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We study serial supply chain problems where a product is transported from a supplier to a warehouse

(inbound transportation), and then from the warehouse (outbound transportation) to a retailer such that

demand for a given planning horizon is satisfied. We consider heterogeneous vehicles of varying capacities

for the transportation in each time period, and the objective is to plan inbound and outbound transporta-

tion along with inventory in each time period such that the overall inventory and transportation costs are

minimized. These problems belong to the class of two-echelon lot-sizing problems (2-ELS) with warehouse

and retailer as first- and second-echelons, respectively. We address an open question raised in van Hoesel,

Romeijn, Morales, Wagelmans [Management Science 51(11):1706-1719, 2005]: Does there exist a polynomial

time algorithm for 2-ELS with a single capacitated vehicle for each of the inbound and outbound transporta-

tion? Specifically, we introduce polynomial time algorithms for this problem and its three generalizations

with multiple capacitated vehicles for inbound and/or outbound transportation, thereby generalizing the

results of Kaminsky and Simchi-Levi [IIE Transactions 35(11):1065-1075, 2003] and Sargut and Romeijn [IIE

Transactions 39(11):1031-1043, 2007] for 2-ELS with a single capacitated vehicle for inbound transportation

and uncapacitated outbound transportation.

Key words : two-echelon lot-sizing, serial supply chain, inbound and outbound transportation, multi-mode,

multi-module, outsourcing, dynamic programming, polynomial algorithm

1. Introduction

In today’s economy and commerce, globalization of exchanges has forced researchers to reiterate

the importance of serial supply chain systems. Products in such systems are manufactured at

distant facilities, and then stored at intermediate warehouses or third-party logistics before

finally making it to the consumer/retailer. According to a global survey conducted by Geodis

(2017), optimizing inventory costs, reducing transportation and warehouse costs, and improving

product availability are among the most important objectives in today’s supply chain. Therefore,

it is imperative to plan and acquire resources with limited capacities, and utilize them in a

meaningful way by efficiently planning transportation and inventory over a time horizon. It is

well established that integrating the supply chain decisions (production, transportation, and

inventory) and looking at the problem holistically yields lower costs than treating each entity

of the system separately.
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Figure 1 Network Flow Representation of the Two-Echelon Lot-Sizing Problem

We consider an integrated serial supply chain defined over a planning horizon that comprises

of transportation of products from supplier(s) or manufacturing facilities to an intermediate

warehouse (inbound transportation) and from the warehouse to a retailer (outbound transporta-

tion) using heterogeneous vehicles of varying capacities in each time period. Such problems are

referred to as the two-echelon lot-sizing (2-ELS) problems where the first- and second-echelon

represents the warehouse and the retailer, respectively. In Figure 1, we provide a network flow

representation of the 2-ELS problem where in each echelon e ∈ {1,2}, there are T nodes, each

corresponding to a time period t∈ T := {1,2, . . . , T} in the planning horizon. Each node in this

figure is labelled as (e, t) where e∈ {1,2} denotes its echelon and t∈ T denotes its time period.

Variable x1
t denotes the amount transported from the supplier to the warehouse during period t

and x2
t denotes the amount transported from the warehouse to the retailer during period t∈ T .

Also, s1t and s2t denote the inventory held by the warehouse and the retailer at the end of period

t∈ T , respectively.

Many researchers have studied 2-ELS and its variants (Lee et al. 2003, Kaminsky and Simchi-

Levi 2003, van Hoesel et al. 2005, Hwang et al. 2016); refer to Section 2 for detailed litera-

ture review. However, there is no study in the literature that allows capacitated vehicle(s) for

outbound transportation, and heterogeneous capacitated vehicles for inbound and outbound

transportation (Zhao and Zhang 2020). In this paper, we study 2-ELS problems where single

or multiple heterogeneous capacitated vehicles are available for both inbound and outbound

transportation. Note that the capacities of vehicles available for inbound transportation can

be different from capacities of vehicles available for outbound transportation. The motivation

behind studying these problems stems from a plethora of real-world problems impacting semi-

conductor manufacturing, convoy resupply planning, and climate change that we will discuss

in Section 1.2. Additionally, the 2-ELS problems also arise in integrated manufacturing and
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transportation systems where the first-echelon represents a manufacturing facility with hetero-

geneous machines of varying capacities. In other words, production decisions in such systems

are equivalent to the inbound transportation decisions. Throughout the rest of the paper, for

clear distinction between the echelons and to avoid confusion between inbound and outbound

transportation, we refer to the first and second echelons as production and retailer echelons,

respectively. Moreover, we refer to capacitated vehicles and machines as capacitated modules.

1.1. Problem Definition and Contributions

Given a planning horizon T with demand dt for t ∈ T in the retailer (second) echelon, we

formulate the 2-ELS problem with two capacitated modules in each of the echelons, i.e., C1
p and

C2
p in first-echelon and C1

r and C2
r in second-echelon, as follows:

Minimize
T∑

t=1

2∑
e=1

(
he
t(s

e
t)+

2∑
i=1

(
qe,it ye,i

t + pe,it (xe,i
t )

))
(P)

s.t. s1t−1 +x1
t = s1t +x2

t , t∈ T , (1a)

s2t−1 +x2
t = dt + s2t , t∈ T , (1b)

x1,i
t ≤Ci

py
1,i
t , i∈ {1,2}, t∈ T , (1c)

x2,i
t ≤Ci

ry
2,i
t , i∈ {1,2}, t∈ T , (1d)

x1
t =

2∑
i=1

x1,i
t ≤C1

py
1,1
t +C2

py
1,2
t , t∈ T , (1e)

x2
t =

2∑
i=1

x2,i
t ≤C1

ry
2,1
t +C2

ry
2,2
t , t∈ T , (1f)

ye,i
t ∈ {0,1}, xe,i

t , xe
t , s

e
t ≥ 0, t∈ T , e∈ {1,2}, i∈ {1,2}, (1g)

where x1,i
t denotes the amount produced in period t using module i∈ {1,2} in the first-echelon,

and and x2,i
t denotes amount transported in period t ∈ T from first-echelon to second-echelon

using module i ∈ {1,2}. Variables s1t and s2t denote the amount of inventory held at the end of

period t in production and retailer echelons, respectively. Moreover, ye,i
t for e∈ {1,2}, i∈ {1,2}

and t ∈ T is a binary variable which is equal to 1 if module i is used in echelon e in period t,

and 0 otherwise. The production and holding cost functions pe,it (·) and he
t(·) are assumed to be

concave, and in addition, a setup cost of qe,it is incurred whenever ye,i
t is equal to 1. We also

assume that the initial and final inventories in each of the echelons are zero, i.e., se0 = 0 and

seT = 0 for e∈ {1,2}. Note that this is a reasonable assumption that has been considered widely

in the literature (van Hoesel et al. 2005, Florian and Klein 1971, Zangwill 1969), but it cannot

be stated without the loss of generality.

Constraints (1a) and (1b) are the classical inventory or flow balance constraints to ensure

that the incoming flow at each node is equal to the outgoing flow. Constraints (1c) and (1d) are

the capacity constraints that ensure the amount produced or transported using each module to

be less than or equal to the capacity of the module, if it is used (i.e. if ye,i
t = 1). It should also
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be noted that the capacities of modules in both the echelons are assumed to be time invariant.

If the capacities are not stationary across the planning horizon, the problem is NP-hard even

for the single echelon problem (Florian et al. 1980).

Contributions of this paper. Kaminsky and Simchi-Levi (2003), van Hoesel et al. (2005)

and Hwang et al. (2013, 2016) studied a special case of Problem P with a single uncapacitated

transportation module, i.e., C1
r ← ∞ and C2

r = 0, and single capacitated production module,

i.e., C2
p = 0. We denote this problem by 2-ELS-PCTU where ‘PC’ denotes single capacitated

production module and ‘TU’ denotes single uncapacitated transportation module. It is well

known that addition of the capacity constraints to an uncapacitated lot-sizing problem makes

the problem more difficult to solve. This is mainly because the classical Zero Ordering Inventory

property does not hold since we can produce/transport limited units in each time period. We

present dynamic programming based polynomial time exact algorithms for the following four

generalization of 2-ELS-PCTU:

(i) 2-ELS with single capacitated production and transportation modules, i.e., P with C2
p =

C2
r = 0, denoted by 2-ELS-PCTC.

(ii) 2-ELS with single capacitated production module and two capacitated transportation

modules, i.e., P with C2
p = 0, denoted by 2-ELS-PC2TC.

(iii) 2-ELS with two capacitated production modules and single capacitated transportation

module, i.e., P with C2
r = 0, denoted by 2-ELS-2PCTC. Note that Sargut and Romeijn

(2007) studied its special case with C1
p ←∞ and C1

r ←∞, i.e., transportation module and

one of the two production modules are uncapacitated.

