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Abstract

Climate change causes marine species to shift and expand their distributions, often
leading to changes in species diversity. While increased biodiversity is often assumed
to confer positive benefits on ecosystem functioning, many examples have shown
that the relationship is specific to the ecosystem and function studied and is often
driven by functional composition and diversity. In the northwestern Gulf of Mexico,
tropical species expansion was shown to have increased estuarine fish and inverte-
brate diversity; however, it is not yet known how those increases have affected func-
tional diversity. To address this knowledge gap, two metrics of functional diversity,
functional richness (FRic) and functional dispersion (FDis), were estimated in each
year for a 38-year study period, for each of the eight major bays along the Texas coast.
Then, the community-weighted mean (CWM) trait values for each of the functional
traits are calculated to assess how functional composition has changed through time.
Finally, principal component analysis (PCA) was used to identify species contributing
most to changing functional diversity. We found significant increases in log-functional
richness in both spring and fall, and significant decreases in functional dispersion
in spring, suggesting that although new functional types are entering the bays, as-
semblages are becoming more dominated by similar functional types. Community-
weighted trait means showed significant increases in the relative abundance of traits
associated with large, long-lived, higher trophic level species, suggesting an increase in
periodic and equilibrium life-history strategists within the bays. PCA identified mainly
native sciaenid species as contributing most to functional diversity trends although
several tropical species also show increasing trends through time. We conclude that
the climate-driven species expansion in the northwestern Gulf of Mexico led to a
decrease in functional dispersion due to increasing relative abundance of species with
similar life-history characteristics, and thus the communities have become more func-

tionally homogeneous.
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1 | INTRODUCTION

Biodiversity is often associated with positive effects on ecosystem
functions (Loreau, 1998); however, depending on the specific func-
tion being considered, the relationship between species diversity
and ecosystem functioning can be positive, neutral, or even neg-
ative (Schwartz et al.,, 2000). Evidence suggests that ecosystem
functioning is more closely related to functional diversity (Hooper
et al., 2005), and thus the observed relationship between biodiver-
sity and ecosystem function is driven by the relationship between
biodiversity and functional diversity for a given ecosystem and
function (Mayfield et al., 2010). For ecosystems in which functional
diversity and species diversity are positively correlated, ecosystem
functioning is expected to increase with increasing taxonomic diver-
sity (Petchey, 2000). Understanding the relationship between tax-
onomic and functional diversity is, thus, critical for predicting the
potential consequences of anthropogenic impacts to ecosystems.

In marine ecosystems, climate change is driving large-scale ex-
pansion and distribution shifts for many species (Sorte et al., 2010).
For example, Perry et al. (2005) found that increasing sea tempera-
tures over a 25-year period in the North Sea led to increasing mean
latitude of occurrence, increasing depth of occurrence, or both,
for nearly two-thirds of the fish species observed. While a meta-
analysis of coastal survey data by Pinsky et al. (2013) found that cli-
mate velocity (the rate and direction of climate shifts) significantly
explained fish and invertebrate distribution shifts. Many such dis-
tribution shifts and expansions have led to increasing fish species
diversity in temperate and subtropical ecosystems (Fujiwara et al.,
2019; Hiddink & Ter Hofstede, 2008; Pawluk et al., 2021). As novel
communities are formed due to range shifts, novel interactions be-
tween native and invading species are potentially produced (Van der
Putten et al., 2010). It is, therefore, imperative to understand how
changing diversity due to species range shifts or expansions relates
to changing functional diversity, in order to understand how climate
change will impact ecosystem functioning of marine ecosystems. It
is also important to identify how expanding species may impact the
dynamics of native species and drive trends in changing functional
composition and diversity.

While previous studies have demonstrated evidence of climate-
induced distribution shifts (Collie et al., 2008; Perry et al., 2005;
Pinsky et al., 2013) and increasing taxonomic diversity of marine
fish species (Stefansdottir et al., 2010), few studies to date have ad-
dressed impacts of climate-driven marine distribution shifts on func-
tional composition and diversity (McLean et al., 2018, 2019). In this
study, we address this knowledge gap by assessing the impact of ex-
panding tropical species on fish functional diversity in the bays in the
northwestern part of the Gulf of Mexico. Previous studies have in-
dicated that fish and invertebrate diversity in the bays has increased

during recent years due to the expansion of tropical species asso-
ciated with increasing temperatures and salinities (Fujiwara et al.,
2019; Pawluk et al., 2021). However, it is not yet known how such
expansion has affected the functional composition and diversity.

By analyzing a 38-year survey dataset from the bays of Texas,
we assess the long-term trends in functional diversity and functional
composition of a subtropical coastal ecosystem. In this study, we
consider functional diversity to be the “components of biodiversity
that influence how an ecosystem operates or functions” (Tilman,
2001); therefore, a broad range of traits are considered in the anal-
ysis. A variety of metrics are proposed for characterizing the func-
tional diversity and structure of a community (Cadotte et al., 2011),
with trait-based approaches often being used for characterization
of functional diversity without explicit a priori grouping of species
(Coleman et al., 2015; Laliberté & Legendre, 2010; Silva-Junior et al.,
2017; Villéger et al., 2010). Trait-based approaches allow for the in-
corporation of life-history characteristics (e.g., age at maturation,
maximum size), trophic characteristics (e.g., diet type, trophic level,
feeding mode), and habitat characteristics (e.g., water column po-
sition, salinity preference, temperature preference), which allows
for a more detailed characterization of a species position within
the community, without the restrictive nature of broad functional
groups. Two such trait-based metrics frequently used to characterize
functional diversity include functional richness (FRic) and functional
dispersion (FDis).

Functional richness is given by the minimum convex hull volume
for a multidimensional trait space and measures the range of trait
values along each trait axis, with higher functional richness imply-
ing more diverse trait types within the assemblage (Villéger et al.,
2008). Whereas FRic is informative as to the volume of trait space
occupied, it does not incorporate relative abundances of trait values.
Functional dispersion measures the abundance-weighted mean dis-
tance to the abundance-weighted centroid in trait space (Laliberté &
Legendre, 2010), and because it accounts for the relative abundance
of different trait types, it is informative on whether a community is
dominated by a particular functional type, or by a variety of diverse
functional types. Combining the two metrics allows for a determina-
tion of whether or not trait space has expanded or contracted, and
whether any changes to trait space are significantly impacting the
functioning of the system (i.e., whether new traits are occurring in
high relative abundance).

Although these indices provide some indication of how func-
tional diversity has changed through time, they do not provide in-
sight into which functional types have contributed to the observed
changes, or how individual traits may be changing through time.
To address this issue, community-weighted trait means are used.
Essentially, the mean value of each trait, weighted by the relative
abundance of each species, across all species within the community
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is calculated (Lavorel et al., 2008). By calculating traits means in each
year, temporal trends in trait values can be inferred, allowing for in-
terpretation of how functional composition has changed.

Using a trait-based approach, we seek to address three main
questions: (1) Has increasing species diversity led to increasing func-
tional diversity? (2) How has functional composition changed through
time in response to species expansion? (3) Which species are contribut-
ing most to trends in functional diversity and composition? We address
these questions in three steps: (1) calculation of functional diversity
indices for the bays of Texas in each year and season, (2) calculation
of community-weighted trait means to assess changes to functional
structure, and (3) ordination of species abundances to identify those

species contributing the most to observed trends.

2 | METHODS

2.1 | Data collection

The abundance data for this project were collected over a 38-year
period from 1982 to 2019 as a part of a gillnet survey program con-
ducted by the Coastal Fisheries Division of the Texas Parks and
Wildlife Department (TPWD) (Martinez-Andrade, 2015). Samples
were collected in spring (April-June) and fall (September-November)
from each of the eight major bays of Texas: Sabine Lake, Galveston
Bay, Matagorda Bay, San Antonio Bay, Aransas Bay, Corpus Christi
Bay, Upper Laguna Madre, and Lower Laguna Madre (Figure 1). For
Sabine Lake, sampling did not begin until 1986, while the other seven
bays have been consistently sampled since 1982. In all sampled
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seasons, a total of 45 gillnet samples were collected from each bay.
For determining the location of each sample, the bays were divided
into a 1-minute latitude by a 1-minute longitude sample grid, with
each grid square being further divided into 144 gridlets of 5-second
latitude by 5-second longitude. A stratified cluster sampling design
was used to randomly select individual grid square locations with-
out replacement from the predefined sample grid for each bay, and
gridlet locations within the selected grid square for net placement.
Gillnets comprised four equal length (45.7 m) panels of differing
mesh sizes (76 mm, 102 mm, 127 mm, and 152 mm). Gillnets were set
perpendicular to the shoreline, with the smallest mesh size nearest
to the shore, and allowed to soak from sunset to sunrise for an aver-
age of 13.5 h. For all samples, each individual caught was identified
to species, and concurrent latitude, longitude, and environmental
data were recorded. The environmental data consist of temperature
(Celsius), Salinity, dissolved oxygen (ppm), and turbidity (NTU). Then,
the data were converted into the catch per unit effort (number of
individuals caught per hour; CPUE) for each species.

