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Abstract

Motivation: Pangenome variation graphs model the mutual alignment of collections of DNA sequences. A set of
pairwise alignments implies a variation graph, but there are no scalable methods to generate such a graph from
these alignments. Existing related approaches depend on a single reference, a specific ordering of genomes or a de
Bruijn model based on a fixed k-mer length. A scalable, self-contained method to build pangenome graphs without
such limitations would be a key step in pangenome construction and manipulation pipelines.

Results: We design the seqwish algorithm, which builds a variation graph from a set of sequences and alignments
between them. We first transform the alignment set into an implicit interval tree. To build up the variation graph, we
query this tree-based representation of the alignments to reduce transitive matches into single DNA segments in a
sequence graph. By recording the mapping from input sequence to output graph, we can trace the original paths
through this graph, yielding a pangenome variation graph. We present an implementation that operates in external
memory, using disk-backed data structures and lock-free parallel methods to drive the core graph induction step.
We demonstrate that our method scales to very large graph induction problems by applying it to build pangenome
graphs for several species.

Availability and implementation: seqwish is published as free software under the MIT open source license. Source
code and documentation are available at https://github.com/ekg/seqwish. seqwish can be installed via Bioconda
https://bioconda.github.io/recipes/seqwish/README.html or GNU Guix https://github.com/ekg/guix-genomics/blob/
master/seqwish.scm.

Contact: egarrisb@uthsc.edu

this relationship by progressive alignment to a graph initially based
on a reference genome (Li ez al., 2020), through a global structuring
of the genome relationships in a neighbor joining phylogenetic tree
(Armstrong et al., 2020), or via creation of a de Bruijn graph based

1 Introduction

A pangenome models the full genomic information of a species or
clade (Garrison, 2019; Medini et al., 2005; Sherman and Salzberg,

2020). In contrast to reference-based approaches that relate sequences
to a particular reference genome, methods that use pangenome refer-
ence systems attempt to model the mutual relationship between
all represented genomes (The Computational Pan-Genomics
Consortium, 2018). Many approaches model the pangenome align-
ment as a pangenome graph (Garrison et al., 2018; Hickey et al.,
2020; Yokoyama et al., 2019). A pangenome graph encodes DNA
sequences as walks through an underlying language encoded in a se-
quence graph (Hein, 1989). In a pangenome graph, variation can be
understood in the context of any part of any included genome
(Eizenga et al., 2020). This lets us avoid the problem of reference bias,
which can be understood as the limitation of analyses to genome
sequences that are similar to a chosen reference genome.

An unbiased pangenome graph would represent the alignment of
all included genomes to all others. Existing methods approximate
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on a fixed k-mer length (Minkin et al., 2016; Sheikhizadeh et al.,
2016; Yu et al., 2021). These methods limit computational costs by
reducing the number of pairwise comparisons, but in turn their
results depend on input genome order, selected reference, guide-tree
topology or k-mer length.

We consider the problem of building a pangenome graph without
these potential sources of bias. Such a graph would be an ideal system to
represent variation between two or more high-quality genomes. Given
the rapid development of complete genome assemblies for humans and
other vertebrates (Nurk ez al., 2021; Rhie et al., 2021), we need a prac-
tical approach that can achieve this for tens to thousands of genomes on
commodity hardware. Here, we present sequwish, an algorithm for the
generation of a pangenome graph from pairwise alignments. Our solu-
tion is simple, but experiments on diverse sequence collections demon-
strate that it easily scales to large pangenome building problems.
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2 Algorithm

In this section, we provide a formal definition of variation graph in-
duction. We then examine the bounds of a naive implementation of
this algorithm. Finally, we propose compression and partitioning
techniques to reduce the space and working memory complexity of
the induction process by a large constant factor modulated by the
degree of sequence divergence in the input pangenome. This yields a
practical algorithm for variation graph induction that can scale to
the largest available pangenomes.

2.1 Variation graph induction

DerFINITION 2.1. Variation graphs are a common formalism to encode
pangenome graphs (Garrison, 2019). In the variation graph
G=(V,&,P), nodes (or vertices) V =wv;...vp contain sequences of
DNA. Each node v; has a unique identifier ; and an implicit reverse com-
plement 7;. A node strand s corresponds to one node orientation. Edges
& = ey ...ej connect ordered pairs of node strands (e; = (s4,s,)), encod-
ing the base topology of the graph. Paths P = p; ...pp describe walks
over node strands (p; =si...sy,), representing the collection of
genomes embedded in the graph.

