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We study serial supply chain problems where a product is transported from a supplier to a warehouse
(inbound transportation), and then from the warehouse (outbound transportation) to a retailer such that
demand for a given planning horizon is satisfied. We consider heterogeneous vehicles of varying capacities
for the transportation in each time period, and the objective is to plan inbound and outbound transporta-
tion along with inventory in each time period such that the overall inventory and transportation costs are
minimized. These problems belong to the class of two-echelon lot-sizing problems (2-ELS) with warehouse
and retailer as first- and second-echelons, respectively. We address an open question raised in van Hoesel,
Romeijn, Morales, Wagelmans [Management Science 51(11):1706-1719, 2005]: Does there exist a polynomial
time algorithm for 2-ELS with a single capacitated vehicle for each of the inbound and outbound transporta-
tion? Specifically, we introduce polynomial time algorithms for this problem and its three generalizations
with multiple capacitated vehicles for inbound and/or outbound transportation, thereby generalizing the
results of Kaminsky and Simchi-Levi [IIE Transactions 35(11):1065-1075, 2003] and Sargut and Romeijn [IIE
Transactions 39(11):1031-1043, 2007] for 2-ELS with a single capacitated vehicle for inbound transportation

and uncapacitated outbound transportation.
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1. Introduction

In today’s economy and commerce, globalization of exchanges has forced researchers to reiterate
the importance of serial supply chain systems. Products in such systems are manufactured at
distant facilities, and then stored at intermediate warehouses or third-party logistics before
finally making it to the consumer /retailer. According to a global survey conducted by Geodis
(2017), optimizing inventory costs, reducing transportation and warehouse costs, and improving
product availability are among the most important objectives in today’s supply chain. Therefore,
it is imperative to plan and acquire resources with limited capacities, and utilize them in a
meaningful way by efficiently planning transportation and inventory over a time horizon. It is
well established that integrating the supply chain decisions (production, transportation, and
inventory) and looking at the problem holistically yields lower costs than treating each entity

of the system separately.
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Figure 1 Network Flow Representation of the Two-Echelon Lot-Sizing Problem

We consider an integrated serial supply chain defined over a planning horizon that comprises
of transportation of products from supplier(s) or manufacturing facilities to an intermediate
warehouse (inbound transportation) and from the warehouse to a retailer (outbound transporta-
tion) using heterogeneous vehicles of varying capacities in each time period. Such problems are
referred to as the two-echelon lot-sizing (2-ELS) problems where the first- and second-echelon
represents the warehouse and the retailer, respectively. In Figure 1, we provide a network flow
representation of the 2-ELS problem where in each echelon e € {1,2}, there are T nodes, each
corresponding to a time period t € T :={1,2,...,T} in the planning horizon. Each node in this
figure is labelled as (e,t) where e € {1,2} denotes its echelon and ¢ € 7 denotes its time period.
Variable x} denotes the amount transported from the supplier to the warehouse during period ¢
and z7 denotes the amount transported from the warehouse to the retailer during period t € T
Also, s; and s? denote the inventory held by the warehouse and the retailer at the end of period

t € T, respectively.

Many researchers have studied 2-ELS and its variants (Lee et al. 2003, Kaminsky and Simchi-
Levi 2003, van Hoesel et al. 2005, Hwang et al. 2016); refer to Section 2 for detailed litera-
ture review. However, there is no study in the literature that allows capacitated vehicle(s) for
outbound transportation, and heterogeneous capacitated vehicles for inbound and outbound
transportation (Zhao and Zhang 2020). In this paper, we study 2-ELS problems where single
or multiple heterogeneous capacitated vehicles are available for both inbound and outbound
transportation. Note that the capacities of vehicles available for inbound transportation can
be different from capacities of vehicles available for outbound transportation. The motivation
behind studying these problems stems from a plethora of real-world problems impacting semi-
conductor manufacturing, convoy resupply planning, and climate change that we will discuss

in Section 1.2. Additionally, the 2-ELS problems also arise in integrated manufacturing and
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transportation systems where the first-echelon represents a manufacturing facility with hetero-
geneous machines of varying capacities. In other words, production decisions in such systems
are equivalent to the inbound transportation decisions. Throughout the rest of the paper, for
clear distinction between the echelons and to avoid confusion between inbound and outbound
transportation, we refer to the first and second echelons as production and retailer echelons,

respectively. Moreover, we refer to capacitated vehicles and machines as capacitated modules.

1.1. Problem Definition and Contributions
Given a planning horizon 7 with demand d; for ¢ € T in the retailer (second) echelon, we
formulate the 2-ELS problem with two capacitated modules in each of the echelons, i.e., C; and

C? in first-echelon and C} and C} in second-echelon, as follows:

T 2 2
Minimize Y <h§(s§) +> (qf”'yf Ty (af )) > (P)
i=1
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where z;" denotes the amount produced in period ¢ using module i € {1,2} in the first-echelon,
and and xfl denotes amount transported in period ¢t € T from first-echelon to second-echelon
using module i € {1,2}. Variables s; and s; denote the amount of inventory held at the end of
period t in production and retailer echelons, respectively. Moreover, y:** for e € {1,2},ie{1,2}
and t € T is a binary variable which is equal to 1 if module 7 is used in echelon e in period ¢,
and 0 otherwise. The production and holding cost functions p{*(-) and h¢(-) are assumed to be

e,

concave, and in addition, a setup cost of ¢;** is incurred whenever ;" is equal to 1. We also
assume that the initial and final inventories in each of the echelons are zero, i.e., s§ =0 and
s5 =0 for e € {1,2}. Note that this is a reasonable assumption that has been considered widely
in the literature (van Hoesel et al. 2005, Florian and Klein 1971, Zangwill 1969), but it cannot

be stated without the loss of generality.

Constraints (1a) and (1b) are the classical inventory or flow balance constraints to ensure
that the incoming flow at each node is equal to the outgoing flow. Constraints (1c) and (1d) are
the capacity constraints that ensure the amount produced or transported using each module to

be less than or equal to the capacity of the module, if it is used (i.e. if y{"* = 1). It should also
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be noted that the capacities of modules in both the echelons are assumed to be time invariant.
If the capacities are not stationary across the planning horizon, the problem is NP-hard even

for the single echelon problem (Florian et al. 1980).

Contributions of this paper. Kaminsky and Simchi-Levi (2003), van Hoesel et al. (2005)
and Hwang et al. (2013, 2016) studied a special case of Problem P with a single uncapacitated
transportation module, i.e., C! < oo and C? =0, and single capacitated production module,
ie., Cg = 0. We denote this problem by 2-ELS-PCTU where ‘PC’ denotes single capacitated
production module and ‘T'U’ denotes single uncapacitated transportation module. It is well
known that addition of the capacity constraints to an uncapacitated lot-sizing problem makes
the problem more difficult to solve. This is mainly because the classical Zero Ordering Inventory
property does not hold since we can produce/transport limited units in each time period. We
present dynamic programming based polynomial time exact algorithms for the following four

generalization of 2-ELS-PCTU:

(i) 2-ELS with single capacitated production and transportation modules, i.e., P with C’g =
C? =0, denoted by 2-ELS-PCTC.

(ii) 2-ELS with single capacitated production module and two capacitated transportation
modules, i.e., P with C? =0, denoted by 2-ELS-PC2TC.

(iii) 2-ELS with two capacitated production modules and single capacitated transportation
module, i.e., P with C? =0, denoted by 2-ELS-2PCTC. Note that Sargut and Romeijn
(2007) studied its special case with C} < 0o and C}! - oo, i.e., transportation module and

one of the two production modules are uncapacitated.

