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A B S T R A C T

Lattice-based mechanical metamaterials can be tailored for a wide variety of applications by modifying the
underlying mesostructure. However, most existing lattice patterns take symmetry as a starting point. We show
that asymmetric lattice patterns can be more likely to have certain mechanical properties than symmetric lattice
patterns. To directly compare the effects of asymmetric versus symmetric lattice arrangements, a constrained
design space is defined. A generative design process is used to generate both symmetric and asymmetric lattice
patterns within the design space. Asymmetric lattice patterns are shown to have distinct metamaterial property
spaces from symmetric lattice patterns. Key design features are identified that are present predominantly in
asymmetric lattice patterns. We show that asymmetric lattice patterns with two of these features (arrows and
spider nodes) are more likely to induce a broader range of Poisson’s ratios and larger shear stiffness values,
respectively, compared to lattice patterns without these features. In addition, we show that symmetry can play
a role in hampering the impact of multiple features when present. This work provides insights into the benefits
of using asymmetric lattice patterns in select metamaterial design applications.
1. Introduction

Mechanical metamaterials have mechanical properties governed by
material mesostructure in addition to the intrinsic material proper-
ties (Surjadi et al., 2019; Mir et al., 2014; Christensen et al., 2015; Lee
et al., 2012). This ‘‘properties by mesostructure’’ concept is widespread
in natural materials such as sponges, bone, and bamboo (Gibson
and Ashby, 1997; Gibson, 2005; Wegst et al., 2015; Habibi and Lu,
014; Habibi et al., 2015; Libonati and Buehler, 2017). Synthetically-
roduced mechanical metamaterials have deliberately-arranged struc-
ures that can be tailored for desirable mechanical characteristics such
s high stiffness-to-density ratios, negative Poisson’s Ratios, or tunable
ibration control (Yu et al., 2018; Chen et al., 2017; Kadic et al., 2012;
ogiatzis et al., 2017). The most significant catalyst for mechanical
etamaterial development in recent years has been advances in ad-
itive manufacturing. These advances mean additive manufacturing
an accommodate features as small as nanometers, and utilize a wide
ange of constituent materials, enabling the creation of structural
etamaterials with a variety of mesostructure patterns (Raney and
ewis, 2015; Truby and Lewis, 2016; Yang et al., 2019; Berger et al.,
017; Wang, 2018; Morita et al., 2021).
Lattices are one of the most prominent mechanical metamaterial

atterns. Metamaterials with lattice patterns offer a large degree of
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customizability within a single unit cell (Yu et al., 2018; Adhikari,
2021; Jia et al., 2020). The building blocks of most lattice structures are
slender members that connect to each other at junctions. The properties
of a metamaterial with a lattice structure are set by varying the number,
size, shape, and connection points of these members. Plate- and shell-
lattice patterns, which use a similar basic layout to member-based
lattices, are less common since their larger local geometries offer fewer
modes of customizability than member-based lattice patterns (Queheil-
lalt and Wadley, 2005; Wang, 2018; Bonatti and Mohr, 2019a; Evans
et al., 2015). The versatility of member-based lattice metamaterials is
prominent in design optimization studies; the relatively low volumes of
individual members allow for sufficient space to optimize the member
geometries and locations (Asadpoure and Valdevit, 2015; Wang, 2018).
The high degree of flexibility in the arrangements of member-based
lattices means that lattice metamaterials allow for a broad design space
even if only a few design variables are used (Abdeljaber et al., 2016;
Abdelhamid and Czekanski, 2018). This flexibility means that lattice
patterns can easily be used to realize graded properties (Turco et al.,
2017; Jenett et al., 2020; Tancogne-Dejean and Mohr, 2018). Addi-
tionally, the modularity of member-based lattice patterns can allow
unit cells with different patterns to be assembled together, making
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them widely useful and even capable of forming hierarchical struc-
tures (Vangelatos et al., 2019; Mizzi and Spaggiari, 2020; Kaur et al.,
2017).

In terms of unit cell geometry, broadly speaking, metamaterial
designs are either symmetric or asymmetric. Symmetric lattice pat-
terns are often based on existing, well-known arrangements of lattice
members that offer predictable stiffness-to-density ratios. Furthermore,
many of these patterns have been studied with a variety of con-
stituent materials, aspect ratios, and in combination with other lattice
patterns (Turco et al., 2017; Mizzi and Spaggiari, 2020; Abdelhamid
and Czekanski, 2018; Vangelatos et al., 2020). As such, the behavior
of symmetric lattices is thoroughly documented in existing metama-
terial design work. However, many symmetric lattice patterns are
limited to offering cubic characteristics (Berger et al., 2017; Asad-
poure and Valdevit, 2015; Spadoni and Ruzzene, 2012; Wang and
Sigmund, 2020). Conversely, asymmetric lattice patterns can be useful
in achieving anisotropic properties. Many of the asymmetric lattice
patterns described in literature are limited to distortions of existing
symmetric patterns. These distortions are most often manifested as
changes to the thickness or lengths of specific members, members
with variable cross-sections, curved members, or a distortion of the
entire unit cell (Tancogne-Dejean and Mohr, 2018; Portela et al., 2020;
Bonatti and Mohr, 2019b; Wang et al., 2021). Interestingly, some of
these distorted patterns have been shown to display quasi-isotropic
properties (Horrigan et al., 2009; Mizzi et al., 2015). Additionally,
many chiral lattice patterns (that are by definition asymmetric) result
in some form of isotropy (Gatt et al., 2013; Carta et al., 2016; Mizzi
and Spaggiari, 2021). As such, asymmetry itself is not a guarantee of
anisotropy. Furthermore, the metamaterial properties achievable with
locally-distorted asymmetric patterns are not likely to reflect on the en-
tire possible anisotropic metamaterial property space (Xu et al., 2016;
Liu et al., 2019; Grima et al., 2008). A more general form of asymmetry,
such as the asymmetric arrangement of lattice members, would allow
for lattice patterns that are more likely to represent a broader range of
anisotropy as well as unique combinations of anisotropic properties.
Existing literature has yet to explore the benefits of an asymmetric
design space of this nature.