THEOREM 2.1. A variation graph represents pairwise alignments between
its embedded paths.

ProOF. By Definition 2.1, two paths have identical subsequences where
they walk (or step) through the same series of oriented nodes (e.g.
s152s3). An identical set of path steps is thus equivalent to a sequence
match. Pairwise alignments are by definition collections of character-
level matches between sequences. The variation graph thus models a set
of pairwise alignments between paths in P.

THEOREM 2.2. We can build a variation graph from sequences and pair-
wise alignments. The resulting variation graph fully embeds both the
sequences and all pairwise relationships in the input.

This follows from 2.1. Our input Q =SV S is a set of N DNA
sequences S = g ...gn and their reverse complements S = g7 ...3N.
A match m = (i,j) asserts the aligned equivalence of two characters
in sequences in Q. Pairwise alignments between sequences in Q are
a set of matches A = {1 ...m }. By standard definition, each se-
quence matches its own reverse complement, that is g[i] = gJj] for all
j = |g| — i, and we assume these matches are included in A. The tran-
sitive closure of a match, m™ = {i...j}, is a set of characters in Q
that are transitively linked together by other matches. By definition
of m, each m™ implies a single, identical character c(m™").

We build a graph G inductively. We take the first match in A,
my, and execute a union-find operation to obtain 7]. We add the
character of the match ¢(m7) as a node vy in G, and record the map-
ping from m} — vy. To induce the graph, we take the next unused
match in A : m; & V,'<,>m/+, obtain 7 and add ¢(m}) to G. To allow
the annotation of paths, we record the set of characters in Q that
match to a given node in G in mapping Z=Q — V =my...my,.
We continue until all matches have been used. Finally, we establish
paths (P) by walking them in G using Z, and record edges (£) where
nodes occur successively in paths.

ProoF. After the first step of induction, the graph represents all pair-
wise matches in m]. Each subsequent step includes progressively
more of A, until at completion, all pairwise relationships are
accounted for in V.

The set of alignments represented by a variation graph may be
strictly larger than the set of alignments used to induce it. The
graph must contain at least the set of alignments given in input. In
other words, by definition of G, it cannot contain less match infor-
mation than represented in the set of matches (A). However, the
graph may also contain new implied pairwise relationships that
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Fig. 1. A visual description of variation graph induction. (Top) An alignment graph
model for three sequences and their alignments. Nodes are single characters (DNA
base pairs, of which the forward strand is shown) in individual sequences. Solid
edges link successive characters in each sequence, and are colored (red, green and
blue) to identify each. Dashed edges indicate aligned pairs of characters. (Bottom) A
variation graph model induced from the alignment graph. Each transitive match
closure (gray shaded edges, of increasing darkness) in the alignment graph results in
a single node in the output graph, which is labeled by the rank of the transitive clos-
ure operation that produced it. By recording the full set of match closures, we can
project the sequences in the input through to paths in the variation graph (colored
edges). The unique set of node pairings in the paths provide the edges of the output
graph. Closures 1 and 6 imply pairwise relationships between sequences seq1 and
seq3, and seq1 and seq2, respectively, that are both absent in the input alignments

arise due to transitive match relationships, as shown in Figure 1
for closures 1 and 6.

2.2 Induction algorithm sketch

For the sake of time and space complexity analysis, we consider a
simple algorithm to implement the induction process. The induction
depends on our ability to compute transitive closures of matches
m™*. If A is sorted, we can find the matches of a given character in Q
using binary search, which allows us to compute 7" for each char-
acter. We do so non-redundantly by marking each used character in
Q in an auxiliary data structure X, which could be encoded as a bit-
vector of length |Q|. As we compute the transitive closures, we emit
both the nodes (single characters) of the graph V and the sequence-
to-graph mapping Z, which, like A, consists of match pairs, but ra-
ther than mapping QO — O, maps O — V. As with A, we can sort Z
to obtain random access via binary search. Finally, we derive ele-
ments in P by iterating through the characters of Q and looking up
their mapping in Z using binary search. The edge set £ are the
unique pairs of steps found in P, and can be computed by sorting
pairs of steps in P.