(iv) 2-ELS with two (one capacitated and another uncapacitated) production and transporta-

tion modules, i.e., P with C2
p ←∞ and C2

r ←∞. Since an uncapacitated (production or

transportation) module also implies an additional option of uncapacitated subcontract-

ing/outsourcing, we denote this problem by 2-ELS-PCTC-O.

As per our knowledge, these four problems have not been studied in the literature, and the

existence of polynomial time algorithm, even for 2-ELS-PCTC has been an open question (van

Hoesel et al. 2005, Zhao and Zhang 2020). We summarize the contributions of this paper in

Table 1 and pictorially represent the aforementioned four problems in Figure 2.

Significance of Results in Table 1. Apart from addressing an open question, the polyno-

mial time algorithms provided in this paper also build stepping stones for various serial supply

chain and lot-sizing problems with multiple heterogeneous capacitated vehicles in multiple ech-

elons. Additionally, the dynamic programming algorithms can be used to obtain: (a) effective

reformulations of these problems using variable redefinition (Eppen and Martin 1987), (b) fea-

sible sub-optimal solutions and an efficient heuristics, and (c) cutting planes by filtering out

several infeasible/suboptimal solutions (Hartman et al. 2010).
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C1
p C2

p C1
r C2

r Contributor Complexity

∞ 0 ∞ 0

Zangwill (1969) O(T 4)

Love (1972) O(T 3)

Melo and Wolsey (2010) O(T 2 logT )

Arbitrary 0 ∞ 0

Kaminsky and Simchi-Levi (2003) O(T 8)

van Hoesel et al. (2005) O(T 7)

Hwang et al. (2016) O(T 6)

Arbitrary Arbitaray ∞ 0 Sargut and Romeijn (2007) O(T 10)**

Arbitrary ∞ ∞ 0 Sargut and Romeijn (2007) O(T 8)**

Arbitrary Arbitrary ∞ 0 Kulkarni and Bansal (2022b) O(T 12)

Arbitrary 0 Arbitrary 0 This article O(T 10)

Arbitrary Arbitrary Arbitrary 0 This article O(T 16)

Arbitrary 0 Arbitrary Arbitrary This article O(T 13)

Arbitrary ∞ Arbitrary ∞ This article O(T 13)

Table 1 Polynomial Algorithms for Two-Echelon Lot-Sizing Problem P
** Under assumption that setup costs are zero, i.e., q1,it = 0 for all (i, t)

(a) 2-ELS-PCTC (b) 2-ELS-PC2TC

(c) 2-ELS-2PCTC (d) 2-ELS-PCTC-O

Figure 2 Pictorial single-period representation of four two-echelon lot-sizing problems studied in this paper

1.2. Other Practical Applications and Key Features of Problem P
Other Practical Applications. In addition to applications in supply chain, logistics, and inte-

grated manufacturing and transportation systems (discussed earlier), the two-echelon lot-sizing

problems also arise in assembly line systems (Pochet and Wolsey 2006). The two echelons,

namely sub-assembly and final-assembly, are common especially in semiconductor manufactur-

ing industry (Sarin et al. 2011). Given the demand of the final assembled product over a planning

horizon, the goal is to schedule the production on each of the two stages such that the overall

sum of production costs, machines setup costs, and holding costs of the sub-assembled and final

assembled items is minimized. It must be noted that production at either of the stages is more

likely to be capacitated, since machines tend to have an operating capacity. Another area where

2-ELS problems arise is in convoy resupply planning where resources are transported from the

suppliers to a centralized depot, and finally from the depot to the army base.

Key Features. One of the key features of the problems studied in this paper is that they allow

presence of multiple capacitated modules in both the echelons. The notion of having multiple
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resources is motivated from the rise in global greenhouse gas emissions and stricter emission

regulations due to which companies are using two types of resources: conventional resources

and green resources, and each of these resources have their own costs and capacities (Hong

et al. 2016). Another key feature of our models is consideration of fixed cost qe,it to represent

the machine setup costs or the fixed ordering costs, along with variable concave cost functions

pe,it (.) to address economies of scale.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we

review existing studies on lot-sizing problems that are closely related to problem P. In Section 3,

we present a dynamic programming algorithm to solve 2-ELS-PCTC to optimality. We then

present polynomial time algorithms for 2-ELS-2PCTC and 2-ELS-PC2TC in Section 4, and for

2-ELS-PCTC-O in Section 5. Lastly, we provide concluding remarks and potential directions

for future research in Section 6.

2. Literature Review

In this section, we review algorithmic results in the literature for problems that are either special

cases or closely related to problem P by classifying them into two categories: single-echelon

lot-sizing problems and multi-echelon lot-sizing problems. Note that 2-ELS-PCTC reduces to a

single-echelon problem when the inventory held at the end of each period t in the second-echelon

is equal to zero, i.e., s2t = 0 for t ∈ T , and p2,it = q2,it = 0 for t ∈ T and i ∈ {1,2}. For such cases,

we denote the problems using the prefix 1-ELS- instead of 2-ELS-. Furthermore, since there are

no second echelon variables in the single-echelon problems, we drop the suffix ‘TC’ or ‘TU’ from

the problem notations.

Single-Echelon Lot-Sizing Problems. Single-echelon lot-sizing problem with single capaci-

tated module (denoted by 1-ELS-PC) is NP-hard in general when the capacities are time-varying

across the planning horizon. In a seminal paper, Wagner and Whitin (1958) presented an O(T 2)

algorithm to solve uncapacitated lot-sizing problem i.e. 1-ELS-PC with C1
p =∞, that was later

improved to O(T logT ) by Aggarwal and Park (1993). It is well-known that adding capacities

increases the complexity of the problem. When the capacity is stationary, Florian and Klein

(1971) provided an exact dynamic programming algorithm that solves 1-ELS-PC in O(T 4) time.

van Hoesel and Wagelmans (1996) provided an improved O(T 3) algorithm to solve the foregoing

problem when the holding costs are assumed to be linear. Atamtürk and Hochbaum (2001)

studied the lot-sizing problem with single constant capacity and an additional option of unca-

pacitated subcontracting, i.e., 1-ELS-2PC with C2
p =∞. Kulkarni and Bansal (2022a,b) studied

lot-sizing problems with multiple (n∈Z+) capacitated modules available for utilization in each

time period, with additional features such as subcontracting and backlogging, and for a fixed

n, they provided polynomial time exact algorithms for each of these variants.

Multi-Echelon Lot-Sizing Problems. Over the years, researchers have been studying lot-

sizing problems with L≥ 2 echelons. We use the prefix ‘L-ELS-’ instead of ‘2-ELS-’ to denote
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this general class of problems. Since none of the problems studied in the literature consider

finite capacity module(s) in echelons 2 to L, we denote these classes of problems using the suffix

‘TU’ (Transportation Uncapacitated) at the end, instead of ‘TC’. Also, for problems where

the production module is uncapacitated, i.e., C1
p = ∞, we denote them using the suffix ‘PU’

(Production Uncapacitated).

Production Uncapacitated and Transportation Uncapacitated. For L-ELS-PUTU,

Zangwill (1969) presented an O(LT 4) dynamic programming algorithm, and van Hoesel et al.

(2005) showed that for L = 2, it takes O(T 3) time. Thereafter, Melo and Wolsey (2010) in-

troduced an improved dynamic programming algorithm for the 2-ELS-PUTU that runs in

O(T 2 logT ) time. Lee et al. (2003) presented an O(T 6) algorithm for a variant of 2-ELS-PUTU

where the transportation cost function is a step-wise function of the transportation capacity

module, the production cost function is constant, and back-ordering is allowed in the second-

echelon. To solve L-ELS-PUTU with demands in each echelon, Zhang et al. (2012) and Zhao

and Zhang (2020) developed exact algorithms that take O(T 4) time for L = 2 and O(T 3L+1)

time for L≥ 2, respectively.

