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Abstract

Invasive forest insects have significant direct impacts on forest ecosystems and

they are also generating new risks, uncertainties, and opportunities for forest

landowners. The growing prevalence and inexorable spread of invasive insects

across the United States, combined with the fact that the majority of the

nation’s forests are controlled by thousands of autonomous private land-

owners, raises an important question: To what extent will private landowners

alter their harvest practices in response to insect invasions? Using a quasi-

experimental design, we conducted a causal analysis to investigate the

influence of the highly impactful emerald ash borer (EAB) on (1) annual prob-

ability of harvest; (2) intensity of harvest; and (3) diameter of harvested trees,

for both ash and non-ash species on private land throughout the Midwest and

mid-Atlantic regions of the United States. We found that EAB detection had a

negative impact on annual harvest probability and a positive impact on harvest

intensity, resulting in a net increase in harvested biomass. Furthermore, our

estimates suggest that EAB detection will influence private landowners to har-

vest greater quantities of ash, relative to non-ash species. We also found that

harvested trees in EAB-infested areas had smaller diameters, on average, com-

pared with those unaffected by EAB. These results can help policymakers, for-

est managers, and extension programs to anticipate and better advise

landowners and managers about their options and the associated outcomes for

forests.
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INTRODUCTION

Non-native plants, animals, and microorganisms are fun-
damentally altering the composition and function of eco-
systems, particularly forests, whose slow growth and

remoteness often hinder the timely detection of invasive
species (Liebhold et al., 2017). While most non-native
organisms have negligible impacts on their host environ-
ments, a selection of wood-boring beetles have established
themselves as a major source of disruption to forests. Over
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the past two centuries, wood-boring beetles have been
unintentionally moved between continents in wood and
wood packaging material (Brockerhoff et al., 2006), with
dramatic consequences on their new habitats. For instance,
tree-killing bark beetles can convert conifer-dominated
stands into broad-leaved forests, effectively replacing entire
swaths of trees with other, often functionally different,
plant species (Edburg et al., 2012). In addition to modifying
forest structure and function, bark and wood-boring insects
in the United States cost hundreds of millions of dollars
per year in lost timber revenue (Liebhold et al., 2017).

Invasive insects and timber harvesting represent the
primary disturbance agents in eastern North American for-
ests, and through selective mortality they substantially alter
the composition and structure of the forested landscape
(Canham et al., 2013; Fei et al., 2019; Liebhold et al., 2017).
Synergies between invasive insects and timber harvesting
pose risks and uncertainties for the future of forest man-
agement. Anticipating how landowners will respond to the
presence or threat of insects is challenging and not well
understood, although salvage cutting (or preemptive sal-
vage cutting) has long been the default management choice
when faced with an exogenous disturbance (Burton et al.,
2008). Specific management decisions are strongly
influenced by attributes of the insect (e.g., rate of spread,
lethality, and host specificity), the landowner type, and the
social context (Markowski-Lindsay et al., 2020). Past out-
breaks in the region have been accompanied by accelerated
harvesting, and there are distinct ecological legacies of
the interactions between these two classes of biotic
disturbance. From 1972–1986, for example, industrial tim-
berland owners in Maine dramatically increased clear-cut
salvage harvesting during an extensive spruce budworm
(Choristoneura fumiferana) outbreak, resulting in the wide-
spread conversion of spruce-fir forests to deciduous ones
(Irland et al., 1988). Similarly, following reports that hem-
lock woolly adelgid (Adelges tsugae) had reached Connecti-
cut in the 1980s and 1990s, many landowners harvested
hemlock trees, despite their low commercial value (Orwig
et al., 2002). In 2008, when Asian longhorned beetles
(Anoplophora glabripennis) were discovered in Worcester,
MA, the USDA responded by felling and chipping >35,000
trees along city streets and in urban woodlots (Dodds &
Orwig, 2011). Understanding the connections and feed-
backs among these drivers of change is critical for antici-
pating ecological impacts and developing sustainable
policies.

In recent years, the phloem-feeding buprestid beetle
emerald ash borer (EAB; Agrilus planipennis) has become
the most destructive and costly forest insect to ever
invade North America (Aukema et al., 2011; Lovett
et al., 2016; Morin et al., 2017). The impact of EAB is so
widespread and severe that American ash species

(Fraxinus spp.) could be functionally extinct within
decades (Herms & McCullough, 2014). Forest landowners
and managers have been forced to adapt their decision-
making to account for the presence and threat of EAB
throughout range of ash in North America.