One way to understand the lattice-based metamaterial design space
is through bounds on the elastic moduli. There is a vast literature
establishing bounds for mechanical properties of multiphase materials,
some of which can readily be applied to lattice-based metamaterials for
which one of the ‘‘phases" of material is air. The variational approach
laid out by Hashin and Shtrikman (Hashin and Shtrikman, 1963) was
one of the earliest studies that defined bounds on elastic moduli without
assuming any detailed knowledge about the microstructure of the ma-
terial. This study was predicated on relatively small ratios between the
moduli of the two phases, and thus are not appropriate for lattice-based
metamaterials. However, Hashin–Shtrikman bounds have since been
extended and specified to many different cases. Multiphase composites
were initially the focus of such work, much of which was conducted in
the context of homogenization. Early work in this field proved the exis-
tence of optimal bounds on bulk and shear moduli for composites with
two solid phases (Francfort and Murat, 1986; Milton and Kohn, 1988)
as well as that the elastic properties of such composites are bounded
by the elastic properties of finite-rank laminates (ordered compos-
ites) (Avellaneda, 1987). Subsequently it was shown that any positive
semi-definite elasticity tensor for a 2D composite can be realized by
manipulating the microstructure of the two constituent materials of
unequal stiffness (Allaire and Kohn, 1994; Silva et al., 1995; Burns
and Cherkaev, 1997; Graeme and Cherkaev, 1995). Homogenization
has also been used as a tool for optimizing the topology of a wide
variety of structures, but most notably truss-based structures (Sigmund,
1994; Bendsoe et al., 1994). Building on the work regarding multiphase
composites, Hashin–Shtrikman bounds have also been specialized for
use with microstructures that include a void phase (such as lattice
2

metamaterials). One of the key studies in this area developed general
Hashin–Shtrikman bounds for any multiphase material with a void
phase, in the context of homogenization (Torquato et al., 1998). One
further specialization of this work was for open-cell and closed-cell
foams modeled as closely-packed hollow spheres (Grenestedt, 1999).
These upper bounds are well suited for use within linear elasticity. The
lower bound of moduli in such materials is zero, which occurs when the
microstructure of the solid phase is not fully interconnected. This ap-
proach has been shown as suitable for ordered metamaterials at higher
volume fractions (do Rosário et al., 2017). Using a similar approach,
Hashin–Shtrikman bounds for cellular solids consisting of multiple slen-
der beams have also been developed (Grenestedt, 1998). These bounds
are independent of the connectivity of beams, and therefore the degree
of anisotropy present. As they model the microstructure as a network
of beams, these bounds are appropriate for lattice metamaterials. The
utility of these bounds were demonstrated by Gurtner and Durand
(2014), who found upper bounds on the moduli of the stiffest possible
isotropic network of beams for any given density.

A second way to understand the lattice-based metamaterial design
space is by direct modeling. Modeling of lattice-based metamaterials is
conducted through a variety of methods. Metamaterials are typically
modeled on the scale of a single unit cell, treating the single unit cell
as if it resides within a broader continuum composed of the same unit
cells. The least computationally intensive method of modeling lattice
patterns is through an analytical model. These models represent the
relationship between geometric parameters (such as member thickness
or angles between members) and desired metamaterial properties for
a specific lattice pattern (Yu et al., 2018; Nicolaou and Motter, 2012;
Zadeh et al., 2021). Analytical models are useful in determining the
degree to which individual input parameters influence desired meta-
material properties (Cabras and Brun, 2016; Karathanasopoulos et al.,
2017; Morita et al., 2021). However, the accuracy of a particular ana-
lytical model will depend on details of the lattice, and a single model
may not be appropriate for a wide range of lattice patterns. On the other
end of the spectrum, high-fidelity finite element analysis (FEA) methods
are the most accurate and most computationally intensive method for
determining the mechanical properties of lattice patterns. Due to their
use of 3D elements, these models are especially useful when studying
lattice patterns with members of low length-to-thickness aspect ratios
wherein the interaction of members at junctions has a significant effect
on overall deformation characteristics (Tancogne-Dejean and Mohr,
2018; Tancogne-Dejean et al., 2019). However, high-fidelity FEA mod-
els are unnecessary when modeling metamaterials with sufficiently
high length-to-thickness aspect ratios. Reduced-order FEA models are
more computationally efficient than high-fidelity models, and can be
easily parameterized to work within a broad design space. In such
models, beam elements can accurately represent the behavior of the
overall unit cell and the kinematics of junctions while sacrificing detail
regarding the interaction of members at these junctions (Asadpoure
and Valdevit, 2015; Abdelhamid and Czekanski, 2018; Adhikari, 2021;
Vangelatos et al., 2020; Jamshidian et al., 2020). Such beam elements
are assumed to sustain normal and transverse loads, moments, and
torques at junctions (Bluhm et al., 2020; Mizzi and Spaggiari, 2020;
Liu et al., 2019). In situations where the enhanced accuracy due to
the additional degrees of freedom present in beam elements is not as
critical as reducing computational expense, truss elements can instead
be used in reduced-order models (Javadi et al., 2012; Asadpoure and
Valdevit, 2015).