2.3 Naive algorithm bounds
The inductive proof of Theorem 2.2 demonstrates how to build a
variation graph from sequences and their pairwise alignments.
However, a naive algorithm based on this model would require a
very large amount of space. Although our identifier space |S| must
include all of Q, in practice, we only store S, as S can be trivially
computed. Assume an all-to-all alignment of N sequences in A as in-
put, and that all sequences are approximately identical, so that the
induced variation graph has |S|/N nodes. The induction must main-
tain reference to all characters in all input sequences O(|S|), all
character-to-character matches O(|A|) = O(|S|N?), the mapping of
Q into the graph O(|Z|) = O(|S]), the nodes of the graph
O(V|) = O(|S|/N), the size of the edge set O(|€|) ~ O(|S|) and the
set of paths O(|P|) ~ O(|S]). We also maintain the bitvector X to
mark seen characters of Q during graph induction, which requires
O(|S]) bits, equivalent to O(|S|/log2|S|) integer identifiers. In total,
naive Theorem 2.2-based induction would require approximately
O(IS|(N* +1/N + 1/1og>Q + 4)) space, or simply O(|S|N?).
Assuming that we want to build a graph of 100 haploid human
genomes of 3 x 10° bp, where N=100 and |S| ~ 10!, we might
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expect to use approximately 10'° identifiers to store the full model.
Such a design is almost infeasible for inputs larger than a handful of
genomes. For instance, we would need approximately 3 x 10'? iden-
tifiers for just five human genomes. Although it is feasible to com-
pute such a graph using external memory, the approximately 200-
fold increase in space relative to the input renders this clearly
impractical.

Considering the time complexity of induction, we anticipate
O(|A]log|A|) time to sort the match set and O(Vlog|A|) to query it
and compute our V transitive closures. Computing the variation graph
paths P involves converting sequences in S to walks through V. We first
sort the sequence-to-graph mapping array Z in O(|S|log|S|) opera-
tions, and then compute P in O(|S|) queries which each cost
O(log|S|). To obtain unique edges and generate £, we must build and
sort an array of size O(2|P|), and then iterate through it for
O(2|P|log2|P| + 2|P|) operations. In sum, we would expect to require
O(|A|log |A] + Viog |A] + 2(]S| log|S|) + 2(|P|log2|P| + |P|)). Using
our approximate relationships to |S| given previously and simplifying,
we arrive at  O[|S|(2N?log N/ log|S| + (1/N + 4) log |S| + 2+
log(4))]-

Due to our dependence on sorting, and the logarithmic-time cost of
queries, growth in |S| drives Q(|S| log |S|) growth in overall complexity.
As N grows, both time and space complexity are dominated by the
number of alignments, which in the case of our example is O(N?). For
large numbers of highly similar genomes, we may not require all pairs
of alignments to build a graph that contains all pairwise alignments.
Various approaches could be used to reduce the size of A without dis-
rupting the induced graph. We leave these to later work.

2.4 Match compression

As the bounds analysis shows, space requirements make it impracti-
cal to apply a trivial version of Theorem 2.2 to generate a large pan-
genome graph. Therefore, we need a compression approach that
exploits redundancy in the input genomes to reduce the costs of the
algorithm. When working with large numbers of genomes, align-
ments dominate the computational costs. A simple technique is to
generalize matches m = (i,), which are between individual charac-
ters, to range-matches over pairs of ranges of characters in Q. For
highly similar sequences, our expectation is that exact matches will
occur in long runs. If the average pairwise diversity of sequences in
our input is 1/k, we expect exact matches to be around k characters
long. By encoding matches as pairs of ranges of characters,
r=(a,b):a,b=(i,j):i,j € Q, we can obtain an approximately k-
fold compression of A, yielding the range-match array A.

If sorted, A can be treated as an implicit interval tree (Li and
Rong, 2021), which allows queries of containment and overlap in
O(log|A|) time. This compression requires trivial changes to our
graph induction model. To obtain our match transitive closures
(m™), we query A for the range of a single character in Q, comput-
ing the character-level transitive relationships from the relative off-
sets of the ranges in A. Match compression thus reduces our
alignment storage memory bounds by a factor of k without affecting
our time complexity bounds.

The same encoding can be used to replace the sequence-to-graph
mapping Z, yielding Z. Rather than pairs of characters in Q and V,
we record runs of matches between them as range matches.
Although in expectation the length of these matches should be strict-
ly less than k, due to the interruption of the graph by variation be-
tween genomes, this still allows us to reduce the size of Z using runs
of matches between Q and V. Additionally, we store the inverse of
Z, which maps ranges from V — Q, as Z. We use Z to compact
non-branching regions of G into single nodes, and Z to accelerate
our calculation of links in the graph.

