
A Flexible Type System for Fearless Concurrency
Mae Milano

University of California, Berkeley
Berkeley, CA, USA

mpmilano@berkeley.edu

Joshua Turcotti
University of California, Berkeley

Berkeley, CA, USA
jturcotti@berkeley.edu

Andrew C. Myers
Cornell University
Ithaca, NY, USA

andru@cs.cornell.edu

Abstract
This paper proposes a new type system for concurrent pro-
grams, allowing threads to exchange complex object graphs
without risking destructive data races. While this goal is
shared by a rich history of past work, existing solutions ei-
ther rely on strictly enforced heap invariants that prohibit
natural programming patterns or demand pervasive annota-
tions even for simple programming tasks. As a result, past
systems cannot express intuitively simple code without un-
natural rewrites or substantial annotation burdens. Our work
avoids these pitfalls through a novel type system that pro-
vides sound reasoning about separation in the heap while
remaining flexible enough to support a wide range of desir-
able heap manipulations. This new sweet spot is attained
by enforcing a heap domination invariant similarly to prior
work, but tempering it by allowing complex exceptions that
add little annotation burden. Our results include: (1) code
examples showing that common data structure manipula-
tions which are difficult or impossible to express in prior
work are natural and direct in our system, (2) a formal proof
of correctness demonstrating that well-typed programs can-
not encounter destructive data races at run time, and (3) an
efficient type checker implemented in Gallina and OCaml.

CCS Concepts: • Software and its engineering → Con-
current programming languages;Concurrent program-
ming structures.

Keywords: concurrency, type systems, aliasing

ACM Reference Format:
MaeMilano, Joshua Turcotti, and AndrewC.Myers. 2022. A Flexible
Type System for Fearless Concurrency. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’22), June 13–17, 2022, San Diego,
CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3519939.3523443

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523443

1 Introduction
The promise of a language with lightweight, safe concur-
rency has long been attractive. Such a language would stat-
ically ensure freedom from destructive races, avoiding the
cost of synchronization except when concurrent threads ex-
plicitly communicate. Our goal is to obtain this “fearless
concurrency” [35] for a language with pervasive mutability
at its core. Broadly speaking, past efforts to design such a
language fall into three camps. Some, like Rust [36], simplify
reasoning by severely limiting the shape of representable
data structures—making the implementation of common data
structures, like the doubly linked list, unapproachable by non-
experts1. In others [17, 26, 28, 29, 33, 46], harsh limitations
on aliasing cause data structure traversal and manipulation
to involve significant mutation of the object graph even for
simple computations—for example, in these systems remov-
ing the tail of a recursively linear singly linked list incurs a
write to each list node traversed. Existing approaches that
avoid either pitfall require significant programmer annota-
tion to explain aliasing information directly to the compiler
[8, 12, 13].

This paper introduces a new type system for fearless con-
currency. As in prior work, the goal is to statically ensure
that at any point during execution, the part of the heap ac-
cessible to a given thread—what we call its reservation—is
disjoint from the reservations of all other threads. Inspired
by Tofte and Talpin [49], the object graph is partitioned
into a set of regions, a purely compile-time construct which
groups objects that enter or leave a thread’s reservation as a
unit. Neither regions nor reservations are fixed; both can and
should change during program execution to reflect the move-
ment of objects among threads. As in prior work [17, 26, 28],
our type system supports both inter- and intra-region refer-
ences; intra-region references may freely link objects within
the same region, allowing programmers to easily form arbi-
trary object graphs, while inter-region references are tracked
by the type system and stored in appropriately annotated
isolated fields. By tracking this information, the type sys-
tem ensures that threads do not reference objects outside
their reservations. Unlike in prior work, this guarantee is
provided without requiring that isolated field references sat-
isfy a global domination invariant at all times—and without
requiring any annotations from the programmer except at
function boundaries.

1That doubly linked lists pose a real challenge is affirmed by top search
results for “how to write a doubly linked list in Rust” [18, 41].

https://orcid.org/0000-0003-3126-7771
https://orcid.org/0000-0001-8526-9516
https://orcid.org/0000-0001-5819-7588
https://doi.org/10.1145/3519939.3523443
https://doi.org/10.1145/3519939.3523443
https://doi.org/10.1145/3519939.3523443

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

For rich object graphs, this increased expressive power
poses a challenge: to soundly approximate reservations at
run time, the type system must accurately determine to
which region each accessed object belongs, and further, which
regions are containedwithin the reservation at run time. This
determination is made particularly difficult because reserva-
tions can grow and shrink dynamically as threads exchange
portions of the object graph.
Our key insight begins by leveraging domination prop-

erties in the heap to force isolated field references to dom-
inate [43] their reachable subgraphs, yielding a notion of
encapsulation similar to prior work [29]. We then temper
this strong and restrictive global domination property with
a new focus mechanism inspired by Vault [23]: objects may
become temporarily focused, causing their isolated fields’ tar-
gets to be explicitly tracked by the type system, and thereby
exempted from domination requirements. This weaker heap
invariant, which we call tempered domination, allows greater
flexibility with lower annotation overhead than in any prior
language. It improves on traditional affine-reference lan-
guages by enforcing a tree of regions rather than a tree of
objects, allowing more natural structures than are possible in
Rust [36]. On the other hand, the focus mechanism skirts the
need to maintain a global domination invariant at all times,
avoiding the destructive read or swap primitives needed
in existing tree-of-regions languages such as L42, LaCasa,
Mezzo, and others [3, 4, 17, 26, 28, 46].
Two more novel features enhance expressiveness of our

language: (1) a new primitive if disconnected that dynami-
cally determines if a region can be safely split at run time, and
(2) expressive function types whose parameters and results
need not be dominators.
Our type system can naturally represent many mutable

data structures found in prior work, without relying on heavy
annotations, unnatural representations, destructive reads,
or swap primitives. For example, our type system admits
straightforward representations of both doubly linked lists
with shared ownership and singly linked lists with recur-
sively linear ownership, improving on a motivating example
for much prior work [17, 26, 28] in the first case and offering
the celebrated mechanisms of uniqueness and borrowing
popularized by Rust [36] in the second.

This work brings together the benefits of two traditional
lines of prior work without adding significant complexity.
For example, both singly and doubly linked lists support tra-
versal, removal, and insertion functions which look much as
they would in an introductory programming class, requiring
little annotation or run-time overhead. All these operations
enjoy fearless concurrency: added elements may have been
received from remote threads and removed elements may
be immediately sent to a new thread, all without additional
dynamic concurrency control mechanisms or the risk of
destructive races. No existing language with fearless concur-
rency can as naturally express this range of data structures.

struct sll_node {

iso payload : data;

iso next : sll_node?;

}

struct sll {

iso hd : sll_node?;

}

struct dll_node {

iso payload : data;

next : dll_node;

prev : dll_node;

}

struct dll {

iso hd : dll_node?

}

Figure 1. A singly linked list and circular doubly linked list.
Fields are not nullable by default; the ? annotation on types
indicates that this field stores a “maybe” of the appropri-
ate type, effectively making it nullable. The iso keyword
enforces transitive domination.

Our primary contributions are summarized as follows:
• A new invariant, tempered domination, which al-
lows statically tracked violations of the traditional
global domination invariantwith a focus construct [23].

• A region-based type system capable of tracking the
relationships between regions, without requiring an-
notations or explicit scopes to do so.

• A formal paper proof of soundness that shows well
typed programs have no destructive data races.

• A new primitive to dynamically discover detailed re-
gion graphs and expose them to static analysis.

• Expressive function types capable of statically de-
scribing complex heap manipulations.

• A type checker implemented in OCaml, and verified
in Coq, capable of checking our most complex exam-
ples in seconds.

2 A Tail of Two Lists
We begin by explaining key concepts of the new type system,
using two linked list implementations as guiding examples.

2.1 Reservations and Tempered Domination
Our language prevents destructive races by dividing the run-
time heap into a set of disjoint reservations, one per thread. A
thread’s reservation is the portion of the heap that it may ac-
cess at any particular time. By keeping reservations disjoint,
and ensuring no thread attempts to access an object outside
its reservation, we guarantee freedom from destructive races;
in other words, it is reservation-safe.
As the program executes and threads exchange objects,

reservations must shift accordingly. When a thread sends
an object to another thread, its reservation must lose access
to that object’s reachable subgraph, which includes the ob-
ject itself as well as all objects transitively reachable from
it. Conversely, when a thread receives an object, its reserva-
tion expands; the thread gains access to the object and its
reachable subgraph.

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

def remove_tail(n: sll_node) : data? {

let some(next) = n.next in {

if (is_none(next.next)) {

n.next = none;
some(next.payload)

} else { remove_tail(next) }

} else { none }

}

Figure 2. Removing the final element of a singly linked list.
Note that both the returned result and list remain mutable,
and the returned result is no longer encapsulated by the
linked list, unlike in prior work (e.g., [26, 46]). Note also that
this function returns none on lists of size one, as it would be
impossible to separate the list from its tail in this case.

The key challenge is ensuring reservation safety at com-
pile time. Consider, for example, a linked list containing some
abstract payload type data, used as a messaging queue to
communicate with other threads. Two possible definitions of
such a list are found in figure 1. While these code examples
are simple, they expose two key challenges: the ability to rep-
resent cyclic data structures, and the ability to traverse trees
of unique references. In order to safely add objects received
from other threads to either list, or to remove objects from
either list to send to other threads, the compiler must reason
about reachability and aliasing, both between the list nodes
and their payloads, and between the list nodes themselves.