In this study, the stiffness tensors of symmetric and asymmetric 2D
lattice patterns with the same unit cell size are compared to determine
the extent to which asymmetric lattice patterns allow for combina-
tions of mechanical properties that are distinct from those offered by
symmetric lattice structures. First, random symmetric and asymmetric
lattice patterns are generated. The effective elastic stiffness tensor and
volume fraction of all the lattice patterns are then calculated using a
reduced-order finite element model. The symmetric and asymmetric

design spaces are presented and analyzed. Designs in the asymmetric
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Fig. 1. Definitions of the design spaces in this study. The distribution of junctions are shown within the (a) 3 × 3 and (b) 5 × 5 design spaces. As indicated in the figure, both
f these design spaces are of equal outer dimension. Shown in (c) is an example of a unit cell design that satisfies the feasibility criteria. Shown in (d) is an example of a unit
ell design that does not satisfy the feasibility criteria. The first violation is the red diagonal member that intersects another member at a point outside of the junction grid. The
econd violation is represented by the red dashed line, showing a lack of members connecting between the right and left portions of the unit cell.
Fig. 2. Definitions of symmetry terms in this study. Double-mirror symmetry in the context of this study is shown in (a), wherein a design observed from all four sides appears
the same. Mirror symmetry is shown in (b), wherein a design observed from opposing sides, either vertically or horizontally, appears the same.
design space are shown to have distinct stiffness tensors from those in
the symmetric design space. The presence of certain design features is
identified in many of the evaluated designs; these features are shown
to have a statistically significant impact on the metamaterial properties
of designs that contain them.

2. Methods

A standardized design space is used to study the difference between
symmetric and asymmetric lattice patterns, such that the sole difference
3

between symmetric and asymmetric patterns is the arrangement of
members. To facilitate visual identification of design traits, the design
spaces used herein are restricted to 2D lattice patterns. The underlying
platform for all unit cell designs considered in this study is a grid of
evenly-spaced junctions arranged in a square. Two such design spaces
are considered: a 3 × 3 grid and a 5 × 5 grid, as shown in Figs. 1a and
b respectively. Lattice members can span any two points on the grid,
and all members are straight and have circular cross-sections with the
same fixed radii. The design space is constrained by four requirements
to ensure that lattice patterns will form a continuous material, without
any dangling members, that only has member intersections at junctions.
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Figs. 1c and d shows one design that passes and design that fails these
constraints. These constraints are as follows:

1. Designs cannot have any intersecting or overlapping members.
2. Designs cannot have any isolated members or groups of mem-
bers.

3. Designs must be connected to neighboring unit cells, to ensure
that the design can tessellate.

4. All used junctions in a design should be connected to at least
two other junctions in the grid.

Two types of symmetry are considered in this study: double-mirror
nd mirror (Fig. 2b). Unit cells with double-mirror symmetry appear
dentical when observed from all four sides. Unit cells with mirror
ymmetry appear identical when observed from opposite sides – either
ertically or horizontally – but the horizontal and vertical views are dif-
erent from each other. Mirror symmetry does not necessarily result in
cubic stiffness tensor. For this study, a design that satisfies neither of
hese definitions of symmetry is considered to be asymmetric (Fig. 2a).
A generative design approach was used to develop sets of symmetric

nd asymmetric designs. Generative design is an emerging approach
or generating design options, especially in the Computer Aided Design
CAD) community (Krish, 2011). The combination of generative design
with additive manufacturing has been of great interest recently (Wu
et al., 2019) with the incorporation of surrogate modeling methods
into the generative design framework explored in recent literature (Oh
et al., 2019; Yuan and Moghaddam, 2020; Kallioras and Lagaros,
2020). Valid designs in the dataset must satisfy the previously-discussed
constraints on the design space. Random assignment of members to
the 2D grid space to generate the design dataset would result in
the majority of designs not satisfying the constraints. In contrast, a
generative design approach guarantees overall design feasibility by
ensuring constraint satisfaction for every added member. Here, designs
are generated by randomly adding feasible (non-intersecting and non-
overlapping) members. Additional reflected members are added as
appropriate to incorporate symmetry (double-mirror or mirror). Each
subsequent feasible member to be added is chosen randomly from a set
of feasible members connected to the previously added member, with
tessellation of the unit cell in all directions considered in identifying
these members. In case no feasible members can be found connected
to the previously added member, a feasible member is chosen from a
set of feasible members connected to the node with the least number of
connections. As a baseline, all members are assigned equal probability
of selection. However, there is an additional provision to bias the
probability of selecting a short member (members connected by nodes
which are closest to each other in the vertical, horizontal or diagonal
directions). This probability ranges from 0 (truly random selection of
members) to 1 (only short members are added). Varying this probability
can alter the regions of the overall design space that generated designs
occupy. This generative approach ensures that satisfactorily feasible
designs will be generated, while allowing us to target specific regions of
the design space by biasing the probability of adding short members.
After a satisfactory design is achieved, additional designs are created
by adding feasible members to the satisfactory design until no more
feasible members can be added. Then, a random subset of those designs
is chosen to incorporate into the final dataset in order to overcome the
bias towards sparse designs. Additionally, each generated design is also
rotated in-plane by 90 degrees and included in the design set, provided
it is not a repetition of an existing design.

The effective metamaterial elastic properties are determined for
each design. These elastic properties are ‘‘effective’’ values because
they represent the stiffness of an architected material rather than a
homogeneous material. The 2D stiffness tensor, found by modeling a
single unit cell within an array of self-repeats, is shown in Eq. (1):
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⎣𝜎12⎦ ⎣𝐶61 𝐶62 𝐶66⎦ ⎣𝜀12⎦
where 𝐶11 and 𝐶22 are the two normal stiffness values and 𝐶66 is the
shear stiffness value.

The compliance tensor is calculated from the stiffness tensor as
shown in Eq. (2):
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⎡
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𝑆21 𝑆22 𝑆26
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⎤

⎥
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⎦

. (2)

The Poisson’s ratios 𝜈12 and 𝜈21 are then calculated by Eqs. (3) and (4),
assuming the orthotropy of the unit cells under small deformation.

𝜈12 = −𝑆12 ⋅ 𝐶22, (3)

𝜈21 = −𝑆21 ⋅ 𝐶11. (4)

In addition to the stiffness tensor, the volume fraction of each unit cell
is calculated by finding the summed volume of all lattice members and
dividing by the volume of a square panel taking up the same overall
space as a single unit cell. To explicitly account for the overlap caused
by two members intersecting at a junction, the volume of a single
overlap is approximated as the largest spherical wedge that can fit
inside the space occupied by two members. The angle of this wedge is
defined as the span angle between the two intersecting members. These
overlap volumes are calculated for each intersection in a design, then
cumulatively subtracted from the total volume of all lattice members
in a design.