EAB, native to Asia, was first identified in the
United States in 2002 near Detroit, Michigan, although it is
now understood that the initial invasion occurred in the
mid-1990s. Since its arrival in North America, the insect
has spread to dozens of United States states and has killed
millions of ash trees. The lack of resistance in North
American ash hosts (Anulewicz et al., 2008) results in rapid
spread of EAB, threatening the persistence of North
American species in the genus Fraxinus. EAB dispersal is
primarily a function of time (i.e., the invasion spreads
across the host range until saturation occurs), although
other significant correlates of EAB dispersal include
human population density (+), ash and non-ash tree densi-
ties (+), and temperature (�) (Ward et al., 2020). Once
EAB is established, ash species experience an increased
mortality rate and corresponding decreases in volume until
most live ash are killed (Klooster et al., 2018; Morin
et al., 2017; Pugh et al., 2011).

As with forest insects, timber harvest regimes are crit-
ical drivers of mesoscale ecological dynamics (Thompson
et al., 2017). Harvest regimes are driven by physical,
social, and economic factors (Thompson et al., 2017).
Aboveground tree biomass, species, and diameter are cor-
related with the probability and intensity of harvest
(Canham et al., 2013; Silver et al., 2015). The demo-
graphic attributes population density and median house-
hold income are negatively correlated with harvest
intensity (Kittredge et al., 2017). Ownership type has also
been shown to affect harvest regimes, with private wood-
land owners generally removing more trees than public
entities (Thompson et al., 2017). Although timber market
prices are intuitively tied to harvest patterns, Kittredge
and Thompson (2016) found that fluctuations in stump-
age are an unreliable predictor of aggregate harvest activ-
ity for non-industrial private landowners.

An open question is the degree to which EAB detec-
tion influences harvest regimes, an interaction that could
potentially compound and modify the disturbance impact
on the forested ecosystem by either broadening its impact
(e.g., accelerated harvesting, transportation of infested
firewood) or by limiting its spread (e.g., removal of host
trees). Of particular interest is the impact of EAB detec-
tion on logging by private landowners, who autono-
mously make decisions that collectively affect the
majority of United States forestland. A 2017 mail survey
of private landowners in New England found that 84% of
respondents (n = 688) intended to harvest, in some capac-
ity, in response to a hypothetical tree insect invasion
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(Markowski-Lindsay et al., 2020). Empirical evidence of a
synergy between EAB detection and harvesting regimes,
however, is lacking.

Here we determine whether EAB detection (from this
point forwards “EAB”) affects harvest regimes on pri-
vately owned forestland. Disturbances such as forest
insect pests often prompt “salvage” harvesting, which
serves to recover monetary value in affected timber or
meet certain silvicultural goals (Burton et al., 2008). While
salvage harvests typically occur after a disturbance such
as wind or fire, “sanitation” harvests can also occur pre-
emptively in an attempt to mitigate future damage or
value loss, particularly for forest insects (Waring &
O’Hara, 2005). The effects of salvage and/or sanitation
harvesting can extend beyond the host species alone; for
example, the spruce budworm and the hemlock woolly
adelgid prompted landowners to harvest a mix of host and
non-host tree species (Irland et al., 1988; Kizlinski
et al., 2002). The removal of non-host tree species with the
host species serves to increase the commercial value of
the harvest and/or to promote a desired regeneration of
species (MacLean et al., 2020). In our analysis, we exam-
ine the effects of EAB on both host (ash) and non-host
(co-occurring with ash) tree species.

Using publicly available datasets, our analysis
addressed the following three research questions:
(1) How is the annual probability and intensity of ash
species harvested impacted by EAB? (2) How is the
annual probability and intensity of non-ash species
harvested influenced by EAB? (3) Does the presence of
EAB impact the mean diameter of harvested trees?