To make this reasoning tractable for both the compiler and
the programmer, our system relies on transitively dominating
references: references which lie on all paths from the root of
the object graph to all objects transitively reachable from
that reference. These references are dominators [43] of entire
subgraphs; therefore, a thread which loses access to such a
reference, for example by sending it to another thread, also
loses access to its reachable subgraph. Hence, marking only
this single reference as invalid maintains reservation safety.
We use the keyword iso (“isolated”) to describe fields which
contain transitively dominating references, thereby exposing
knowledge of domination in the object graph to the type
system. Looking back to the example code in figure 1, we
see that iso appears on the list payloads in both linked list
implementations, and that it also appears on the list spine
itself in the case of the singly linked list, indicating that the
only way to initially reach a singly linked list node is from
its predecessor.

If all iso fields contain transitively dominating references,
a property we call global domination, then we can safely rea-
son about separation in the heap when accessing such data
structures. But global domination is too strong a property
to be enforced at all times. For example, consider the code
in figure 2, which, given the head node, attempts to remove

the final element from a singly linked list, returning a domi-
nating reference. The caller of remove_tail may leverage
the separation between the removed node and list parameter
to, for example, safely send the removed node to a distinct
thread without losing access to the list itself2.
In implementing this function, this code first attempts

to dereference the argument’s next field, storing it in the
variable next. It then checks if next is the tail of the list,
removing it from the list and returning its payload if so.
Otherwise, it recursively calls remove_tail on the next el-
ement. Note something surprising: this code violates global
domination! Both the next variable and the list parameter
hold references to sll_node’s iso-declared (hence dominat-
ing) next field.

In fact, performing a non-destructive traversal of this list
while enforcing global domination over all next fields is im-
possible; all such traversals will require at least a “cursor”
variable pointing at the current position in the list, which
will necessarily alias the next pointer of that position’s pre-
decessor.
Our language thus does not enforce a traditionally strict

global domination invariant; rather than forcing references
stored in iso fields to always be transitively dominating, we
temper this requirement with a type-level mechanism that
explicitly tracks the targets of some references, requiring
transitive domination for exactly those references in iso

fields which are not explicitly tracked by the type system.
We call this weakened property tempered domination.

Tempered domination generalizes prior work that relies
on global domination [26–28, 46]. Crucially, tracking, and
indeed the decision of which references to track, occurs
without explicit user instruction—requiring annotations only
at function boundaries.Whenwe describe themechanisms in
place for preserving tempered domination in the remainder
of this paper, we refer to transitively dominating references
as simply dominating references.

2.2 Aliasing and Reachable Subgraphs
While an otherwise untracked iso field in some object o is
guaranteed to contain a dominating reference, it is not in
general guaranteed that o itself is uniquely referenced; in fact
many aliases of any given object may be accessible at any
particular time. When checking an iso field dereference, it
is therefore necessary to ensure the program has not already
accessed that same object’s iso field from some other alias.
For example, consider the circular doubly linked list im-

plementation from figure 1. Figure 3 illustrates two possible
instances of this list; note that a list of size 1 is represented
by a single list node whose prev and next pointers are self-
references.

2This is in contrast to existing systems [46], in which similar code would
still associate the tail with the list even after returning it, forever entwining
the fate of the tail with that of the list.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

dll_node

dll_node

dll

hd

nextprev

payload

payload

prev

next

dll

dll_node

hd

payload

prev
next

Figure 3. Two circular doubly linked lists, of size 2 and of
size 1.

def remove_tail(l : dll) : data? {

let some(hd) = l.hd in {

let tail = hd.prev;

tail.prev.next = hd;

hd.prev = tail.prev;

some (tail.payload)

} else { none } }

Figure 4. Retrieving the tail of a circular doubly linked list
(broken)

As with the singly linked list, we might wish to remove
the tail from this circular doubly linked list; our first attempt
to do so is in figure 4. This code takes advantage of the
circular structure of this list, jumping straight to the end via
hd’s prev pointer. After patching the list pointers to exclude
the tail node, we return the iso-annotated tail.payload
reference. As in the singly linked list, this function has been
declared to return only dominating references, so the caller
of remove_tail should be able to use this payload freely
without regard for its former attachment to the list3.

Sadly, this code contains an error. When passed a list of
size 2, this code functions as expected; the tail node is ex-
cised from the list, removing all external references to the
payload except the one returned from the function itself. But
when passed a list of size 1, the code behaves differently:
hd and hd.prev are in fact the same object (fig 3), rendering
ineffective the assignments that attempt to remove it from
the list. Here, the returned payload actually isn’t a dominat-
ing reference; the list retains the same shape as before, and
still provides access to the returned payload. While the pro-
grammer could eliminate this error by swapping the payload
with a dummy value, that fix is undesirable. It would satisfy
the type checker, but not remove the bug—replacing a static
error with a dynamic one when the dummy value is later
unexpectedly encountered.
The correct fix for figure 4 is to add code which handles

lists is of length one, perhaps by adding an if-statement. But
while this may be sufficient for the programmer to know the

3This is in contrast to work in the vein of extended Balloon Types [46].

def remove_tail(l : dll) : data? {

let some(hd) = l.hd in {

let tail = hd.prev;

tail.prev.next = hd;

hd.prev = tail.prev;

// to ensure disjointness for if−disconnected
tail.next = tail; tail.prev = tail;

if disconnected(tail,hd) {

l.hd = some (hd); //l.hd invalid at branch start
some(tail.payload) }

else {

l.hd = none;
some (hd.payload) }}

else { none } }

Figure 5. Retrieving the tail of a circular doubly linked list
(fixed)

size of the list a priori, an if-statement alone would not be
enough to allow the type system to make that same deduction.
To solve this, our work introduces a new primitive con-

ditional form called if disconnected. This conditional per-
forms a run-time check to establish if its arguments’ reach-
able subgraphs are non-intersecting; if they are, it enters the
first branch, and otherwise enters the else branch. We see
this construct in use in figure 5. Here, the existing logic
is enhanced by replacing what was once a plain return
of tail.payload to a call to if disconnected, returning
tail.payload when it has been successfully disconnected
in size 2+ cases, and returning the head’s payload in the size
1 case. Note that the programmer must manually repoint
the tail’s next and prev fields away from the remainder of
the list, as disconnection is a symmetric property: it is just
as essential that tail cannot reach head as it is that head
cannot reach tail. Additionally, the type system does not
know which of hd and tail connect to l.hd, necessitating
that l.hd be reassigned even in the then branch.

Despite its dynamic nature, the run-time complexity for if
disconnected is quite reasonable—in this example, it would
only require reading the metadata of a single object. No-
tably, the new if disconnected mechanism cannot be ap-
proximated by mechanisms in similar prior work.

3 A Small Language with Dynamic
Reservation Safety

We formalize our work as a small core concurrent language
with mutable objects, passed by reference.

3.1 Syntax
The syntax of the language can be found in figure 6. Be-
yond standard imperative constructs, structures, and a first-
class “maybe” construct, two novel features stand out: the if
disconnected primitive and blocking messaging primitives
send-τ and recv-τ .

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(function definition) fdef ::= def fn : τfn{e}
(program) p ::= fdef; p | e

(expression) e ::= l | x | e; e | e . f | e . f = e | x = e | fn(x, . . . , x) | e ⊕ e | new τ | declare x : τ in {e}

| if (e) {e} else {e} | while (e) {e} | send-τ (e) | recv-τ () | if disconnected(x, x) {e} else {e}

| none τ | some(e) | let some(x) = (e) in {e} else {e}

(evaluation context) E[] ::= []; e | e . f = [] | x = [] | [] ⊕ e | l ⊕ [] | if([]){e} else {e}

| send-τ ([]) | some([]) | let some(x) = ([]) in {e} else {e}

Figure 6. Core language syntax

3.2 Semantics
Figure 7 presents selected rules of the small-step semantics
for a single thread; explicit concurrency constructs are added
in section 7. The only values are locations. The small-step
configuration is largely standard, including a store h map-
ping locations to objects, a stack s mapping variable names
to locations, and an expression e which is evaluated with
reference to the store and stack.
The final element of the configuration, d , is not stan-

dard; this context models the (dynamic) reservation and is
consulted whenever a location is used. For example, rules
E2 - Variable-Ref-Step and E5a - Final-Reference-Step–
Variable check d to confine variable and field reads to loca-
tions within the reservation, and E8 - Assign-Var-Step and
E7a - Final-Assignment-Step–Variable check d to confine
variable and field assignments similarly. If any expression
attempts to read or write locations that are not in the current
reservation, no rules apply and the program cannot step;
the program intentionally “gets stuck.” By augmenting the
small-step semantics with this pervasive dynamic reserva-
tion check, we can be guaranteed that—provided reservations
are always disjoint—no program can destructively race. In
section 4 we introduce a type system for which we have
proven progress and preservation (section 6) with respect to
this small-step system, in turn proving that no well-typed
programs get stuck—and therefore, no reservation checks
ever fail. Hence, a real implementation has no need to track
the reservation or to perform such checks at run time.
In contrast to the erasable dynamic reservation checks,

the if disconnected mechanism has unavoidable run-time
cost. It must ensure that the object graphs reachable from its
arguments are non-intersecting, as specified in rules E15a
and E15b. A naive implementation of this check would be
unacceptably inefficient, as it would require a complete tra-
versal of the object graphs reachable from both arguments;
a more efficient implementation is described in section 5.2.

4 Type System
The type system is built around maintaining tempered domi-
nation: untracked iso fields always dominate their reachable
subgraph. To establish this invariant, the type systemmust be
able to determine when two different isolated fields may be

aliases. For example, in the doubly linked list example from
figure 3, the type systemmust recognize that hd and hd.tail
may be aliases, and so hd.payload and hd.tail.payload
may be as well. It must also ensure that operations which
remove an object from the current thread’s reservation also
render all aliases of this object statically unusable.