Bounds on elastic moduli provide context as to the theoretical limits
of a design space. For our work, we use previously-derived bounds
for cellular solids that consist of elastic beams that meet at negligibly-
sized joints (Gurtner and Durand, 2014). The upper bounds on Young’s
modulus and shear modulus used herein are:
𝐸𝐻𝑆

𝐸0
=

𝜙
6
(1 + 3

49𝜅0 + 8𝜇0
69𝜅0 + 8𝜇0

), (5)

𝜇𝐻𝑆

𝐸0
=

𝜙
9
(1 +

18𝜅2
0 + 8𝜇2

0 + 21𝜅0𝜇0
3𝜅0(3𝜅0 + 4𝜇0)

), (6)

herein 𝜙 is volume fraction and 𝜅0 and 𝜇0 are the bulk and shear
oduli of the constituent material, respectively. For cellular solids,
t has been shown that the lower bound on elastic moduli goes to
ero (Torquato et al., 1998). We use these equations to show the upper
ounds on shear and Young’s moduli as a function of 𝜙.
We take a reduced-order modeling approach to simulate a single

nit cell of each lattice design as it would act within an array of self-
epeats. Two-node beam elements are used to represent each member;
he beam type ascribed to such elements by ANSYS is a Timoshenko
eam. This model is written in the ANSYS Parametric Design Language
APDL) (ANSYS, 2010) and run in ANSYS Mechanical™. All members
have a radius 1

40𝑡ℎ the outer dimension of each square unit cell. The
number of junctions in the grid and the connectivity array of the
design – describing the position of each lattice member by which two
junctions they connect – are also inputs. Periodic boundary conditions
(PBCs) are used to simulate the behavior of a single unit cell within
a larger continuum. The PBCs are implemented through the use of
dummy nodes, which are linked to points on the boundary of each unit
cell. The outputs of each simulation are the reaction forces at these
dummy nodes, which are used to determine the effective stress on the
unit cell. Three simulations with different applied strains are run to
achieve the 9 components of the stiffness tensor for each lattice pattern.
The output result for each design is the metamaterial stiffness tensor,
which is normalized relative to a constituent material Young’s modulus.
MATLAB™ is used to pre- and post-process the inputs and outputs for
each design, and interfaces directly with ANSYS (Zhan, 2018). All of
our scripts are available on Github (Srivatsa et al., 2021).

Probability density plots are used to evaluate the distributions
of individual components of stiffness tensors, in order to compare

the metamaterial property spaces of designs with different types of
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symmetry. These probability distributions cannot be assumed as nor-
mal if they fail a one-sample Kolmogorov–Smirnov (K–S) test, with
a null hypothesis that each distribution can be represented by a nor-
mal distribution (Pratt and Gibbons, 1981). Non-normal distributions
cannot be fully characterized using mean and variance. Therefore,
such distributions are plotted as kernel distributions with bandwidths
calculated using the Sheather and Jones method to account for any
multimodality present (Hall et al., 1991). To recognize any differences
between these kernel distributions, two-sample K–S tests are used with
the null hypothesis that two probability distributions are from the same
continuous distribution (Pratt and Gibbons, 1981; Ibrahim et al., 2009).
wo distributions that, when compared, reject the null hypothesis of
two-sample K–S test can be recognized as distinct from each other
ut cannot otherwise be quantified relative to each other. Differences
etween two distinct distributions are thus discussed qualitatively.

. Results and discussion

In both the 3 × 3 and 5 × 5 design space, the symmetry-defined
ubsets of designs need to be both large enough to draw quantifiable
onclusions regarding the distributions of metamaterial properties as
ell as broad enough to be representative of the design space. Within
ach design space, we used an iterative approach to find the small-
st representative population. We started by varying the probability
f choosing a short member from 0 to 1 in increments of 0.2. For
ach probability value, we generated an initial set of 50 designs and
dded batches of 50 designs at a time. In the case of asymmetric and
irror symmetric designs, each additional batch starts with 25 original
esigns; we then rotate all these original designs by 90 degrees in-plane
efore adding the 25 rotated designs to the remainder of the batch.
efore adding each additional batch to the overall set, we determine
hether the newly-generated batch significantly changes the relative
istribution of the existing population using a two-sample K–S test.
e use the distributions of normal stiffness and volume fractions to
auge the evolution of the population. We continue to add new batches
f designs until the K–S tests for both normal stiffness and volume
raction no longer reject the null hypothesis (that the design set with
he newest batch is distinct from the set without the newest batch).
ariations of this approach have been previously used in literature to
nderstand the evolution of a dataset based on its spread and relative
ensity (Seringhaus et al., 2006; Selk and Neumeyer, 2013; Padilla
t al., 2019). In the 3 × 3 design space, only 22 unique double-mirror
ymmetric designs were found to exist, so this population is sampled
ompletely. Additionally, 300 unique 3 × 3 mirror symmetric designs
and 400 unique asymmetric 3 × 3 designs were generated. The 5 × 5
design space is large enough to facilitate more double-mirror symmetric
designs. A 5 × 5 design set was generated consisting of 500 double-
mirror symmetric designs, 750 mirror symmetric designs, and 800
asymmetric designs.

3.1. Metamaterial properties as a function of symmetry

After finding the stiffness tensors for all designs, the normal stiffness
values are examined. The vertical and horizontal normal stiffness values
for each design are plotted against each other in Fig. 3. Double-mirror
symmetric designs have the same horizontal and vertical normal stiff-
ness as expected. Additionally, some asymmetric and mirror-symmetric
designs also have normal stiffness values that are similar to each other.
Also evident from the design spaces is that the highest normal stiffness
values belong to double-mirror symmetric designs. This is especially
true in the 5 × 5 design space, in which double-mirror symmetric
designs attain normal stiffness values exceeding 0.4 but only a few
asymmetric and mirror symmetric designs have normal stiffness values
over 0.3.