In addition to species catch per unit effort (CPUE), functional
trait data were obtained from existing sources for each species
observed. Life history and trait data were collected from the data-
base FishBase (Froese & Pauly, 2020), and from the data-integrated
predictive life history model developed by Thorson et al. (2017)
available in the R package “FishLife” (R Core Team, 2018; Thorson,
2019). The “FishLife” package allows for estimation of life-history
parameters by incorporating existing data, life-history correlations,
and similarities among related species, into a multivariate random-
walk model. The functional traits used in this study are shown in
Table 1. These traits were selected to represent aspects of life
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FIGURE 1 Map of gillnet sample
locations. The map depicts the Texas
coastline with sample locations shown as
black dots. An inset map shows the entire
Gulf of Mexico, with the Tropic of Cancer
separating the gulf into tropical and
subtropical regions. Each bay is labeled
with its corresponding bay abbreviation: 265N
Sabine Lake (SL), Galveston Bay (GB),
Matagorda Bay (MG), San Antonio Bay
(SA), Aransas Bay (AB), Corpus Christi 26.0N
Bay (CC), Upper Laguna Madre (UL), and

27.5N+

27.0N+

Lower Laguna Madre (LL)




PAWLUK ET AL.

4 of 59 WI LEY-ECOIOgy and Evolution

TABLE 1 Fish functional traits. Trait abbreviations, descriptions, units (or scale for categorical variables), and the data source for all
functional traits included in the analysis. FB: FishBase species page. For traits with multiple sources, the sources are listed in order of
preference (i.e., if info is not available from source 1 it is taken from source 2, then 3 etc.). When trait data were not available from any of the
listed sources the cell was left blank

Trait abbreviation  Trait description Units or scale Data source
Lmax Maximum observed length (TL) mm FB
Lcom Commonly observed length (TL) mm FB
Lmat Length at maturity (TL) mm (1) FB life-history tool, (2) R FishLife
Amat Age at maturity yrs (1) FB life-history tool, (2) R FishLife
Tmax Maximum reported age yrs (1) FB, (2) FB life-history tool, (3) R
FishLife
Wmax Maximum reported weight kg (1) FB, (2) FB life-history tool, (3) R
FishLife
Linf L infinity, von Bertalanffy mm (1) FB life-history tool, (2) R FishLife
asymptotic length
K von Bertalanffy growth parameter unitless (1) FB life-history tool, (2) R FishLife
t0 von Bertalanffy hypothetical age at yrs (1) FB life-history tool, (2) R FishLife
length-0
M Natural mortality rate unitless (1) FB life-history tool, (2) R FishLife
GenT Generation time yrs (1) FB life-history tool, (2) R FishLife
TrLvl Trophic level unitless (1) FB, (2) R FishLife
MoPos Mouth position 1(inferior), 2(subterminal), 3(terminal), Visual assessment

4(supraterminal), 5(superior)

CauFin Caudal fin shape O(reduced), 1(rounded), 2(truncate), Visual assessment
3(emarginate), 4(lunate), 5(forked),
6(heterocercal)

BdSh Body shape 1(flat - dorsoventrally), 2(elongate - long Visual assessment
and narrow), 3(moderate, fusiform),
4(deep - dorsoventrally)

CrossSec Body cross-section 1(depressed - dorsoventral compression), Visual assessment
2(round), 3(oval), 4(compressed
- lateral)

piscivore Consumes fish 1(Yes), O(No) FB

invertivore Consumes invertebrates 1(Yes), O(No) FB

herbivore Consumes algae or other plants 1(Yes), O(No) FB

detritivore Consumes detritus 1(Yes), O(No) FB

Pos Water column position 1(Near-shore/reef associated), FB

2(pelagic-neritic), 3(pelagic-oceanic),
4(benthopelagic), 5(demersal)

RepGuild Parental care (based on O(open water/substratum egg scatterers), FB
reproductive guild) 1(brood hiders), 2(nest guarders),
3(clutch tenders), 4(external brooders),
5(internal live bearers)

Temp Preferred temperature, mean Celsius (1) FB, (2) R FishLife
temperature of occurrence

MinTemp Minimum temperature in which Celsius FB
species is observed

MaxTemp Maximum temperature in which Celsius FB
species is observed

TempRng Temperature range (Maximum Celsius Calculated from other traits
- Minimum)
Sal Salinity preference O(freshwater), 1(freshwater/brackish), FB

2(freshwater/marine/brackish),
3(marine/brackish), 4(marine)
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history, diet, and niche utilization. All non-numeric traits were con-
verted to numerical traits, following an ordinal scale, in order to
simplify the calculation of functional diversity indices and mean
trait values, as many analyses do not allow for mixed data types,
as well as to improve interpretability for categorical trait means. It
is important to note that using Gower's dissimilarity would allow
for the calculation of functional diversity indices with mixed data
types; however, the mean trait values for categorical variables
would then be calculated as the most commonly occurring trait
value. We, thus, used the conversion to numerical traits in order
to be able to track how relative abundances of categorical values
have changed through time, rather than simply determining the

most common category in each year.

2.2 | Functional diversity indices

In order to assess the functional impact of tropical species expansion
into the bays of Texas, estimates of two functional diversity indices
were calculated for each bay and year for both spring and fall assem-
blages. Functional richness (FRic) provides a measure of the volume
of trait space occupied by a community, with higher FRic implying a
wider range of trait values along one or more trait axes (Villéger et al.,
2008). While functional richness can provide insight into the range
of functional types within a community, it does not incorporate rela-
tive abundance of different trait types. Functional dispersion (FDis)
addresses this issue by incorporating species relative abundance and
their position in trait space to determine how clumped or dispersed
community abundance is within the occupied trait space (Laliberté &
Legendre, 2010). Prior to calculating the functional diversity indices,
species that were encountered fewer than three times throughout
the study period were removed from the dataset to limit the influ-
ence of very rare species. Calculations for FRic and FDis were done
using the dbFD function within the “FD” package in R (Laliberté
et al., 2014; R Core Team, 2018). This function uses Gower's dissimi-
larity as opposed to Euclidean distance in calculating the FD indices
when there are missing data, as in our case. Additionally, a correction
method must be specified when distances cannot be represented
as Euclidean distances for use in the principal coordinates analysis
(PCoA) needed for calculating the indices. In our case, the “lingoes”
correction was employed (Lingoes, 1971).

In order to assess the significance of any temporal trends in
FRic and FDis, linear models were fit for each bay and season, with
the metric as the dependent variable and year as the independent
variable. For FRic, the natural log of FRic was used as the response
variable to stabilize the variance. To assess spatial and seasonal dif-
ferences in functional diversity, analysis of variance (ANOVA) was
used with the following equation: metric ~bay + season, where met-
ric is either logFRic or FDis, bay is a categorical variable distinguish-
ing between bays (arranged from north to south, with Sabine Lake
being the northernmost bay and Lower Laguna Madre being the
southernmost bay), and season being a categorical variable, either
spring or fall.
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2.3 | Analysis of trait means
Calculation of functional diversity metrics is informative as to
whether a community has become more or less functionally diverse
but provides no information on which traits predominate within the
community, or how traits may be changing through time. In order
to characterize the functional composition and assess the signifi-
cance of temporal trends in trait changes, community-weighted
mean (CWM) trait values were calculated for all functional traits in
each year and bay for both spring and fall assemblages. Community-
weighted trait means are calculated as the mean trait value for all
species within the community, weighted by species abundance (i.e.,
more abundant species have stronger influence on the mean trait
value). Abundance-weighted trait means were calculated using the
“functcomp” function within the “FD" package (Laliberté et al., 2014)
in R, which takes a species by trait matrix, and site by species abun-
dance matrix and returns the community-level weighted mean for
each trait within the trait matrix at each site. For the purposes of this
analysis, “sites” were a given year within a given bay, for each season.
After obtaining a time series of CWM trait values for each
bay and season, it was possible to statistically test for significant
changes in mean trait values within the community, thereby giving
an indication of how the functional composition of the assemblage
has changed through time. Because many traits showed non-linear
trends, significance of trait changes was tested by grouping data by
decade and performing analysis of variance (ANOVA) to test for sig-
nificance differences in mean trait value among decades. To avoid
excessive testing and inflated experiment-wise error rate, only se-
lected traits were tested for temporal trends. In particular, traits that
were related to life-history strategy, trophic relationships and envi-
ronmental relationships were tested in order to identify which life-
history types are contributing to changing functional diversity and
identify whether trait data were reflective of increasing presence of
warm-water-associated predators. The traits selected were trophic
level, maximum temperature, piscivory, age at maturity, natural mor-
tality, maximum age, L, generation time, and parental care.