4.1 Regions
To track aliasing, the type system uses regions [49] to describe
disjoint subgraphs of the overall object graph, statically asso-
ciating each reference with a region in which its target lives.
By ensuring that all possible references to the same object
are labeled with the same region, the type system can use a
set of regions as a conservative compile-time approximation
to a run-time reservation. When an object is lost from the
reservation, the type system invalidates all references to that
object by preventing the use of any references that target its
region. Effectively, the type system treats each region as an
affine resource which is consumed by reservation-shrinking
operations on its constituent objects.

For example, figure 8 circles regions in the doubly linked
list instances of figure 3. Entire list spines lie in the same
region, which causes the static error from in original attempt:
both hd and hd.next are in the same region, so the type
system always treats them as potential aliases.

4.2 Focus
The tempered domination invariant requires that untracked
iso fields must dominate their reachable subgraph, while
tracked iso fields are unrestricted. Over the course of pro-
gram execution, untracked iso fields may become tracked,
and tracked iso fields may in turn become untracked. To
allow tracked iso fields to be safely untracked, our type sys-
tem ensures that all tracked iso fields have statically known
target regions. To avoid unsoundness, we must ensure that
potential aliases do not have conflicting static tracking in-
formation. To this end, we introduce a focus mechanism,
which allows variables to become tracked only in regions in
which no other variables are currently tracked. Since vari-
ables from distinct regions are necessarily distinct, this en-
sures no iso field ever becomes tracked via multiple aliases.
This non-aliasing behavior is formalized as invariant I6 in
the appendix.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

(d,h, s, e)
eval
−−−→(d,h, s, e)

E1 - Evaluation-Context-Step

(d,h, s, e)
eval
−−−→(d ′,h′, s ′, e ′)

(d,h, s, E[e])
eval
−−−→(d ′,h′, s ′, E[e ′])

E2 - Variable-Ref-Step
s(x) = l l ∈ d

(d,h, s, x)
eval
−−−→(d,h, s, l)

E5a - Final-Reference-Step–Variable
s(x) = l l, lf ∈ d hv (l)[f] = lf

(d,h, s, x . f)
eval
−−−→(d,h, s, lf)

E7a - Final-Assignment-Step–Variable
s(x) = l l, lf ∈ d

(d,h ⊎ (l 7→ (τ ,v)), s, x . f = lf)
eval
−−−→(d,h ⊎ (l 7→ (τ ,v[f 7→ lf])), s, lf)

E8 - Assign-Var-Step
l ∈ d

(d,h, s ⊎ (x 7→ lold), x = l)
eval
−−−→(d,h, s ⊎ (x 7→ l), l)

E11 - Declare-Var-Step

(d,h, s, declare x : τ in {e})
eval
−−−→(d,h, s[x 7→ ⊥], e)

E15a - If-Disconnected-Success-Step
tracked-set(r ·⟨⟩;x : r τ ; ·;h, s) ∩ tracked-set(r ·⟨⟩;y : r τ ; ·;h, s) = ∅

(d,h, s, if disconnected(x,y) {esucc} else {efail})
eval
−−−→(d,h, s, esucc)

E15b - If-Disconnected-Failure-Step
tracked-set(r ·⟨⟩;x : r τ ; ·;h; s) ∩ tracked-set(r ·⟨⟩;y : r τ ; ·;h; s) , ∅

(d,h, s, if disconnected(x,y) {esucc} else {efail})
eval
−−−→(d,h, s, efail)

Figure 7. Selected small-step rules. Full small-step rules can be found in the appendix.

dll_node

dll_node

dll

hd

nextprev

payload

payload

prev

next

dll

dll_node

hd

payload

prev
next

Figure 8. Two circular doubly linked lists, with regions
drawn.

(type) τ ::= Struct | Struct?
◦ ::= † | ·

Γ ::= x : r τ , Γ | ·

H ::= r ◦⟨X ⟩, H | ·

X ::= x◦[F], X | ·

F ::= f ↣ r , F | ·

Figure 9. Surface context definitions forH and Γ

4.3 Typing Judgments and Static Contexts
The typing judgment has the form H ; Γ ⊢ e : r τ ⊣ H ; Γ, fol-
lowing the grammar in figure 9. It associates an expression
e with a type τ and a region r . Recall from section 4.1 that
regions are treated linearly in the type system; the trans-
formation of linear contexts is represented not by context
splitting [51] but by “input” (before ⊢) and “output” (after ⊣)
contexts. The difference between input and output contexts
captures e’s effects on the type state. To be well-formed, all
static contexts (Γ,H ,X , F) cannot contain duplicate bindings
for regions, variables, or fields.

The variable typing context Γ is a largely standard bind-
ing environment recording the type and region of variables;
the heap context H is interpreted as a set of tracking con-
texts of the form r ◦⟨X ⟩. Each tracking context begins with a
region capability r , the complete set of which serves to con-
servatively approximate the dynamic reservation. Were our
tracking contexts to contain only this r , they would match
the tracking context of LaCasa [28, 29]; indeed, several rules—
those which introduce, check, and eliminate regions—require
only this level of detail.

4.4 Expression Typing with Tracking Contexts
In addition to the top-level structure describing the set of
tracked regions in H , the full tracking context r ◦⟨x◦[f ↣
r , . . .] . . .⟩ includes a description x◦[f ↣ r , . . .] of the re-
gion structure discovered by our focus mechanism: namely,
tracked variables x in the region r , where each f ↣ r maps
tracked fields f to their target regions r . Both variables and
regions also include a pinning annotation described by the
metavariable ◦. Pinning a region (resp. variable) prevents
any new variables (resp. iso fields) from becoming tracked
in that region (resp. variable). Pinning is necessary when
the typing context might only have partial static informa-
tion about the heap, and allows the type system to express
abstraction overH .
Figure 10 shows how the context H is used to type ex-

pressions. First, note that H prevents the type system from
confusing an iso field with potential aliases; as shown in
T5 - Isolated-Field-Reference, no iso field of some vari-
able may be accessed unless both that variable and its field
are already present in the tracking context, and the recorded
region targeted by that field is itself present inH .

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

H ; Γ ⊢ e : r τ ⊣ H ; Γ

T2 - Variable-Ref
x : r τ ∈ Γ r ∈ regs(H)

H ; Γ ⊢ x : r τ ⊣ H ; Γ

T3 - Seqence
H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ H ′; Γ′ ⊢ e ′ : r ′ τ ′ ⊣ H ′′; Γ′′

H ; Γ ⊢ e; e ′ : r ′ τ ′ ⊣ H ′′; Γ′′

T4 - Non-Isolated-Field-Reference
H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ · f τf ∈ fields(τ)

H ; Γ ⊢ e . f : r τf ⊣ H ′; Γ

T5 - Isolated-Field-Reference

iso f τf ∈ fields(τ) r ◦⟨x◦
′

[f ↣ rf , F],X ⟩ ∈ H r ◦
′′

f ⟨X ′⟩ ∈ H

H ;x : r τ , Γ ⊢ x . f : rf τf ⊣ H ;x : r τ , Γ

T6 - Non-Isolated-Field-Assignment
H ; Γ ⊢ ef : r τf ⊣ H ′; Γ′ H ′; Γ′ ⊢ e : r τ ⊣ H ′′; Γ′′ · f τf ∈ fields(τ)

H ; Γ ⊢ e . f = ef : r τf ⊣ H ′′; Γ′′

T7 - Isolated-Field-Assignment

H ; Γ ⊢ ef : rf τf ⊣ H ′, r ◦⟨x◦
′

[f ↣ rold, F],X ⟩;x : r τ , Γ′ iso f τf ∈ fields(τ)

H ; Γ ⊢ x . f = ef : rf τf ⊣ H ′, r ◦⟨x◦
′

[f ↣ rf , F],X ⟩;x : r τ , Γ′

T8 - Assign-Var
H ; Γ ⊢ e : r τ ⊣ H ′; Γ′, x : rold τ x < vars(H ′)

H ; Γ ⊢ x = e : r τ ⊣ H ′; Γ′, x : r τ

T10 - New-Loc
H ; Γ ⊢ new-τ : r τ ⊣ H , r ·⟨⟩; Γ

T11 - Declare-Var
H ; Γ, x : ⊥ τ ⊢ e : r τ ′ ⊣ H ′; Γ′, x : rout τ x < vars(H ′)

H ; Γ ⊢ declare x : τ in {e} : r τ ′ ⊣ H ′; Γ′

T13 - If-Statement
H ; Γ ⊢ eb : rb bool ⊣ H ′; Γ′ H ′; Γ′ ⊢ et : r τ ⊣ H ′′; Γ′′ H ′; Γ′ ⊢ ef : r τ ⊣ H ′′; Γ′′

H ; Γ ⊢ if (eb) {et } else {ef } : r τ ⊣ H ′′; Γ′′

T14 - While-Loop
H ; Γ ⊢ eb : rb bool ⊣ H ; Γ H ; Γ ⊢ e : r τ ⊣ H ; Γ

H ; Γ ⊢ while (eb) {e} : ru unit ⊣ r ·u ⟨⟩,H ; Γ

T15 - If-Disconnected
r ·x ⟨⟩, r

·
y ⟨⟩,H ;x : rx τx ,y : ry τy , Γ; · ⊢ esucc : rout τout ⊣ H ′; Γ′ r ·⟨⟩,H ;x : r τx ,y : r τy , Γ; · ⊢ efail : rout τout ⊣ H ′; Γ′

r ·⟨⟩,H ;x : r τx ,y : r τy , Γ ⊢ if disconnected (x,y) in {esucc} else {efail} : rout τout ⊣ H ′; Γ′

T16 - Send
H ; Γ ⊢ e : re τ ⊣ H ′, r ·e ⟨⟩; Γ

′

H ; Γ ⊢ send-τ (e) : r unit ⊣ H ′, r ·⟨⟩; Γ′
T17 - Receive

H ; Γ ⊢ recv-τ () : r τ ⊣ H , r ·⟨⟩; Γ

TS1 - Virtual-Transformation-Structural

H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ (H ′; Γ′)
vir
⇝ (H̄ ′; Γ̄′) r ∈ regs(H̄ ′)

H ; Γ ⊢ e : r τ ⊣ H̄ ′; Γ̄′

Figure 10. Selected typing rules. Full typing rules can be found in the appendix.

