

∑︂
e(t)∈S

(n)
i

⎛⎜⎝γe(t) +
C

Bi

∑︂
e(τ)∈X

(t−1)
i

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓
γe(τ)

⎞⎟⎠
=

k∑︂
i=1

⎛⎜⎝ ∑︂
e(t)∈S

(n)
i

γe(t) +
C

Bi

∑︂
e(τ)∈X

(n)
i

γe(τ)

∑︂
e(t)∈S

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓⎞⎟⎠

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

where in the last equality we performed an exchange of summation.

Fix e(τ) ∈ X
(n)
i . Let e(t1), e(t2), . . . , e(tm) be the elements of X(n)

i that arrived after e(τ), in the order in which they arrived.

More precisely, we have
{︂
e(t) ∈ X

(n)
i : t > τ

}︂
=
{︁
e(t1), e(t2), . . . , e(tm)

}︁
and t1 < t2 < · · · < tm. Let t0 = τ . We

consider each of the following cases in turn: m ≤ Bi and m > Bi.

Suppose that m < Bi. Note that S(n)
i is comprised of the last (at most) Bi elements of X(n)

i . Thus we have{︂
e(t) ∈ Si : e

(t) ≻ e(τ)
}︂
=
{︂
e(tj) : 1 ≤ j ≤ m

}︂
Using the same calculation as above, we obtain

∑︂
e(t)∈S

(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓

=
Bi

D

⎛⎝(︃1 + D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
− 1

⎞⎠
Suppose that m ≥ Bi. We have{︂

e(t) ∈ S
(n)
i : e(t) ≻ e(τ)

}︂
=
{︂
e(tj) : m−Bi + 1 ≤ j ≤ m

}︂
and thus ∑︂

e(t)∈S
(n)
i : e(t)≻e(τ)

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(t−1)
i : e≻e(τ)

}︂⃓⃓⃓

=

m∑︂
j=m−Bi+1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=m−Bi+1

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(tj−1)

i : e≻e(τ)
}︂⃓⃓⃓

=

m∑︂
j=m−Bi+1

(︃
1 +

D

Bi

)︃j−1

=
Bi

D

(︃
1 +

D

Bi

)︃m
(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄

=
Bi

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄

In the second equality, we used the fact that no elements were added to Si in iteration t ∈ (tj−1, tj), and thus X(tj−1)
i =

X
(tj−1)
i .

Since S
(n)
i is comprised of the last (at most) Bi elements of X(n)

i , we have∑︂
e(t)∈Si

γe(t) =
∑︂

e(t)∈X
(n)
i :

⃓⃓⃓{︂
e∈X

(n)
i : e≻e(t)

}︂⃓⃓⃓
<Bi

γe(t)

Putting everything together, we obtain

f(S(n)) ≥
k∑︂

i=1

∑︂
e(τ)∈X

(n)
i :

⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
<Bi

γe(τ)

⎛⎝C

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

+

k∑︂
i=1

∑︂
e(τ)∈X

(n)
i :

⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓
≥Bi

γe(τ)

C

D

(︃
1 +

D

Bi

)︃⃓⃓⃓{︂
e∈X

(n)
i : e≻e(τ)

}︂⃓⃓⃓(︄
1−

(︃
1 +

D

Bi

)︃−Bi
)︄

=
∑︂

e(τ)∈X(n) :
⃓⃓⃓{︂

e∈X
(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓
<B

i(τ)

γe(τ)

⎛⎝C

D

(︃
1 +

D

Bi(τ)

)︃⃓⃓⃓{︂
e∈X

(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓
− C

D
+ 1

⎞⎠

+
∑︂

e(τ)∈X(n) :
⃓⃓⃓{︂

e∈X
(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓
≥B

i(τ)

γe(τ)

C

D

(︃
1 +

D

Bi(τ)

)︃⃓⃓⃓{︂
e∈X

(n)

i(τ)
: e≻e(τ)

}︂⃓⃓⃓(︄
1−

(︃
1 +

D

Bi(τ)

)︃−B
i(τ)

)︄

as needed.

Next, we upper bound f(S∗) using a linear combination of the γe values. Compared to the k-submodular setting, we are
able to obtain a stronger upper bound on f(S∗).

Lemma B.2. We have
f(S∗) ≤

∑︂
e(t)∈X(n)

ˆ︁ctγe(t)
where ˆ︁ct = (D + 1) ct + C −D

and ct is the coefficient from Lemma B.1.

Proof. By monotonicity, we have
f(S∗) ≤ f(S∗ ∪X(n))

Therefore it suffices to upper bound f(S∗ ∪X(n)). Our first step is to apply submodularity and upper bound f(S∗ ∪X(n))
in terms of the marginal gains ∆e(t)f(S

(t−1)). Let e(t1), . . . , e(ta) be the elements of X(n), where t1 < · · · < ta. Let
e(ta+1), . . . , e(tb) be the elements of S∗ \X(n). We have

f(X(n) ∪ S∗) = f(X(n) ∪ S∗)− f(∅)

=

a+b∑︂
i=1

∆e(ti)f
(︂{︂

e(t1), . . . , e(ti−1)
}︂)︂

≤
a+b∑︂
i=1

∆e(ti)f(S
(ti−1))

=
∑︂

e(t)∈X(n)

∆e(t)f(S
(t−1)) +

∑︂
e(t)∈S∗\X(n)

∆e(t)f(S
(t−1))

The inequality follows by submodularity: we have S(ti−1) ⊆ X(ti−1) ⊆
{︁
e(t1), . . . , e(ti−1)

}︁
.