(iv) 2-ELS with two (one capacitated and another uncapacitated) production and transporta-
tion modules, i.e., P with C’; + 00 and C? + oo. Since an uncapacitated (production or
transportation) module also implies an additional option of uncapacitated subcontract-

ing/outsourcing, we denote this problem by 2-ELS-PCTC-O.

As per our knowledge, these four problems have not been studied in the literature, and the
existence of polynomial time algorithm, even for 2-ELS-PCTC has been an open question (van
Hoesel et al. 2005, Zhao and Zhang 2020). We summarize the contributions of this paper in

Table 1 and pictorially represent the aforementioned four problems in Figure 2.

Significance of Results in Table 1. Apart from addressing an open question, the polyno-
mial time algorithms provided in this paper also build stepping stones for various serial supply
chain and lot-sizing problems with multiple heterogeneous capacitated vehicles in multiple ech-
elons. Additionally, the dynamic programming algorithms can be used to obtain: (a) effective
reformulations of these problems using variable redefinition (Eppen and Martin 1987), (b) fea-
sible sub-optimal solutions and an efficient heuristics, and (¢) cutting planes by filtering out

several infeasible/suboptimal solutions (Hartman et al. 2010).
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C, c2 c c? Contributor | Complexity |
Zangwill (1969) o)
oo 0 oo 0 Love (1972) o(T®)
Melo and Wolsey (2010) O(T?*1logT)
Kaminsky and Simchi-Levi (2003) o(T®)
Arbitrary 0 00 0 van Hoesel et al. (2005) o(T")
Hwang et al. (2016) o(T%)
Arbitrary | Arbitaray 00 0 Sargut and Romeijn (2007) O(T*0)**
Arbitrary 00 00 0 Sargut and Romeijn (2007) O(T8)**
Arbitrary | Arbitrary 00 0 Kulkarni and Bansal (2022b) o(T*?)
Arbitrary 0 Arbitrary 0 This article o)
Arbitrary | Arbitrary | Arbitrary 0 This article o(T'%)
Arbitrary 0 Arbitrary | Arbitrary This article o(r*)
Arbitrary 00 Arbitrary 00 This article o(T*®)
Table 1 Polynomial Algorithms for Two-Echelon Lot-Sizing Problem P
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(b) 2-ELS-PC2TC

;ﬁ”ﬁ [l = 4
78 uP.T4

&
b
o2
=
A
A
Q
—
Q

(¢) 2-ELS-2PCTC (d) 2-ELS-PCTC-O

Figure 2 Pictorial single-period representation of four two-echelon lot-sizing problems studied in this paper

1.2. Other Practical Applications and Key Features of Problem P

Other Practical Applications. In addition to applications in supply chain, logistics, and inte-
grated manufacturing and transportation systems (discussed earlier), the two-echelon lot-sizing
problems also arise in assembly line systems (Pochet and Wolsey 2006). The two echelons,
namely sub-assembly and final-assembly, are common especially in semiconductor manufactur-
ing industry (Sarin et al. 2011). Given the demand of the final assembled product over a planning
horizon, the goal is to schedule the production on each of the two stages such that the overall
sum of production costs, machines setup costs, and holding costs of the sub-assembled and final
assembled items is minimized. It must be noted that production at either of the stages is more
likely to be capacitated, since machines tend to have an operating capacity. Another area where
2-ELS problems arise is in convoy resupply planning where resources are transported from the

suppliers to a centralized depot, and finally from the depot to the army base.

Key Features. One of the key features of the problems studied in this paper is that they allow

presence of multiple capacitated modules in both the echelons. The notion of having multiple
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resources is motivated from the rise in global greenhouse gas emissions and stricter emission
regulations due to which companies are using two types of resources: conventional resources
and green resources, and each of these resources have their own costs and capacities (Hong
et al. 2016). Another key feature of our models is consideration of fixed cost ¢’ to represent
the machine setup costs or the fixed ordering costs, along with variable concave cost functions

p¢"(.) to address economies of scale.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we
review existing studies on lot-sizing problems that are closely related to problem P. In Section 3,
we present a dynamic programming algorithm to solve 2-ELS-PCTC to optimality. We then
present polynomial time algorithms for 2-ELS-2PCTC and 2-ELS-PC2TC in Section 4, and for
2-ELS-PCTC-O in Section 5. Lastly, we provide concluding remarks and potential directions

for future research in Section 6.

2. Literature Review

In this section, we review algorithmic results in the literature for problems that are either special
cases or closely related to problem P by classifying them into two categories: single-echelon
lot-sizing problems and multi-echelon lot-sizing problems. Note that 2-ELS-PCTC reduces to a
single-echelon problem when the inventory held at the end of each period ¢ in the second-echelon
is equal to zero, i.e., s? =0 for t € T, and prl =g =0forteT andic {1,2}. For such cases,
we denote the problems using the prefix 1-ELS- instead of 2-ELS-. Furthermore, since there are
no second echelon variables in the single-echelon problems, we drop the suffix ‘TC’ or ‘TU’ from

the problem notations.

Single-Echelon Lot-Sizing Problems. Single-echelon lot-sizing problem with single capaci-

tated module (denoted by 1-ELS-PC) is NP-hard in general when the capacities are time-varying
across the planning horizon. In a seminal paper, Wagner and Whitin (1958) presented an O(7?)
algorithm to solve uncapacitated lot-sizing problem i.e. 1-ELS-PC with C; = 00, that was later
improved to O(T'logT) by Aggarwal and Park (1993). It is well-known that adding capacities
increases the complexity of the problem. When the capacity is stationary, Florian and Klein
(1971) provided an exact dynamic programming algorithm that solves 1-ELS-PC in O(T*) time.
van Hoesel and Wagelmans (1996) provided an improved O(T?) algorithm to solve the foregoing
problem when the holding costs are assumed to be linear. Atamtiirk and Hochbaum (2001)
studied the lot-sizing problem with single constant capacity and an additional option of unca-
pacitated subcontracting, i.e., 1-ELS-2PC with Cg = oo. Kulkarni and Bansal (2022a,b) studied
lot-sizing problems with multiple (n € Z ) capacitated modules available for utilization in each
time period, with additional features such as subcontracting and backlogging, and for a fixed

n, they provided polynomial time exact algorithms for each of these variants.

Multi-Echelon Lot-Sizing Problems. Over the years, researchers have been studying lot-

sizing problems with L > 2 echelons. We use the prefix ‘L-ELS-" instead of ‘2-ELS-’ to denote
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this general class of problems. Since none of the problems studied in the literature consider
finite capacity module(s) in echelons 2 to L, we denote these classes of problems using the suffix
‘TU’ (Transportation Uncapacitated) at the end, instead of ‘TC’. Also, for problems where
the production module is uncapacitated, i.e., C; = 00, we denote them using the suffix ‘PU’

(Production Uncapacitated).

Production Uncapacitated and Transportation Uncapacitated. For L-ELS-PUTU,
Zangwill (1969) presented an O(LT*) dynamic programming algorithm, and van Hoesel et al.
(2005) showed that for L =2, it takes O(T®) time. Thereafter, Melo and Wolsey (2010) in-
troduced an improved dynamic programming algorithm for the 2-ELS-PUTU that runs in
O(T?1ogT) time. Lee et al. (2003) presented an O(T°) algorithm for a variant of 2-ELS-PUTU
where the transportation cost function is a step-wise function of the transportation capacity
module, the production cost function is constant, and back-ordering is allowed in the second-
echelon. To solve L-ELS-PUTU with demands in each echelon, Zhang et al. (2012) and Zhao
and Zhang (2020) developed exact algorithms that take O(7T*) time for L =2 and O(T3*!)
time for L > 2, respectively.