2.5 Node compaction

For simplicity, we have thus far presented a character-level model of
variation graph induction. However, range (or run) compression
can also reduce the representation size of the graph. Rather than
recording an identifier for each character in a sequence graph, it is

useful to compact characters that form trivial linear components in
the graph into single nodes. Broadly, the size of nodes will be
bounded by the average distance between variants, which, for pan-
genomes built from ~100 individuals of the same species, often pro-
vides a great reduction in the total number of nodes (and thus
identifiers) required for G and its components.

To compact G, we traverse Q, finding each entry in Z in turn,
recording its start and end in V, which can be understood as a char-
acter vector or string containing all the sequence in the nodes of G.
We subsequently use these markings to subdivide V into a com-
pacted version V' where compacted node boundaries are marked in
an auxiliary bitvector B : |B| = |V| such that the first character in
each compacted node is marked by a 1 and other characters are
marked 0. B allows us to compute compacted node ids using effi-
cient rank operations (Gog et al., 2014).

2.6 Induction partitioning

Although match compression provides an approximate factor k im-
provement in memory bounds for key data structures used in the in-
duction, the approach we present in Section 2.4 requires working
memory in the order of the set of transitive match closures in the
graph. A simple approach to reduce this bound is to divide the in-
duction problem into smaller pieces. We do so by computing the
graph induction for a collection of initial characters in Q. In each
partition, we apply a lock-free parallel union-find algorithm to de-
rive the match closures (Anderson and Woll, 1991), appending
results to appropriate data structures. This partitioning can intro-
duce boundary effects which change the contents of Z and Z by
splitting ranges at the boundaries of our partitions. However, while
this will affect the compressed node definition V', it does not affect
V, and it can be corrected via a post-processing step to sort and com-
pact the id space.

3 Implementation

We have presented a complete model for variation graph induction
from sequences and their pairwise alignments (Algorithm 1). Here,
we describe our specific implementation of this algorithm: sequwish.
In general, our approach uses external memory to elaborate the
graph, taking advantage of the availability of low-latency storage
media, like solid-state drives, to maximize the performance of this
approach.

3.1 Input and output processing

Our implementation reads standard data formats, FASTA or
FASTQ for the input sequences, and PAF (Li, 2018) for pairwise
alignments. It writes the graph in standard graphical fragment as-
sembly (GFA) format (https://github.com/GFA-spec/GFA-spec).

In PAF, the input set of alignments is not directly expressed in
terms of matches between specific characters in Q. Rather, each re-
cord lists the name of the aligned pair of query and target sequences
and offsets in each. To efficiently process the input PAF, we thus
need to build a sequence index that allows us to generate A. In par-
ticular, we build a compressed suffix array (Sadakane, 2000) over
sequence names, that we call seqidx, and provide auxiliary support-
ing data structures that allow us to map between our input and the
abstract concatenation of all input sequences and their reverse com-
plements (Q). We often build graphs from very large collections of
sequences, such as raw sequencing reads or contigs from many thou-
sands of samples. This seqidx avoids the overheads associated with
a hash table on string names of input sequences. To enable highly ef-
ficient random access, we cache the input sequences in a disk-
backed version of Q, into which our queries of sequence name and
offset point. This trades time that might be spent accessing a com-
pressed representation of the input for space in external memory.

For output in GFA, we iterate over nodes in V', writing each as a
node record. Edges are similarly produced from the disk-backed
multiset representing £. The most computationally expensive part of
graph emission is the rendering of the input sequences S as paths P
through the graph. For each input sequence in the seqidx, we walk
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Algorithm 1: The seqwish graph induction algorithm. For the
sake of simplicity, we omit the details of several query
algorithms that interact with the input alignments, the
transitive match closure, implicit interval tree construction
and query, node generation and bitvector rank queries used
in node compaction. Similarly, we omit the details of the
input partitioning that we use to reduce maximum resident
memory requirements.