This tracking context also allows iso fields to be freely
reassigned, even if doing so would create cycles in the object
graph. This is safe because tempered domination requires
domination only on untracked iso fields; fields explicitly
mentioned in H are exempt. Consider, for example, type-
checking x.f = e with T7 - Isolated-Field-Assignment.
This rule places no restrictions on e beyond ensuring that it
type-checks, and that x . f remains valid and tracked after
checking e . The rule simply updates x . f ’s tracking informa-
tion in the output context.
We sometimes require the tracking context of a region

to be empty, containing no tracked variables and thus no
tracked fields. As tempered domination weakens global dom-
ination only for tracked isolated fields, empty tracking con-
texts prove that every iso field within that region contains a
dominating reference, and thus is safe to transmit between
threads via T16 - Send (which requires an empty context)
and T17 - Receive (which assumes one).

Note that rules such as T10 - New-Loc, which add regions,
variables, or fields to existing contexts, enforce freshness
because well-formed contexts cannot duplicate bindings.

A notable absence in figure 10 is any rule which introduces
or eliminates elements in a tracking context. This role is
played by TS1 - Virtual-Transformation-Structural,
which allows invariant-preserving virtual transformations to
be performed on static contexts.

4.5 Virtual Transformations
Rule TS1 serves to expose a rich language of virtual transfor-
mations specified by the V rules in figure 11. These rules ma-
nipulateH to match the requirements of the syntax-directed
T rules. For example, consider the program x = new-τ ();x . f .
After type-checking the first expression in this sequence via
T10 and T8 - Assign-Var, we could obtain the following
typing judgment:

·;x : ⊥ τ ⊢ x = new-τ () : r τ ⊣ r ·⟨⟩;x : r τ
If we then moved on to checking x . f , rules T3 - Seqence
and T5 - Isolated-Field-Reference would seem natural
yet be inapplicable. This is because the output context of
new-τ ()’s derivation has the form r ·⟨⟩;x : r τ , but the field
reference rule requires a context like r ·⟨x ·[f ↣ rf]⟩, r

·
f ⟨⟩;x :

r τ .

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

(H ; Γ)
vir
⇝ (H ; Γ)

V1 - Focus

(r ·⟨⟩,H ;x : r τ , Γ)
vir
⇝ (r ·⟨x ·[]⟩,H ;x : r τ , Γ)

V2 - Unfocus

(r ◦⟨x ·[],X ⟩,H ; Γ)
vir
⇝ (r ◦⟨X ⟩,H ; Γ)

V3 - Explore

(r ◦⟨x ·[F],X ⟩,H ; Γ)
vir
⇝ (r ◦⟨x ·[f ↣ rf , F],X ⟩, r ·f ⟨⟩,H ; Γ)

V4 - Retract

(r ◦⟨x◦
′

[f ↣ rf , F],X ⟩, r ·f ⟨⟩,H ; Γ)
vir
⇝ (r ◦⟨x◦

′

[F],X ⟩,H ; Γ)
V5 - Attach

(r ·1⟨X1⟩, r
◦
2 ⟨X2⟩,H ; Γ)

vir
⇝ (r ◦2 ⟨X1[r1 7→ r2],X2[r1 7→ r2]⟩,H[r1 7→ r2]; Γ[r1 7→ r2])

Figure 11. Virtual Transformation Rules.

Note that these contexts describe the same heap! As x.f
is a dominating reference, it is equally correct to represent
it as explicitly tracked or as untracked. This needed shift
between different but equivalent representations of the same
heap is performed by rule TS1. In this particular case, trans-
formations V1 - Focus and V3 - Explore achieve the desired
transformation:

(r ·⟨⟩; _)
vir
⇝ (r ·⟨x ·[]⟩; _)

vir
⇝ (r ·⟨x ·[f ↣ rf]⟩, r

·
f ⟨⟩; _)

Note here that V1 - Focus requires the target region to be
empty and unpinned, ensuring we do not inadvertently focus
two aliases of the same object. Equally, V3 - Explore relies
on well-formedness of its contexts to ensure no fields are
explored twice. Conversely, the rules V4 - Retract and V2 -
Unfocus can be used to transform a heap context in which
an explicitly tracked variable points to an empty region into
one where both that variable becomes untracked and its des-
tination region is dropped, invalidating any other references
to the retracted target’s region and restoring domination in
the process.

4.6 Decidability of Virtual Transformations
An astute reader may note that, unlike the initial typing rules
in figure 10, TS1 - Virtual-Transformation-Structural
is not syntax-directed. We present a decision procedure for
type checkingwith virtual transformations. It runs in common-
case polynomial and worst-case exponential time.

In general, given a source (H , Γ) and a target (H ′, Γ′), the
problem of discovering a

vir
⇝ path between the two is effi-

ciently decidable by a greedy approach. Effectively, the type
checker can defer applying any virtual transformation until
it encounters a rule whose type constraints are not satisfied
by the current heap context; in the absence of branching
constructs, such a deferral can never affect typability. De-
ciding whether application of TS1 sufficiently transforms
typing contexts to allow syntax-directed applications such
as T7 - Isolated-Field-Assignment and T16 - Send reduces
to this path finding problem.
Unfortunately, unification between disparate branches,

such as in T13 - If-Statement and T15 - If-Disconnected,
cannot rely solely on a greedy approach. To satisfy the con-
ditional typing rules, unification must occur at the time of
checking the conditional—and there may be many ways to

unify its branches which appear equivalent at the time of
checking the conditional, but are not equally able to check
subsequent expressions. Were we to employ an oracle which
can produce a precise target unification context, type check-
ing again becomes efficiently, greedily decidable. In the ab-
sence of such an oracle, backtracking search must be per-
formed on the choice of a unification target.We note however
that, due to our choice to limit typeable iso field accesses
to only fields of currently declared variables, the number of
H contexts reachable by virtual transformation is bounded
above by the number of variables currently in scope. Thus,
even a naive search suffices to obtain completeness, at the
cost of run time exponential in the number of variables and
the length of the longest function. Heuristics for speeding
up search are briefly discussed in section 5.1.

4.7 Abstraction by Framing and Pinning
Figure 12 introduces rule TS2 - Framing-Structural, which
exposes our second non-syntax directed typing rule: framing.
Framing allows our typing rules to ignore irrelevant portions
of the static contexts H and Γ, letting the type checker tem-
porary frame away regions inH , variables in Γ, and portions
of tracking contexts.

While framing is a standard feature when reasoning about
separation [45], its inclusion in our system is complicated
by tempered domination. Naively allowing variables within
tracking contexts to be framed awaywould seemingly violate
tempered domination; it would take an invariant-satisfying
context with explicit domination exceptions, and replace it
with one in which no record of those exceptions appears—
without making corresponding changes to the heap.

The pinning annotation (4.4) solves this problem. Pinning
elements of a tracking context indicates that those elements
have partial information: that is, it cannot be assumed that
untracked iso fields of a pinned region or variable contain
dominating references. By leveraging pinning, we can admit
framing rules which weaken elements of tracking contexts
without introducing unsoundness. Since a pinned context
may only be obtained by framing, any pinned context always
approximates some fully unpinned context, which avoids the
need to further temper tempered domination in our proofs
of progress and preservation.

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

TS2 - Framing-Structural

H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ (H ; Γ)
frm(e)
⇝
A

(H̄ ; Γ̄) (H ′; Γ′)
frm(e)
⇝
A

(H̄ ′; Γ̄′) r ∈ regs(H̄ ′)

H̄ ; Γ̄ ⊢ e : r τ ⊣ H̄ ′; Γ̄′
(H ; Γ)

frm(e)
⇝
A

(H ; Γ)

F1 - Region-Framing

(H ; Γ)
frm(e)
⇝
·;H̄

(H ⊎ H̄ ; Γ)

F2 - Region-Pinnedness-Framing

(r †⟨X ⟩,H ; Γ)
frm(e)
⇝
r ;·

(r ·⟨X ⟩,H ; Γ)

F3 - Tracked-Variable-Framing
dom(X̄) ∩ (NV (e) ∪ dom(Γ)) = ∅

(r †⟨X ⟩,H ; Γ)
frm(e)
⇝
r ;X̄

(r †⟨X ⊎ X̄ ⟩,H ; Γ)

F4 - Variable-Pinnedness-Framing

(r ◦⟨x†[F],X ⟩,H ; Γ)
frm(e)
⇝
r ;x

(r ◦⟨x ·[F],X ⟩,H ; Γ)

F5 - Field-Framing

(r ◦⟨x†[F],X ⟩,H ; Γ)
frm(e)
⇝
r ;x , F̄

(r ◦⟨x†[F ⊎ F̄],X ⟩,H ; Γ)

F6 - Variable-Framing

(H ; Γ)
frm(e)
⇝
·;Γ̄

(H ; Γ ⊎ Γ̄)

Figure 12. Framing rules

While TS2 is not syntax-directed, a naive greedy approach
forms a sound, complete, and efficient decision procedure
for its insertion during type-checking. For details, see the
appendix.