Production Capacitated and Transportation Uncapacitated. Kaminsky and Simchi-

Levi (2003) studied a generalization of 3-ELS-PCTU where the first- and third-echelon

are capacitated and second-echelon is uncapacitated with fixed (or concave) produc-

tion/transportation costs. They showed that under several assumptions for the cost structures,

this three-echelon problem can be reduced to a special case of 2-ELS-PCTU and they proposed

an O(T 8) time polynomial algorithm to solve the latter. van Hoesel et al. (2005) analyzed the

structure of the optimal solution of 2-ELS-PCTU, and presented an O(T 7) time algorithm to

solve it. Later, Hwang et al. (2016) provided an improved O(T 6) running time algorithm for

2-ELS-PCTU. Sargut and Romeijn (2007) studied the following two variants of 2-ELS-PCTU:

(a) 2-ELS-2PCTU with q1,1t = q1,2t = 0 for t∈ T , i.e., two capacitated modules in the first-echelon

with no setup costs, and (b) 2-ELS-2PCTU with q1,1t = q1,2t = 0 and C2
p =∞, i.e., one capaci-

tated module and one uncapacitated module (outsourcing) available for production in the first

echelon. They developed O(T 10) and O(T 8) time algorithms for them, respectively. Kulkarni

and Bansal (2022b) also studied a generalization of 2-ELS-PCTU with n capacitated production

modules, and developed an exact fixed parameter tractable algorithm that runs in O(T 4n+4)

time. For n= 2, it takes O(T 12) time and is a special case of 2-ELS-2PCTC.

van Hoesel et al. (2005) extended the results for 2-ELS-PCTU to L-ELS-PCTU by presenting

an O(LT 2L+3) time algorithm to solve it. Hwang et al. (2013) presented a significantly improved

algorithm for L-ELS-PCTU with general concave costs that runs in O(LT 8) time. Recently,

Zhao and Zhang (2020) presented an O(T 2L2+2) polynomial time algorithm to solve L-ELS-

PCTU with demands present in intermediate echelons. If L is a part of the input, then the

L-ELS-PCTU problem with intermediate demands is NP-hard (Zhao and Zhang 2020).
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Production Capacitated and Transportation Capacitated. Existence of a polynomial

time algorithm for 2-ELS-PCTC has been an open question (van Hoesel et al. 2005, Zhao and

Zhang 2020) that we address in this paper.

3. Exact Polynomial Time Algorithm for 2-ELS-PCTC

In this section, we present an exact polynomial time dynamic programming algorithm to solve

2-ELS-PCTC. Since there is only one capacitated module in each echelon, we drop “,1” from

the superscripts of x1,1
t , x2,1

t , pe,1t , qe,1t , and ye,1
t to get x1

t , x
2
t , p

e
t , q

e
t , and ye

t , respectively. Likewise,

we also drop 1 from the superscripts of C1
p and C1

r to obtain Cp and Cr, respectively. We denote

the cumulative sum of demands from periods t1 through t2 by dt1,t2 =
∑t2

j=t1
dj.

3.1. Definitions and Characteristics of Extreme Points

First, we introduce some definitions that are needed to present the algorithm. We also analyze

the structure of the optimal solutions of 2-ELS-PCTC. Since the objective function is concave,

an optimal solution of the problem lies at an extreme point of the feasible region. Hence, we

study the properties of the extreme points of the feasible region of 2-ELS-PCTC.

Definition 1. (Subplan [a1, a2, b1, b2]). A collection of nodes (1, a1), . . . , (1, b1), (2, a2), . . . , (2, b2),

where 1 ≤ a1 ≤ a2 ≤ b1 ≤ b2 ≤ T , is a subplan if s1a1−1 = 0, s2a2−1 = 0, s1b1 = 0, s2b2 = 0, s1t > 0

for t ∈ {a1, . . . , a2 − 1}, s2t > 0 for t ∈ {b1, . . . , b2 − 1}, and at most one among s1t and s2t is

equal to zero for t ∈ {a2, . . . , b1 − 1}. Subplans [a1, a2, b1, b2] and [a′
1, a

′
2, b

′
1, b

′
2] are referred to as

consecutive subplans if a′
1 = b1 +1 and a′

2 = b2 +1.

Definition 2. (Block [k, l, type]). Given a subplan [a1, a2, b1, b2], a collection of nodes

(1, k), . . . , (1, l) and (2, k), . . . , (2, l) where a2 ≤ k ≤ l≤ b1, such that set > 0 for all e ∈ {1,2} and

t ∈ {k, . . . , l− 1}, is referred to as a block associated to the subplan if the following conditions

are satisfied depending on its “type”:

(a) s1k−1 > 0, s1l ≥ 0, s2k−1 = 0, and s2l = 0 if type=A11

(b) s1k−1 ≥ 0, s1l = 0, s2k−1 = 0, and s2l > 0 if type=A12

(c) s1k−1 = 0, s1l > 0, s2k−1 ≥ 0, and s2l = 0 if type=A21

(d) s1k−1 = 0, s1l = 0, s2k−1 > 0, and s2l ≥ 0 if type=A22

In Figure 3, we present an example for each of the four types of blocks for k = 2 and l = 5.

Note that block type Aij, i, j ∈ {1,2}, corresponds to the inventory at the beginning of period k

in echelon i, i.e., sik−1, and inventory at the end of period of l in echelon j, i.e., sjl . For example,

in block [2,5,A11], inventory enters period 2 and leaves period 5 of the first-echelon.

Definition 3. Fractional Production Period (FPP). A period t is a fractional production period

in a subplan [a1, a2, b1, b2], if 0<x1
t <Cp for some t∈ {a1, . . . , b1}.
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(a) Block [2,5,A11]
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(b) Block [2,5,A12]
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(c) Block [2,5,A21]

2

x1
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3

x1
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4

x1
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5

x1
5

s12 s13 s14

2 3 4 5

x2
2 x2

3 x2
4 x2
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(d) Block [2,5,A22]

Figure 3 Four different types of blocks for k= 2 and l= 5

Definition 4. Fractional Transportation Period (FTP). A period t is a fractional transportation

period in a subplan [a1, a2, b1, b2], if 0<x2
t <Cr for some t∈ {a2, . . . , b2}.

Full Capacity Production (x1
t =Cp)Fractional Production (0< x1

t <Cp)

Fractional transportation (0< x2
t <Cr)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) (1,10)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) (2,10)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Figure 4 Extreme Point Solution of 10 period two echelon problem

Properties of Extreme Point Solution: In Figure 4, we provide an example of an extreme

point solution of 2-ELS-PCTC with 10 time periods in the planning horizon. This extreme

point has two subplans: [1,1,1,2] and [2,3,10,10] (outlined using dashed lines). The red arcs

represent fractional production or fractional transportation and the blue arcs represent the full

capacity production (x1
t = Cp) or transportation (x2

t = Cr). It can be observed that there is

at most one fractional production period in each of the two subplans. Also, note that within

subplan [1,1,1,2] there is one block [1,1,A11] (outlined using dotted lines) and, within subplan

[2,3,10,10], there are five blocks: [3,5,A11], [6,6,A12], [7,8,A21], [9,9,A12], and [10,10,A21].

Each block has at most one fractional transportation period.
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Definition 5 (Consecutive Blocks). Blocks [k′, l′, type′] and [k′′, l′′, type′′] are consecutive if

k′′ = l′ + 1 and either type′ ∈ {Ai1}i∈{1,2} and type′′ ∈ {A1j}j∈{1,2}, or type′ ∈ {Ai2}i∈{1,2} and

type′′ ∈ {A2j}j∈{1,2}. For example, blocks [3,5,A11] and [6,6,A12] in Figure 4 are consecutive

blocks. Actually, all five blocks in the subplan [2,3,10,10] are consecutive and they span periods

a2 = 3 through b1 = 10.

Free Arc Property. A free arc in a network flow is defined as any arc that carries a non-

negative flow which is not at the full capacity. A free arc diagram is a network with only free

arcs as undirected edges. Ahuja et al. (1988) studied the minimum cost network flow problem

with concave costs and proved that the free arc network flow diagram associated with each of

its extreme points does not contain any cycle. This result is widely referred to as the free arc

property, and we utilize it to derive the following theorem.

Theorem 1. There exists an optimal solution of 2-ELS-PCTC that consists of a series of

consecutive subplans spanning over the entire planning horizon such that:

(a) Each subplan has at most one fractional production period, and

(b) Each subplan [a1, a2, b1, b2] consists of a series of consecutive blocks spanning periods a2

through b1 such that each block has at most one fractional transportation period.

Proof. The 2-ELS-PCTC can also be defined as a minimum cost network flow problem by

constructing a source node connected to each node of the first-echelon with x1
t as outgoing flow

from the source and a sink node connected to each node of the second-echelon with dt as incoming

flow to the sink. Therefore, each of its extreme point satisfies the free arc property. Now, assume

that an extreme point solution has two fractional production periods within a subplan. Then,

the free arc diagram associated with this extreme point will have a cycle. Similarly, if an extreme

point solution has two fractional transportation periods within a block, the free arc diagram

will not be acyclic.

Remark 1. Observe that according to this theorem, an optimal solution can have a subplan with

more than one fractional transportation periods. As shown in Figure 4, even though Subplan

[2,3,10,10] has 4 FTPs, its free arc diagram is acyclic.