input: sequences S and their alignment A
output: variation graph G = (V,&,P)
A — MakeMatchIITree (A)//alignment matches
V «— Jllvector containing the set of nodes
X — BitVector (0,|S]|)//seen characters of S
/lfor each character in the input
for i — 1 to || do
/lthis character is not yet in G
if X[1] = 0 then
/lcharacters in § matched to i
m; — GetTransitiveMatches (A, i)
V « AddNode (V, ¢(m;"))//new node in G
j < |V|//the node id or rank in G
for z € m do
X[z] < 1//mark seen character
Z «— ExtendRanges (Z, z, j)//query—graph
Z « ExtendRanges (Z, j, 2)//graph—query
end

end

end
/lset up our § — V mappings
Z «— MakeIITree (Z); Z «— MakeIITree (Z)
/lcompact nodes in V yielding V'
V' — 51— &5 b 0; B~ Bitvector (0,|V])
for i — 1 to |V| do
m «— Overlaps (Z, i)
if m # [ then

B[i] = 1//record a node boundary

V' — AddNode (V', V[b...1])

b «— il//record last node boundary
end

| — ml/lour last set of matching ranges
end

P — &; £ — l/paths and edges

q «— l//for each sequence in the input
for i — 1 to N do

bi—Zij—aqy—0

do

/lextend our path with the next step

(a,b) < Firstoverlap (Z,))

x « NodeMatching (V, B, (a, b))

pi < pi +x//extend the path

j—j+ (b—a)llincrement offset in §
& — EU{(y,x)}//add to our edge set
y « x//record last step

while j < g+ [g;

g < jllincrement our pointer in §

end
return G — (V' , €, P)

through the offsets in S contained in the sequence and look up their
mapping into V' using Z. Range compression allows us to complete
one lookup per range. By definition, each character in S is covered
by only one range in Z. We can thus iterate through the ranges in 2
without considering each character. Following the GFA format, we
are able to independently generate P, as each path is represented on
a separate record in the GFA.

3.2 Key disk-backed data structures

In our implementation, we rely on several basic external memory
kernels. To reduce working memory requirements to an absolute
minimum, we use a disk-backed version of the implicit interval tree
that memory-maps the sorted array of intervals (https://github.com/
ekg/mmmulti). Indexing the implicit interval tree requires a sorting
step which dominates the runtime of our algorithm. We adapt the
current best-performing in-place parallel sorting algorithm, In-place
Parallel Super Scalar Samplesort (IPS*0), to work on a disk-backed,
memory-mapped array (Axtmann et al., 2017). This allows us work
with A, Z and Z in external memory. By storing pairs of numerical
identifiers in the backing array, we are able to generate a disk-
backed multiset model which we use to compute the unique set of
edges & in terms of offsets in V. The graph sequence vector V is sim-
ply written by appending characters to a file. We mark nodes to gen-
erate )V’ using a bitvector kept in main memory, over which we
subsequently generate a rank/select dictionary (Gog et al., 2014) for
support of the final emission of the graph G.

3.3 Short match filter

Building a graph from an all-to-all alignment does not guarantee
that the local structure of the graph is easy to understand. The all-
to-all alignment is not coordinated, with each mapping aligned in
isolation, and in consequence it fails to resolve the indel alignment
normalization problem (Mose et al., 2019). This ambiguity can
introduce deeply looping structures in the graph which collapse
polymorphic microsatellites and other short VNTRs into very small
numbers of nodes with very complex local topologies. Such motifs
can cause problems with downstream analysis. We find that ambi-
guity about the arrangement of very short matches tends to drive
complex local structures in the graph.

We mitigate this issue with a simple filter, sequwish -k, which sim-
ply ignores exact matches that are shorter than k characters. This fil-
ter necessarily increases the size of the induced graph. But, it also
replaces complex motifs shorter than k with single bubbles. In doing
so, it also removes short, expensive matches, reducing the overall
space requirements for seqwish. When set very high, this filter can
be used to generate a coarse, high-confidence graph built only from
very long exact matches which will tend to be unique in the genome.
Although the application of the k > filter can result in a graph that
is relatively ‘under-aligned’, we can further refine it through the ap-
plication of local multiple sequence alignment (Gao et al., 2020) or
graph normalization (https://github.com/marschall-lab/GFAffix). In
a pangenomic context, underalignment caused by k& > match filter-
ing can be mitigated by transitive relationships present in the
pangenome.

4 Results

We evaluate seqwish through application to four pangenomes col-
lected from Arabidopsis thaliana, Homo sapiens, Heliobacter pylori
and Zea mays. This limited survey is intended to demonstrate basic
scaling properties of the method, and its practicality when applied
to real pangenomes. We also consider the effect of the minimum
match length filter described in Section 3.3. Experiments were con-
ducted on compute nodes with 386 GB of RAM and AMD EPYC
7402P processors with 48 vCPUs.