4.8 Introducing a Function Abstraction
A function abstraction should capture all available static
tracking information about its arguments as input, and al-
low arbitrary transformations of that information as output.
Following this principle, our system provides function types
(H ; Γ) ⇒ (H ′; Γ′; r , τ) with three main components: (1) an
input pair (H , Γ) in which Γ captures the function’s param-
eters with their expected region and type, andH captures
the tracking contexts of those regions, possibly closed over
the tracked isolated references in those contexts; (2) an out-
put pair (H ′, Γ′) which captures the final state of the same
variables and regions; and (3) the region r and type τ of
the returned value. Rules T0 - Function-Definition and
T9 - Function-Application integrate these function types.
T0 requires that the function body be well-typed with the
given input and output contexts, and T9 requires that, up to
renaming of variables and regions, the call site’sH , Γ match
the function’s inputH , Γ.

At first glance, this reliance on an exact match of contexts
may appear restrictive; however, function declarations need
only include elements inH and Γ relevant to that function’s
execution. Pinning annotations in the function declaration
allow call sites to produce an exact match by using TS2 -
Framing-Structural to frame away any irrelevant portions
of the application context.

4.9 A Usable Function Syntax
TheH and Γ contexts are complex and would be onerous to
expect a programmer to write down directly. We therefore
expose an alternate surface syntax for describing function
types. This syntax is intended to be more intuitive for pro-
grammers, while maintaining the full expressive power of
the type system.

Two principles drove the design of this user-facing syntax.
The first is that programmers should never directly mention
regions, as their direct inclusion in syntax here could lead
programmers to expect them to be usable elsewhere in the
program. The second is to lean on good defaults that match
programmer expectations; only exceptional code should re-
quire additional annotation.

Following the principle of good defaults, for unannotated
functions, three assumptions hold:

• At input, each parameter comes from a distinct un-
pinned region with no tracking context.

• At output, each parameter remains in that region,
which again must be unpinned and empty.

• A returned result is in its own unpinned, empty region.
These assumptions suffice to write functions that perform
in-place manipulations of tree-like isolated data structures.
Notably, function requirements are only checked at the begin-
ning and end of each function body; function bodies which
only temporarily deviate from these expected properties still
require no annotation.
In lieu of presenting the full surface language for func-

tion declarations, we highlight interesting cases by example
in the style of section 2. The concat function in figure 14
illustrates an example of the most commonly needed anno-
tation on functions in our system: consumes, which indi-
cates the annotated input is consumed by the function. A
function can consume a parameter in more than one way.
Intuitively, it could send that parameter to another thread; in
the case of figure 14, the parameter is retracted into an iso

field of the other parameter, concatenating the lists together
and becoming wholly owned by the larger list in the pro-
cess. Interestingly, our full implementation of a singly linked
list—consisting of 8 functions—requires only this consumes
annotation, and even then in just two places.
But there is need for function syntax more expressive

than just consumes annotations. Consider for example the
get_nth_node function in figure 14. This function takes a
circular doubly linked list and returns a mutable reference

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

T0 - Function-Definition
H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ τfn = (H ; Γ) ⇒ (H ′; Γ′; r , τ) (fn, τ f) ∈ F

⊢ def fn : τ f {e}

T9 - Function-Application
(fn, (H ;x ′

1 : r
′
1 τ1, . . . , x

′
n : r ′n τn) ⇒ (H ′; Γ′; r ′0, τ0)) ∈ F

Γ ⊢ xi : ri τi r ′i 7→ ri ⊑ Φr ∈ bijections(RegionNames) Φx = x ′
i 7→ xi ∈ bijections(VariableNames)

Φx (Φr (H)); Γ ⊢ fn(x1, . . . , xn) : r0 τ0 ⊣ Φx (Φr (H
′));Φx (Φr (Γ

′))

Figure 13. Function application and definition typing rules

def concat(l1, l2 : sll_node) : unit consumes l2 {

let some(l1_next) = l1.next in {

concat(l1_next, l2);

} else { l1.next = some l2;}}

def get_nth_node(l : dll, pos : int) : dll_node?

after: l.hd ~ result {

let some(node) = l.hd in {

while (pos > 0) {

node = node.next;

pos = pos - 1

}; some(node)
} else { none } }

Figure 14. Concatenating two lists, and returning the nth
node of a doubly linked list

to the nth node, wrapping around if necessary. When type-
checking an application of this function, it is essential that
the type system knows about the relationship between the
function’s argument and its returned result—namely that,
rather than living in its own unrelated region as would be
the default, the function result lives in the same region as
the argument’s iso hd field. We capture this relationship
with the syntax after : a ∼ b, which means that after the
function returns, the regions of objects a and b are the same.
Here, a and b could be variables, fields, or the return result
itself as in this example. Combined with the pinning syntax,
this ∼ syntax suffices to regain the full expressive power of
function types. Programmers can cleanly express functions—
like get_nth_node—that would be difficult if not impossible
to represent in prior work.

5 Implementation
The type system has been implemented as a prover–verifier
architecture which we have made publicly available. The
prover is written in ∼ 4,100 lines of OCaml, and its output
typing derivations are checked by a verifier written in∼2,000
lines of Coq, making it easy to check by inspection that the
type system is implemented faithfully.

5.1 Heuristics for Virtual Transformation Search
As discussed in section 4.6, the TS1 rule in our type system,
governing focus, explore, and all other virtual transforma-
tions necessary to transform the heap context, is not syntax-
directed. Several heuristics implemented by the type checker
keep type checking efficient in practice. In particular, we aim
to avoid backtracking search when unifying the branches of
a conditional.
At the heart of the difficulty in unifying the typing con-

texts of branches is the information loss associated with
key virtual transformations such as V2 - Unfocus and V5 -
Attach. Unification can thus be viewed as the problem of
inferring which linear resources must be preserved to type-
check a given program suffix. By employing liveness analysis
of variables and isolated fields as a unification oracle, our
checker can verify our largest examples in a handful of sec-
onds. When necessary, our tool still falls back to search.
Other approaches—such as user annotations or an external
constraint solver—may be useful for pathological cases. More
details appear in the appendix.

5.2 Efficiently Checking Mutual Disconnection
We implemented a version of the if disconnected check (in-
troduced in section 3.2) that is efficient based on two usage
assumptions. The first assumption is that data structure de-
signers prefer to keep regions small when possible, placing
the iso keyword at abstraction boundaries—for example, col-
lections place their contents in iso fields, as we do in figure 1.
The second assumption is that if disconnected is commonly
used to detach a small portion of a region—often as small as
a single object (as in figure 5).

Following these assumptions, we propose a two-step pro-
cess for the efficient implementation of if disconnected.
First, store a reference count which tracks immediate heap
references stored in non-iso fields of structures. This stored
reference count is updated only on field assignment, and does
not need to be modified—or checked—on assignment to local
variables, function invocation, or at any other time. Thus, it
is lighter-weight than conventional reference counts.
Second, the if disconnected check itself is implemented

via interleaved traversals of the object graphs rooted by its
two arguments, ignoring references which point outside the

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

current region, and stopping when the smaller of the two
has been fully explored (or a point of intersection has been
found). During this traversal, the algorithm counts the num-
ber of times it has encountered each object, assembling a
traversal reference count. At the end of the traversal, it com-
pares this traversal reference count with the stored reference
count, concluding that the object graphs are disconnected
if the counts match, and conservatively assuming that they
remain connected if the counts do not match.
The soundness of this strategy relies on two things: tem-

pered domination enforced on iso fields by the type system,
and accuracy of the stored heap reference counts. The typing
rule for if disconnected ensures that its arguments come
from the same region, and that nothing within that region is
tracked. Each untracked iso field roots a distinct, fully inde-
pendent object graph; thus no object beyond an iso field can
be the first point of intersection between if disconnected’s
arguments. This eliminates any need for the traversal to
search beyond an iso field.

Our choice to terminate the traversal after only the smaller
graph is explored, meanwhile, is justified by reference counts.
The fear here is that, by terminating our exploration early,
we may have missed some path from the larger object graph
into the smaller. Such a path would necessarily include an
unexplored reference targeting an object in the smaller graph.
The existence of this unexplored reference would be reflected
in the stored reference count, causing the stored reference
count to exceed the traversal reference count.

Can this check be done efficiently? For cases which follow
our expected use patterns—like the one in figure 5, where the
smaller graph’s non-iso references point only to the object
itself—the traversal terminates immediately after encounter-
ing only a single object, or a small number of closely linked
objects. But in the worst case, this check may involve travers-
ing an entire region of arbitrary size. Such a traversal would
cut against the intended use-cases of if disconnected; we
would thus consider these uses more likely to arise as a re-
sult of buggy code than of intentional design. In these buggy
cases, our if disconnected check would still improve on sys-
tems which rely on destructive reads, replacing unexpected
run-time crashes later in the program with a static error (or
an unexpectedly slow no-op) at the point the bug actually oc-
curs. Returning to figure 5, even were we to introduce a bug
by failing to correctly disconnect the object graph—for exam-
ple by omitting the assignments which immediately precede
the if disconnected check—the resulting traversal would in-
cur nearly no additional cost, with if disconnected’s check
still terminating after only two objects are encountered.