Production Capacitated and Transportation Uncapacitated. Kaminsky and Simchi-
Levi (2003) studied a generalization of 3-ELS-PCTU where the first- and third-echelon
are capacitated and second-echelon is uncapacitated with fixed (or concave) produc-
tion/transportation costs. They showed that under several assumptions for the cost structures,
this three-echelon problem can be reduced to a special case of 2-ELS-PCTU and they proposed
an O(T®) time polynomial algorithm to solve the latter. van Hoesel et al. (2005) analyzed the
structure of the optimal solution of 2-ELS-PCTU, and presented an O(T7) time algorithm to
solve it. Later, Hwang et al. (2016) provided an improved O(T°) running time algorithm for
2-ELS-PCTU. Sargut and Romeijn (2007) studied the following two variants of 2-ELS-PCTU:
(a) 2-ELS-2PCTU with ¢;' =¢; > =0for t € T, i.e., two capacitated modules in the first-echelon
with no setup costs, and (b) 2-ELS-2PCTU with ¢;"' = ¢/ =0 and C? = o0, i.e., one capaci-
tated module and one uncapacitated module (outsourcing) available for production in the first
echelon. They developed O(T*?) and O(T®) time algorithms for them, respectively. Kulkarni
and Bansal (2022b) also studied a generalization of 2-ELS-PCTU with n capacitated production
modules, and developed an exact fixed parameter tractable algorithm that runs in O(7T*"™)

time. For n =2, it takes O(T"?) time and is a special case of 2-ELS-2PCTC.

van Hoesel et al. (2005) extended the results for 2-ELS-PCTU to L-ELS-PCTU by presenting
an O(LT*3) time algorithm to solve it. Hwang et al. (2013) presented a significantly improved
algorithm for L-ELS-PCTU with general concave costs that runs in O(LT®) time. Recently,
Zhao and Zhang (2020) presented an O(T?%°+2) polynomial time algorithm to solve L-ELS-
PCTU with demands present in intermediate echelons. If L is a part of the input, then the
L-ELS-PCTU problem with intermediate demands is NP-hard (Zhao and Zhang 2020).
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Production Capacitated and Transportation Capacitated. Existence of a polynomial
time algorithm for 2-ELS-PCTC has been an open question (van Hoesel et al. 2005, Zhao and
Zhang 2020) that we address in this paper.

3. Exact Polynomial Time Algorithm for 2-ELS-PCTC

In this section, we present an exact polynomial time dynamic programming algorithm to solve
2-ELS-PCTC. Since there is only one capacitated module in each echelon, we drop “;1” from
the superscripts of ', 27", pi'*, ¢&', and o' to get x}, 22, p¢, q¢, and y¢, respectively. Likewise,
we also drop 1 from the superscripts of C; and C} to obtain C, and C,, respectively. We denote

the cumulative sum of demands from periods t; through ¢, by d,, ,, = Z;Z’:tl d;.

3.1. Definitions and Characteristics of Extreme Points

First, we introduce some definitions that are needed to present the algorithm. We also analyze
the structure of the optimal solutions of 2-ELS-PCTC. Since the objective function is concave,
an optimal solution of the problem lies at an extreme point of the feasible region. Hence, we

study the properties of the extreme points of the feasible region of 2-ELS-PCTC.

Definition 1. (Subplan [a1,as,b1,bs]). A collection of nodes (1,a4),...,(1,b1), (2,a2),...,(2,b2),
where 1 <ay <ay <by <by <T, is a subplan if s, =0, s, =0,5 =0,s;,=0,s >0
for t € {ay,...,as — 1}, s? >0 for t € {by,...,bs — 1}, and at most one among s; and s} is
equal to zero for t € {ay,...,by — 1}. Subplans [ay,as,b1,bs] and [a},ay,b),b,] are referred to as

consecutive subplans if a} =b1+1 and ay, =by+ 1.

Definition 2. (Block [k,l,type]). Given a subplan [ay,a2,b1,bs], a collection of nodes
(L,k),...,(1,1) and (2,k),...,(2,1) where ay <k <1 <by, such that s¢ >0 for all e € {1,2} and
te{k,...,l —1}, is referred to as a block associated to the subplan if the following conditions

are satisfied depending on its “type”:

(a) sj_; >0, s >0, s =0, and s7 =0 if type = Ay,
(b) s1_1>0, s =0, si_; =0, and s} >0 if type = Ay»
(c) si_1=0,s >0,s2 >0, and s} =0 if type = Ay,
(d) si_,=0, s} =0, st_;>0, and s7 >0 if type = Ay

In Figure 3, we present an example for each of the four types of blocks for £ =2 and [ =5.
Note that block type A;;, 7,5 € {1,2}, corresponds to the inventory at the beginning of period k
in echelon i, i.e., si_,, and inventory at the end of period of [ in echelon j, i.e., s{. For example,

in block [2,5, Ay;], inventory enters period 2 and leaves period 5 of the first-echelon.

Definition 3. Fractional Production Period (FPP). A period t is a fractional production period

in a subplan [ay,az,b1,bs], if 0<x} < C, for some t € {ay,...,bi}.
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1 1 1 1 1 1 1 1 1
Echelon
3 a3 i 3 3 3 3 3
Second- e 7 ! 5 ) 3 ! 5 )2
Echelon \/< \/< \,< \,< \/<
ds ds dy ds ds ds dy ds
(a) Block [2, 5, All] (b) Block [27 57 Alg]
3 z} ) 3 3 3 x4 3
. L st = s3 = st = S5 L S5 L st L si L
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seond. B oy B Gyt i A L@ Le L@ e
Echelon \/< \/< \/< \,< \,< \,< \/<
d2 ds da ds da ds N ds
(C) Block [2, 5, Agl] (d) Block [27 571422]

Figure 3 Four different types of blocks for k=2 and [ =5

Definition 4. Fractional Transportation Period (FTP). A periodt is a fractional transportation

period in a subplan [a1,as,b1,bs], if 0 <x? < C, for somet € {ay,...,by}.

Fractional Production (0 < z,l < Cp) Full Capacity Production (z,l =Cp)

R R

Fractional transportation (0 < z? <Cr)

Figure 4 Extreme Point Solution of 10 period two echelon problem

Properties of Extreme Point Solution: In Figure 4, we provide an example of an extreme
point solution of 2-ELS-PCTC with 10 time periods in the planning horizon. This extreme
point has two subplans: [1,1,1,2] and [2,3,10,10] (outlined using dashed lines). The red arcs
represent fractional production or fractional transportation and the blue arcs represent the full
capacity production (z; = C,) or transportation (z7 = C,). It can be observed that there is
at most one fractional production period in each of the two subplans. Also, note that within
subplan [1,1,1,2] there is one block [1,1, Aj;] (outlined using dotted lines) and, within subplan
[2,3,10,10], there are five blocks: [3,5, A1), [6,6,A1s], [7,8, 421, [9,9, A1z], and [10,10, Agy].

Each block has at most one fractional transportation period.
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Definition 5 (Consecutive Blocks). Blocks [k, type’] and [k",1" type”] are consecutive if
E'"=1+1 and either type’ € {An}icpi2y and type” € {A1;}icq 2y, or type’ € {Ap}icq2y and
type” € {As;}ieqi2y. For example, blocks [3,5,A11] and [6,6, Avs] in Figure 4 are consecutive
blocks. Actually, all five blocks in the subplan [2,3,10,10] are consecutive and they span periods
as =3 through by = 10.