To construct the graph we first generate alignments with wfmash
(https://github.com/waveygang/wfmash), a DNA sequence aligner
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Table 1. Performance of the graph induction algorithm

Species Sequences Haplotypes fasta.Gbp min.match.bp  time.seconds memory.Gbytes disk.Gbytes graph.Gbp Components
A.thaliana 922 16 1.90251 49 468 43.1287 7.1218 0.234284 100
H.sapiens 17478 38 114.627 49 46 268 347.4983 604.4261 4.47126 474
H.pylori 292 250 0.407782 49 777 74.9484 20.2070 0.01421 N
Z.mays 46 289 41 90.2491 49 31043 351.1235 402.8716 13.8838 925

Notes: For each pangenome, we report a single experiment with sequwish -k filter set to 49 bp. From left to right, the columns indicate the species, the number

of sequences (i.e. the number of contigs), number of haplotypes (i.e. number of individuals), the sum of the length of all sequences in Gbp, the length of the short

match filter applied in bp, the time in seconds and the amount of memory and disk space in Gbytes required for the graph induction, the length of the resulting

graph in Gbp and the number of its connected components.
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Fig. 2. Experimental results from the application of sequwish to four different pange-
nomes. Each plot shows the runtime (in hours) versus the average input genome
length calculated as the total length of all sequences in the pangenome divided by
the number of included haplotypes. Multiple minimum identity settings for the map-
ping (wfmash -p) and different minimum match length filter settings (seqwish -k) re-
sult in a collection of graph builds per pangenome input. We compare the runtime
in hours with the size of the resulting graphs relative to the average size of an input
genome in the particular set. Lower limits on pairwise identity result in more com-
pact graphs. Similarly, filtering short matches increases graph size relative to not
(sequwish -k =0, red). The other way around, increasing the sequwish -k parameter
tends to increase the size of the graph

designed specifically for high performance all-to-all alignment of
fully assembled genomes. wfmash combines an algorithm for gener-
ating whole-genome homology maps (MashMap2) (Jain et al.,
2018) with an extension of the wavefront algorithm (Marco-Sola
et al., 2021) capable of obtaining base-level alignments for whole
chromosomes. MashMap2 allows the user to define a homology
length and pairwise divergence, expressed as a percent identity, over
which to generate homology maps. This is useful when constructing
pangenome graphs, because, in contrast to methods that are based
on k-mer chaining (Harris, 2007; Li, 2018), it allows us to query the
homology space of input genomes using two easily interpretable
parameters. The version of wfmash used in these experiments allows
us to align sequences with up to 10% divergence between them, pro-
viding highly sensitive input for our experiments. Our use of wfmash
is pragmatic, and any mapping method capable of generating PAF
with base-level alignments in CIGAR strings is capable of being used
as input to seqwish.

In Table 1, we provide input and constructed graph parameters
for a single parameter setting of wfmash and seqwish, obtaining
graph statistics with ODGI (Guarracino et al., 2022). Figure 2 dis-
plays runtime versus graph size relative to the average input genome
length across the range of parameters chosen for each pangenome.
These provide a consistent set of insights. Reducing the sensitivity of
alignments by increasing the identity threshold results in larger
graphs. Filtering short matches results in larger graphs too, and for
higher divergence collections of genomes, like H.pylori, tends to ob-
literate much of the homology information in the pangenome graph.
This is visible from the fact that the ‘graph length/average genome

length’ ratio grows strongly as k increases. Such a reduction of the
size of the set of matches considered for graph inductions also great-
ly reduces runtime. In all cases, we find that the initial alignment
step takes longer than graph induction.

Although we use disk-backed data structures to represent the
graph, the maximum memory requirements of seqwish are governed
by the largest transitive match closure in the pangenome graph. We
find that our particular partitioning scheme (we compact the graph
in chunks as described in Section 2.6, using 50 Mbp chunks in all
the experiments) does not allow us to complete the graph induction
for P=95 and k=0 for the H.sapiens set, nor for Z.mays with
k < 29, where we run out of working memory. In practice, setting
the chunk size lower tends to resolve this problem, but will also in-
crease runtime. To simplify comparisons between the different par-
ameter settings, we have not re-run these settings with a different
partition size nor on computer nodes with a larger, then different,
amount of RAM.