Remark 2. It should be noted that this procedure to construct the graph for each subplan

generalizes the procedure developed by van Hoesel et al. (2005) for 2-ELS-PCTU where the

concept of blocks is not needed. In case of 2-ELS-PCTU with the uncapacitated retailer echelon,

a subplan associated with any optimal solution has only single-period blocks [k, k,Aij] for k ∈
{a2, . . . , b1}. On the contrary, we showed that in 2-ELS-PCTC, there may exist multi-period

blocks within any extreme point solution.
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Definition 6. Cumulative production quantity in period t of Subplan [a1, a2, b1, b2] is the total

amount produced in periods a1, . . . , t. We denote it by ξt. According to Theorem 1, we explore

solutions where in each period t ∈ {a1, . . . , b1}, production amount x1
t is either 0, Cp, or fp =

da2,b2 − Cp�
da2,b2
Cp

� < Cp (fractional production quantity). Therefore, ξt belongs to a finite set

Ξt =Ξ1
t ∪Ξ2

t where

Ξ1
t :=

{
0,Cp,2Cp, . . . , (t− a1 +1)Cp

}
, and Ξ2

t :=
{
fp,Cp + fp, . . . , (t− a1)Cp + fp

}
.

Note that for t ∈ {b1, . . . , b2}, Ξt = {da2,b2} since the overall demand of the subplan must be

satisfied. In the ensuing sections, we compute optimal cost for a given subplan and utilize it for

computing optimal solution for 2-ELS-PCTC.

3.2. Computing optimal costs for a given subplan [a1, a2, b1, b2]

To compute the minimum cost for a given subplan φ = [a1, a2, b1, b2], we construct a di-

rected acyclic graph N φ = (V,E) where V :=
{
(k, e, ξk) : k ∈ {a2, . . . , b1}, e ∈ {1,2}, ξk ∈

Ξk

}⋃{
(k,1, ξk) : k ∈ {a1, . . . , a2 − 1}, ξk ∈ Ξk

}⋃{
(k,2, ξk) : k ∈ {b1 +1, . . . , b2}, ξk ∈ Ξk

}
is the

collection of nodes in the graph. Additionally, there is a source node labeled as (a1 − 1,1,0)

and a destination node labeled as (b2,2, da2,b2). The overall optimal cost for each subplan is

computed by finding the shortest path from the source node to the destination node. We now

discuss the procedure to construct set of arcs E in the graph, and to assign corresponding arc

weights. Note that N φ has O(T 2) nodes and O(T 4) arcs as Ξk has O(T ) elements. In Figure 5,

we showcase construction of the nodes, the arcs, and their arc weights for k ∈ {a1, . . . , a2} and

for k ∈ {b1, . . . , b2}.

If k ∈ {a1, . . . , a2 − 1}, we make first-echelon decisions only because there is no block that

exists between periods a1 and a2. Therefore, we create forward arc from node (k− 1,1, ξk−1) to

(k,1, ξk) for all k ∈ {a1, . . . , a2 − 1}, ξk−1 ∈ Ξk−1, and ξk ∈ Ξk such that ξk−1 − ξk ∈ {0,Cp, f
p}.

The associated weight, denoted by Δ1
k,k(ξk−1, ξk), of this arc is the sum of costs incurred to

produce ξk − ξk−1 and hold ξk during period k, i.e.,

Δ1
k,k(ξk−1, ξk) =

{
h1
k(ξk), if ξk = ξk−1

p1k(ξk − ξk−1)+ q1k +h1
k(ξk), otherwise.

If k ∈ {b1 +1, . . . , b2}, we make no decisions as the first echelon nodes during these time periods

are not part of the subplan. Since the total amount that should be produced and transported

prior to period b1 +1 is da2,b2 , only holding costs are incurred at the end of every period. For

k ∈ {b1+1, . . . , b2}, we create forward arcs from nodes (k− 1,2, ξk−1) to (k,2, ξk) and assign the

edge weights Δ2
k,k(ξk−1, ξk) = h2

k(ξk − da2,k) where ξk = ξk−1 = da2,b2 .
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If k ∈ {a2, . . . , b1}, we create forward arcs from node (k−1, i, ξk−1) to (l, j, ξl) for all k≤ l≤ b1,

i, j ∈ {1,2}, ξk−1 ∈Ξk−1, and ξl ∈Ξl such that 0≤ ξl− ξk−1 ≤ (l−k+1)Cp. We do not create an

arc between two nodes if ξk−1 ∈ Ξ2
k−1 and ξl ∈ Ξ1

l since this implies that fractional production

has occurred up to period k−1, but not upto period l, which is impossible. The weight for an arc

from (k− 1, i, ξk−1) to (l, j, ξl), denoted by Δ3
k,l(ξk−1, ξl,Aij), is the minimum cost of satisfying

the demands of block [k, l,Aij], given that ξk−1 units have been produced up to period k−1, and

ξl units have been produced up to period l. We demonstrate the construction of the foregoing

network for k ∈ {a2, . . . , b1} in Figure 6.

Notice that, irrespective of the block type, the amount produced from periods k upto l is

equal to ξl − ξk−1. In contrast, the amount transported from periods k through l (denoted by

ρijk,l) depends on the type of block, i.e.

ρijk,l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dk,l, if Aij =A11

ξl − da2,k−1, if Aij =A12

d1,l − ξk−1, if Aij =A21

ξl − ξk−1, if Aij =A22

(2)

From Theorem 1, we know that there exists at most one FTP within any block [k, l,Aij].

As a result, there will be μmax
ij =min{l− k+ 1, �ρ

ij
k,l

Cr
�} periods where transportation occurs at

full capacity and there will be at most one period with a fractional transportation quantity

of f r = ρijk,l − �ρ
ij
k,l

Cr
�Cr units. In a nutshell, there will be either (a) l− k + 1 periods where we

transport either 0 or Cr units, or (b) l− k periods where we produce either 0 or Cp units and

exactly one period where we transport f r units. We now compute Δ3
k,l(ξk−1, ξl,Aij) using the

following two steps:

(A) Compute the minimum cost of producing ξk−1 − ξl units and transporting ρijk,l units such

that there is no FTP within block [k, l, type] (Section 3.2.1). We denote this cost function

by G
ξk−1,ξl
k,l,type(l, ξl, μ

max
ij ,0).

(B) Compute the minimum cost of producing ξk−1 − ξl units and transporting ρijk,l units such

that there is one FTP within block [k, l, type] (Section 3.2.2). We denote this cost function

by G
ξk−1,ξl
k,l,type(l, ξl, μ

max
ij ,1).

Specifically, Δ3
k,l(ξk−1, ξl, type) =min

{
G

ξk−1,ξl
k,l,type(l, ξl, μ

max
ij ,0),G

ξk−1,ξl
k,l,type(l, ξl, μ

max
ij ,1)

}
.

3.2.1. Minimum cost for a given block [k, l, type] without FTP. Using the following

recursive equations, we define a cost function G
ξk−1,ξl
k,l,type(t, ξt, μ,0) to compute the minimum cost

of producing ξt − ξk−1 units and transporting μCr units from first-echelon to second-echelon

during periods k to t, for t∈ {k, . . . , l}, ξt ∈Ξt, and μ∈ {0, . . . , μmax
ij }:
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G
ξk−1,ξl
k,l,type(t, ξt, μ,0) =min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
ξk−1,ξl
k,l,type(t− 1, ξt, μ,0)+Ht, (3a)

G
ξk−1,ξl
k,l,type(t− 1, ξt, μ− 1,0)+ p2t (Cr)+ q2t +Ht, (3b)

G
ξk−1,ξl
k,l,type(t− 1, ξt −Cp, μ,0)+ p1t (Cp)+ q1t +Ht, (3c)

G
ξk−1,ξl
k,l,type(t− 1, ξt −Cp, μ− 1,0)+ p1t (Cp)+ q1t + p2t (Cr)+ q2t +Ht, (3d)

G
ξk−1,ξl
k,l,type(t− 1, ξt − fp, μ,0)+ p1t (f

p)+ q1t +Ht, (3e)

G
ξk−1,ξl
k,l,type(t− 1, ξt − fp, μ− j,0)+ p1t (f

p)+ q1t + p2t (Cr)+ q2t +Ht. (3f)

Here, Ht = h1
t (s

1
t )+h2

t (s
2
t ) is the overall holding cost incurred in period t where the values of s1t

and s2t are dependent on the type of block, and are provided in Table 2.

Block Type s1
t s2

t

A11 ξt − da2,k−1 −μCr ξk−1 +μCr − da1,t

A12 ξt − da2,k−1 −μCr ξk−1 +μCr − da1,t

A21 ξt − ξk−1 −μCr μCr − dk,t

A22 ξt − ξk−1 −μCr μCr − dk,t

Table 2 Inventory in both echelons at the end of period t depending on block type

The aforementioned recursive equations are derived as follows. In each period t ∈ {k, . . . , l},
there are three possible amounts that can be produced which are 0, Cp, or fp. Also, since

fractional transportation has not occurred up to period t, the possible transportation amounts in

period t are 0 and Cr. This leads to six possibilities in each time period t of the block [k, l, type]

that determine the value of the cost function G
ξk−1,ξl
k,l,type(t, ξt, μ,0). Equations (3a)- (3b), (3c)-

(3d), and (3e)- (3f) are corresponding to production of 0, Cp, and fp in period t, respectively.