Free Arc Property. A free arc in a network flow is defined as any arc that carries a non-

negative flow which is not at the full capacity. A free arc diagram is a network with only free
arcs as undirected edges. Ahuja et al. (1988) studied the minimum cost network flow problem
with concave costs and proved that the free arc network flow diagram associated with each of
its extreme points does not contain any cycle. This result is widely referred to as the free arc

property, and we utilize it to derive the following theorem.

Theorem 1. There exists an optimal solution of 2-ELS-PCTC that consists of a series of

consecutive subplans spanning over the entire planning horizon such that:
(a) Each subplan has at most one fractional production period, and

(b) Each subplan [ay,a2,b1,b] consists of a series of consecutive blocks spanning periods as

through by such that each block has at most one fractional transportation period.

Proof. The 2-ELS-PCTC can also be defined as a minimum cost network flow problem by
constructing a source node connected to each node of the first-echelon with z} as outgoing flow
from the source and a sink node connected to each node of the second-echelon with d; as incoming
flow to the sink. Therefore, each of its extreme point satisfies the free arc property. Now, assume
that an extreme point solution has two fractional production periods within a subplan. Then,
the free arc diagram associated with this extreme point will have a cycle. Similarly, if an extreme
point solution has two fractional transportation periods within a block, the free arc diagram

will not be acyclic. ]

Remark 1. Observe that according to this theorem, an optimal solution can have a subplan with
more than one fractional transportation periods. As shown in Figure 4, even though Subplan

[2,3,10,10] has 4 FTPs, its free arc diagram is acyclic.

Remark 2. [t should be noted that this procedure to construct the graph for each subplan
generalizes the procedure developed by van Hoesel et al. (2005) for 2-ELS-PCTU where the
concept of blocks is not needed. In case of 2-ELS-PCTU with the uncapacitated retailer echelon,
a subplan associated with any optimal solution has only single-period blocks [k, k, A;;] for k €
{ag,...,b1}. On the contrary, we showed that in 2-ELS-PCTC, there may exist multi-period

blocks within any extreme point solution.
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Definition 6. Cumulative production quantity in period t of Subplan [ay,as,b1,bs] is the total
amount produced in periods ai,...,t. We denote it by &. According to Theorem 1, we explore
solutions where in each period t € {ai,...,b1}, production amount z; is either 0, C,, or f, =
daypy — C’p[d“él’j’ﬂ < C, (fractional production quantity). Therefore, & belongs to a finite set
= =2} UE2 where

g = {O,CP,ZCP,...7(t—a1+1)0p} ,and 27 := {fp,Cp—i—fp,...7(t—a1)Cp+fp}.

Note that for t € {b1,...,b2}, 2y = {d4, s, } since the overall demand of the subplan must be
satisfied. In the ensuing sections, we compute optimal cost for a given subplan and utilize it for

computing optimal solution for 2-ELS-PCTC.

3.2. Computing optimal costs for a given subplan [a;, az, by, bs]

To compute the minimum cost for a given subplan ¢ = [ay,az,b;1,bs], we construct a di-
rected acyclic graph N = (V,E) where V := {(k,e,fk) ik € {ag,....b}, e {1,2}, & €
S tU{(k1L,&) ckef{ar,...,aa—1}, & €5 U{(K,2,&) ke {bi+1,...,bs}, & € Ey} is the
collection of nodes in the graph. Additionally, there is a source node labeled as (a; — 1,1,0)
and a destination node labeled as (bs,2,d,, s,). The overall optimal cost for each subplan is
computed by finding the shortest path from the source node to the destination node. We now
discuss the procedure to construct set of arcs F in the graph, and to assign corresponding arc
weights. Note that A* has O(T?) nodes and O(T*) arcs as =, has O(T) elements. In Figure 5,
we showcase construction of the nodes, the arcs, and their arc weights for k € {ay,...,a2} and

for k€ {by,...,by}.

If ke{ay,...,a2 — 1}, we make first-echelon decisions only because there is no block that

exists between periods a; and a,. Therefore, we create forward arc from node (k—1,1,&,_1) to
(k,1,&) for all k€ {ay,...,a0 — 1}, &1 € E4_1, and &, € E;, such that {1 — & € {0,C,, fP}.
The associated weight, denoted by A} ;(&,-1,&), of this arc is the sum of costs incurred to
produce &, — &, and hold & during period k, i.e.,

hllc(fk)a if fk :fk—l

Ai}k(ﬁkqvﬁk) = {Pi(fk —&1) +qi + hp (&), otherwise.

If ke{bi+1,...,by}, we make no decisions as the first echelon nodes during these time periods

are not part of the subplan. Since the total amount that should be produced and transported
prior to period by + 1 is d,, p,, only holding costs are incurred at the end of every period. For
ke {b +1,...,by}, we create forward arcs from nodes (k—1,2,&,_1) to (k,2,&;,) and assign the
edge weights AZ ; (Ek—1,&k) = hj(Ek — day,k) Where & =&y = day 4, -
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If k€ {asy,...,b1}, we create forward arcs from node (k—1,4,&,_1) to (1,7,&) for all k <1 <by,
i,j €{1,2}, &1 €Ek_1, and & € Z; such that 0< & — &1 < (I—k+1)C,. We do not create an

arc between two nodes if _; € 22 | and & € I} since this implies that fractional production

has occurred up to period k— 1, but not upto period [, which is impossible. The weight for an arc
from (k—1,7,&1) to (1,7,&), denoted by A} (&x—1,&, Aij), is the minimum cost of satisfying
the demands of block [k, 1, A;;], given that £;_; units have been produced up to period k—1, and
&, units have been produced up to period I. We demonstrate the construction of the foregoing

network for k € {as,...,b;} in Figure 6.

Notice that, irrespective of the block type, the amount produced from periods k upto [ is
equal to & — &,_1. In contrast, the amount transported from periods k through [ (denoted by
pzjl) depends on the type of block, i.e.

dig, if Ay =An

§ —day 1, if A=A
dig— &1, if A=Ay
§ =&, i A= Ag

i
Pri=

From Theorem 1, we know that there exists at most one FTP within any block [k,l, A;;].
o

As a result, there will be £7** = min{l — k + 1, [ Z*

i |} periods where transportation occurs at
full capacity and there will be at most one period with a fractional transportation quantity
- ©J

of fr=py, — Lﬂc’“;’JCT. units. In a nutshell, there will be either (a) I — k + 1 periods where we

transport either 0 or C, units, or (b) [ — k periods where we produce either 0 or C, units and
exactly one period where we transport f” units. We now compute A} (&x-1,&, Ai;) using the

following two steps:

(A) Compute the minimum cost of producing &, ; — & units and transporting p}j , units such
that there is no FTP within block [k, 1, type] (Section 3.2.1). We denote this cost function
Ek— 751 max
by G, (lﬁglvuij ,0).

k.l type

(B) Compute the minimum cost of producing &,_; — & units and transporting p?j , units such
that there is one FTP within block [k, [, type] (Section 3.2.2). We denote this cost function
Ek—1-81 max
by G (lvglmuij 71)

k.l type

Speciﬁcally, A%J (gk*1 ’ 61’ type) =min {Gékil’gl (lv gly /«Lmamr 0)7 Gﬁkil’gl (la 517 #ZZ’LMC? ]-) }

k.l type iy k.l type

3.2.1. Minimum cost for a given block [k,[,type] without FTP. Using the following

ng—l’él

recursive equations, we define a cost function G;7 .