2.4 | Abundance analyses

Principal component analysis (PCA) was used on CPUE data to
identify which species contributed most to changing abundances
through time within each bay and season. The “prcomp” function in
R was used for calculating the principal components. Species were
then ranked by the magnitude of their PC1 and PC2 loadings (i.e.,
highest magnitude has rank 1, second highest magnitude has rank
2, etc.). Ranks were summed across all bays for each season, with
the species having the lowest rank sum contributing most to chang-
ing abundances within the bays. Temporal trends in abundance for
species identified as important by PCA are shown in the results sec-
tion. Additionally, species were classified in terms of occurrence
(temperate, subtropical, or tropical) and abundance trends for the
most commonly occurring tropical species were examined in order
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to assess whether there was evidence of tropical species expansion.

Species occurrence was classified based on the classification listed

on FishBase.
3 | RESULTS
3.1 | Functional diversity indices

For both spring and fall, functional diversity indices were found
to vary across space and through time. Functional richness (FRic)
showed an increasing trend across all bays in both spring and fall
(logFRic ~ Year, p = .0018 and p < .0001 for spring and fall, re-
spectively, Figure 2a). Functional dispersion (FDis) decreased sig-
nificantly through time in spring (p < .0001), but not fall (p = .404).
Although fall did not show a significant linear trend, there appeared
to be non-linear trend in fall, with FDis initially decreasing, and sub-
sequently increasing (Figure 2b). Natural log of functional richness
was significantly different among bays (p < .0001), but not among
seasons (p = .324). Although significant differences in functional
richness were evident among bays, no clear spatial pattern was evi-
dent (Figure 2c, Table 2). For functional dispersion, both among bay
differences (p < .0001) and between season differences (p = .0005)
were highly significant. There was a clear pattern of higher FDis

in the north compared to the south (Figure 2d, Table 3), meaning
that bays in the south were more strongly dominated by fewer trait
types, while in the north assemblages were somewhat less clumped
in trait space (although overall, FDis was relatively low for all bays).
Functional dispersion was generally higher in fall than in spring, sug-
gesting that for a given bay, the fall assemblage was less clumped in

trait space.

3.2 | Analysis of trait means

Community-weighted mean trait values were calculated for all
functional traits in each bay and year for each season separately,
tables containing all community-weight trait means are presented
in Appendix: Tables A1 and A2. Nine functional traits were se-
lected for testing of significant temporal and seasonal trends:
trophic level, maximum temperature, piscivory, age at maturity,
natural mortality, maximum age, L infinity, generation time, and
parental care. All nine traits had significant decade and season
terms at an alpha of 0.05, with p-values ranging from a maximum
of .0002 to a minimum of 2.56 x 107*%* (effectively 0). Tukey’s
honestly significant difference (Tukey’s HSD) for traits by decade
and season are shown in Tables 4 and 5, respectively. ANOVA ta-
bles are shown in Appendix: Tables A3-A11. Mean trophic level,
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TABLE 2 Tukey’s HSD for FRic. Tukey’s honestly significant difference among bays for (a) spring and (b) fall functional richness

FRic GB MG SA

(a) Spring
SL <0.0001 0.2160 <0.0001
GB 0.0007 0.9907
MG <0.0001
SA
AB
cc
uL

(b) Fall
SL 0.5681 0.0015 <0.0001
GB 0.3195 0.0001
MG 0.1967
SA
AB
cc
UL

AB cc UL LL
0.9992 0.0017 1 0.0920
<0.0001 0.1450 <0.0001 0.0030
0.5184 0.7312 0.2376 0.9999
<0.0001 0.0132 <0.0001 0.0001
0.0095 0.9998 0.2832
0.0017 0.9146
0.1008
0.398 <0.0001 1 0.3856
1 0.0016 0.5222 1
0.4842 0.6241 0.0009 0.4979
0.0003 0.9966 <0.0001 0.0003
0.0044 0.3522 1
<0.0001 0.0048
0.3402

Note: Table shows the adjusted p-value for a given comparison (e.g., difference in FRic between Sabine Lake and Galveston Bay). Cells containing
p-values significant at the 0.05 significance level are in bold. Bay abbreviations are as follows, SL: Sabine Lake, GB: Galveston Bay, MG: Matagorda
Bay, SA: San Antonio Bay, AB: Aransas Bay, CC: Corpus Christi Bay, UL: Upper Laguna Madre, LL: Lower Laguna Madre.

TABLE 3 Tukey’s HSD for FDis. Tukey’s honestly significant difference among bays for (a) spring and (b) fall functional dispersion

FDis GB MG SA

(a) Spring
SL 0.6385 0.9937 <0.0001
GB 0.9720 0.0259
MG 0.0006
SA
AB
cc
uL

(b) Fall
SL 0.0032 0.0142 <0.0001
GB 0.9999 0.0060
MG 0.0012
SA
AB
cc
UL

AB @c UL LL

0.9678 0.0004 <0.0001 <0.0001
0.9951 0.1272 <0.0001 <0.0001
1 0.0059 <0.0001 <0.0001

0.0018 0.9991 <0.0001 0.5148
0.0145 <0.0001 <0.0001

<0.0001 0.1875

0.0005
0.0003 <0.0001 <0.0001 <0.0001
0.9989 <0.0001 <0.0001 <0.0001
0.9698 <0.0001 <0.0001 <0.0001
0.0421 0.1320 <0.0001 <0.0001
<0.0001 <0.0001 <0.0001

<0.0001 0.1050
<0.0001

Note: Table shows the adjusted p-value for a given comparison (e.g., difference in FDis between Sabine Lake and Galveston Bay). Cells containing
p-values significant at the 0.05 significance level are in bold. Bay abbreviations are as follows, SL: Sabine Lake, GB: Galveston Bay, MG: Matagorda
Bay, SA: San Antonio Bay, AB: Aransas Bay, CC: Corpus Christi Bay, UL: Upper Laguna Madre, LL: Lower Laguna Madre.

maximum temperature, piscivory, maximum age, L infinity, and gen-
eration time all increased through time and were higher in spring
than in fall (Figure 3a-c,f-h). Natural mortality decreased through
time and was significantly lower in spring than in fall (Figure 3e),
which was expected, given that larger, longer lived individuals tend

to have lower natural mortality rates. Age at maturity and parental
care showed a “U”-shaped trend (Figure 3d,i), with initial decreases
and subsequent increases, likely indicative of increased equilibrium
strategists (i.e., species with well-developed parental care and de-
layed maturity) in more recent years.
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TABLE 4 Tukey's HSD for traits - Decade. Tukey's honestly significant difference among decades for (a) Trophic level, (b) Maximum
temperature, (c) Piscivore, (d) Age at maturity, (e) Natural mortality, (f) Maximum age, (g) Asymptotic length (L), (h) Generation time, and (i)

Parental care

Tukey’s HSD for traits - decade

(a) Trophic level

1990s 2000s 2010s
1980s 0.9257 0.4616 <0.0001
1990s 0.8002 <0.0001
2000s 0.0001
(c) Piscivore

1990s 2000s 2010s
1980s 0.1659 0.1647 <0.0001
1990s 1 0.0001
2000s 0.0002
(e) Natural mortality

1990s 2000s 2010s
1980s 0.1256 0.7883 <0.0001
1990s 0.5213 0.0452
2000s 0.0004
(g) Asymptotic length

1990s 2000s 2010s
1980s <0.0001 0.0002 <0.0001
1990s 0.9645 0.8788
2000s 0.6141
(i) Parental care

1990s 2000s 2010s
1980s 0.006 0.0082 0.9965
1990s 0.9997 0.0054
2000s 0.0075

(b) Maximum temperature

1990s 2000s 2010s
1980s 0.9775 0.0321 <0.0001
1990s 0.0578 <0.0001
2000s <0.0001
(d) Age at maturity

1990s 2000s 2010s
1980s 0.557 0.2094 0.1884
1990s 0.9013 0.0021
2000s 0.0001
(f) Maximum age

1990s 2000s 2010s
1980s <0.0001 0.0041 <0.0001
1990s 0.4290 0.9991
2000s 0.5142
(h) Generation time

1990s 2000s 2010s
1980s 0.0003 0.0039 <0.0001
1990s 0.8734 0.9217
2000s 0.5064

Note: Table shows the adjusted p-value for a given comparison (e.g., difference between 1980s and 1990s). Cells containing p-values significant at the

.05 significance level are in bold.