Additionally, equations (3a, 3c, 3e) and (3b, 3d, 3f) are for 0 and Cr units of transportation

during period t, respectively.

Also, if (a) ξt ∈ Ξ1
t , or (b) ξk−1 ∈ Ξ2

k−1 and ξl ∈ Ξ2
l , then we set expressions (3e) and (3f) to

infinity since there is no FPP between period k and t. We also set the value of G
ξk−1,ξl
k,l,type(t, ξt, μ,0)

to infinity for the following infeasible cases: (a) ξt < ξk−1 or ξt > ξl or ξt /∈ Ξt, (b) μ> t− k+1,

(c) μCr > ξt − d1,k−1, (d) μCr < dk,t, (e) ξk−1 ∈ Ξ1
k−1, ξl ∈ Ξ1

l , and ξt ∈ Ξ2
t , and (f) ξk−1 ∈ Ξ2

k−1,

ξl ∈Ξ2
l , and ξt ∈Ξ1

t .

3.2.2. Minimum cost for a given block [k, l, type] with one FTP. For t ∈ {k, . . . , l},
ξt ∈ Ξt, and μ ∈ {0, . . . ,min(l− k + 1, μmax)}, we also derive the following recursion equations

to compute G
ξk−1,ξl
k,l,type(t, ξt, μ,1) which is the minimum cost of producing ξt − ξk−1 units, and

transporting μCr + f r units from period k through t.
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G
ξk−1,ξl
k,l,type(t, ξt, μ,1) = min

αt∈{0,Cp,fp}

⎧⎪⎪⎨
⎪⎪⎩

G
ξk−1,ξl
k,l,type(t− 1, ξt −αt, μ,1)+Q1

t (αt)+Hr
t , (4a)

G
ξk−1,ξl
k,l,type(t− 1, ξt −αt, μ− 1,1)+Q1

t (αt)+ p2t (Cr)+ q2t +Hr
t , (4b)

G
ξk−1,ξl
k,l,type(t− 1, ξt −αt, μ,0)+Q1

t (αt)+ p2t (f
r)+ q2t +Hr

t , (4c)

where Q1
t (αt) is the cost of producing αt during period t and it is defined as follows:

Q1
t (αt) =

⎧⎪⎪⎨
⎪⎪⎩

0, if αt = 0,

p1t (Cp)+ q1t , if αt =Cp,

p1t (f
p)+ q1t , if αt = fp.

(5)

Note that in each period t ∈ {k, . . . , l}, there are three options available for production, x1
t ∈

{0,Cp, f
p}, and three options available for transportation, x2

t ∈ {0,Cr, f
r}, thereby resulting in

nine total possible options. Equation (4a), (4b), and (4c) represent the cases where αt items are

produced in period t which incurs a cost of Q1
t (αt), and the amount transported during period t

is 0, Cr, and f r, respectively. Again, Hr
t = h1

t (s
1
t ) + h2

t (s
2
t ) denotes the holding cost incurred

during period t where s1t and s2t are obtained using Table 2 by replacing μCr with μCr + f r.

We set the value of G
ξk−1,ξl
k,l,type(t, ξt, μ,1) to infinity for the following infeasible cases: (a) ξt < ξk−1

or ξt > ξl or ξt /∈Ξt, (b) μ> t−k, (c) μCr +f r > ξt−d1,k−1, (d) μCr +f r < dk,t, (e) ξk−1 ∈Ξ1
k−1,

ξl ∈ Ξ1
l , and ξt ∈ Ξ2

t , (f) ξk−1 ∈ Ξ2
k−1, ξl ∈ Ξ2

l , and ξt ∈ Ξ1
t . Moreover, αt ∈ {0,Cp} instead of

αt ∈ {0,Cp, f
p} if either (i) ξk−1 ∈Ξ1

k−1 and ξl ∈Ξ1
l , or (ii) ξk−1 ∈Ξ2

k−1 and ξl ∈Ξ2
l .

3.3. Computing Optimal Solution and Cost for 2-ELS-PCTC

We compute the minimum costs for all the possible subplans within the planning horizon using

results presented in the previous section. Thereafter, a network is constructed with a set of

nodes V := {(a1, a2) : a1, a2 ∈ T } such that an arc between the nodes (a1, a2) and (b1, b2) ∈ V
represents a Subplan [a1, a2, b1, b2] with optimal cost of the subplan as its weight. Finally, we

find the best sequence of subplans using the shortest path algorithm, as follows. We define

a function OPT (a1, a2) that computes the overall optimal cost of planning the production

schedules from periods a1, . . . , T and transportation schedules from periods a2, . . . , T where

a1 ≤ a2, such that s1a1−1 = 0 and s2a2−1 = 0. We then apply the following backward recursion to

compute OPT (a1, a2) for all a1, a2 ∈ T :

OPT (a1, a2) = min
b1,b2∈T

a2≤b1≤b2

{
OPT (b1 +1, b2 +1)+ψ([a1, a2, b1, b2])

}
,

where OPT (T + 1, T + 1) = 0. The overall optimal solution of 2-ELS-PCTC can be obtained

by computing the value of OPT (1,1) which essentially provides the optimal cost of scheduling

production and transportation from periods 1 to T .

Theorem 2. Problem 2-ELS-PCTC is solved to optimality using the above algorithm in O(T 10)

time.

Proof. Refer to Appendix A
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4. Exact algorithm for generalizations of 2-ELS-PCTC

In this section, we present polynomial time exact algorithms for two generalizations of 2-ELS-

PCTC: (i) 2-ELS-PC2TC (Section 4.1), and (ii) 2-ELS-2PCTC (Section 4.2). The key difference

between the algorithms for 2-ELS-PCTC, 2-ELS-PC2TC, and 2-ELS-2PCTC lies in computing

the optimal cost of each subplan [a1, a2, b1, b2].

4.1. Algorithm for 2-ELS-PC2TC

In 2-ELS-PC2TC, during each period of the planning horizon, we have one machine of capacity

Cp available for production and two vehicles of capacities C1
r and C2

r available for transportation.

Without loss of generality, we assume that C1
r ≤C2

r . We redefine FTP as a period where either

(a) 0<x2,1
t <C1

r and x2,2
t ∈ {0,C2

r}, or (b) x2,1
t ∈ {0,C1

r} and 0<x2,2
t <C2

r . Similar to the results

of Theorem 1, we observe that the subplans and blocks associated with each extreme point have

the following properties: (a) Each subplan has at most one FPP, and (b) Each block has at most

one FTP. The proof of this claim follows directly from the proof of Theorem 1 with a minor

modification in construction of network flow diagram. Since there are two vehicles available for

transportation, we construct two arcs with flow capacities of C1
r and C2

r from node (1, t) to node

(2, t) for all t∈ T .

Again, the overall optimal cost for a given subplan φ= [a1, a2, b1, b2] is computed by construct-

ing a network N φ using the steps discussed in Section 3.2, and finding the shortest path from the

source node to the sink node. The computation of arc weights Δ1
k,k(ξk−1, ξk) and Δ2

k,k(ξk−1, ξk)

is same as presented in Section 3.2. For the remainder of this section, we present an algorithm

to compute Δ3
k,l(ξk−1, ξl, type), which is different for this problem.

4.1.1. DP for Computing Δ3
k,l(ξk−1, ξl, type). We observe that depending on the number

of times vehicles of capacity C1
r and C2

r operate at full capacities within a block [k, l, type], there

can be multiple fractional transportation levels. This is unlike what we saw in case of 2-ELS-

PCTC where there is only one possible fractional transportation level equal to ρijk,l −Cr�
ρ
ij
k,l

Cr
�.