(t,&,1t,0) to compute the minimum cost
of producing & — &, units and transporting pC, units from first-echelon to second-echelon

during periods k to t, for t € {k,... 1}, & € =y, and p € {0, ..., puj}* }:
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Gi’jljtlyﬁé(t - 1a &7 122 0) + Htv (3&)
Gikljtlyié(t_ 176“/1'_ 170)+p?(cr)+Qt2+Ht7 (3b)
Gi’jl_,tlyﬁé(t - ]-7 gt - va My O) +pt1(cp) + qtl + Hta (30)

G iypet &, 11,0) = min

k,l type

G (t—1,6 — Cpy i —1,0) +pH(Cy) +af + P (Cp) + 62+ Hy, (3)

Gt — 1,6 — 17, 1,0) + DL (fP) +a) + Hay (3¢)

Gl (t—1,6 — f7, u—7,0) + p(f*) + gt +p2(C) + g2 +Hye (36)

Here, H, = h}(s;) + hi(s}) is the overall holding cost incurred in period ¢ where the values of s;

and s? are dependent on the type of block, and are provided in Table 2.

Block Type ‘ st ‘ s2
An & —dag k-1 — pCr | 1 +pCr —day ¢
Ara &t —day k-1 — pCr | Epo1 +pCr —day
Ao & — &1 — pChy pChr —dp
Aao & — &1 — puChr nCr —dy 1

Table 2 Inventory in both echelons at the end of period ¢ depending on block type

The aforementioned recursive equations are derived as follows. In each period ¢ € {k,...,l},
there are three possible amounts that can be produced which are 0, C,, or f?. Also, since
fractional transportation has not occurred up to period t, the possible transportation amounts in
period t are 0 and C,.. This leads to six possibilities in each time period ¢ of the block [k, , type]
that determine the value of the cost function Gi’fﬁéﬁ(t@t,u,O). Equations (3a)- (3b), (3c)-
(3d), and (3e)- (3f) are corresponding to production of 0, C,,, and f? in period ¢, respectively.
Additionally, equations (3a, 3c, 3e) and (3b, 3d, 3f) are for 0 and C, units of transportation

during period t, respectively.

Also, if (a) & € E}, or (b) &1 €27, and & € =7, then we set expressions (3e) and (3f) to
infinity since there is no FPP between period k and ¢. We also set the value of Gi’fﬁéﬁé(m &, 1, 0)
to infinity for the following infeasible cases: (a) & <&, 1 or & >& or & ¢ =, (b) p>t—k+1,
() pCr > & —di -1, (d) pC, <dyy, (€) &1 €E_y, & €E}, and & € E, and (f) &1 € Ef_,

gl EE?, and é‘t EE%

3.2.2. Minimum cost for a given block [k,[,type] with one FTP. For t € {k,..., I},

& ey, and pe{0,..., min(l —k+ 1, ™)}, we also derive the following recursion equations
to compute Gi’flft;fé(t,ghu,l) which is the minimum cost of producing &, — &,_; units, and

transporting pC,. + f" units from period k through t.
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Gil,cljtlyﬁi (t - 17 £t — Qg [y 1) + Qg (at) + ’H;v (4d)
Er—1,8 : e 15 r
Gliupe(t: 6o )= min & GI S (8= L& — an i = 1,1) + Q) () +p7(Ch) +af +H,  (4b)
a4 €{0,Cp,fP}
k-1, r r
Gk’jl,typé(t - 1v€t = Qi [y 0) + Q%(at) er?(f ) + qg + sz (4C)

where Qj () is the cost of producing «, during period ¢ and it is defined as follows:

0, if oy =0,
Qi) =1 pi(Cp) +ai, if ar=Cy, (5)
pi(f) +ai, ifar=fr.

Note that in each period ¢ € {k,...,l}, there are three options available for production, x} €
{0,C,, fP}, and three options available for transportation, z7 € {0,C,, f"}, thereby resulting in
nine total possible options. Equation (4a), (4b), and (4c) represent the cases where «; items are
produced in period ¢ which incurs a cost of Q}(a;), and the amount transported during period ¢
is 0, C,, and f", respectively. Again, H = h}(s}) + h?(s?) denotes the holding cost incurred
during period ¢t where s} and s? are obtained using Table 2 by replacing uC, with uC, + f".

We set the value of Gikftlyié (t,&, 1, 1) to infinity for the following infeasible cases: (a) & < &1
or & >&or & =y, (b) u>t—k, (c) pCrd > & —digr, (d) pCp+ 7 <diy, () &p1 €54y,
§eB, and & e 22, (f) & €284, & €57, and & € E;. Moreover, «; € {0,C,} instead of

a, €40,C,, f*} if either (¢) -1 €Z;_, and § € E}, or (i1) §—1 € E7_, and § € =7

3.3. Computing Optimal Solution and Cost for 2-ELS-PCTC

We compute the minimum costs for all the possible subplans within the planning horizon using
results presented in the previous section. Thereafter, a network is constructed with a set of
nodes V := {(ay,az) : a;,as € T} such that an arc between the nodes (ai,az) and (by,by) €V
represents a Subplan [ay, as, b1, by] with optimal cost of the subplan as its weight. Finally, we
find the best sequence of subplans using the shortest path algorithm, as follows. We define
a function OPT(ay,as) that computes the overall optimal cost of planning the production
schedules from periods aq,...,T and transportation schedules from periods as,...,T where
ay < ag, such that s} ;=0 and s, , =0. We then apply the following backward recursion to

compute OPT(ay,as) for all a;,a, € T

by,bo€T
ag<bj<bg

OPT(al,ag)z min OPT(bl+17b2+1)+w([a1,a2,b1,b2})},

where OPT(T +1,T + 1) = 0. The overall optimal solution of 2-ELS-PCTC can be obtained
by computing the value of OPT(1,1) which essentially provides the optimal cost of scheduling

production and transportation from periods 1 to 7.

Theorem 2. Problem 2-ELS-PCTC is solved to optimality using the above algorithm in O(T*°)

time.

Proof. Refer to Appendix A
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4. Exact algorithm for generalizations of 2-ELS-PCTC

In this section, we present polynomial time exact algorithms for two generalizations of 2-ELS-
PCTC: (i) 2-ELS-PC2TC (Section 4.1), and (ii) 2-ELS-2PCTC (Section 4.2). The key difference
between the algorithms for 2-ELS-PCTC, 2-ELS-PC2TC, and 2-ELS-2PCTC lies in computing

the optimal cost of each subplan [a;,as, by, bs).

4.1. Algorithm for 2-ELS-PC2TC

In 2-ELS-PC2TC, during each period of the planning horizon, we have one machine of capacity
C? available for production and two vehicles of capacities C'' and C? available for transportation.
Without loss of generality, we assume that C! < C?. We redefine FTP as a period where either
(a) 0 <z?! < C! and z7° € {0,C?}, or (b) 7' € {0,C'} and 0 < }* < C2. Similar to the results
of Theorem 1, we observe that the subplans and blocks associated with each extreme point have
the following properties: (a) Each subplan has at most one FPP, and (b) Each block has at most
one FTP. The proof of this claim follows directly from the proof of Theorem 1 with a minor
modification in construction of network flow diagram. Since there are two vehicles available for

transportation, we construct two arcs with flow capacities of C'! and C? from node (1,t¢) to node

(2,t) for all t e T.

Again, the overall optimal cost for a given subplan ¢ = [ay, as, by, by] is computed by construct-
ing a network /¢ using the steps discussed in Section 3.2, and finding the shortest path from the
source node to the sink node. The computation of arc weights A}, (§x—1,&) and A7, (§x—1,&k)
is same as presented in Section 3.2. For the remainder of this section, we present an algorithm

to compute A} ;(&x—1,&, type), which is different for this problem.