Our results with these four species-specific pangenomes give a
basic demonstration of how pangenome graphs can be adjusted
through key parameters of alignment and match filtering. These
results are demonstrative of graph induction. In typical applications,
we expect seqwish to be applied as part of a larger process to build
and refine a pangenome graph (Garrison et al., 2022; Liao et al.,
2022).

4.1 Comparison to related graph building methods

We have so far described our method for graph induction, provided
detail on its implementation and demonstrated its performance over
a set of pangenome graph building problems. These provide intu-
ition about seqwish and its behavior. However, the reader may won-
der how the method compares to other similar methods for graph
construction, or what variation might be caused by changes in the
alignment method used.

To focus on these questions, we examine the case of a single
chromosome (chrV) of Saccharomyces cerevisiae for which we have
seven assemblies (Yue et al., 2017). We compute 100 random per-
mutations (Williams, 2009) of these assemblies and provide them to
several graph construction methods, including minigraph (Li et al.,
2020), TwoPaCo (Minkin et al., 2016) and sequwish based on mini-
map2 (Li, 2018) or wfmash (https://github.com/waveygang/wfmash)
alignments.

Of existing methods, TwoPaCo provides a graph in a form that
is similar to seqwish’s. However, it is based on a de Bruijn graph
that must have a relatively low k-mer length, leading to complex
topologies that in our experience cannot be resolved easily by
increasing k. Furthermore, the overlaps between nodes are incom-
patible with the variation graph model, and must be reduced or
‘bluntified’ with additional processing steps to be usable as input to
variation graph tools (Eizenga et al., 2021). Because it is based on a
de Bruijn graph, which is symmetrically constructed from a set of k-
mers and not the sequences themselves, we do not expect TwoPaCo
to be biased with respect to input genome order.

In contrast, minigraph develops a kind of partial order alignment
(Lee et al., 2002) over the minimizers (sparse k-mer set) of input
genomes, and it progressively builds the graph by adding new vari-
ation from each genome in order. We do expect it to be order and
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Fig. 3. Base-pair lengths of graphs built from 100 permutations of yeast chrV. Each
point corresponds to the length of a graph built from a specific permutation and the
given method. We color each point by the first genome in the order (the ‘reference’
in minigraph). A boxplot per first genome group provides the mean and the first and
third quartile intervals for each reference grouping

Table 2. Variance in graph properties across genome input order
permutations

Method u.bp a.bp wnode o.node p.edge o.edge

minigraph 648 967 8112 190 11.6 267 159
seqwish.mm2 609 039 4.08 30692 289 41723 6.32
sequish.wfm 683470 0 28756 0 39080 O
twopaco.k19 1270115 0 26383 0 35284 0

Notes: We report the mean (u) and variance in standard deviations (o) for
graph length (bp), node count (node) and edge count (edge). We show results
from minigraph, TwoPacCo with k=19 (twopaco.k19), seqwish using mini-
map2 alignments (seqwish.mm2) and seqwish using wfmash alignments
(sequish.wfm).

reference (first input) biased, although the degree of bias requires ex-
perimentation to establish.

Finally, sequish itself is by definition unbiased with respect to in-
put order. But, if the alignments are affected by changes in order,
the resulting graph will also change.

We use ODGI to compute the size, node count and edge count of
the resulting graphs (Guarracino et al., 2022). Changes in these sta-
tistics indicate changes in graphs. It also gives an indication of the
scale of the differences, which may indicate how large an effect of a
different construction approach might be. If graph parameters are
the same for two large graphs, we consider them equivalent, which
is not formally correct but provides a sufficient approximation for
this analysis.

As we observe in Figure 3, minigraph indeed generates a distribu-
tion of graph lengths with clusters corresponding to permutations
beginning with the same genome. This suggests that most of the
variation in minigraph’s graph derives from the first genome which
is picked. The graphs are thus biased toward the chosen base refer-
ence. However, this is not the case for the sequwish builds based on
minimap2 and wfmash, which appear to have almost exactly the
same length across all permutations.

In Table 2, we further consider variance in the length, node
count and edge count of all graphs. This shows that, as expected,
minigraph’s output depends markedly on input genome order. We
also find that the minimap2+seqwish configuration is not order-
independent because minimap2 can produce slightly different out-
puts when the reference and query sequences are ordered differently.
This demonstrates that seqwish is only ‘unbiased’ insofar as its input
mappings are. For TwoPaCo and wfmash-+seqwish, we observe no
variation in length. The length of TwoPaCo graphs is significantly
larger due to the repetition in node sequences, which overlap by
k—1 base pairs.