Therefore, we introduce the following steps to compute Δ3
k,l(·) within our approach for solving

2-ELS-PC2TC:

1. Computing minimum cost for block [k, l, type] without any FTP,

2. Computing all possible fractional transportation levels,

3. Computing minimum cost for block [k, l, type] with one FTP,

4. Computing the overall minimum cost Δ3
k,l(ξk−1, ξl, type).

Let ej be a two-dimensional unit vector where jth element is equal to one. We also define a

vector μ := (μ1, μ2) where μ1 and μ2 denote the number of times vehicles of capacities C1
r and

C2
r , respectively, used to transport items at full capacity. Let μmax,1

ij =min{l−k+1, �ρ
ij
k,l

C1
r
�}, and

μmax,2
ij =min{l− k+1, �ρ

ij
k,l

C2
r
�}.
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Step 1. Computing minimum cost for a given block [k, l, type] without any FTP:

We define G
ξk−1,ξl
k,l,type(t, ξt, μ,0) as a recursive function that computes minimum cost of producing

ξt − ξk−1 units and transporting μ1C
1
r + μ2C

2
r units from periods k up to t. In any given time

period t∈ {k, . . . , l}, we can choose to either produce nothing, or produce Cp units, or produce

fp units. In addition, since we are currently only computing minimum costs without fractional

transportation, we can transport either zero, C1
r , C

2
r , or C

1
r +C2

r units (equivalent to
∑

j∈Sr Cj
r

for Sr ⊆ {1,2}) in a given time period t. Based on the foregoing observations, we compute

G
ξk−1,ξl
k,l,type(t, ξt, μ,0) for all possible values of t, ξt, and μ:

G
ξk−1,ξl
k,l,type(t, ξt, μ,0) = min

αt∈{0,Cp,fp}
Sr⊆{1,2}

{
G

ξk−1,ξl
k,l,type

(
t− 1, ξt −αt, μ−

∑
j∈Sr

ej,0

)
+Q1

t (αt)

+
∑
j∈Sr

(p2,jt (Cr
j )+ q2,jt )+Ht

} (6)

where Q1
t (αt) is the cost of producing αt units and Ht is the total holding cost at the end of

period t. Refer to equation (5) and Table 2 in Section 3.2.1 for definitions of Q1
t (αt) and Ht,

respectively.

Step 2. Computing possible fractional transportation levels: Depending on the block

type and cumulative production quantities ξk−1 and ξl, we now compute all the possible frac-

tional transportation levels within a block [k, l, type]. We define a set Π := {π ∈ Z
2
+ : 0< ρijk,l −

π1C
1
r − π2C

2
r < C2

r and ρijk,l − π1C
1
r − π2C

2
r �= C1

r}, where ρijk,l is the total amount transported

within block [k, l, type] for a given ξk−1 and ξl that can be obtained using equation (3.2). Finally,

we define the set of all possible fractional transportation levels F := {f r : f r = ρijk,l − π1C
1
r −

π2C
2
r for π ∈Π}.

Step 3. Computing minimum cost for block [k, l, type] with one FTP: For each f r ∈ F

and t ∈ {k, . . . , l}, we compute the minimum cost to plan production and transportation such

that there is at exactly one period from k up to t where fractional transportation of f r units takes

place for one of the two vehicles. We define a cost function G
ξk−1,ξl
k,l,type(t, ξt, μ, f

r) that computes

minimum cost of producing ξt−ξk−1 units and transporting μ1C
1
r +μ2C

2
r +f r units from periods

k up to t. Again, we have three possible choices for production, i.e., αt ∈ {0,Cp, fp}. Also, in
each period, we have a choice to transport f r units using one of the available vehicles and

utilize the other vehicle, if needed, at full capacity. Below we provide the recursive equation to

compute the value of the cost function G
ξk−1,ξl
k,l,type(t, ξt, μ, f

r) for all t ∈ {k, . . . , l}, f r ∈ F , ξt ∈ Ξt,

μ1 ∈ {0, . . . , μmax,1
ij }, and μ2 ∈ {0, . . . , μmax,2

ij }:

min
αt∈{0,Cp,fp}

Sr⊆{1,2}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G
ξk−1,ξl
k,l,type

(
t− 1, ξt −αt, μ−

∑
j∈Sr

ej ,1

)
+Q1

t (αt)+
∑
j∈Sr

(p2,jt (Cr
j )+ q2,jt )+Ht,

G
ξk−1,ξl
k,l,type

(
t− 1, ξt −αt, μ−

∑
j∈Sr

ej ,0

)
+Q1

t (αt)+Q2
t (f

r)+
∑
j∈Sr

(p2,jt (Cr
j )+ q2,jt )+Ht
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where Q1
t (αt) is the cost of producing αt units in period t and is obtained using equation (5).

Moreover, Q2
t (f

r) is the cost of transporting f r units and is defined as follows.

Q2
t (f

r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min{p2,1t (f r)+ q2,1t , p2,2t (f r)+ q2,2t }, if f r <C1
r , and Sr = ∅

p2,1t (f r)+ q2,1t , if f r <C1
r , and Sr = {2}

p2,2t (f r)+ q2,2t , if f r <C1
r , and Sr = {1}

p2,2t (f r)+ q2,2t , if C1
r < f r <C2

r , and {2} /∈ Sr

∞, otherwise.

(8)

Remark 3. The conditions on (t, ξt, μ) for which G
ξk−1,ξl
k,l,type(t, ξt, μ,0) is infeasible are similar to

those discussed in Section 3.2.1. Likewise, the infeasible cases for G
ξk−1,ξl
k,l,type(t, ξt, μ, f

r) are same

as the ones presented in Section 3.2.2.

Step 4. Overall Optimal Cost: Finally, the overall optimal cost Δ3
k,l(ξk−1, ξl, type) is com-

puted using the following expression:

Δ3
k,l(ξk−1, ξl, type) =min

⎧⎪⎪⎨
⎪⎪⎩

min
μ∈{0,...,l−k+1}2

G
ξk−1,ξl
k,l,type(l, ξl, μ,0),

min
fr∈F
μ∈Π

G
ξk−1,ξl
k,l,type(l, ξl, μ, f

r)

Theorem 3. Problem 2-ELS-PC2TC is solved to optimality using the foregoing algorithm in

O(T 13) time.

Proof. Refer to Appendix B.

4.2. Algorithm for 2-ELS-2PCTC

Recall that in 2-ELS-2PCTC, two machines of capacities C1
p and C2

p are available for produc-

tion where C1
p ≤ C2

p without loss of generality, and one vehicle of capacity Cr is available for

transportation in each time period t of the planning horizon. Therefore, we redefine a fractional

production period (FPP) as a period t where either (a) x1,1 ∈ {0,C1
p} and 0<x1,2

t <C2
p , or (b)

0<x1,1
t <C1

p and x1,2 ∈ {0,C2
p}. We can represent the problem as a minimum cost network flow

problem where two arcs of capacities C1
p and C2

p are available to carry flow from the source node

to each node in the first echelon. We observe that the free-arc network for any extreme point

solution of 2-ELS-2PCTC is always acyclic. As a consequence, the properties of the optimal so-

lution discussed in Theorem 1 hold even for 2-ELS-2PCTC. We use this property to decompose

the planning horizon into smaller subplans, and then find the best sequence of subplans using

the shortest path algorithm.

The key aspect differentiating the algorithm for 2-ELS-2PCTC from the algorithm for 2-ELS-

PCTC is the set of feasible cumulative production schedules for each subplan. Unlike in the

case of 2-ELS-PCTC where each subplan had only one possible fractional production level of

fp = da2,b2 − Cp�da2,b2
Cp �, there are multiple fractional production levels that can occur during

any FPP within a subplan. In order to find all the possible fractional production levels, we first
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define a set Γ :=

{
(τ1, τ2) ∈ Z

2
+ : 0< da2,b2 −

2∑
i=1

τiC
i
p < C2

p and da2,b2 −
2∑

i=1

τiC
i
p �= C1

p

}
. Notice

that Γ is a set of (τ1, τ2) vectors where τ1 and τ2 are integer multiples of capacities C1
p and

C2
p . These vectors represent the number of times production has occurred using modules of

capacities C1
p and C2

p , at full capacity, from periods a1 through b1. We also define a set

F p :=

{
fp,v : fp,v = da2,b2 − τ v

1C
1
p − τ v

2C
2
p for all (τ v

1 , τ
v
2 )∈ Γ

}

whose elements are fractional production levels corresponding to each (τ v
1 , τ

v
2 )∈ Γ. We let τmax

1 =

�db1,b2
C1
p

�, and τmax
2 = �db1,b2

C2
p

�. We now redefine the set of feasible cumulative production quantities

during each period t. For each fp,v ∈ F p and the corresponding (τ v
1 , τ

v
2 ) ∈ Γ, we denote a set of

feasible cumulative production quantities with at most one fractional period by

Ξv
t :=

{
γ1C

1
p + γ2C

2
p + δfp,v : γ1 ∈ {0, . . . , τ v

1 }, γ2 ∈ {0, . . . , τ v
2 }, and δ ∈ {0,1}

}
.

Also, the overall set of feasible production quantities Ξt is equal to
⋃

fp,v∈Fp

Ξv
t .