4.1.1. DP for Computing A} (&x—1,&,type). We observe that depending on the number
of times vehicles of capacity C! and C? operate at full capacities within a block [k, [, type], there
can be multiple fractional transportation levels. This is unlike what we saw in case of 2-ELS-

ij
PE,l

PCTC where there is only one possible fractional transportation level equal to p;j —Crl ok

Therefore, we introduce the following steps to compute Ai,l(‘) within our approach for solving

2-ELS-PC2TC:

1. Computing minimum cost for block [k, 1, type] without any FTP,
2. Computing all possible fractional transportation levels,
3. Computing minimum cost for block [k, [, type] with one FTP,

4. Computing the overall minimum cost A} ;(&x—1, &, type).

Let e; be a two-dimensional unit vector where j* element is equal to one. We also define a

vector ju:= (py, p2) where p; and py denote the number of times vehicles of capacities C'! and
ij

C?, respectively, used to transport items at full capacity. Let p"*"" =min{l —k+1,| % |}, and

p
- i cor
max,2 - p;il
Hi; _mln{l—k—l-l,LC?J}.
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Step 1. Computing minimum cost for a given block [k,[,type] without any FTP:
We define Gikl tlmfé (t,&:,11,0) as a recursive function that computes minimum cost of producing
& — &1 units and transporting p;C! + p,C? units from periods k up to t. In any given time
period t € {k,...,l}, we can choose to either produce nothing, or produce C? units, or produce
fP units. In addition, since we are currently only computing minimum costs without fractional
&

for S” C {1,2}) in a given time period ¢. Based on the foregoing observations, we compute

transportation, we can transport either zero, C'!, C?  or C! + C? units (equivalent to Zj csr

El—1,€1
Gk: l,type

(t, &, 1,0) for all possible values of t, &, and pu:

Ek—1,&1 _ . Ek—1,&1
lefype(tvgtnuvo) _atG{lg,lé'I}),fp} {lefype (t 1 — O, b — Z 6]7 > + Qt at)
Sen ~ (6)

+> (e +a )+’Ht}

jeS”

where O} (c) is the cost of producing o, units and H, is the total holding cost at the end of
period t. Refer to equation (5) and Table 2 in Section 3.2.1 for definitions of Q}(a;) and H,,

respectively.

Step 2. Computing possible fractional transportation levels: Depending on the block
type and cumulative production quantities &,_; and &, we now compute all the possible frac-
tional transportation levels within a block [k, [, type]. We define a set II:={r € Z3 : 0 < p}j L=
mC} — mC? < C? and p)!; — mC} — mC? # C}}, where p/; is the total amount transported
within block [k, [, type] for a given &,_; and & that can be obtained using equation (3.2). Finally,
we define the set of all possible fractional transportation levels F := {f": f" = p?j , —mCl —

moC? for m € I1}.

Step 3. Computing minimum cost for block [k,[,type] with one FTP: For each f" € F
and t € {k,...,l}, we compute the minimum cost to plan production and transportation such

that there is at exactly one period from k up to t where fractional transportation of f” units takes

Ek—1,§1

place for one of the two vehicles. We define a cost function G;7,, >

(t,&, p, f7) that computes
minimum cost of producing & — &, units and transporting 1 C! + 1,C? + f7 units from periods
k up to t. Again, we have three possible choices for production, i.e., oy € {0,C?, fP}. Also, in
each period, we have a choice to transport f” units using one of the available vehicles and
utilize the other vehicle, if needed, at full capacity. Below we provide the recursive equation to

compute the value of the cost function G3%- 1% (t, &, f) for all t € {k,...,l}, freF, & eE,

k,ltype

pr €40, uy ™Y, and sy €40, ")

Gikltlypgi( 1:€t—0¢t:N—Z€j,1>+Ql Qy +Z CT +q )+Ht7
min JjEST JjEST
a ,CP fP r
e ey tlwfi (t 1,6 —ay,p— Z e],0> +ONay) + Q*(f Z HCT) 4 q27) + H,

JjEST JEST
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where Q] (o) is the cost of producing «; units in period ¢ and is obtained using equation (5).

Moreover, Q?(f7) is the cost of transporting f” units and is defined as follows.

min{p?t (f7) + ¢4, p22(f) + 2%, if fr<Cl, and ST =10

e+ if f7<C}, and 8" ={2}

U =S P a4 if fr<C}, and §"={1} (8)
p2(f) + a3, if Ol < fr<C2?, and {2} ¢ S"
o0, otherwise.

Remark 3. The conditions on (t,&, 1) for which Gi’fljtlyfi(t,&,u,O) is infeasible are similar to

those discussed in Section 3.2.1. Likewise, the infeasible cases for Gi’flftzfi(t,ft,u,fr) are same

as the ones presented in Section 3.2.2.

Step 4. Overall Optimal Cost: Finally, the overall optimal cost A%;(ﬁk-ufl, type) is com-

puted using the following expression:

min GV €, p,0),

pef0, . d—k1y2 bR
A (&1, & type) =ming o e
°y 70 JICl;lél'}l?lejl,tlypé(Lglapﬁfr)
pell

Theorem 3. Problem 2-ELS-PC2TC is solved to optimality using the foregoing algorithm in
O(T*3) time.

Proof. Refer to Appendix B.

4.2. Algorithm for 2-ELS-2PCTC

Recall that in 2-ELS-2PCTC, two machines of capacities C} and C are available for produc-
tion where C) < C? without loss of generality, and one vehicle of capacity C, is available for
transportation in each time period ¢ of the planning horizon. Therefore, we redefine a fractional
production period (FPP) as a period ¢ where either (a) "' € {0,C}} and 0 <z, < C2, or (b)
0<zp' < C) and x"* € {0,C}}. We can represent the problem as a minimum cost network flow
problem where two arcs of capacities C; and C’S are available to carry flow from the source node
to each node in the first echelon. We observe that the free-arc network for any extreme point
solution of 2-ELS-2PCTC is always acyclic. As a consequence, the properties of the optimal so-
lution discussed in Theorem 1 hold even for 2-ELS-2PCTC. We use this property to decompose
the planning horizon into smaller subplans, and then find the best sequence of subplans using

the shortest path algorithm.

The key aspect differentiating the algorithm for 2-ELS-2PCTC from the algorithm for 2-ELS-
PCTC is the set of feasible cumulative production schedules for each subplan. Unlike in the
case of 2-ELS-PCTC where each subplan had only one possible fractional production level of
fP=dayp, —C? dacz—psz, there are multiple fractional production levels that can occur during

any FPP within a subplan. In order to find all the possible fractional production levels, we first
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2 2

define a set I":= {(71,72) € Zﬁ_ 10 <daypy — ZTZ'C; < C’g and dg, b, — ZTZ'C; # C’;}. Notice
i=1 i=1

that T' is a set of (7,72) vectors where 71 and 7, are integer multiples of capacities C’; and

Cg. These vectors represent the number of times production has occurred using modules of

capacities C’; and Cg, at full capacity, from periods a; through b;. We also define a set
F? .= {fp"“ P =dgy b, — TIUC; — 7'2”05 for all (r7,75) € I‘}

whose elements are fractional production levels corresponding to each (7, 75) € T'. We let 7j"* =

Ldbé’le |, and 7" = Ldl’é—;zj We now redefine the set of feasible cumulative production quantities
P p
during each period t. For each fP* € F? and the corresponding (77,75) € ', we denote a set of

feasible cumulative production quantities with at most one fractional period by

== {le;—i-VgC;—i-éfp’”: 7 €{0,...,7}, %2€{0,...,75}, and 56{0,1}}.