The normal stiffness values of designs are plotted against their
volume fractions in Fig. 4. As expected, the higher resolution of 5 × 5
5

designs results in these designs achieving higher volume fractions and
higher stiffness than 3 × 3 designs. Additionally, all designs in both
design sets are bounded within Hashin–Shtrikman bounds specialized
for lattice-type solids (Grenestedt, 1999). However, even the most
dense design in the 5 × 5 design space has a normal stiffness much less
than the upper-bound stiffness value at that density. The stiffer designs
that may exist at that density would likely be outside the constraints
of the prescribed design space (a nuance not captured by the bounds
used). There is a positive correlation between volume fraction and
normal stiffness in both design spaces: for all six subsets the slopes of
linear fits range from 0.310 to 0.578. This is expected, as unit cells with
more members are generally expected to be stiffer. However, designs
with similar volume fractions can vary significantly in normal stiffness,
beyond even an order of magnitude; R-squared values of the linear fits
range from 0.139 to 0.378.

The shear stiffness values of designs are plotted against their volume
fractions in Fig. 5. All designs in both design spaces lie again within
Hashin–Shtrikman bounds. Unlike with normal stiffness, there is only a
slightly positive correlation between volume fraction and shear stiffness
in both design spaces. The slopes of linear fits range from 0.0387
to 0.0950, with R-squared values ranging from 0.0845 to 0.428. As
with the normal stiffness values, the shear stiffness values are further
below the corresponding upper bound at higher volume fractions than
at lower volume fractions. Asymmetric designs have the largest shear
stiffness of the three symmetry sets; this will be explored further in
Section 3.3. Wilcoxon rank sum tests (Wilcoxon, 1945) found that the
shear stiffness values of asymmetric designs were distinct from those
of mirror symmetric designs (𝑈 = 433638 and 𝑝 < 0.001 in 3 × 3,
𝑈 = 247550 and 𝑝 < 0.001 in 5 × 5) and double-mirror symmetric
designs (𝑈 = 6291156 and 𝑝 < 0.001 in 3 × 3, 𝑈 = 7008216 and 𝑝 <
0.001 in 5 × 5). Because these values are less than a significance level of
0.05/3 (adjusted using a Bonferroni correction to mitigate the sampling
of the same distribution for multiple tests (Bonferroni, 1936)), the
population of asymmetric designs has a distinct median shear stiffness
from the populations of mirror and double-mirror symmetric designs.
There are some asymmetric designs at lower volume fractions that
have higher normalized shear stiffness values than any double-mirror
symmetric designs. The higher shear stiffness-to-volume fraction ratios
in asymmetric designs is potentially due to more diagonally aligned
members allowed by asymmetry, which is an example of how symmetry
can constrain the material property space.

Shown in Fig. 6 is the shear stiffness of each design plotted against
its normal stiffness. Designs of any symmetry type are only slightly
more likely to have a larger shear stiffness if they have a larger
normal stiffness. This weak positive correlation is supported by the
relatively low slopes (varying from 0.0317 to 0.103) and R-squared
values (varying from 0.0756 to 0.485). Interestingly, many of the
shear stiffness values are less than the 1

3𝑟𝑑 minimum ratio of shear
to elastic modulus required for an isotropic solid. Two examples of
these disproportionately low shear stiffness designs are provided as
SI Fig. 4, both have large fractions of their areas without diagonal
members.. Clustering of metamaterial properties is more prominent in
the 3 × 3 design space; the additional resolution of the 5 × 5 design
space allows for a broader array of lattice patterns and thus a more
diverse metamaterial property space.

Next the Poisson’s ratios (𝜈12, 𝜈21) are examined. Figs. 7(a) and
(b) show the Poisson’s ratio associated with deformation transverse
to the plotted normal stiffness direction, while Figs. 7(c) and (d)
show the non-associated Poisson’s ratio plotted against normal stiffness.
Within the design space sampled, the boundaries of the metamaterial
property space exhibit an inverse relationship between the normal
stiffness of a design and the magnitude of the associated Poisson’s
ratio. Within the 3 × 3 design space, greater asymmetry corresponds
to lower average Poisson’s ratio and larger maximum–minimum range
in values (means of 0.0231, 0.136, 0.207 and ranges of 1.99, 1.11,
0.414 for asymmetric, mirror symmetric, and double-mirror symmetric
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Fig. 3. Vertical and horizontal normal stiffness values compared against each other for (a) the 3 × 3 design space and (b) the 5 × 5 design space.
Fig. 4. Normal stiffness (both horizontal and vertical) compared against volume fraction for (a) the 3 × 3 design space and (b) the 5 × 5 design space. The solid lines in both
plots are the Hashin–Shtrikman upper bounds (Eq. (5)), and the dashed lines are the maximum achievable volume fraction in each design space. The Hashin–Shtrikman lower
bound is 0.
Fig. 5. Shear stiffness compared against volume fraction (a) the 3 × 3 design space and (b) the 5 × 5 design space. The solid lines in both plots are the Hashin–Shtrikman upper
bounds (Eq. (6)), and the dashed lines are the maximum achievable volume fraction in each design space. The Hashin–Shtrikman lower bound is 0.
designs respectively). In the less constrained 5 × 5 design space, the
ranges of the three design sets are similar to each other. However,
the mean of the fully asymmetric design set remains lower than the
other two (means of 0.0623, 0.180, 0.146 and ranges of 1.99, 1.95,
1.97 for asymmetric, mirror symmetric, and double-mirror symmetric
designs respectively). Asymmetry therefore increases access to negative
Poisson’s ratios. Nonetheless, the greater resolution of the 5 × 5 design
6

space reduces the impact of symmetry on achievable Poisson’s ratios.
Two representative fully asymmetric designs that have 𝐶11 ≈ 𝐶22 and
negative Poisson’s ratios are provided in the SI (Figure S5). Interest-
ingly, we found that several of our auxetic fully asymmetric designs
(following the nomenclature we use in this paper), are actually chiral.