In order to find an optimal solution for a given subplan, we construct a graph using the

procedure discussed in Section 3.2. One of main modifications is that the nodes are now labeled

(k, e, ξk, f
p,v), for k ∈ {a1, . . . , b2}, e ∈ {1,2}, fp,v ∈ F p, and ξk ∈ Ξv

k. Moreover, forward arcs

are only constructed between two nodes (k − 1, e, ξk−1, f
p,v1) and (l, e, ξk, f

p,v2) if v1 = v2. All

other conditions and the procedure for creating arcs between any two nodes and assigning them

weights Δ1
k,k(ξk−1, ξk, f

p,v), Δ2
k,k(ξk−1, ξk, f

p,v), or Δ3
k,l(ξk−1, ξl, type, f

p,v) is same as mentioned

in Section 3.2. Again, computing Δ1
k,k(ξk−1, ξk, f

p,v) and Δ2
k,k(ξk−1, ξk, f

p,v) is straightforward

and henceforth, we present modifications in algorithm to compute Δ3
k,l(ξk−1, ξl, type, f

p,v).

4.2.1. Computing Δ3
k,l(ξk−1, ξl, type, f

p,v) for a given set of input values. We now

compute the optimal costs for each block [k, l, type] with a given ξk−1 ∈Ξv
k−1, ξl ∈Ξv

l , and fp,v ∈
F p . Similar to the functions defined in Sections 3.2.1 and 3.2.2 for computing optimal costs, for

a given fp,v ∈ F p, we define G
ξk−1,ξl
k,l,type,v(t, ξt, μ,0) as the minimum cost of producing ξt−ξk−1 units

and transporting μCr units from periods k upto t. Likewise, we define G
ξk−1,ξl
k,l,type,v(t, ξt, μ,1) as the

cost function that computes the minimum cost of producing ξt−ξk−1 units and transporting μCr

units from from periods k upto t. Both of these cost functions are computed using equations (3)

and (4) where amount produced in each time period αt ∈ {0,C1
p ,C

2
p ,C

1
p +C2

p ,C
2
p +fp,v,C1

p +fp,v}
if fp,v <C1

p , and αt ∈ {0,C1
p ,C

2
p ,C

1
p +C2

p ,C
1
p + fp,v}, otherwise.

Theorem 4. Problem 2-ELS-2PCTC is solved to optimality using the above algorithm in O(T 16)

time.

Proof. Refer to Appendix C.
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5. Problem 2-ELS-PCTC with Outsourcing in Both Echelons

In this section, we present an exact algorithm for solving an extension of 2-ELS-PCTC where

outsourcing is allowed in each time period of the planning horizon for both of the echelons. As

typically done in the lot-sizing literature (Atamtürk and Hochbaum 2001, Sargut and Romeijn

2007), it is assumed that the outsourcing is uncapacitated in both echelons. This also implies

that in each time period and in each echelon, we have two available modules/machines/vehicles

(one capacitated and the other uncapacitated) for production and transportation.

Recall the network flow representation of the two-echelon lot-sizing problem. Since outsourc-

ing is uncapacitated, any non-negative flow in a given period through the outsourcing arc is

considered as a free-arc. Bearing this in mind, we redefine fractional production period (FPP)

as a period t in which either 0<x1,1
t <C1

p or x1,2
t > 0. Likewise, a period t is a fractional trans-

portation period (FTP) when either 0 < x2,1
t < C1

r or x2,2
t > 0. Similar to Theorem 1, we can

easily prove that there exists an optimal solution of 2-ELS-PCTC-O that comprises of a series

of consecutive subplans such that each subplan has at most one FPP. Moreover, within each

subplan of the optimal solution, there exist a series of blocks such that each block has at most

one FTP. This characteristic of the optimal solution again enables us to decompose the overall

planning horizon into smaller subplans and then computing the optimal costs for each of the

subplans. As done in case of 2-ELS-PCTC, 2-ELS-PC2TC, and 2-ELS-2PCTC, the overall opti-

mal cost is computed by finding the best sequence of subplans using a shortest path algorithm.

Henceforth, we focus solely on computing the optimal costs of a given subplan [a1, a2, b1, b2].

5.1. Computing optimal cost of a given subplan

Similar to the 2-ELS-2PCTC, we observe that within each subplan, there can be several frac-

tional production quantities depending on the number of times full capacitated production

have occurred within the entire subplan. However, only one out of these fractional quantities is

produced during at most one time period t ∈ {a1, . . . , b1}. We redefine the sets Γ :=
{
τ ∈ Z+ :

db1,b2 − τC1
p > 0

}
and F p := {fp,v : fp,v = db1,b2 − τ vC1

p for τ v ∈ Γ}. Again, for each fp,v ∈ F p,

we define the set of cumulative production quantities during period t as follows:

Ξv
t :=

{
γ1C

p + δfp,v : γ1 ∈ {0, . . . , τ v
1 }, and δ ∈ {0,1}

}
.

Also, Ξt =
⋃

fp,v∈Fp Ξv
t . Using these sets, we again create a network with source node and des-

tination node labeled as (a1 − 1,1,0) and (b2,2, da2,b2), respectively. For each fp,v ∈ F p, we also

have nodes labeled as (t, e, ξt, f
p,v) where t ∈ {a1, . . . , b2}, e ∈ {1,2}, and ξt ∈ Ξv

t . Again, we

create forward arcs only between nodes with same fp,v, and use the procedure discussed in

Section 3.2 to create the arcs between the nodes of this network. Weights Δ1
k,k(ξk−1, ξk, f

p,v)

and Δ2
k,k(ξk−1, ξk, f

p,v) are also computed and assigned in the same manner. The major dif-

ference in this algorithm lies in the computation of edge weights Δ3
k,l(ξk−1, ξl, type, f

p,v) which

denotes the minimum cost of producing ξl− ξk−1 units and transporting ρijk,l units such that the

demands of period k to l are satisfied. We now present the recursive equations that computes

Δ3
k,l(ξk−1, ξl, type, f

p,v) in polynomial time for a given set of input values and block [k, l, type].
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5.2. Computing Δ3
k,l(ξk−1, ξl, type, f

p,v) for 2-ELS-PCTC-O

Similar to the algorithm of 2-ELS-PC2TC, we are only interested in solutions where there is at

most one FTP within a block [k, l, type]. Therefore, we compute Δ3
k,l(ξk−1, ξl, type, f

p,v) using

the following steps:

Step 1. Computing all possible fractional transportation levels: Let Π := {π ∈ Z+ :

ρijk,l − πC1
r > 0} where ρijk,l is the total amount transported from the first echelon to the second

echelon within block [k, l, type] for a given ξk−1 and ξl. We also redefine the set of fractional

transportation values F r := {f r : f r = ρijk,l −πC1
r for π ∈Π}.

Step 2. Computing minimum cost for block [k, l, type] without any FTP: We define

G
ξk−1,ξl
k,l,type(t, ξt, μ,0) as the cost of producing ξt − ξk−1 units and transporting μC1

r units from

period k upto t for t ∈ {k, . . . , l}. In time period t, we can produce αt ∈ {0,C1
p , f

p,v,C1
p + fp,v}

units in the first echelon at cost Q1
t (αt), which is defined by:

Q1
t (αt) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if αt = 0

p1,1t (C1
p)+ q1,1t , if αt =C1

p

p1,2t (fp,v)+ q1,2t , if αt = fp,v, and fp,v >C1
p

min
{
p1,1t (fp,v)+ q1,1t , p1,2t (fp,v)+ q1,2t

}
, if αt = fp,v and fp,v <C1

p

p1,1t (C1
p)+ q1,1t + p1,2t (fp,v)+ q1,2t , if αt =C1

p + fp,v.

It should also be noted that when ξk−1 ∈ Ξv
k−1 such that δ = 0 and ξl ∈ Ξv

l such that δ = 0, no

fractional production takes place within the block [k, l, type]. Same reasoning applies to the case

when ξk−1 ∈Ξv
k−1 such that δ= 1 and ξl ∈Ξv

l such that δ= 1. In both these cases, αt ∈ {0,C1
p}.

Regarding second echelon decisions, since we are not considering any fractional transportation

in this step, we can either transport 0 or C1
r units from echelon 1 to echelon 2 during period

t. Again, we let μmax
ij = min{l − k + 1, �ρ

ij
k,l

Cr
�} which denotes the maximum number of times

transportation can occur at full capacity. The conditions to filter out the infeasible values of ξt,

t, and μ are same as in case of Step 2 of algorithm for 2-ELS-PC2TC (Section 4.1.1). Based on

the foregoing discussion, we present the following recursive equation where G
ξk−1,ξl
k,l,type(t, ξt, μ,0)

for a given feasible t∈ {k, . . . , l}, ξt ∈Ξv
t , and μ∈ {0, . . . , μmax

ij } is equal to:

min
αt∈{0,Cp,fp,v,C1

p+fp,v}
Sr⊆{1}

{
G

ξk−1,ξl
k,l,type

(
t− 1, ξt −αt, μ−

∑
j∈Sr

ej ,0

)
+Q1

t (αt)+
∑
j∈Sr

(p2,jt (Cj
r)+ q2,jt )+Ht

}
,

where Ht = h1
t (s

1
t ) + h2

t (s
2
t ) is the holding cost incurred during period t, and the values of s1t

and s2t can be obtained from Table 2.