—=v

Also, the overall set of feasible production quantities Z; is equal to U =/
fPvEFP

In order to find an optimal solution for a given subplan, we construct a graph using the
procedure discussed in Section 3.2. One of main modifications is that the nodes are now labeled
(k,e &, fPY), for k € {ay,...,bo}, e € {1,2}, fP* € FP, and &, € =Y. Moreover, forward arcs
are only constructed between two nodes (k — 1,e,&,_1, f7"1) and (I, e,&, fP°2) if v = vy. All
other conditions and the procedure for creating arcs between any two nodes and assigning them
weights Ap  (Ee—1, 8k, [7), Ak (Er—1, &y f7), o8 A (§4—1, &1, type, fP) is same as mentioned
in Section 3.2. Again, computing A}, (§e—1,&k, f7°) and AF ,(§x—1, &k, [77) is straightforward

and henceforth, we present modifications in algorithm to compute Ai’l(fk_l, &, type, fP°).

4.2.1. Computing Aﬁ’l(fk_l,fhtype,fp’”) for a given set of input values. We now
compute the optimal costs for each block [k, [, type] with a given &, € E}_,, & € EY, and 7" €

FP . Similar to the functions defined in Sections 3.2.1 and 3.2.2 for computing optimal costs, for

Ek—1-81

a given f7 € F?, we define G}, >

(t,&, 1, 0) as the minimum cost of producing & — &,_; units
and transporting pC, units from periods k upto t. Likewise, we define Gilflftﬁé,v(t, &1, 1) as the
cost function that computes the minimum cost of producing &, — &, _; units and transporting pC.,
units from from periods k upto ¢. Both of these cost functions are computed using equations (3)
and (4) where amount produced in each time period oy, € {0,C}, C2,C+C2,Cr + f7*,Ch 4 fP7'}

if frv<C), and a, €{0,C},C2,C) +C2,C) + f'}, otherwise.

Theorem 4. Problem 2-ELS-2PCTC is solved to optimality using the above algorithm in O(T*9)

time.

Proof. Refer to Appendix C.
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5. Problem 2-ELS-PCTC with Outsourcing in Both Echelons

In this section, we present an exact algorithm for solving an extension of 2-ELS-PCTC where
outsourcing is allowed in each time period of the planning horizon for both of the echelons. As
typically done in the lot-sizing literature (Atamtiirk and Hochbaum 2001, Sargut and Romeijn
2007), it is assumed that the outsourcing is uncapacitated in both echelons. This also implies
that in each time period and in each echelon, we have two available modules/machines/vehicles

(one capacitated and the other uncapacitated) for production and transportation.

Recall the network flow representation of the two-echelon lot-sizing problem. Since outsourc-
ing is uncapacitated, any non-negative flow in a given period through the outsourcing arc is
considered as a free-arc. Bearing this in mind, we redefine fractional production period (FPP)
as a period ¢ in which either 0 < :(:} 1< Cz; or x; 2> 0. Likewise, a period ¢ is a fractional trans-
portation period (FTP) when either 0 < 27" < C! or 7* > 0. Similar to Theorem 1, we can
easily prove that there exists an optimal solution of 2-ELS-PCTC-O that comprises of a series
of consecutive subplans such that each subplan has at most one FPP. Moreover, within each
subplan of the optimal solution, there exist a series of blocks such that each block has at most
one FTP. This characteristic of the optimal solution again enables us to decompose the overall
planning horizon into smaller subplans and then computing the optimal costs for each of the
subplans. As done in case of 2-ELS-PCTC, 2-ELS-PC2TC, and 2-ELS-2PCTC, the overall opti-
mal cost is computed by finding the best sequence of subplans using a shortest path algorithm.

Henceforth, we focus solely on computing the optimal costs of a given subplan [a;,as, by, bs].

5.1. Computing optimal cost of a given subplan

Similar to the 2-ELS-2PCTC, we observe that within each subplan, there can be several frac-
tional production quantities depending on the number of times full capacitated production
have occurred within the entire subplan. However, only one out of these fractional quantities is
produced during at most one time period t € {ay,...,b; }. We redefine the sets I' := {T Sy
dyypy —7CY >0} and FP:={frv: frv =dy, ,, —7°Ch for 7v €T'}. Again, for each fP* € F?,

we define the set of cumulative production quantities during period ¢ as follows:

By = {71C’p+5f”"“: 7 €40,...,7}, and § € {0,1}}.

Also, =, = proere ot - Using these sets, we again create a network with source node and des-
tination node labeled as (a; —1,1,0) and (bs,2,d,, ,), respectively. For each f»” € F?, we also
have nodes labeled as (t,e,&;, f7") where t € {ay,...,b2}, e € {1,2}, and § € 7. Again, we
create forward arcs only between nodes with same fP* and use the procedure discussed in
Section 3.2 to create the arcs between the nodes of this network. Weights A}, (§,—1, &, f7)
and Ai,k(fk,l,gk,fp’”) are also computed and assigned in the same manner. The major dif-
ference in this algorithm lies in the computation of edge weights A} ;(&,—1,&, type, f**) which
denotes the minimum cost of producing & — &,_; units and transporting p}j , units such that the
demands of period k to [ are satisfied. We now present the recursive equations that computes

A} (Ek—1, & type, f7¥) in polynomial time for a given set of input values and block [k, [, type].
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5.2. Computing A} (&-1,&, type, f>*) for 2-ELS-PCTC-O

Similar to the algorithm of 2-ELS-PC2TC, we are only interested in solutions where there is at
most one FTP within a block [k, [, type]. Therefore, we compute A} (&x—1,&,type, f*) using
the following steps:

Step 1. Computing all possible fractional transportation levels: Let I[I:={r € Z, :
p}f ,—7C! >0} where p}f , is the total amount transported from the first echelon to the second
echelon within block [k, I, type] for a given &,_; and &. We also redefine the set of fractional

transportation values F" :={f": f" = /’Zz —7C}! for e I1}.

Step 2. Computing minimum cost for block [k, [, type] without any FTP: We define

Gflcflvﬁl

ritupe (€65 11,0) as the cost of producing & — &y units and transporting pC; units from

period k upto ¢ for t € {k,...,1}. In time period ¢, we can produce a; € {0,C}, f»*,C} + f**}
units in the first echelon at cost @} (a;), which is defined by:

0, if a,=0
P (C) + 4, if o =C}

Qilon) = P* (") +a, if ;=" and fr0>C)
min {p;"' (f**) +a" o *(f7") + 4%}, i ag=f" and frr<C)
Pt (C)) + a4 + o () + a4, if o =C+ fro.

It should also be noted that when &,_; € =} _; such that 6 =0 and § € =} such that § =0, no
fractional production takes place within the block [k, [, type]. Same reasoning applies to the case
when &,y € Z}_, such that § =1 and § € E} such that § = 1. In both these cases, a; € {0,C} }.
Regarding second echelon decisions, since we are not considering any fractional transportation

in this step, we can either transport 0 or C! units from echelon 1 to echelon 2 during period
ij
pk;lj} which denotes the maximum number of times

t. Again, we let p"** =min{l —k +1,| %

]

transportation can occur at full capacity. The conditions to filter out the infeasible values of &;,
t, and u are same as in case of Step 2 of algorithm for 2-ELS-PC2TC (Section 4.1.1). Based on
the foregoing discussion, we present the following recursive equation where Gk L (t,&, 1, 0)

k.l type

for a given feasible t € {k,...,l}, & € EY, and p € {0,...,u"**} is equal to:

ij

min {Gi@;;j; (t—Lgt—at,u— > ej,O) +Q () + ) (p?’j(c’ﬁ)+qf*j)+%},
ar€{0,CP, PV ,Cr+ PV} i e
sTeq1} e 7€

where H, = hj(s}) + hi(s?) is the holding cost incurred during period ¢, and the values of s}

and s? can be obtained from Table 2.