3.3 | Abundance analyses

Principal component analysis was run on the species abundance
data for each season and bay, to identify which species were con-
tributing most to temporal trends in functional diversity and trait
means. Tables showing the total number of individuals caught
throughout the study period for each species, and the proportion
of total catch by species are presented in Appendix: Tables A12 and
A13. Species were ranked using PCA to identify the most impor-
tant species contributing to changing assemblage structure in each
season. The abundances for the 15 most important species in each
season are shown in Figure 4. In addition to the species identified as
important by PCA, the most commonly encountered tropical species
are identified, and catch rates are shown in Figure 5. The six most
commonly encountered tropical species are, respectively, Cownose

ray (Rhinoptera bonasus), Common snook (Centropomus undecimalis),
Scalloped hammerhead (Sphyrna lewini), Inshore lizardfish (Synodus
foetens), Gulf pipefish (Syngnathus scovelli), and Irish pompano
(Diapterus auratus). All but Inshore lizardfish show increasing catch

rates through time.

4 | DISCUSSION

In this study, we found that increasing species diversity (Pawluk
et al., 2021) is associated with increasing functional richness, but
stable or decreasing functional dispersion (Figure 2). The trait
analysis indicated that these trends were predominantly driven by
increasing prevalence of large, long-lived, later-maturing, and warm-

water-associated species (Figure 3). Abundance analyses confirmed
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that these trends were driven both by greater abundance of resident
species with these functional traits, as well as increasing prevalence
of tropical species into the bays in the northwestern Gulf of Mexico

(Figures 3 and 4). Although species characterized as subtropical

TABLE 5 Tukey's HSD for traits - season. Tukey’s honestly
significant difference among spring and fall for (a) Trophic level, (b)
Maximum temperature, (c) Piscivore, (d) Age at maturity, (e) Natural
mortality, (f) Maximum age, (g) Asymptotic length (L), (h) Generation
time, and (i) Parental care. Table shows the adjusted p-value for a
given comparison (e.g., difference between 1980s and 1990s)

Tukey’s HSD for traits - season
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make up the vast majority of the assemblage, the proportion of total
catch made up of tropical species increased 1.8-fold when compar-
ing the period of 1982-2000 to 2001-2019 (Appendix: Table A14),
and the individual trends for the most widely encountered tropical
species showed increasing occurrence through time.

Along the Texas coast, as in many marine ecosystems (Collie et al.,
2008; Hiddink & Ter Hofstede, 2008; Perry et al., 2005), climate
change has led to shifts in the spatial distributions and abundances
of invertebrates and fishes that yield an overall increase in species
diversity (Fujiwara et al., 2019; Pawluk et al., 2021). While biodiver-
sity is often thought to confer benefits on ecosystem functioning
through a positive correlation with functional diversity (Hooper

Trait p-value et al., 2005), the relationship between species and functional di-
Trophic level <.0001 versity often differs across ecosystems and functions considered
Maximum temperature <.0001 (Cadotte et al., 2011). Therefore, an increase in species diversity
Piscivore <.0001 does not guarantee increased ecosystem services and functioning.
Age at maturity <0001 The observed increase in FRic found in this study implies new values
Natural mortality <0001 along one or more trait axes within the fish assemblages of the Texas
. bays (Villéger et al., 2008). The observed increase in functional rich-
Maximum age <.0001 X . . . .
ness with a concurrent decrease in functional dispersion suggests
Asymptotic length .0002 X X
that, while new functional types may have entered the bays, the
SRS SO majority of the species entering the bays are functionally redun-
Parental care <.0001 dant. Therefore, the functional benefit of the increasing biodiversity
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FIGURE 4 Abundance of top-ranked species. Average catch per hour data and loess trend is shown for the top 15 ranked species, in
spring (blue triangles, solid black line) and fall (green dots, dashed black line), for (a) Hardhead catfish (Ariopsis felis), (b) Black drum (Pogonias
cromis), (c) Red drum (Sciaenops ocellatus), (d) Spotted seatrout (Cynoscion nebulosus), (e) Gizzard shad (Dorosoma cepedianum), (f) Gafftopsail
catfish (Bagre marinus), (g) Ladyfish (Elops saurus), (h) Striped mullet (Mugil cephalus), (i) Spot (Leiostomus xanthurus), (j) Sheepshead
(Archosargus probatocephalus), (k) Alligator gar (Atractosteus spatula), () Southern flounder (Paralichthys lethostigma), (m) Gulf menhaden
(Brevoortia patronus), (n) Atlantic croaker (Micropogonias undulatus), (o) Bull shark (Carcharhinus leucas), and (p) Gray snapper (Lutjanus griseus)
(note: there are 16 plots as Bull shark was in the top 15 in spring but not fall, and Gray snapper was in the top 15 in fall but not spring)

resultant from tropical species expansion may be somewhat limited.
However, functional redundancy has been shown to increase eco-
system stability and resilience (Biggs et al., 2020), and therefore,
increasing species diversity, coupled with stable or decreasing FDis,
may indicate stability and resilience for those functions provided by
the most abundant functional types.

The functional types increasing in prevalence, as determined

by the trait analyses, were those whose trait values were associ-

ated with being larger, slower maturing, longer lived, and associated

with warmer temperatures (Figure 3). These trait types correspond

to periodic (e.g., black drum (Pogonias cromis), red drum (Sciaenops

ocellatus), ladyfish (Elops saurus), and gray snapper (Lutjanus griseus))
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and equilibrium (e.g., bull shark (Carcharhinus leucas), cownose ray,
and bonnethead shark (Sphyrna tiburo)) strategists on the trilateral
life-history continuum (Winemiller & Rose, 1992), or K-selected on
the r-K continuum (Pianka, 1970). Both periodic and equilibrium
strategists are relatively large and long-lived, with the main distinc-
tion being between a higher investment in fecundity for periodic
strategists, and in parental care for equilibrium strategists, produc-
ing fewer highly developed offspring. The trait analysis found an
initial decrease in the community-weighted mean for parental care,
followed by an increase (Figure 3i), which suggests that initially, pe-
riodic strategists were increasing in relative abundance, followed
by a period of increasing relative abundance of equilibrium strat-
egists as well. An increase in k-selected species is consistent with
previous findings that most Atlantic species fall more toward the
periodic endpoint of the trilateral continuum (Vila-Gispert et al.,
2002), as well as with a previous finding showing a shift in domi-
nance from r-selected species to K-selected species in an estuary
within the English channel response to climate warming coupled
with the warm phase of the Atlantic Multi-decadal Oscillation
(AMO) (McLean et al., 2019).

The observed increase in abundance of periodic and equilib-
rium strategists (e.g., red drum, ladyfish, bull shark) likely results
from a bottom-up trophic cascade driven by two main mechanisms:
(1) relaxed abiotic filter (increasing temperature) removing physio-
logical barrier to expansion, and (2) relaxed biotic filter (increased

1990 2000 2010 2020 1990 2000 2010 2020

Year

abundance and diversity of invertebrates) minimizing competition
with resident species, which would allow for successful establish-
ment by expanding species. A previous study found invertebrates
to be highly important forage species for abundant predators in the
Gulf of Mexico (Fujiwara et al., 2016). In this study, approximately
97% of the species included in this study, for which diet data were
available, incorporate invertebrates into their diet to some extent.
The increasing invertebrate diversity and abundance within the bays
(Fujiwara et al., 2019), coupled with increasing temperatures may
have allowed for the expansion of both tropical and subtropical in-
vertivores which could have led to greater abundance of piscivores
within the bays.