In order to compare the metamaterial properties of asymmetric,
mirror symmetric, and double-mirror symmetric designs, probability
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Fig. 6. Shear stiffness compared against normal stiffness for (a) the 3 × 3 design space and (b) the 5 × 5 design space.
Fig. 7. 𝐶11 compared against (a) 𝜈12 in the 3 × 3 design space, (b) 𝜈12 in the 5 × 5 design space, (c) 𝜈21 in the 3 × 3 design space, and (d) 𝜈21 in the 5 × 5 design space..
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density distributions of these properties were generated (Fig. 8). All
of these distributions were found to not be normal, and are thus
represented using kernel distributions. The results of the statistical
tests used to determine non-normality, as well as the bandwidths of
the kernel distributions in Fig. 8, are included in the Supplementary
nformation. Two-sample K–S tests were used to compare asymmetric,
irror symmetric, and double-mirror symmetric distributions to each
ther for distributions of normal stiffness, Poisson’s ratio, and shear
tiffness normalized by normal stiffness. All of these tests return a 𝑝-
alue below 0.001, which is lower than a significance level of 0.05/3
due to the Bonferroni correction required for multiple statistical tests
erformed on the same set (Bonferroni, 1936)). These results show that
he distributions of these three metamaterial properties for asymmetric,
irror symmetric, and double-mirror symmetric designs are all dis-
inct from each other. These distributions also indicate how the mere
resence of designs in a portion of the design space is not inherently in-
icative of relative density. For instance, while Fig. 3b shows that only
ouble-mirror symmetric designs in the 5 × 5 design space have the
argest achievable normal stiffness values, the probability distribution
hows that designs with the largest normal stiffness values are only a
mall subset of the design space.
7

.2. Design features

To better understand the differences in these design spaces and what
echanisms are responsible for the distinctions between the property
robability distributions, four recurring design features were identified
isually by qualitatively examining a random sample of the generated
esigns (Fig. 9). These four features, chosen to represent relatively
istinct patterns observed in designs, are pivot points, arrows, spider
odes, and stacked members. A pivot point is defined as a single node
bout which one portion of a design can rotate relative to the rest of
he design, if the lattice pattern were to consist of pin joints and rigid
embers. Even though the members have fully bonded intersections
t junctions, the length-to-radius ratio of the members is large enough
o promote member bending and thus the lattice patterns are flexible
nough to experience nonaffine deformations if pivot points are present.
rrows have been documented as a versatile lattice shape to achieve
egative Poisson’s ratios (Qiao and Chen, 2015; Wang et al., 2018).
These shapes are defined as a grouping of four members that form a
quadrilateral, with three acute angles and one angle over 180 degrees.
Similar to pivot points, arrows allow for relative movement within a
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Fig. 8. Probability density plots comparing normal stiffness, Poisson’s ratios, and normalized shear stiffness of asymmetric, mirror symmetric, and double-mirror symmetric designs
in the (a) 3 × 3 and (b) 5 × 5 design spaces. Shear stiffness values are normalized by the average normal stiffness of that design. The distributions of 𝜈12 and 𝜈21 are identical
because all generated designs are included both in the their original orientation and with a 90 degree rotation..
Fig. 9. Design features. A pivot point is shown in (a), wherein the lowest tier of members would be able to rotate relative to the rest of the design. Two arrows are highlighted
in (b) with one stacked on top of the other. Three spider nodes are shown in (c), while a grouping of stacked members is highlighted in (d).
lattice unit cell. The third type of feature present, spider nodes, are
defined as junctions that have at least 6 connecting members as well
as at least one pair of adjacent connecting members with no more than
8

45 degrees between them. Stacked members are defined as a group of
at least three members that deviate in angle from each other no more
than 10 degrees, terminating at a single point on either end of the
group. Spider nodes and stacked members both indicate a concentration

of members that are at an angle, which could potentially contribute to
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Fig. 10. Average normalized frequency of design features in asymmetric, mirror symmetric, and double-mirror symmetric designs with (a) 3 × 3 and (b) 5 × 5 nodal grids. For
each type of symmetry, the frequency of design features was found for 15 random sets, then averaged over all sets. Error bars indicate one standard deviation in normalized
frequency for each set. The exception is the 3 × 3 double-mirror symmetric design set; this design subspace was sampled completely so it was not divided into random groups.
increasing the shear stiffness of a given design. While the presence of
any four of these features is inherently independent of the presence of
the other three, it is possible for the same group of members to form
multiple features. We find the probability distributions of metamaterial
properties for designs with and without these features to help assess to
what extent, if any, these features impact the metamaterial property
space.

Designs were first divided by their type of symmetry (asymmetric,
mirror symmetric, and double-mirror symmetric), and then each of
these symmetry-defined subsets was further divided into 15 random
groups. Each of the asymmetric and mirror symmetric groups of 3 × 3
designs consisted of 20 designs and 26–27 designs, respectively. Simi-
larly, the asymmetric, mirror symmetric, and double mirror symmetric
groups of 5 × 5 designs each consisted of 33–34 designs, 50 designs,
and 53–54 designs respectively. Within each of these 45 groups, the
fraction of designs with each design feature was calculated. Designs
were considered to have a feature if at least one occurrence of that
feature was present. Within each symmetry subset, the mean and
standard deviation of all 15 proportions was then found (Fig. 10).
The only design features seen in double-mirror symmetric designs in
the 3 × 3 design space are pivot points. These findings indicate that
asymmetry is generally more conducive to the inclusion of these four
features than double-mirror symmetry, but not as conducive as mirror
symmetry. This is reasonable since the double-mirror symmetric space
is highly restricted in such a way that reduces accessibility of most of
these features, whereas a single mirror direction can promote features,
for example arrows and pivots with the critical junctions on the central
line.