6 Correctness
We have discussed in detail the surface syntax and small-step
semantics of our language, whose rules guarantee that any
attempt to access a location outside the dynamic reservation

d will arrest the program in a “stuck” state, and we have
presented typing rules with a complex context H , which
statically models capabilities to access a shared heap. The
missing piece of the puzzle is a run-time invariant using the
information in H to guarantee that well-typed programs
never encounter that stuck state. This is easily phrased:

Definition (Invariant I1 -Reservation-Sufficiency). All
locations that could be the result of stepping a well-typed
expression are contained in the dynamic reservation d .

An immediate consequence of I1 is that any variables
bound in Γ to a region tracked in H are mapped (by the
dynamic stack s) to a location in d . This is because T2 -
Variable-Ref guarantees well-typed access to any such vari-
ables, and E2 - Variable-Ref-Step steps them directly to
their bound locations. Similarly, transitive targets of fields
are in d . Invariant I1 is thus exactly the missing piece to bind
well-typedness to reservation safety. Naturally, its preser-
vation as programs step is a nontrivial proof goal, so we
introduce a second invariant I2which implies I1 and is closer
to the formalisms of the language:

Definition (Invariant I2 - Tree-Of-Untracked-Regions).
Any two paths in the dynamic heap that begin in a tracked
region and terminate at the same location traverse the same
sequence of untracked isolated references.

This invariant is fundamental because it directly encodes
the core tempered domination invariant: in particular, that
beyond our statically tracked set we can assume that all iso
fields contain dominating references.
To further motivate I2, recall that the accepted static evi-

dence for the separation of two objects is their presence in
separate regions (consider T16 - Send), and that untracked
isolated references are always assumed to point to untracked
regions (see V3 - Explore). Thus, a necessary condition for
safety is that locations serving as the target of untracked iso-
lated references may never be bound to variables in tracked
regions; otherwise, that variable could be accessed even after
is dropped from the reservation. I2 captures this condition.
The appendix formalizes both I1 and I2, as well as addi-

tional formal invariants encoding expected agreement be-
tween the static and dynamic contexts. All of these invariants
together capture the notion of a sound configuration used in
the following theorems.

Theorem 6.1 (Progress). Given the well typed
expression H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ with sound configuration
(H , Γ,d,h, s, e), there exists a step (d,h, s, e)

eval
−−−→(d ′,h′, s ′, e ′)

Theorem 6.2 (Preservation). Given the well typed expression
H ; Γ ⊢ e : r τ ⊣ H ′; Γ′ with sound configuration (H , Γ,d,h, s)
and step (d,h, s, e)

eval
−−−→(d ′,h′, s ′, e ′), there exist H̄ , Γ̄ such that

H̄ ; Γ̄ ⊢ e ′ : r τ ⊣ H ′; Γ′ and the configuration (H̄ , Γ̄,d ′,h′, s ′)
is sound.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

Proofs of 6.1 and 6.2 are provided in the appendix. To-
gether, these theorems imply that invariants I1 and I2 hold
across the execution of a well typed program. This estab-
lishes tempered domination is preserved, and it establishes
the core safety property of our system: in a well typed pro-
gram, no thread accesses memory outside its reservation.

7 Concurrency
The results from section 6 show that our system can guar-
antee the reservation safety of sequential programs. Impor-
tantly, this result also means that concurrency is safe.

We model general, message-passing concurrency through
the expressions send-τ (e) and recv-τ () (T16 - Send and
T17 - Receive in the type system of section 4).

The concurrent configuration consists of a single shared
heap h, and an n-tuple of threads, each with its own reserva-
tion di , variable store si and expression ei currently under
evaluation. Soundness of a concurrent configuration con-
sists of the respective soundness and well-typedness of each
thread’s ei with respect to the configuration (di ,h, si), along
with pairwise disjointness of the reservations di .

Stepping a concurrent configuration occurs by stepping
an individual thread, by updating that thread’s di , si , ei as
well as the shared h, or by stepping two threads together
that have reached a send-τ /recv-τ pair. This stepping rule
is illustrated in figure 15. It steps in the context of the shared
heap h, but only updates the respective reservations and
expressions of the sending and receiving threads. In particu-
lar, it identifies the location lroot that the sending thread has
chosen, reads h to identify the set dsep of locations that are
live (i.e., reachable) from lroot, and steps if dsep is entirely con-
tained within the sending thread’s reservation, transferring
it to the receiving thread’s reservation along with access to
the location lroot.

Progress and Preservation in the concurrent configuration
are also stated and proved in the appendix, notably estab-
lishing that no thread’s soundness relies on h outside of its
reservation di , and that the rules T16 and T17 are sufficient
to conclude EC3 - Communication-Paired-Step can be ap-
plied without getting stuck on ownership transfer, yielding
sound post-transfer configurations for both threads.

8 Expressiveness
To explore the expressiveness of the type system, we have
written thousands of lines of algorithmic code, data struc-
ture manipulations, and experimented with function abstrac-
tions ranging from trivial to pathological. Large samples of
this code are presented in the appendix, including complete
singly and doubly linked lists and a red–black tree.
Our experience suggests that functions in our language

place no unnatural restrictions on common coding patterns,
requiring annotations only when the iso keywords are added
to struct definitions. Further, even functions that manipulate

structs with iso fields need no annotation unless they take
or return object graphs that violate the tempered domination
invariant—for example, overlapping object graphs and non-
tree object graphs.
We have found that functions whose arguments’ object

graphs overlap (like the get_nth_node example) are usually
easy to annotate, while functions that deviate from tem-
pered domination at function boundaries are improved by
signature-level annotations describing the shape of their iso-
lated object graph. As an example, the shuffle function of
the appendix’s red–black tree takes 7 tree nodes in an arbi-
trary, possibly deeply aliased state and returns them with a
fixed, tree pointer structure. Expressing that information in
the signature provides a level of static safety usually found
only in dependently typed languages.

Thus, our experience suggests that besides offering strong
safety guarantees, this language is intuitively usable.

9 Related Work
The type systemwe propose owes much to the rich history of
related language designs. In particular, it exploits innovations
from several important lines of research: ownership types
and capabilities, regions, and linear types (and linear regions).
We now attempt to broadly characterize notable work from
each line of research, and discuss how our work differs.

9.1 Ownership Types and Nonlinear Uniqueness
While we use the terminology of focus [23] and regions [48],
the closest antecedent to focus is in CQual [1, 25], while the
closest cousin to our regions is ownership contexts [16]. The
primary difference between our regions and ownership con-
texts is that ownership contexts are fixed: objects forever live
within a single ownership context, and ownership contexts
cannot be merged, consumed, or generated on the fly.
Recognizing these limitations, later work introduced the

ability to mix ownership with uniqueness [2, 3, 8, 31, 38, 46].
These languages all enforce uniqueness strictly: a unique ref-
erence is the only reference that points to its referent. Clarke
and Wrigstad weakened this constraint by introducing the
idea of external uniqueness, and with it the idea of a dominat-
ing reference: an externally unique reference is traversed on
all paths from roots to the object to which it refers [14, 15].
Externally unique references are similar to iso fields, but iso
fields dominate all objects reachable from their target, while—
in its original formulation—external references dominate
just their target. This weaker invariant prevents externally
unique references from implying transitive ownership. Other
variations on ownership also exist; some work makes own-
ing objects explicit, abstracts themwith capabilities, or views
them as modifiers [9, 13, 17, 20, 28, 29, 39, 40].
Of particular note is the LaCasa language of Haller and

Odersky [28, 29], which our work subsumes. LaCasa’s sur-
face language (and accompanying annotation burden) are

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

h ⊢ (d, e;d, e)
comm-eval
−−−−−−−−→ (d, e;d, e)

EC3 - Communication-Paired-Step
dsep = live-set(r ·⟨⟩; ·; l : r τ ;h; ·)

h ⊢ (da ⊎ dsep, E
∗
a[send-τ (lroot)];db , E

∗
b [recv-τ ()])

comm-eval
−−−−−−−−→ (da, E

∗
a[new-unit];db ⊎ dsep, E

∗
b [lroot])

Figure 15. Stepping send/recv pairs in the concurrent configuration

quite similar; both designs have iso (@unique) fields that
dominate the reachable object graph; both annotate methods
similarly and rely on linearly tracked region capabilities.

A major limitation of these systems, including LaCasa, is
their inability to change thread reservations without mutat-
ing objects. Each system has a way to drop an object from
a thread’s reservation, rendering the thread unable to use
the object subsequently. Lacking a focus mechanism, these
languages cannot determine which references need to be
invalidated when an object is lost. Rather than make lost
objects statically inaccessible, most employ a “destructive
read” that implicitly nulls them instead [2, 5, 7, 8, 15], though
other approaches exist, such as “swap” [28, 29, 33]. Other
systems, such as L42 and Servetto’s extension to Balloon
types [26, 46], have a notion of “lending” a reference, allow-
ing the tail to be returned from a list, but without separating
it from the list abstraction, and thus also without needing to
invalidate potential aliases. These systems cannot efficiently
implement the remove_tail function from figure 2; to truly
free the tail of the list from its original owner, they would
require a write operation to each node in the list in order to
repair destructive reads performed on the way down. Some
systems adopt (or aim to adopt) Alias Burying [10] to avoid
implicit nulling when all aliases to a unique object are dead,
but this mechanism could not repair the linked list example.