The principal component analysis (PCA) identified which spe-
cies were contributing most to changing abundance, and thus
changing trait means (Figure 4). The species contributing most to
changing abundance consisted mainly of several common sciaenid
species (e.g., red drum, black drum, Atlantic croaker (Micropogonias
undulatus), and spotted seatrout (Cynoscion nebulosus)) as well as
several expanding tropical species (e.g., bull shark, gray snapper,
and gafftopsail catfish (Bagre marinus)). Most species appear to
show either stable or increasing trends, although Southern floun-
der (Paralichthys lethostigma) shows a strong decreasing trend. The
fact that most species show stable or increasing trends is indic-
ative that the changing trait means are due to increasing abun-
dance of those trait types, as opposed to decreasing abundance
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of opposite trait types (e.g., decreasing abundance of small fish
would increase the relative abundance of large fish without actu-
ally changing the abundance of large fish). The consistent decline
in Southern flounder is probably due, at least in part, to rising tem-
peratures. Southern flounder is known to exhibit temperature-
dependent sex determination, whereby warmer temperatures can
lead to masculinization of the population (Honeycutt et al., 2019),
and temperature is known to affect recruitment in some estuaries
(Erickson et al., 2021). However, temperature may not be solely re-
sponsible, both commercial and recreational fisheries significantly
impact southern flounder populations through bycatch and target
fishing, respectively (Matlock, 1982). In general, the trait means
for the most important species did not significantly differ from
the overall trait means, suggesting that these species are likely
contributing most to changing abundance due to their high rel-
ative abundance (i.e., most abundant species contribute most to
changing abundance).

Our results indicate that climate change is important in driving
fish assemblage shifts in the northwestern Gulf of Mexico because
of the ways tropical and subtropical species are shifting their dis-
tributions. However, many other anthropogenic factors may also
be contributing to ecosystem change at the same time. For exam-
ple, recreational and commercial fishing can significantly impact
fish population dynamics (Radford et al., 2018), and the extent of
their impact is dependent on the life-history strategies of the fish
(Fujiwara, 2012). Thus, fishing pressure may impact local fish com-
munity composition and diversity (Farriols et al., 2017; Pérez-Matus
et al., 2017). In Texas, total recreational fishing landings for sport
boat anglers decreased through time from 1974 to 2008 (Green
& Campbell, 2010). A decrease in recreational fishing mortality
for sport fish may have contributed to increasing abundance of
large, long-lived species, which were shown to have increased in
this study. Species such as red drum, spotted seatrout, sheepshead
(Archosargus probatocephalus), and black drum are commonly tar-
geted by recreational fishers and were shown to be increasing in
abundance in our study.

In addition to recreational fishing pressure, Texas coastal fish
are impacted by commercial fishing pressure by the Gulf of Mexico
shrimp fishery in the form of bycatch mortality. While total commer-
cial fisheries landings (by weight) in Texas remained relatively stable
for the period of 1981-2001, total finfish landings have increased
through time, with species such as black drum, flounder species, and
sheepshead being frequently caught as bycatch (Culbertson et al.,
2004). Increasing fisheries pressure is generally thought to neg-
atively impact biodiversity (Hall et al., 2006); however, the impact
of bycatch mortality on a few widely abundant species may have
allowed for proliferation of otherwise excluded species.

In addition to changes in fishing pressure, anthropogenic impacts
to habitat may have contributed to changing community composi-
tion. For example, the number of oil platforms in the Gulf of Mexico
increased dramatically through time peaking at approximately
4,000 active platforms in the Gulf of Mexico in 2007 (Priest, 2007).

Although active platforms have decreased to 1,862 as of April, 2019
according to the Bureau of Safety and Environmental Enforcement,
many decommissioned platforms have been converted into arti-
ficial reef habitat (BSEE, 2021). Both active and decommissioned
oil platforms serve as important habitat for both reef-associated
and pelagic species (Reynolds, 2015; Stanley & Wilson, 1997), and
may serve as stepping stones, increasing species dispersal capacity
(Sammarco et al., 2004). Tropical species may, therefore, have gained
increased access to the bays of Texas through time as a result of
the increasing presence of oil platforms; however, characterization
of the communities present on oil platforms near Texas bays showed
little overlap among the species observed at platforms, and those
encountered in this study (Rooker et al., 1997). It is, therefore, un-
likely that oil platforms are the main factor driving increasing species
diversity in Texas bays, although it may be one contributing factor.

Another anthropogenic impact that may have contributed to
changing coastal ecosystems is increased nutrient input through
agricultural runoff. Increased fertilization from agriculture along the
Mississippi River has led to increasing nitrogen loading in the Gulf
of Mexico (Goolsby et al., 1999; Tian et al., 2020). If increased nu-
trient input led to increased primary productivity, it could feasibly
lead to increased fish production, and possibly increasing diversity.
An increase in abundance of prey fish species could potentially de-
crease competitive pressures, allowing for expansion of previously
excluded species; however, data from the Gulf of Mexico show no
evidence of long-term change in net primary production (Muller-
Karger et al., 2015).

Overall, this study found that increasing species diversity of
Texas Gulf coast fishes has been accompanied by a reduction in
functional diversity, with long-lived, large, predatory species in-
creasing in prevalence. Changes in community structure, includ-
ing greater prevalence of tropical species, may have altered the
intensity of species interactions, such as competition and pre-
dation, with negative effects on certain native species. Evidence
from this study further suggests that climate change is one of the
important factors contributing to the changing fish communities,
although the observed changes are likely the result of many fac-
tors acting in concert. The results observed in this study are likely
not unique to Texas, as many coastal ecosystems are currently
experiencing shifts in the geographic distributions of marine spe-
cies (Perry et al., 2005; Wernberg et al., 2016). Future research
is needed to identify whether the pattern of functional homoge-
nization and/or decreasing functional diversity following species
expansion is consistent across other subtropical and temperate

coastal ecosystems.
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TRAIT ANOVA RESULTS FOR DECADE AND SEASON

Trophic level

TABLE A3 ANOVA results for Trophic level. Standard ANOVA table for the model of Trophic level - Decade and Season, showing
degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 0.587 0.1957 14.87 2.4 %1077
Season 1 1.025 1.0246 77.84 <2.0x107
Residuals 595 7.832 7.832

Maximum temperature

TABLE A4 ANOVA results for Maximum Temperature. Standard ANOVA table for the model of Maximum Temperature - Decade and
Season, showing degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 0.874 0.2914 23.31 2.82x 107
Season 1 0.399 0.3991 31.92 249 %1078
Residuals 595 7.439 0.0125

Piscivore

TABLE A5 ANOVA results for Piscivore. Standard ANOVA table for the model of Piscivore - Decade and Season, showing degrees of
freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 0.304 0.1013 13.32 20x107®
Season 1 1.992 1.9921 261.88 <2x107%
Residuals 595 4.526 0.0076

Age at maturity

TABLE A6 ANOVA results for Age at maturity. Standard ANOVA table for the model of Age at maturity - Decade and Season, showing
degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 1.07 0.36 7.075 .0001
Season 1 36.18 36.18 717.707 <2.0x 107"
Residuals 595 29.99 0.05

Natural mortality

TABLE A7 ANOVA results for Natural mortality. Standard ANOVA table for the model of Natural mortality - Decade and Season,
showing degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 0.0350 0.0117 8.561 1.43x 107
Season 1 0.7662 0.7662 562.561 <2.0x 107

Residuals 595 0.8104 0.0014
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Open Access,

Maximum age

TABLE A8 ANOVA results for Maximum age. Standard ANOVA table for the model of Maximum age - Decade and Season, showing
degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 454 151.4 9.496 3.90x 1077
Season 1 357 357.2 22.396 2.77 x 1076
Residuals 595 9489 15.9

TABLE A9 ANOVA results for L. Standard ANOVA table for the model of L infinity - Decade and Season, showing degrees of freedom,
sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 742,723 247,574 10.97 5.08x 107
Season 1 310,067 310,067 13.74 .0002
Residuals 595 13,426,370 22,565

Asymptotic length (L_)

TABLE A10 ANOVA results for Generation time. Standard ANOVA table for the model of Generation time - Decade and Season,
showing degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 48.6 16.18 8.38 1.83x107°
Season 1 38.9 38.85 20.12 8.73x107°¢
Residuals 595 1149.0 1.93

Generation time

TABLE A11 ANOVA results for Parental care. Standard ANOVA table for the model of Parental care - Decade and Season, showing
degrees of freedom, sum of squares, mean squared error, F-statistic, and p-value for the given factor