3.3. Influence of design features on metamaterial mechanical properties

Having identified the asymmetric, mirror symmetric, and double-
mirror symmetric designs with each type of design feature, the corre-
lation of these features with metamaterial mechanical properties can
be assessed. Normal stiffness, shear stiffness normalized by average
normal stiffness, and Poisson’s ratios were grouped based on whether
or not a design had a given design feature. This grouping resulted in
two probability distributions for each metamaterial property. Kernel
9

d

Table 1
Two-Sample K–S Test results for normal stiffness, Poisson’s ratio, and shear stress
normalized by normal stress. Values shown are the 𝑝-values associated with each test.
A 𝑝-value less than 0.05, indicating rejection of the null hypothesis, is marked with an
asterisk. Arrows, spider nodes, and stacked members are not present in double-mirror
symmetric designs in the 3 × 3 design space. Cells without a K–S test result are for
distributions where the design space does not contain any of the stated features.
Design
space

Design
feature

Mechanical
property

Asymmetric Mirror
symmetric

Double-mirror
symmetric

3 × 3 Pivots Normal <0.001∗ 0.0758 <0.001∗

3 × 3 Pivots Poisson’s 0.0264∗ <0.001∗ 0.0817
3 × 3 Pivots Shear <0.001∗ <0.001∗ <0.001∗

3 × 3 Arrows Normal <0.001∗ <0.001∗ –
3 × 3 Arrows Poisson’s <0.001∗ <0.001∗ –
3 × 3 Arrows Shear <0.001∗ <0.001∗ –
3 × 3 Spiders Normal <0.001∗ <0.001∗ –
3 × 3 Spiders Poisson’s <0.001∗ <0.001∗ –
3 × 3 Spiders Shear <0.001∗ <0.001∗ –
3 × 3 Stacks Normal 0.118 <0.001∗ –
3 × 3 Stacks Poisson’s 0.0923 <0.001∗ –
3 × 3 Stacks Shear <0.001∗ <0.001∗ –
5 × 5 Pivots Normal 0.0104∗ 0.0129∗ 0.216
5 × 5 Pivots Poisson’s <0.001∗ 0.470 0.799
5 × 5 Pivots Shear <0.001∗ 0.515 0.0798
5 × 5 Arrows Normal <0.001∗ <0.001∗ <0.001∗

5 × 5 Arrows Poisson’s <0.001∗ <0.001∗ <0.001∗

5 × 5 Arrows Shear <0.001∗ <0.001∗ <0.001∗

5 × 5 Spiders Normal <0.001∗ <0.001∗ <0.001∗

5 × 5 Spiders Poisson’s <0.001∗ 0.544 <0.001∗

5 × 5 Spiders Shear <0.001∗ <0.001∗ <0.001∗

5 × 5 Stacks Normal <0.001∗ <0.001∗ 0.571
5 × 5 Stacks Poisson’s <0.001∗ <0.001∗ <0.001∗

5 × 5 Stacks Shear <0.001∗ 0.0362∗ <0.001∗

distributions were used to represent each subset, as none of the subsets
were found to be normally-distributed. Each pair of distributions were
compared using two-sample K–S tests, with the null hypothesis that
these two distributions are from the same continuous distribution. By
conducting this process for each of the three mechanical properties,
each of the four design features, all three types of symmetry, and in
both the 3 × 3 and 5 × 5 design spaces, a total of 72 pairs of probability

istributions were generated and compared to each other.
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Fig. 11. Probability density distributions of (a) Poisson’s ratio for designs with and without arrows, and (b) shear stiffness normalized by normal stiffness for designs with and
without spider nodes. Both sets of distributions are in the 5 × 5 design space. All pairs of distributions are statistically distinct according to the two-sample K–S test, albeit to
different degrees (refer to 𝑝-values in Table 1).
The results of all 72 two-sample K–S tests are shown in Table 1.
All four features appear to be consistently influential on the material
property space; only two pairs of distributions in the asymmetric design
space, four pairs in the mirror symmetric design space, and three
pairs in the double-mirror symmetric design space are not statistically
distinct. However, there are more pairs of distinct distributions in the
asymmetric design space and the mirror symmetric space than the
double-mirror symmetric space. In addition to the asymmetric and
mirror symmetric design spaces being more conducive to the mere
presence of features than the double-mirror design space, these results
indicate that features present in these two design spaces are more
likely to have an influence on metamaterial properties. Below we focus
our discussion on two sets of distributions — the 5 × 5 design space
or arrows as they influence Poisson’s ratio and spider nodes as they
influence shear stiffness; the rest of the distributions are included in
the Supplementary Information.

Shown in Fig. 11a are the probability distributions of Poisson’s
ratio for designs with and without arrows. Fig. 11b shows the proba-
bility distributions of normalized shear stiffness for designs with and
without spider nodes. Both sets of distributions cover all three types of
symmetry in the 5 × 5 design space. All pairs of distributions shown
are statistically distinct from each other. This is expected, as it was
thought that arrows and spider nodes would influence the Poisson’s
ratios and normalized shear stiffness of designs, respectively. However,
the manner in which these features impact the property spaces varies.
Because arrows were thought to introduce a higher degree of relative
movement within a unit cell, and thus more negative Poisson’s ra-
tios for one loading direction, the probability distribution of designs
with arrows is expected to be broader than the distribution of designs
without arrows. Likewise, spider nodes were thought to introduce a
concentration of members and thus an increased normalized shear
stiffness; the probability distributions with spider nodes are expected to
be shifted to the right of those without spider nodes. In both Fig. 11a
and 11b, these expected differences between distributions are seen only
for asymmetric and double-mirror symmetric designs. We verified these
observations by finding the variances of the distributions in Fig. 11a
and the means of those in Fig. 11b. We then used two-sample F-tests
10
Fig. 12. Normalized frequency of the number of types of features present in the 5 × 5
asymmetric, mirror symmetric, and double-mirror symmetric design sets used in this
study. The categories represent the number of different feature types a design has. For
each feature type, designs have at least one instance of that feature.