9.2 Linear Systems and Regions
Since initially popularized by Wadler [51], many linear lan-
guages have been proposed [21, 36, 42, 47, 50, 52] which
can prevent destructive races without relying on destruc-
tive reads or swapping—but at the cost of making direct
representations of graph data structures cumbersome. These
languages would not be able to directly represent the doubly
linked list from figure 1. Much of the recent interest around
this class of languages has centered on Rust [36], the first
such language to gain widespread adoption [32, 34, 44, 53].
While Rustaceans have discovered a variety of clever ways to
simulate cyclic data structures within its type system, those
techniques often resemble how our system would behave
were one to have a single object per region; complex graphs
are possible, but the cost is a dramatic increase in static track-
ing, much of it borne directly by the user in the form of extra
annotations, a reliance on unsafe code, or “clever hacks” like
using indices into a linearly owned array as a stand-in for
references. Recent work into using “ghost cells” to achieve

cyclic data structure patterns is encouraging, but remains
above the annotation budget that we believe is desirable for
such common data structures [54].

Tofte and Talpin introduced the idea of regions [19, 30, 48],
which enable safe stack-based memory management in a
language with dynamic allocation. A hallmark of region-
based type systems is that functions types specify the regions
the function may access [49]. The largest difference between
our regions and those of Tofte and Talpin is that our regions
are not fixed. They can be merged, renamed, retracted into
and explored out from other regions. This flexibility removes
the need for complex effect annotations on functions; we can
represent complex object graphs by their simple entry points,
and declare functions only as taking these entry points.

Our language tracks regions linearly. While most existing
work that uses linear regions relies on a “swap” or destructive-
read primitive [6, 21, 24, 28, 29], some existing work features
the ability to “open” a region and freely access the objects
within it for a limited scope—much as our language can
temporarily focus objects [23, 52].
Fähndrich and DeLine’s Vault language [23] directly in-

spired our focus mechanism. Vault is a primarily linear lan-
guage for reasoning about protocol state; its focus allows
particular objects to be freely aliased, exempting them from
the requirements of linearity. A linear field of a potentially
nonlinear object in Vault is roughly analogous to iso fields
in our type system. This analogy is rough, however; our iso
fields may refer to objects that are freely aliased within their
region, while Vault’s linear fields must be unique references.
As in our work, Vault prevents access to iso fields unless
their containing object is focused, though only for writing;
reading is always permitted

In comparison, our system requires less rigid management
of focused objects and does not enforce linearity on iso ob-
jects themselves—just on their regions. All references—even
those in iso fields—can point to objects that participate in
cycles; this would not be possible in Vault, reducing the ease
of implementing the doubly linked list in figure 1. Addition-
ally, adoption and focus in Vault are annotation-heavy; Vault
does not infer necessary focus points, so the programmer
must explicitly fold and unfold accessible object trees.
A Vault-like adoption mechanism is also found in the

Mezzo language [4] to allow non-tree object graphs. It is
missing the accompanying focus, however, which may pose

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

problems interacting safely with Mezzo’s novel take on de-
structive reads. It is unclear if Mezzo’s adoption mechanism
allows the formation of arbitrary graphs, or only DAGs, but
it is difficult to see how a doubly linked list could be imple-
mented in Mezzo without relying on implicit nulling.

9.3 Immutability and Fractional Permissions
Several related systems offer the ability to temporarily share
mutable objects with immutable references, and to recover
mutability once all shared references’ lifetimes have ended [17,
23, 27]. This banner feature of Rust [36] appears in Mezzo [4]
andwas added to Vault through Boyland’s work on fractional
permissions [11]. M# [27], an evolution of Sing# [22], also fea-
tures recovering mutability—later generalized by Pony [17]
and L42 [26].

To determine the lifetime of concurrently shared immutable
references, these systems all support mutability recovery
only when using structured parallelism or explicit recovery
scopes: all possible aliases, including those passed to threads,
will have been reclaimed by a statically known program
point—usually when all other threads involved in communi-
cation have died. In contrast, our simple, unstructured send
and receive mechanism cannot track which references are
transmitted. Threads have no lifetime, so it is impossible to
know if a reference sent to another thread is ever returned.
Instead, we expect to take the approach outlined in Gal-

lifrey [37], in which a dynamic mechanism manages shared
immutability and mutability by relying on replication. Alter-
natively we could leverage our equivalent of “lending” refer-
ences to functions during a function call; making those calls
asynchronous, and providing a built-in future mechanism
by which “lent” references may be returned, is a promising
avenue by which recoverable mutability may be supported.

9.4 Significant Complexity
Several systems manage to ensure reservation safety and
avoid implicit null (or swap), but introduce significant user-
facing complexity [8, 12, 13, 17, 33]. These languages fre-
quently feature explicit, exact region or ownership annota-
tions, provide a type parameterization mechanism which
allows the creation of classes whose ownership or region
information is determined at instantiation time, or rely on
a multitude of reference qualifiers capable of discussing ex-
actly how various objects may relate in the object graph.
While such systems are quite flexible, they force the user
to reason directly about concepts, like regions and region
membership, which we intentionally keep implicit. Here the
complexity does not appear to be incidental; it is not clear
how to identify a “simple core” language that would be com-
plete on its own. Indeed, our experience designing this type
system speaks to the speed at which complexity can creep
in from apparently innocuous design choices.

Table 1. Comparison with related language designs.

Language sll dll-repr Simple
Rust ✓ × ∼

Unique ✓ × ∼

Vault ✓ ∼ ∼

Mezzo ∼ ∼ ✓
LaCasa × ✓ ✓
OwnerJ × ✓ ✓
Pony ∼ ✓ ∼

M# × ✓ ✓
This paper ✓ ✓ ✓

9.5 Comparison with Closely Related Work
The systems that come closest to matching our design goals
are summarized in table 1. In the “sll” column, systems are
marked that can implement remove_tail from our singly
linked list (without requiring O(list-size) object mutations).
The “dll-repr” has a check for systems that can directly rep-
resent the doubly linked list at all, and the “simple” column
marks systems which require few annotations for straightfor-
ward implementations of common list mutations. To the best
of our knowledge, no previous system is able to represent
remove_tail from a doubly linked list without relying on
destructive reads or a swap primitive. Finally, the “OwnerJ”
row captures the close descendants of original ownership
type systems, including PRFJ [8] and AliasJava [2] (section
9.1), while the “Unique” row captures the limitations of type
systems in the style of Wadler’s popularization [51].

10 Conclusion
We started by observing that expressiveness-limiting heap
invariants and intimidating annotations are fatal flaws in
existing safe concurrency approaches. Our core insights are
that these invariants can be weakened without losing power
as long as they stay recoverable through virtual transfor-
mations, and that careful type-system design can preserve
decidability in lieu of annotation. The result is a type sys-
tem that replaces stricture with flexibility and caution with
fearlessness—a new sweet spot in this design space that
lowers the cost of safe concurrency and opens promising
avenues for future work.

Acknowledgments
We thank the anonymous reviewers, Rolph Recto, Tom Ma-
grino, Gabriel Matute, Justin Lubin, Marco Servetto (author
of [46]), and our shepherd, Ralf Jung, for their feedback and
suggestions. This work was supported by the National Sci-
ence Foundation under Grant No. 1717554.

A Flexible Type System for Fearless Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi.

2003. Checking and Inferring Local Non-Aliasing. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (San Diego, California, USA) (PLDI ’03). Association
for Computing Machinery, New York, NY, USA, 129–140.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002.
Alias Annotations for Program Understanding. In 17th ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA) (Seattle, Washington, USA). 311–330.

[3] Paulo Sérgio Almeida. 1997. Balloon Types: Controlling Sharing of
State in Data Types. In ECOOP’97 — Object-Oriented Programming,
Mehmet Akşit and SatoshiMatsuoka (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 32–59.

[4] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. 2016.
The Design and Formalization of Mezzo, a Permission-Based Program-
ming Language. ACM Transactions on Programming Languages and
Systems (TOPLAS) 38, 4 (2016), 1–94.

[5] Anindya Banerjee and David A. Naumann. 2002. Representation Inde-
pendence, Confinement and Access Control [Extended Abstract]. In
Proceedings of the 29th ACM SIGPLAN–SIGACT Symposium on Princi-
ples of Programming Languages (Portland, Oregon) (POPL ’02). Associ-
ation for Computing Machinery, New York, NY, USA, 166–177.

[6] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. 2008. Verifying
Correct Usage of Atomic Blocks and Typestate. In Proceedings of the
23rd ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems Languages and Applications (Nashville, TN, USA) (OOPSLA ’08).
Association for Computing Machinery, New York, NY, USA, 227–244.

[7] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. 2002. Own-
ership Types for Safe Programming: Preventing Data Races and Dead-
locks. SIGPLAN Not. 37, 11 (Nov. 2002), 211–230.

[8] Chandrasekhar Boyapati and Martin Rinard. 2001. A Parameterized
Type System for Race-Free Java Programs. In 16th ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA). Tampa Bay, FL.

[9] John Boyland, James Noble, and William Retert. 2001. Capabilities for
Sharing. In ECOOP 2001 — Object-Oriented Programming, Jørgen Lind-
skov Knudsen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
2–27.

[10] John Tang Boyland. 2001. Alias Burying: Unique variables without
Destructive Reads. Software: Practice and Experience 31, 6 (2001), 533–
553.

[11] John Tang Boyland. 2010. Semantics of Fractional Permissions with
Nesting. ACM Trans. Program. Lang. Syst. 32, 6, Article 22 (Aug. 2010),
33 pages.

[12] John Tang Boyland and William Retert. 2005. Connecting Effects and
Uniqueness with Adoption. In Proceedings of the 32nd ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (Long
Beach, California, USA) (POPL ’05). Association for Computing Ma-
chinery, New York, NY, USA, 283–295.

[13] Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for
Concurrency Control. In 30th European Conference on Object-Oriented
Programming (ECOOP 2016) (Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 5:1–5:26.