Although this particular study focuses on only a single small eu-
karyotic chromosome, it reveals that our basic understanding of ref-
erence bias in these graph construction methods is correct. By
design, progressive pangenome graph construction methods will be
affected by input genome order. But, other symmetric methods
avoid order bias.

5 Discussion

We have presented a straightforward algorithm to generate a pange-
nome graph from a collection of genomes and alignments between
them. By exploiting a simple model of this algorithm, we provide
computational bounds that give insight into the complexity of the
problem. We then make this approach practical by applying the con-
cept of match compression, which reduces the expected computa-
tional complexity by a factor proportional to the diversity of input
sequences. Our experimental results demonstrate that we can apply
our method to various collections of sequences and alignments. It
easily scales to some of the largest species pangenome construction
problems possible using publicly available, high-quality genome
assemblies. sequwish is a generic sequence graph inducer of potential-
ly many uses. We envision that it can serve as a component in di-
verse sequence analysis and assembly pipelines, and hope that our
thorough description of its core algorithm and functionality will en-
able its reuse by other researchers.

It is also a potentially novel approach. Despite the existence of
many methods for pangenome building, we are not aware of any
comparable method which can losslessly convert an all-to-all align-
ment to a variation graph. This direct relationship allows users to
adjust the shape of the resulting graph by modifying alignment
parameters, allowing the design of custom graph construction proc-
esses based on domain-specific knowledge and potentially manual
curation of assembly alignments. In contrast to existing methods,
which depend on particular structuring of their input (Armstrong
etal., 20205 Li et al., 2020), sequwish is unbiased in that as it directly
and uniformly represents sequence relationships given on input in
the resulting graph. Our comparison with related pangenome graph-
building methods demonstrates that these effects can be significant.
minigraph’s output varies substantially, with ¢ ~ 1.25% of graph
length for a 7-chromosome input with approximately 99.3% pair-
wise identity. Although we did not compare with de Bruijn graph
methods, which are also unbiased with their treatment of input
genomes (Minkin et al., 2016; Sheikhizadeh et al., 2016; Yu et al.,
2021), we believe such methods are fundamentally different in that
because they collapse all exact matches of a given length k. This pre-
vents high-level structuring of patterns of homology and orthology
in the resulting graph, and they furthermore cannot be guided by a
specific alignment set.

Our presentation is necessarily limited, in order to focus on and de-
scribe the unique problem of variation graph induction. Thus, in this
manuscript and our experiments, we have not explored the full prob-
lem of pangenome graph building, which include both the initial align-
ment step and downstream processing of the resulting graph (Liao
et al., 2022). These topics lie outside of the scope of the presented
work, wherein we have focused on a key kernel which is a bottleneck
in the pangenome graph construction process. But, they are important
for readers to consider. Although sequwish perfectly represents its input
alignments, the problem of generating and filtering an alignment set
remains critical, as it determines the structure of the built graph. And
this lossless property does not guarantee that the resulting graph is easy
to work with or navigate; in practice, downstream processing is usually
required to normalize the graph for many applications. We expect to
cover these topics in future work, some of which are ongoing (Garrison
et al., 2022; Liao et al., 2022).

Despite its apparently high costs, the symmetric pangenome con-
struction modality that seqwish presents provides key advantages
over progressive approaches. Although a complete all-versus-all
alignment of a set of genomes is costly, it is trivial to run in parallel.
This feature is unavailable to progressive construction methods,
which necessarily involve a serial introduction of new information
into the graph. Although the total costs of a symmetric alignment
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and pangenome graph construction modality are high, they are in
some sense more manageable. The modular, independent nature of
the hardest part of the computation—the derivation of the align-
ments—can be scaled out to large compute clusters as well as cached
for incremental construction and update of large pangenomes.

We furthermore expect that local giant components will tend to
arise in the alignment graph without requiring a complete pairwise
alignment, suggesting that lessons from graph theory may help to
guide a justified sparsification, or downsampling, of the input
(Janson et al., 1993). This suggests that simple random sampling of
alignments may evoke minimal changes in graph structure, provided
that there are many homologous copies of each locus in the pange-
nome. It will also be possible to apply seqwish to measure at what
level of mapping sparsification we observe changes in the induced
graph. Although this may be infeasible for very large problems, it
will allow us to develop an empirical understanding of how to re-
duce the complexity of the initial alignment step without affecting
the resulting pangenome graph.
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