Degrees of freedom Sum of squares Mean squared error F-value Pr(>F)
Decade 3 4.38 1.46 7.05 .0001
Season 1 39.49 39.49 190.61 <2.0x 107
Residuals 595 123.29 0.21

Parental care

TABLE A12 Species catch data by time period. Total catch in number of individuals by species for all species included in the functional
diversity analyses. Data are shown for two time periods (1982-2000 and 2001-2019). A column for occurrence is included to indicate
whether species are temperate, subtropical, or tropical

Total Catch Total Catch Total Catch
Species (Latin name) Species (common name) Occurrence (1982-2000) (2001-2019) All Years
Pogonias cromis Black drum Subtropical 182,521 246,787 429,308
Ariopsis felis Hardhead catfish Subtropical 214,439 207,623 422,062
Sciaenops ocellatus Red drum Subtropical 141,312 174,659 315,971
Cynoscion nebulosus Spotted seatrout Subtropical 99,881 118,421 218,302
Dorosoma cepedianum Gizzard shad Subtropical 94,643 95,078 189,721

Bagre marinus Gafftopsail catfish Subtropical 31,699 90,997 122,696
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TABLE A12 (Continued)

Total Catch Total Catch Total Catch
Species (Latin name) Species (common name) Occurrence (1982-2000) (2001-2019) All Years
Brevoortia patronus Gulf menhaden Subtropical 41,174 52,287 93,461
Mugil cephalus Striped mullet Subtropical 50,358 43,103 93,461
Micropogonias undulatus Atlantic croaker Subtropical 35,077 32,844 67,921
Elops saurus Ladyfish Subtropical 10,179 37,250 47,429
Leiostomus xanthurus Spot Subtropical 21,111 25,369 46,480
Atractosteus spatula Alligator gar Subtropical 14,046 24,347 38,393
Archosargus probatocephalus Sheepshead Subtropical 15,529 20,020 35,549
Lepisosteus oculatus Spotted gar Subtropical 12,670 13,979 26,649
Paralichthys lethostigma Southern flounder Subtropical 10,738 6647 17,385
Ictalurus furcatus Blue catfish Subtropical 5203 7801 13,004
Carcharhinus leucas Bull shark Subtropical 3759 6216 9975
Lagodon rhomboides Pinfish Subtropical 2399 4472 6871
Sphyrna tiburo Bonnethead Subtropical 1174 4174 5348
Lutjanus griseus Gray snapper Subtropical 1052 3943 4995
Brevoortia gunteri Finescale menhaden Subtropical 2491 2164 4655
Rhinoptera bonasus Cownose ray Tropical 1559 3075 4634
Cynoscion arenarius Sand seatrout Subtropical 1768 2778 4546
Ictiobus bubalus Smallmouth buffalo Temperate 2450 1848 4298
Carcharhinus limbatus Blacktip shark Subtropical 1387 2260 3647
Chaetodipterus faber Atlantic spadefish Subtropical 1067 1613 2680
Trachinotus carolinus Florida pompano Subtropical 723 1871 2594
Lepisosteus osseus Longnose gar Subtropical 1085 1431 2516
Scomberomorus maculatus Spanish mackerel Subtropical 1018 1468 2486
Menticirrhus americanus Southern kingfish Subtropical 307 1762 2069
Dasyatis sabina Atlantic stingray Subtropical 793 784 1577
Orthopristis chrysoptera Pigfish Temperate 725 608 1333
Dorosoma petenense Threadfin shad Subtropical 515 714 1229
Paralichthys albigutta Gulf flounder Subtropical 879 313 1192
Cyprinus carpio Common carp Subtropical 868 230 1098
Carcharhinus brevipinna Spinner shark Subtropical 113 849 962
Lobotes surinamensis Atlantic tripletail Subtropical 488 449 937
Bairdiella chrysoura Silver perch Subtropical 378 544 922
Caranx hippos Crevalle jack Subtropical 323 591 914
Centropomus undecimalis Common snook Tropical 213 667 880
Peprilus paru Harvestfish Subtropical 338 388 726
Rhizoprionodon terraenovae Atlantic sharpnose shark Subtropical 339 73 712
Sphyrna lewini Scalloped hammerhead Tropical 134 409 543
Morone mississippiensis Yellow bass Subtropical 257 272 529
Carcharhinus isodon Finetooth shark Subtropical 241 280 521
Megalops atlanticus Tarpon Subtropical 146 271 417
Pomatomus saltatrix Bluefish Subtropical 221 196 417
Lepisosteus platostomus Shortnose gar Subtropical 292 32 324
Prionotus tribulus Bighead searobin Subtropical 120 194 314
Alosa chrysochloris Skipjack herring Subtropical 173 136 309
Opsanus beta Gulf toadfish Subtropical 99 100 199

(Continues)
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TABLE A12 (Continued)

Species (Latin name)

Trachinotus falcatus
Negaprion brevirostris
Selene vomer
Menticirrhus littoralis
Peprilus burti
Polydactylus octonemus
Morone chrysops
Trinectes maculatus
Mugil curema

Dasyatis americana
Ictalurus punctatus
Chloroscombrus chrysurus
Morone saxatilis
Micropterus salmoides
Gymnura micrura
Ancylopsetta quadrocellata
Centropomus parallelus
Aplodinotus grunniens
Carcharhinus obscurus
Cynoscion nothus
Pylodictis olivaris
Synodus foetens
Syngnathus scovelli
Echeneis naucrates
Remora Shark sucker
Strongylura marina
Diapterus auratus
Syngnathus louisianae
Prionotus rubio
Carcharhinus plumbeus
Oreochromis aureus
Rachycentron canadum
Eucinostomus gula
Gobiosoma bosc
Mycteroperca microlepis
Trichiurus lepturus
Gobiesox strumosus
Anchoa mitchilli
Pterygoplichthys anisitsi
Chilomycterus schoepfi
Histrio histrio
Oligoplites saurus
Prionotus longispinosus
Hemicaranx amblyrhynchus

Syacium gunteri

PAWLUK ET AL.
Total Catch Total Catch Total Catch

Species (common name) Occurrence (1982-2000) (2001-2019) All Years
Permit Subtropical 53 145 198
Lemon shark Subtropical 178 14 192
Lookdown Subtropical 35 130 165
Gulf kingfish Subtropical 34 112 146
Gulf butterfish Subtropical 48 83 131
Atlantic threadfin Subtropical 84 31 115
White bass Temperate 68 39 107
Hogchoker Subtropical 70 27 97
White mullet Subtropical 61 34 95
Southern stingray Subtropical 25 65 90
Channel catfish Subtropical 25 45 70
Atlantic bumper Subtropical 2 67 69
Striped bass Temperate 44 24 68
Largemouth bass Subtropical 40 25 65
Smooth butterfly ray N/A? 2 61 63
Ocellated flounder Subtropical 17 43 60
Smallscale fat snook Subtropical 15 45 60
Freshwater drum Subtropical 20 39 59
Dusky shark Subtropical 10 48 58
Silver seatrout Subtropical 17 38 55
Flathead catfish Subtropical 25 23 48
Inshore lizardfish Tropical 28 16 44
Gulf pipefish Tropical 1 41 42
Sharksucker Subtropical 7 29 36
Remora Subtropical 3 33 36
Atlantic needlefish Subtropical 19 15 34
Irish pompano Tropical 3 29 32
Chain pipefish Subtropical 2 30 32
Blackwing searobin Subtropical 11 19 30
Sandbar shark Subtropical 7 20 27
Blue tilapia Tropical 1 26 27
Cobia Subtropical 12 14 26
Silver jenny Subtropical 24 1 25
Naked goby Tropical 2 20 22
Gag Subtropical 5 16 21
Atlantic cutlassfish Subtropical 10 11 21
Skilletfish Tropical 2 18 20
Bay anchovy Subtropical 1 17 18
Parana sailfin catfish Tropical 0 18 18
Striped burrfish Tropical 3 14 17
Sargassum fish Subtropical 1 15 16
Leatherjack Subtropical 6 10 16
Bigeye searobin Tropical 8 7 15
Bluntnose jack Subtropical 6 8 14
Shoal flounder Tropical 0 14 14



PAWLUK ET AL.