to prove a significant difference of variance and two-sample t-tests to
prove significantly distinct means (expecting 𝑝-values below 0.05 in
both cases to affirm significance). The variances of the distributions
with arrows are significantly greater than for the distributions with-
out arrows for both asymmetric and double-mirror symmetric designs
(Table 2). Similarly, the means of the distributions with spider nodes
(Table 3) are significantly greater than for the distributions without
spider nodes for both asymmetric and double-mirror symmetric designs
(with 𝑝-values of 0.0289 and 0.0301 respectively). Mirror-symmetric
distributions in both cases do not conform to these expected outcomes,
despite both features being most prevalent in mirror-symmetric designs.
These results indicate that the mere prevalence of a feature in a design
space does not determine whether that feature has the intended impact
on the property space.

A potential explanation for this discrepancy is found by examin-
ing the presence of multiple features in designs. Fig. 12 shows the
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Table 2
Variances of probability distributions shown in Fig. 11a. Shown in the last column are
the 𝑝-value results of the two-sample F-tests; statistically significant results are marked
with an asterisk.
Symmetry type Variance with

feature
Variance without
feature

𝑝-value

Asymmetric 0.0935 0.0712 <0.001∗

Mirror symmetric 0.0819 0.246 <0.001∗

Double-mirror symmetric 0.128 0.0721 <0.001∗

Table 3
Means of probability distributions shown in Fig. 11b. Shown in the last column are
the 𝑝-value results of the two-sample t-tests; statistically significant results are marked
with an asterisk.
Symmetry type Mean with

feature
Mean without
feature

𝑝-value

Asymmetric 0.184 0.158 <0.001∗

Mirror symmetric 0.132 0.137 <0.001∗

Double-mirror symmetric 0.148 0.128 <0.001∗

normalized frequency of designs of each symmetry category that have
only one, any two, any three, or all four types of features. Double-
mirror symmetric designs are by far the most common category to
have only one of the four features. However, as the number of fea-
ture types present increases, asymmetric and mirror-symmetric designs
become more common to the point that they are much more likely
than double-mirror symmetric designs to have all four feature types
present. Asymmetric designs, which do not have any symmetry con-
straints, likely can accommodate multiple features without an overlap
that causes features to influence each others’ performance. The mirror
symmetric design space has similar feature-type proportions to the
asymmetric design space, but also a lack of the intended impact of
these features (Fig. 11). The requirements of mirror symmetry limit
the space available for features to exist in designs; different features are
likely to overlap because they are composed of the same members (rep-
resentative examples are included in the Supplementary Information).
Double-mirror symmetric designs have even more stringent symmetry
constraints, making it difficult for even one feature to be present
(let alone multiple), inherently limiting the potential for features to
interfere with each other within such designs. As such, the impact of
a feature on metamaterial properties goes beyond the mere presence
of that feature. This impact is likely dependent on the symmetry
of a design as well as the presence of other features with different
expected influence on properties. Furthermore, these results highlight
the benefits of asymmetry over the other two types of symmetry: asym-
metric designs are the most capable of containing multiple features that
function as intended without interfering with each other.

4. Conclusions

In this study, we examined the mechanical properties of asym-
metric, mirror symmetric, and double-mirror symmetric lattice-based
metamaterial designs to reveal the expanded options for metamaterial
mechanical properties when deviating from double-mirror symmetry.
We defined a standardized design space in order to study differences
between asymmetric, mirror symmetric, and double-mirror symmetric
lattice metamaterial patterns. We then employed a generative design
process to create sets of designs for each type of symmetry. The
composition of these sets are representative of each symmetry-defined
design subspace. The stiffness tensor of each design was then found
using a reduced-order finite element model, and the volume fraction of
each design was calculated analytically. We quantified the differences
among the design spaces using probability distributions of normal stiff-
ness, Poisson’s ratio, and normalized shear stiffness. These distributions
indicate that designs of all three types of symmetry are likely to have
distinct metamaterial properties from each other.
11
Four design features were identified in the design spaces: pivot points
and arrows were specifically thought to influence Poisson’s ratio, while
spider nodes and stacked members were expected to influence shear stiff-
ness. These features were found to be more common in asymmetric and
mirror symmetric designs than in double-mirror-symmetric designs,
which was expected as the double-mirror symmetric design space was
thought to be less accommodating of these features than the other
two types of symmetry. Probability distributions were then generated
to determine the correlation of these features with the metamaterial
property space. All four design features were found to impact meta-
material properties to some degree. Asymmetric and double-mirror
symmetric designs with arrows were more likely to have a Poisson’s
ratio farther from zero than designs without arrows. Similarly, asym-
metric and double-mirror symmetric designs with spider nodes were
ore likely to have a larger normalized shear stiffness than designs
ithout spider nodes. However, mirror symmetric designs in both cases
ere not impacted by these two features in the manner expected.
his unexpected result can be explained by examining the presence
f multiple types of features in designs. These results suggest that the
mpact of a feature on a design is not just tied to the mere presence
f that feature: it is also tied to the overlap of multiple features as
ell as the symmetry type of that design. Furthermore, asymmetry is
hown to be more adept than mirror and double-mirror symmetry at
ccommodating multiple features that do not inadvertently influence
ach other’s performance. Because asymmetry is both more versatile
nd more effective than either mirror or double-mirror symmetry in
ncorporating design features, it is thus a useful tool for designing
attice patterns to achieve unique metamaterial properties. As such, this
tudy provides a framework for leveraging asymmetry to identify novel
attice patterns with properties beyond the double-mirror symmetric
etamaterial property space. Future work could examine the impact
f a less-discrete design space, as well as expand these methods to 3D
attice patterns, in order to understand how consistent the benefits of
symmetry are with broader design spaces.
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