Step 3. Computing minimum cost for block [k,[,type] with exactly one FTP: Let

Gfk—lvfl

pttype (B &es 1, f7) be a function that computes the minimum cost of producing §; — &1 units

and transporting xC! + f” units from periods k upto ¢ such that demands from periods & to ¢ are
satisfied. Again, in each time period, we can either produce 0, C;, or fP units for some fP € FP.

However, in the second echelon, in each period ¢, in addition to the choices of transporting 0 or
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C! units, we can also transport f7 or C! + f" units. We present the recursive equation below

Ek—1:8 r
to compute G} o (t, &y s f7):

Gikltlysé< 15 Qs b — .] f>+Q1 Qy +Z CJ +q2j)+HfT:

. S’I
min ie

o v ol v 13 € I3
tE{O’C:Tf';{ifp+fp ! Gkkl tlyp(li< _17£t_0[t7/1'_.]7 )+Qt(at +Qf +Z CJ +qt2])+H

JjEST

where H7 is the holding cost incurred at the end of period ¢, and Q?(f") is the cost of trans-

porting/outsourcing the fractional quantity f” in period ¢. More specifically,

2/ pr min p%l(fr) +Qt27lap§72(f +qt 2} if =0 and fr < C’:
Qt (f ) = 2.2/ pr 9.9 )
P (f") 4+ g7, otherwise.
Again, values of ¢, &, and p for which this function is infeasible are similar to the ones discussed

in Section 3.2.2 for 2-ELS-PCTC.

Step 4: Overall Optimal Cost:

A2 (&1, &, type, f7V) = G (1,6, 11, 0), Jnin G t;,,fi(l,&,u,ﬂ)}. 9)

Me{0m137naz} { k.l type
ey

Theorem 5. Problem 2-ELS-PCTC-0 can be solved using the above algorithm in O(T?) time.

Proof. Refer to Appendix D

6. Concluding Remarks

In this paper, we answered an open question related to existence of a polynomial time algorithm
for two-echelon lot-sizing problem with constant capacitated production and transportation in
first- and second-echelon, respectively (denoted by 2-ELS-PCTC). Specifically, we introduced
an O(T") algorithm for 2-ELS-PCTC that generalizes the 2-ELS-PCTC with uncapacitated
(or infinite capacity) transportation studied by Kaminsky and Simchi-Levi (2003), van Hoesel
et al. (2005). We also presented polynomial time algorithms for the following two generalizations
of 2-ELS-PCTC: (a) 2-ELS-PC2TC where two capacitated vehicles of varying capacities are
available for transportation in each time period, and (b) 2-ELS-2PCTC where two capacitated
machines of varying capacities are avaiable for production in each time period. Finally, we de-
veloped an O(T*?) time algorithm for 2-ELS-PCTC with an additional option of uncapacitated
subcontracting for both production and transportation (denoted by 2-ELS-PCTC-0O), which is
a generalization of 2-ELS-PCTC-O with uncapacitated transportation studied by Sargut and
Romeijn (2007). A potential future research direction is to utilize the proposed dynamic pro-
gramming algorithms for obtaining extended formulations using variable redefinition, feasible
sub-optimal solutions and an efficient heuristics, and cutting planes by filtering out several in-
feasible/suboptimal solutions. Also, the following question is still open: For L >3, does there

exist a polynomial time algorithm for L-ELS-PCTC with stationary capacities in all echelons?
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Appendices
Appendix A: Proof for Theorem 2

There are O(T®) subplans, and to find the optimal cost of each subplan, we create a directed acyclic
graph with O(T*) arcs and find the shortest path from the source node to the sink node. The arc
weights AP (&,-1,&,type) are obtained by computing Gi’flftly’sé(t,éhu’"“,O) and Gi’flftlyfi(t,fhum“,l)
for all t € {k,...,l}, & € E, such that & _; <& <&, and p€{0,...,um**}. For a given (t,&;, 1), both
Gi’flftlyfle(t,@,um“,ﬂ) and Gi’flftﬁé(t,&,um“, 1)} are computed in constant time. Since there are O(T?)

number of (¢,&,, 1) vectors, the time taken to compute each arc weight is also O(T?). As a result, the

overall running time of our algorithm for 2-ELS-PCTC is O(T3 x T* x T3), i.e., O(T'°).
Appendix B: Proof for Theorem 3

The key difference between the algorithms for 2-ELS-PCTC and 2-ELS-PC2TC is the computation
of arc weights AP (£,-1,&,type). Notice that the each of the foregoing values are computed by com-
puting G35 0s (8, &, 11,0) and Gy LS (8, &, i, f7) for all t € {k,...,1}, & € =, such that &, <& <&,
p1 €{0,...,pm} and pp € {0,...,p™}, where p7'** =min{l — k + 1, |p;’,/C!|} and p3'*® = min{l —
k+1,|p,/C?]}. For a given set of (t,&,pu, f), functions Gif’lftﬁi(t,@,u, 0) and Gi’fﬁé’i(t,ﬁt,u,ﬂ)
are computed in constant time. Since there are O(T°) possible (t,&,u, f7) vectors, each arc weight
A} (&e-1,&, type) can be computed in O(T°) time. Hence the overall running time of the algorithm for
2-ELS-PC2TC is O(T% x T* x T®), i.e., O(T*3).

Appendix C: Proof for Theorem 4

The key difference between the algorithms for 2-ELS-PCTC and 2-ELS-2PCTC is the number of nodes
and arcs within each network A¢ for a given subplan ¢ = [a;,as,b1,bs]. For each ¢ € {ay,...,ba}, the
cumulative production quantity belongs to the set =;, and the number of elements in =, is bounded from
above by O(T*). This eventually leads to O(T®) nodes and O(T'?) arcs in the directed acyclic graph N¢.
Moreover, computing the arc weights A} (&,_1,&;, type) dominates the computation of A} | (&x—1,&, type)
and A7 (&w—1,&, type), and takes O(T?) time. Since we compute the optimal costs for O(T?) subplans,
the overall running time of algorithm is O(T%) x O(T®) x O(T?3) which is equal to O(T°).
Appendix D: Proof for Theorem 5

We construct a network N for each of the O(7T®) subplans. Since there are O(7?) possible values &, for
each t € {ay,...,by}, there are O(T®) nodes and O(T°) arcs within the graph A'®. The bottleneck in the
construction of N'¢ is the step where arc weights AgJ (&x—1,&, type) are computed and in order to do this we
need to compute values of Gi’f{tlyfé(t,ft, i,0), and Gi’f[tly’sé(t,&,m f7) for all feasible values of (¢,&,, u, f")
vectors. For a given (¢,&,,pu, f") vector, Gif‘l}ﬁé(t,&,uﬁ), and Gi’fl};’i(t,gt,u, f7) are computed in con-
stant time, and since there are O(T*) possible such vectors, each A} | (&_1,&, type) is computed in O(T*)
time. Thus, the time complexity of the algorithm for 2-ELS-PCTC-O is O(T*) x O(T°) x O(T®) which

is equal to O(T13).