Ecology and Evolution 55 of 59
=t e W1 LEY- =%

TABLE A12 (Continued)

Total Catch Total Catch Total Catch
Species (Latin name) Species (common name) Occurrence (1982-2000) (2001-2019) All Years
Selene setapinnis Atlantic moonfish Subtropical 4 9 13
Amia calva Bowfin Subtropical 7 5 12
Antennarius striatus Striated frogfish Subtropical 0 12 12
Fundulus chrysotus Golden topminnow Subtropical 12 0 12
Scorpaena plumieri Spotted scorpionfish Subtropical 0 12 12
Dasyatis say Bluntnose stingray Subtropical 2 9 11
Lepomis macrochirus Bluegill Subtropical 7 3 10
Menidia peninsulae Tidewater silverside Tropical 0 10 10
Sphyraena barracuda Great barracuda Subtropical 1 10
Sphyrna mokarran Great hammerhead Subtropical 6 4 10
Syngnathus pelagicus Sargassum pipefish Subtropical 0 10 10
Achirus lineatus Lined sole Tropical 6 3 9
Lepomis microlophus Redear sunfish Subtropical 5 4 9
Ctenopharyngodon idella Grass carp Subtropical 5 3 8
Larimus fasciatus Banded drum Subtropical 5 3 8
Stellifer lanceolatus Star drum Subtropical 1 7 8
Gobiomorus dormitor Bigmouth sleeper Tropical 2 5 7
Anchoa hepsetus Striped anchovy Subtropical 4 2 6
Kyphosus saltatrix Bermuda chub Subtropical 1 5 6
Lutjanus synagris Lane snapper Subtropical 3 3 6
Aetobatus narinari Spotted eagle ray Subtropical 1 4 5
Caranx latus Horse-eye jack Subtropical 1 4 5
Carcharhinus falciformis Silky shark Subtropical 2 3 5
Lepomis gulosus Warmouth Temperate 1 4 5
Trachinotus goodei Palometa Subtropical 5 0 5
Carcharhinus acronotus Blacknose shark Subtropical 1 3 4
Citharichthys spilopterus Bay whiff Tropical 0 4 4
Echeneis neucratoides Whitefin sharksucker Subtropical 0 4 4
Gobiosoma robustum Code goby Tropical 0 4 4
Harengula jaguana Scaled sardine Tropical 1 3 4
Saurida caribbaea Smallscale lizardfish Tropical 1 3 4
Scomberomorus cavalla King mackerel Tropical 2 2 4
Ameiurus melas Black bullhead Temperate 0 3 3
Ameiurus natalis Yellow bullhead Temperate 2 1 3
Carcharhinus porosus Smalltail shark Subtropical 2 1 3
Cyclopsetta chittendeni Mexican flounder Subtropical 0 3 3
Dasyatis centroura Roughtail stingray Subtropical 1 2 3
Gerres cinereus Yellowfin mojarra Subtropical 0 8 8
Ophichthus gomesi Shrimp eel Tropical 2 1 3
Pomoxis annularis White crappie Temperate 2 1 3
Scomberomorus regalis Cero Tropical 1 2 3
Sphyrna tudes Smalleye hammerhead Subtropical 3 0 3
Totals 1,011,608 1,246,439 2,258,047

2N/A Smooth butterfly ray (Gymnura micrura) did not have occurrence data available on FishBase.
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TABLE A13 Proportion of total catch by species. The proportion of the total catch in numbers by species for two time periods (1982-
2000 and 2001-2019). A column for occurrence is included to indicate whether species are temperate, subtropical, or tropical

Open Access,

Catch proportion

Catch proportion

Species (Latin name) Species (common name) Occurrence (1982-2000) (2001-2019)
Pogonias cromis Black drum Subtropical 0.1804266079 0.1979936443
Ariopsis felis Hardhead catfish Subtropical 0.2119783553 0.1665729330
Sciaenops ocellatus Red drum Subtropical 0.1396904730 0.1401263921
Cynoscion nebulosus Spotted seatrout Subtropical 0.0987348854 0.0950074572
Dorosoma cepedianum Gizzard shad Subtropical 0.0935569905 0.0762797056
Bagre marinus Gafftopsail catfish Subtropical 0.0313352603 0.0730055783
Brevoortia patronus Gulf menhaden Subtropical 0.0407015366 0.0419491046
Mugil cephalus Striped mullet Subtropical 0.0497801520 0.0345809141
Micropogonias undulatus Atlantic croaker Subtropical 0.0346744984 0.0263502666
Elops saurus Ladyfish Subtropical 0.0100621980 0.0298851368
Leiostomus xanthurus Spot Subtropical 0.0208687555 0.0203531821
Atractosteus spatula Alligator gar Subtropical 0.0138848250 0.0195332463
Archosargus probatocephalus Sheepshead Subtropical 0.0153508078 0.0160617567
Lepisosteus oculatus Spotted gar Subtropical 0.0125246143 0.0112151497
Paralichthys lethostigma Southern flounder Subtropical 0.0106147836 0.0053327921
Ictalurus furcatus Blue catfish Subtropical 0.0051432966 0.0062586296
Carcharhinus leucas Bull shark Subtropical 0.0037158662 0.0049870070
Lagodon rhomboides Pinfish Subtropical 0.0023714720 0.0035878210
Sphyrna tiburo Bonnethead Subtropical 0.0011605286 0.0033487399
Lutjanus griseus Gray shapper Subtropical 0.0010399285 0.0031634119
Brevoortia gunteri Finescale menhaden Subtropical 0.0024624163 0.0017361459
Rhinoptera bonasus Cownose ray Tropical 0.0015411108 0.0024670281
Cynoscion arenarius Sand seatrout Subtropical 0.0017477126 0.0022287493
Ictiobus bubalus Smallmouth buffalo Temperate 0.0024218867 0.0014826237
Carcharhinus limbatus Blacktip shark Subtropical 0.0013710845 0.0018131653
Chaetodipterus faber Atlantic spadefish Subtropical 0.0010547564 0.0012940866
Trachinotus carolinus Florida pompano Subtropical 0.0007147037 0.0015010763
Lepisosteus osseus Longnose gar Subtropical 0.0010725498 0.0011480706
Scomberomorus maculatus Spanish mackerel Subtropical 0.0010063187 0.0011777552
Menticirrhus americanus Southern kingfish Subtropical 0.0003034772 0.0014136271
Dasyatis sabina Atlantic stingray Subtropical 0.0007839005 0.0006289919
Orthopristis chrysoptera Pigfish Temperate 0.0007166808 0.0004877896
Dorosoma petenense Threadfin shad Subtropical 0.0005090905 0.0005728319
Paralichthys albigutta Gulf flounder Subtropical 0.0008689137 0.0002511154
Cyprinus carpio Common carp Subtropical 0.0008580399 0.0001845257
Carcharhinus brevipinna Spinner shark Subtropical 0.0001117033 0.0006811404
Lobotes surinamensis Atlantic tripletail Subtropical 0.0004824003 0.0003602262
Bairdiella chrysoura Silver perch Subtropical 0.0003736625 0.0004364433
Caranx hippos Crevalle jack Subtropical 0.0003192936 0.0004741508
Centropomus undecimalis Common snook Tropical 0.0002105559 0.0005351245
Peprilus paru Harvestfish Subtropical 0.0003341215 0.0003112868
Rhizoprionodon terraenovae Atlantic sharpnose shark Subtropical 0.0003351100 0.0002992525
Sphyrna lewini Scalloped hammerhead Tropical 0.0001324624 0.0003281348
Morone mississippiensis Yellow bass Subtropical 0.0002540510 0.0002182217
Carcharhinus isodon Finetooth shark Subtropical 0.0002382346 0.0002246400
Megalops atlanticus Tarpon Subtropical 0.0001443247 0.0002174194



PAWLUK ET AL.