For each element e(t) /∈ X(n), we have ∆e(t)f(S
(t−1)) ≤ ϕ

(t−1)

i(t)
. Moreover, the dual values ϕ

(t)
i are non-negative.

Therefore ∑︂
e(t)∈S∗\X(n)

∆e(t)f(S
(t−1)) ≤

∑︂
e(t)∈S∗\X(n)

ϕ
(t−1)

i(t)
≤

∑︂
e(t)∈S∗

ϕ
(t−1)

i(t)

Using that ϕ(t)
i is non-decreasing with t, the feasibility of S∗, and the update rule for ϕi, we obtain

∑︂
e(t)∈S∗

ϕ
(t−1)

i(t)
=

k∑︂
i=1

∑︂
e(t)∈S∗∩Pi

ϕ
(t−1)
i

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

≤
k∑︂

i=1

ϕ
(n)
i |S

∗ ∩ Pi|⏞ ⏟⏟ ⏞
≤Bi

≤
k∑︂

i=1

ϕ
(n)
i Bi

=

k∑︂
i=1

Bi

(︂
ϕ
(n)
i − ϕ

(0)
i

)︂
=

k∑︂
i=1

∑︂
e(t)∈X

(n)
i

Bi

(︂
ϕ
(t)
i − ϕ

(t−1)
i

)︂

=

k∑︂
i=1

∑︂
e(t)∈X

(n)
i

(︂
D∆e(t)f(S

(t−1)) + (C −D) γe(t)
)︂

=
∑︂

e(t)∈X(n)

(︂
D∆e(t)f(S

(t−1)) + (C −D) γe(t)
)︂

Putting everything together and using Lemma 3.2, we obtain

f(X(n) ∪ S∗) ≤
∑︂

e(t)∈X(n)

(D + 1)∆e(t)f(S
(t−1)) + (C −D)

∑︂
e(t)∈X(n)

γe(t)

=
∑︂

e(t)∈X(n)

((D + 1) ct + C −D) γe(t)

as needed.

We now derive the approximation guarantee. The proof of the following lemma is analogous to Lemma 3.5.

Lemma B.3. Let B = mini∈[k] Bi be the minimum budget among all parts. If we set C = D, we obtain

f(S)

f(S∗)
≥ min

t : e(t)∈X(n)

˜︁ctˆ︁ct ≥
(︄
1−

(︃
1 +

D

B

)︃−B
)︄

1

D + 1

where ˜︁ct and ˆ︁ct are the coefficients from Lemmas B.1 and B.2.

Proof. We will use the following standard inequality:∑︁n
i=1 ai∑︁n
i=1 bi

≥ min
i∈[n]

ai
bi

By applying the above inequality, we obtain

f(S)

f(S∗)
≥ min

t : e(t)∈X(n)

˜︁ctˆ︁ct
We now lower bound the ratio of the coefficients. Recall that C = D.

Consider e(t) ∈ X(n), and let j =
⃓⃓⃓{︂
e ∈ X

(n)

i(t)
: e ≻ e(t)

}︂⃓⃓⃓
. If j ≥ Bi(t) , we have

˜︁ctˆ︁ct =

C
D

(︂
1 + D

B
i(t)

)︂j (︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
(D + 1)

(︃
C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

)︃
+ C −D

Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints

=

C
D

(︂
1 + D

B
i(t)

)︂j (︃
1−

(︂
1 + D

B
i(t)

)︂−B
i(t)

)︃
(D + 1) C

D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

=

(︄
1−

(︃
1 +

D

Bi(t)

)︃−B
i(t)

)︄
1

D + 1

(︃
C

D
= 1

)︃
If j < Bi(t) , we have

˜︁ctˆ︁ct =

C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

(D + 1) C
D

(︂
1 + D

B
i(t)

)︂j
− C

D + 1

=
1

D + 1

(︃
C

D
= 1

)︃
Therefore

f(S)

f(S∗)
≥

(︄
1−

(︃
1 +

D

B

)︃−B
)︄

1

D + 1

where B = mini∈[k] Bi is the minimum budget.

C. Additional Experimental Results
We performed the influence maximization experiment described in Section 5 with varying values of k and obtained similar
results. Figure 3 reports the experimental results for influence maximization with k = 10 topics.

Figure 3. Experimental results for influence maximization with k = 10 topics. We report the mean and standard deviation over 5 runs.
Greedy is the offline Greedy algorithm of (Ohsaka & Yoshida, 2015) implemented using lazy evaluations. PrimalDual is our Algorithm 1.