[14] Dave Clarke and TobiasWrigstad. 2003. External Uniqueness Is Unique
Enough. In ECOOP 2003 – Object-Oriented Programming, Luca Cardelli
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 176–200.

[15] Dave Clarke, TobiasWrigstad, Johan Östlund, and Einar Broch Johnsen.
2008. Minimal Ownership for Active Objects. In Asian Symposium on
Programming Languages and Systems. Springer, 139–154.

[16] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership
Types for Flexible Alias Protection. In Proceedings of the 13th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Vancouver, British Columbia, Canada) (OOPSLA ’98).
Association for Computing Machinery, New York, NY, USA, 48–64.

[17] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny Capabilities for Safe, Fast Actors. In 5th Int’l
Workshop on Programming Based on Actors, Agents, and Decentralized
Control (AGERE!). 1–12.

[18] Russell Cohen. 2018. Why Writing a Linked List in (safe) Rust is
So Damned Hard. https://rcoh.me/posts/rust-linked-list-basically-
impossible/

[19] Karl Crary, David Walker, and Greg Morrisett. 1999. Typed Mem-
ory Management in a Calculus of Capabilities. In Proceedings of the
26th ACM SIGPLAN–SIGACT Symposium on Principles of Program-
ming Languages (San Antonio, Texas, USA) (POPL ’99). Association
for Computing Machinery, New York, NY, USA, 262–275.

[20] David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. 2007.
Universes for Race Safety. Verification and Analysis of Multi-threaded
Java-like Programs (VAMP) (2007), 20–51.

[21] Robert DeLine and Manuel Fähndrich. 2004. Typestates for Objects.
In ECOOP 2004 – Object-Oriented Programming, Martin Odersky (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 465–490.

[22] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James R. Larus, and Steven Levi. 2006. Language Support
for Fast and Reliable Message-Based Communication in Singularity
OS. SIGOPS Oper. Syst. Rev. 40, 4 (April 2006), 177–190.

[23] Manuel Fähndrich and Robert DeLine. 2002. Adoption and Focus:
Practical Linear Types for Imperative Programming. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI).

[24] Matthew Fluet, GregMorrisett, and Amal Ahmed. 2006. Linear Regions
Are All You Need. In European Symposium on Programming. Springer,
7–21.

[25] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive
Type Qualifiers. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation (Berlin, Germany)
(PLDI ’02). Association for Computing Machinery, New York, NY, USA,
1–12.

[26] Paola Giannini, Marco Servetto, and Elena Zucca. 2016. Types for
Immutability and Aliasing Control. In ICTCS, Vol. 16. 62–74.

[27] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,
and Joe Duffy. 2012. Uniqueness and Reference Immutability for
Safe Parallelism. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications
(Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing
Machinery, New York, NY, USA, 21–40.

[28] Philipp Haller and Alex Loiko. 2016. LaCasa: Lightweight Affinity and
Object Capabilities in Scala. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 272–291.

[29] Philipp Haller and Martin Odersky. 2010. Capabilities for Uniqueness
and Borrowing. In European Conference on Object-Oriented Program-
ming. Springer, 354–378.

[30] Fritz Henglein, Henning Makholm, and Henning Niss. 2001. A Direct
Approach to Control-Flow Sensitive Region-Based Memory Manage-
ment. In Proceedings of the 3rd ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming (Florence, Italy)
(PPDP ’01). Association for Computing Machinery, New York, NY, USA,
175–186.

[31] John Hogg. 1991. Islands: Aliasing Protection in Object-Oriented Lan-
guages. In Conference Proceedings on Object-Oriented Programming
Systems, Languages, and Applications (Phoenix, Arizona, USA) (OOP-
SLA ’91). Association for Computing Machinery, New York, NY, USA,
271–285.

https://rcoh.me/posts/rust-linked-list-basically-impossible/
https://rcoh.me/posts/rust-linked-list-basically-impossible/

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Mae Milano, Joshua Turcotti, and Andrew C. Myers

[32] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis
Larsen. 2015. Session Types for Rust. In Proceedings of the 11th ACM
SIGPLAN Workshop on Generic Programming (Vancouver, BC, Canada)
(WGP 2015). Association for Computing Machinery, New York, NY,
USA, 13–22.

[33] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C..
In USENIX Annual Technical Conference, General Track. 275–288.

[34] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming
Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017),
34 pages.

[35] Steve Klabnik and Carol Nichols. 2019. The Rust Programming Lan-
guage (Covers Rust 2018). No Starch Press.

[36] Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust Language.
ACM SIGAda Ada Letters 34, 3 (2014), 103–104.

[37] Mae Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers. 2019.
A Tour of Gallifrey, a Language for Geodistributed Programming. In
3rd Summit on Advances in Programming Languages (SNAPL).

[38] Naftaly H. Minsky. 1996. Towards Alias-Free Pointers. In ECOOP ’96
— Object-Oriented Programming, Pierre Cointe (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 189–209.

[39] Peter Müller and Arnd Poetzsch-Heffter. 1999. Universes: A Type
System for Controlling Representation Exposure. In Programming
Languages and Fundamentals of Programming, Vol. 263. 204.

[40] PeterMüller andArsenii Rudich. 2007. Ownership Transfer in Universe
Types. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications (Montreal,
Quebec, Canada) (OOPSLA ’07). Association for Computing Machinery,
New York, NY, USA, 461–478.

[41] ndrewxie (https://users.rust lang.org/u/ndrewxie). 2019. What’s
the “best” way to implement a doubly-linked list in Rust?
https://users.rust-lang.org/t/whats-the-best-way-to-implement-a-
doubly-linked-list-in-rust/27899

[42] Martin Odersky. 1992. Observers for Linear Types. In ESOP ’92, Bernd
Krieg-Brückner (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
390–407.

[43] Reese T. Prosser. 1959. Applications of BooleanMatrices to theAnalysis
of FlowDiagrams. In Papers Presented at the December 1-3, 1959, Eastern
Joint IRE-AIEE-ACM Computer Conference (Boston, Massachusetts)
(IRE-AIEE-ACM ’59 (Eastern)). Association for Computing Machinery,
New York, NY, USA, 133–138.

[44] Eric Reed. 2015. Patina: A Formalization of the Rust Programming
Language. University of Washington, Department of Computer Science
and Engineering, Tech. Rep. UW-CSE-15-03-02 (2015).

[45] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science (LICS ’02). IEEE Computer Society, USA,
55–74.

[46] Marco Servetto, David J. Pearce, Lindsay Groves, and Alex Potanin.
2013. Balloon Types for Safe Parallelisation over Arbitrary Object
Graphs. InWorkshop on Determinism and Correctness in Parallel Pro-
gramming (WoDet). 107.

[47] Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plas-
meijer. 1994. Guaranteeing Safe Destructive Updates Through a Type
System with Uniqueness Information for Graphs. In Graph Transfor-
mations in Computer Science, Hans Jürgen Schneider and Hartmut
Ehrig (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 358–379.

[48] Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed
Call-by-Value λ-Calculus Using a Stack of Regions. In Proceedings of
the 21st ACM SIGPLAN–SIGACT Symposium on Principles of Program-
ming Languages (Portland, Oregon, USA) (POPL ’94). Association for
Computing Machinery, New York, NY, USA, 188–201.

[49] Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Man-
agement. Information and Computation 132, 2 (1997), 109–176.

[50] Vasco T. Vasconcelos. 2012. Fundamentals of Session Types. Informa-
tion and Computation 217 (2012), 52–70.

[51] Philip Wadler. 1990. Linear types can change the world!. In Program-
ming Concepts and Methods, M. Broy and C. Jones (Eds.). North Hol-
land.

[52] David Walker and Kevin Watkins. 2001. On Regions and Linear Types
(Extended Abstract). SIGPLAN Not. 36, 10 (Oct. 2001), 181–192.

[53] AaronWeiss, Daniel Patterson, Nicholas D.Matsakis, andAmal Ahmed.
2019. Oxide: The Essence of Rust. arXiv preprint arXiv:1903.00982
(2019).

[54] Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021.
GhostCell: Separating Permissions from Data in Rust. Proc. ACM
Program. Lang. 5, ICFP, Article 92 (aug 2021), 30 pages.

https://users.rust-lang.org/t/whats-the-best-way-to-implement-a-doubly-linked-list-in-rust/27899
https://users.rust-lang.org/t/whats-the-best-way-to-implement-a-doubly-linked-list-in-rust/27899

	Abstract
	1 Introduction
	2 A Tail of Two Lists
	2.1 Reservations and Tempered Domination
	2.2 Aliasing and Reachable Subgraphs

	3 A Small Language with Dynamic Reservation Safety
	3.1 Syntax
	3.2 Semantics

	4 Type System
	4.1 Regions
	4.2 Focus
	4.3 Typing Judgments and Static Contexts
	4.4 Expression Typing with Tracking Contexts
	4.5 Virtual Transformations
	4.6 Decidability of Virtual Transformations
	4.7 Abstraction by Framing and Pinning
	4.8 Introducing a Function Abstraction
	4.9 A Usable Function Syntax

	5 Implementation
	5.1 Heuristics for Virtual Transformation Search
	5.2 Efficiently Checking Mutual Disconnection

	6 Correctness
	7 Concurrency
	8 Expressiveness
	9 Related Work
	9.1 Ownership Types and Nonlinear Uniqueness
	9.2 Linear Systems and Regions
	9.3 Immutability and Fractional Permissions
	9.4 Significant Complexity
	9.5 Comparison with Closely Related Work

	10 Conclusion
	References