Ecology and Evolution 57 of 59
=t e W1 LEY- 7%

TABLE A13 (Continued)

Catch proportion

Catch proportion

Species (Latin name) Species (common name) Occurrence (1982-2000) (2001-2019)

Pomatomus saltatrix Bluefish Subtropical 0.0002184641 0.0001572480
Lepisosteus platostomus Shortnose gar Subtropical 0.0002886494 0.0000256731
Prionotus tribulus Bighead searobin Subtropical 0.0001186230 0.0001556434
Alosa chrysochloris Skipjack herring Subtropical 0.0001710149 0.0001091108
Opsanus beta Gulf toadfish Subtropical 0.0000978640 0.0000802286
Trachinotus falcatus Permit Subtropical 0.0000523918 0.0001163314
Negaprion brevirostris Lemon shark Subtropical 0.0001759575 0.0000112320
Selene vomer Lookdown Subtropical 0.0000345984 0.0001042971
Menticirrhus littoralis Gulf kingfish Subtropical 0.0000336099 0.0000898560
Peprilus burti Gulf butterfish Subtropical 0.0000474492 0.0000665897
Polydactylus octonemus Atlantic threadfin Subtropical 0.0000830361 0.0000248709
Morone chrysops White bass Temperate 0.0000672197 0.0000312891
Trinectes maculatus Hogchoker Subtropical 0.0000691968 0.0000216617
Mugil curema White mullet Subtropical 0.0000603000 0.0000272777
Dasyatis americana Southern stingray Subtropical 0.0000247131 0.0000521486
Ictalurus punctatus Channel catfish Subtropical 0.0000247131 0.0000361028
Chloroscombrus chrysurus Atlantic bumper Subtropical 0.0000019771 0.0000537531
Morone saxatilis Striped bass Temperate 0.0000434951 0.0000192549
Micropterus salmoides Largemouth bass Subtropical 0.0000395410 0.0000200571
Gymnura micrura Smooth butterfly ray N/A? 0.0000019771 0.00004893%94
Ancylopsetta quadrocellata Ocellated flounder Subtropical 0.0000168049 0.0000344983
Centropomus parallelus Smallscale fat snook Subtropical 0.0000148279 0.0000361028
Aplodinotus grunniens Freshwater drum Subtropical 0.0000197705 0.0000312891
Carcharhinus obscurus Dusky shark Subtropical 0.0000098853 0.0000385097
Cynoscion nothus Silver seatrout Subtropical 0.0000168049 0.0000304869
Pylodictis olivaris Flathead catfish Subtropical 0.0000247131 0.0000184526
Synodus foetens Inshore lizardfish Tropical 0.0000276787 0.0000128366
Syngnathus scovelli Gulf pipefish Tropical 0.0000009885 0.0000328937
Echeneis naucrates Sharksucker Subtropical 0.0000069197 0.0000232663
Remora Small eye Remora Subtropical 0.0000029656 0.0000264754
Strongylura marina Atlantic needlefish Subtropical 0.0000187820 0.0000120343
Diapterus auratus Irish pompano Tropical 0.0000029656 0.0000232663
Syngnathus louisianae Chain pipefish Subtropical 0.0000019771 0.0000240686
Prionotus rubio Blackwing searobin Subtropical 0.0000108738 0.0000152434
Carcharhinus plumbeus Sandbar shark Subtropical 0.0000069197 0.0000160457
Oreochromis aureus Blue tilapia Tropical 0.0000009885 0.0000208594
Rachycentron canadum Cobia Subtropical 0.0000118623 0.0000112320
Eucinostomus gula Silver jenny Subtropical 0.0000237246 0.0000008023
Gobiosoma bosc Naked goby Tropical 0.0000019771 0.0000160457
Mycteroperca microlepis Gag Subtropical 0.0000049426 0.0000128366
Trichiurus lepturus Atlantic cutlassfish Subtropical 0.0000098853 0.0000088251
Gobiesox strumosus Skilletfish Tropical 0.0000019771 0.0000144411
Anchoa mitchilli Bay anchovy Subtropical 0.0000009885 0.0000136389
Pterygoplichthys anisitsi Parana sailfin catfish Tropical 0.0000000000 0.0000144411
Chilomycterus schoepfi Striped burrfish Tropical 0.0000029656 0.0000112320
Histrio Small eye Sargassum fish Subtropical 0.0000009885 0.0000120343
Oligoplites saurus Leatherjack Subtropical 0.0000059312 0.0000080229

(Continues)
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TABLE A13 (Continued)

Species (Latin name)

Prionotus longispinosus

Hemicaranx amblyrhynchus

Syacium gunteri

Selene setapinnis

Amia calva
Antennarius striatus
Fundulus chrysotus
Scorpaena plumieri
Dasyatis say

Lepomis macrochirus
Menidia peninsulae
Sphyraena barracuda
Sphyrna mokarran
Syngnathus pelagicus
Achirus lineatus
Lepomis microlophus
Ctenopharyngodon idella
Larimus fasciatus
Stellifer lanceolatus
Gobiomorus dormitor
Anchoa hepsetus
Kyphosus saltatrix
Lutjanus synagris
Aetobatus narinari
Caranx latus
Carcharhinus falciformis
Lepomis gulosus
Trachinotus goodei
Carcharhinus acronotus
Citharichthys spilopterus
Echeneis neucratoides
Gobiosoma robustum
Harengula jaguana
Saurida caribbaea
Scomberomorus cavalla
Ameiurus melas
Ameiurus natalis
Carcharhinus porosus
Cyclopsetta chittendeni
Dasyatis centroura
Gerres cinereus
Ophichthus gomesi
Pomoxis annularis
Scomberomorus regalis

Sphyrna tudes

?N/A Smooth butterfly ray (Gymnura micrura) did not have occurrence data available on FishBase.
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Open Access,

Species (common name)

Bigeye searobin
Bluntnose jack
Shoal flounder
Atlantic moonfish
Bowfin

Striated frogfish
Golden topminnow
Spotted scorpionfish
Bluntnose stingray
Bluegill

Tidewater silverside
Great barracuda
Great hammerhead
Sargassum pipefish
Lined sole

Redear sunfish
Grass carp

Banded drum

Star drum
Bigmouth sleeper
Striped anchovy
Bermuda chub
Lane snapper
Spotted eagle ray
Horse-eye jack
Silky shark
Warmouth
Palometa
Blacknose shark
Bay whiff

Whitefin sharksucker
Code goby

Scaled sardine
Smallscale lizardfish
King mackerel
Black bullhead
Yellow bullhead
Smalltail shark
Mexican flounder
Roughtail stingray
Yellowfin mojarra
Shrimp eel

White crappie
Cero

Smalleye hammerhead

Occurrence

Tropical

Subtropical
Tropical

Subtropical
Subtropical
Subtropical
Subtropical
Subtropical
Subtropical
Subtropical
Tropical

Subtropical
Subtropical
Subtropical
Tropical

Subtropical
Subtropical
Subtropical
Subtropical
Tropical

Subtropical
Subtropical
Subtropical
Subtropical
Subtropical
Subtropical
Temperate
Subtropical
Subtropical
Tropical

Subtropical
Tropical

Tropical

Tropical

Tropical

Temperate
Temperate
Subtropical
Subtropical
Subtropical
Subtropical
Tropical

Temperate
Tropical

Subtropical

Catch proportion
(1982-2000)

0.0000079082
0.0000059312
0.0000000000
0.0000039541
0.0000069197
0.0000000000
0.0000118623
0.0000000000
0.0000019771
0.0000069197
0.0000000000
0.0000009885
0.0000059312
0.0000000000
0.0000059312
0.0000049426
0.0000049426
0.0000049426
0.0000009885
0.0000019771
0.0000039541
0.0000009885
0.0000029656
0.0000009885
0.0000009885
0.0000019771
0.0000009885
0.0000049426
0.0000009885
0.0000000000
0.0000000000
0.0000000000
0.0000009885
0.0000009885
0.0000019771
0.0000000000
0.0000019771
0.0000019771
0.0000000000
0.0000009885
0.0000000000
0.0000019771
0.0000019771
0.0000009885
0.0000029656

Catch proportion
(2001-2019)

0.0000056160
0.0000064183
0.0000112320
0.0000072206
0.0000040114
0.0000096274
0.0000000000
0.0000096274
0.0000072206
0.0000024069
0.0000080229
0.0000072206
0.0000032091
0.0000080229
0.0000024069
0.0000032091
0.0000024069
0.0000024069
0.0000056160
0.0000040114
0.0000016046
0.0000040114
0.0000024069
0.0000032091
0.0000032091
0.0000024069
0.0000032091
0.0000000000
0.0000024069
0.0000032091
0.0000032091
0.0000032091
0.0000024069
0.0000024069
0.0000016046
0.0000024069
0.0000008023
0.0000008023
0.0000024069
0.0000016046
0.0000024069
0.0000008023
0.0000008023
0.0000016046
0.0000000000
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TABLE A14 Proportion of total catch by occurrence. The
proportion of the total catch by occurrence category (Temperate,
Subtropical, and Tropical) for two time periods (1982-2000 and
2001-2019)

Proportion of total catch

1982-2000 2001-2019
Temperate 0.0032542250 0.0020281779
Subtropical 0.9947973919 0.9944000469

Tropical 0.0019464061 0.0035228359
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