Step 3. Computing minimum cost for block [k, l, type] with exactly one FTP: Let

G
ξk−1,ξl
k,l,type(t, ξt, μ, f

r) be a function that computes the minimum cost of producing ξt − ξk−1 units

and transporting μC1
r +f r units from periods k upto t such that demands from periods k to t are

satisfied. Again, in each time period, we can either produce 0, C1
p , or f

p units for some fp ∈ F p.

However, in the second echelon, in each period t, in addition to the choices of transporting 0 or
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C1
r units, we can also transport f r or C1

r + f r units. We present the recursive equation below

to compute G
ξk−1,ξl
k,l,type,fr(t, ξt, μ, f

r):

min
αt∈{0,Cp,fp,v,C1

p+fp,v}
Sr⊆{1}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G
ξk−1,ξl
k,l,type

(
t− 1, ξt −αt, μ− j, f r

)
+Q1

t (αt)+
∑
j∈Sr

(p2,jt (Cj
r)+ q2,jt )+Hr

t ,

G
ξk−1,ξl
k,l,type

(
t− 1, ξt −αt, μ− j,0

)
+Q1

t (αt)+Q2
t (f

r)+
∑
j∈Sr

(p2,jt (Cj
r)+ q2,jt )+Hr

t

where Hr
t is the holding cost incurred at the end of period t, and Q2

t (f
r) is the cost of trans-

porting/outsourcing the fractional quantity f r in period t. More specifically,

Q2
t (f

r) =

{
min

{
p2,1t (f r)+ q2,1t , p2,2t (f r)+ q2,2t

}
, if Sr = ∅ and f r <C1

r

p2,2t (f r)+ q2,2t , otherwise.

Again, values of t, ξt, and μ for which this function is infeasible are similar to the ones discussed

in Section 3.2.2 for 2-ELS-PCTC.

Step 4: Overall Optimal Cost:

Δ3
k,l(ξk−1, ξl, type, f

p,v) = min
μ∈{0,...,μmax

ij }

{
G

ξk−1,ξl
k,l,type(l, ξl, μ,0), min

fr∈F r
G

ξk−1,ξl
k,l,type(l, ξl, μ, f

r)

}
. (9)

Theorem 5. Problem 2-ELS-PCTC-O can be solved using the above algorithm in O(T 13) time.

Proof. Refer to Appendix D

6. Concluding Remarks

In this paper, we answered an open question related to existence of a polynomial time algorithm

for two-echelon lot-sizing problem with constant capacitated production and transportation in

first- and second-echelon, respectively (denoted by 2-ELS-PCTC). Specifically, we introduced

an O(T 10) algorithm for 2-ELS-PCTC that generalizes the 2-ELS-PCTC with uncapacitated

(or infinite capacity) transportation studied by Kaminsky and Simchi-Levi (2003), van Hoesel

et al. (2005). We also presented polynomial time algorithms for the following two generalizations

of 2-ELS-PCTC: (a) 2-ELS-PC2TC where two capacitated vehicles of varying capacities are

available for transportation in each time period, and (b) 2-ELS-2PCTC where two capacitated

machines of varying capacities are avaiable for production in each time period. Finally, we de-

veloped an O(T 13) time algorithm for 2-ELS-PCTC with an additional option of uncapacitated

subcontracting for both production and transportation (denoted by 2-ELS-PCTC-O), which is

a generalization of 2-ELS-PCTC-O with uncapacitated transportation studied by Sargut and

Romeijn (2007). A potential future research direction is to utilize the proposed dynamic pro-

gramming algorithms for obtaining extended formulations using variable redefinition, feasible

sub-optimal solutions and an efficient heuristics, and cutting planes by filtering out several in-

feasible/suboptimal solutions. Also, the following question is still open: For L≥ 3, does there

exist a polynomial time algorithm for L-ELS-PCTC with stationary capacities in all echelons?
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Appendices

Appendix A: Proof for Theorem 2

There are O(T 3) subplans, and to find the optimal cost of each subplan, we create a directed acyclic

graph with O(T 4) arcs and find the shortest path from the source node to the sink node. The arc

weights Δ3
k,l(ξk−1, ξl, type) are obtained by computing G

ξk−1,ξl
k,l,type(t, ξt, μ

max,0) and G
ξk−1,ξl
k,l,type(t, ξl, μ

max,1)

for all t ∈ {k, . . . , l}, ξt ∈ Ξt such that ξk−1 ≤ ξt ≤ ξl, and μ ∈ {0, . . . , μmax}. For a given (t, ξt, μ), both

G
ξk−1,ξl
k,l,type(t, ξt, μ

max,0) and G
ξk−1,ξl
k,l,type(t, ξl, μ

max,1)} are computed in constant time. Since there are O(T 3)

number of (t, ξt, μ) vectors, the time taken to compute each arc weight is also O(T 3). As a result, the

overall running time of our algorithm for 2-ELS-PCTC is O(T 3 ×T 4 ×T 3), i.e., O(T 10).

Appendix B: Proof for Theorem 3

The key difference between the algorithms for 2-ELS-PCTC and 2-ELS-PC2TC is the computation

of arc weights Δ3
k,l(ξk−1, ξl, type). Notice that the each of the foregoing values are computed by com-

puting G
ξk−1,ξl
k,l,type(t, ξt, μ,0) and G

ξk−1,ξl
k,l,type(t, ξt, μ, f

r) for all t ∈ {k, . . . , l}, ξt ∈ Ξt such that ξk−1 ≤ ξt ≤ ξl,

μ1 ∈ {0, . . . , μmax} and μ2 ∈ {0, . . . , μmax}, where μmax
1 = min{l − k + 1, �ρij

k,l/C
1
r �} and μmax

2 = min{l −
k + 1, �ρij

k,l/C
2
r �}. For a given set of (t, ξt, μ, f

r), functions G
ξk−1,ξl
k,l,type(t, ξt, μ,0) and G

ξk−1,ξl
k,l,type(t, ξt, μ, f

r)

are computed in constant time. Since there are O(T 6) possible (t, ξt, μ, f
r) vectors, each arc weight

Δ3
k,l(ξk−1, ξl, type) can be computed in O(T 6) time. Hence the overall running time of the algorithm for

2-ELS-PC2TC is O(T 6 ×T 4 ×T 3), i.e., O(T 13).

Appendix C: Proof for Theorem 4

The key difference between the algorithms for 2-ELS-PCTC and 2-ELS-2PCTC is the number of nodes

and arcs within each network N φ for a given subplan φ = [a1, a2, b1, b2]. For each t ∈ {a1, . . . , b2}, the
cumulative production quantity belongs to the set Ξt, and the number of elements in Ξt is bounded from

above by O(T 4). This eventually leads to O(T 5) nodes and O(T 10) arcs in the directed acyclic graph N φ.

Moreover, computing the arc weights Δ3
k,l(ξk−1, ξl, type) dominates the computation of Δ1

k,l(ξk−1, ξl, type)

and Δ2
k,l(ξk−1, ξl, type), and takes O(T 3) time. Since we compute the optimal costs for O(T 3) subplans,

the overall running time of algorithm is O(T 10)×O(T 3)×O(T 3) which is equal to O(T 16).

Appendix D: Proof for Theorem 5

We construct a network N φ for each of the O(T 3) subplans. Since there are O(T 2) possible values ξt for

each t∈ {a1, . . . , b2}, there are O(T 3) nodes and O(T 6) arcs within the graph N φ. The bottleneck in the

construction ofN φ is the step where arc weights Δ3
k,l(ξk−1, ξl, type) are computed and in order to do this we

need to compute values of G
ξk−1,ξl
k,l,type(t, ξt, μ,0), and G

ξk−1,ξl
k,l,type(t, ξt, μ, f

r) for all feasible values of (t, ξt, μ, f
r)

vectors. For a given (t, ξt, μ, f
r) vector, G

ξk−1,ξl
k,l,type(t, ξt, μ,0), and G

ξk−1,ξl
k,l,type(t, ξt, μ, f

r) are computed in con-

stant time, and since there are O(T 4) possible such vectors, each Δ3
k,l(ξk−1, ξl, type) is computed in O(T 4)

time. Thus, the time complexity of the algorithm for 2-ELS-PCTC-O is O(T 4)×O(T 6)×O(T 3) which

is equal to O(T 13).