MATERIALS AND METHODS

Summary of methodology

Using data from the United States Forest Service’s Forest
Inventory and Analysis (FIA), the United States Depart-
ment of Agriculture’s Animal and Plant Health Inspec-
tion Service (APHIS), and the American Community
Survey (ACS), we quantified the influence of EAB on har-
vest frequency, harvest intensity, and mean diameter of
removed trees. We analyzed these data using a quasi-
experimental statistical design to test for a causal
relationship between the presence of EAB and altered
harvest behavior sensu Larsen et al. (2019). Borrowing
language from randomized control trials, we use “treat-
ment” to denote EAB presence; “control” refers to no
EAB; and our “response” is tree-harvesting. We first
implemented a matching algorithm to ensure that “treat-
ment” (EAB) and “control” (no EAB) observations had
similar variable distributions with respect to the

covariates shown by Ward et al. (2020) to impact EAB
dispersal (e.g., human population density, tree density,
temperature). Then, to quantify the effect of EAB on
harvesting, we performed regression analysis using
covariates shown by Thompson et al. (2017) to impact
harvesting (e.g., volume of living trees, human popula-
tion density, median household income). Finally, we
compared the diameters of harvested trees on plots with
and without EAB using a Student’s t test, with separate
comparisons for ash and non-ash species.

Data description

We obtained annual county-level EAB invasion status from
the USDA APHIS for nine United States states, including
parts of the Midwest and mid-Atlantic regions (Figure 1).
At the county level, measurable impacts on forests gener-
ally begin to appear ~5 years after establishment and were
widespread at 10 years (Morin et al., 2017). As a compro-
mise between EAB tenure, which began in 2002 in the
APHIS dataset, and number of treatment (EAB) observa-
tions, we conducted our analysis for the years 2007–2012,
mirroring the second EAB “invasion cohort” described in
Ward et al. (2021). Any plot in a county in which EAB was
detected prior to 2007 was in the treatment group; all plots
in counties that were infected after 2012 were in the con-
trol group (Figure 1). Response (harvest) data were
extracted for the years 2007–2012. By omitting from our
analysis counties that detected EAB between 2007–2012,
we temporally separated the treatment effect from the
response, which led to a more straightforward matching
routine (Section 2.3).

Plot characteristics and tree data were extracted from
the United States Forest Service FIA program using the
rFIA package (Stanke et al., 2020; Stanke & Finley, 2020)
for the statistical software (R Core Team, 2020). We used
data from plots for which there were two censuses con-
ducted using the contemporary plot design (1999
onwards) to allow determination of prior and subsequent
plot characteristics (e.g., which trees were removed). Spe-
cifically, all prior observations were conducted between
1999 and 2006; all subsequent observations were con-
ducted between 2007 and 2012. By comparing the initial
and follow-up observations of each plot, we determined
which trees were harvested as well as the species and
diameter of each harvested tree. In accordance with FIA
protocol, we considered harvested trees to be those that
were “cut or removed by direct human activity related to
harvesting, silviculture or land clearing” (Woudenberg
et al., 2010). Trees with diameter < 12.7 cm (5 inches)
were omitted from our analysis (including plot-level sta-
tistics) to be consistent with FIA demographic estimates.
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Plots that did not contain any ash trees were removed
from the data as these plots were not subject to the treatment
effect. In the context of this study, “ash species” includes
white ash (Fraxinus americana), green ash (Fraxinus
pennsylvanica), and black ash (Fraxinus nigra). We consid-
ered privately owned plots only (omitting federal and state
plots) to contextualize our findings within the discussion of
private landowner behavior (e.g., Holt et al., 2020; MacLean
et al., 2020; Markowski-Lindsay et al., 2020).

Socioeconomic variables shown to be correlated with
the treatment and/or response were downloaded from the
ACS using the tidycensus package (Walker et al., 2020). We
obtained human population density at the county level to
match EAB and non-EAB counties (Ward et al., 2020).
Human population density and median household income
were also obtained at the census tract level to be incorpo-
rated into the finer-resolution harvest models.

Meteorological variables known to be predictive of
the treatment effect were downloaded from PRISM
(PRISM, 2019). We obtained climate normals (three-
decade averages) for precipitation (mm), minimum tem-
perature (�C) and maximum temperature (�C) for the

period 1981–2010 at a 4 km � 4 km resolution raster. We
then conducted a principal component analysis (PCA)
and aggregated the rotated principal component scores to
the county level by averaging values for all grid cells
whose centroids occurred within a given county bound-
ary. Minimum and maximum temperatures had high
loadings on the first principal component (“PC1”)
whereas precipitation had high loadings on the second
(“PC2”). Ward et al. (2020) identified PC1 as being corre-
lated with the treatment effect; as such, we included PC1
as a covariate in our matching routine.

Covariate matching

When using observational data to consider a causal rela-
tionship, such as the effect of EAB on harvest regimes,
one must address confoundedness, or the possibility that
differences in the response variable between treatment
and control groups are caused by factors that predict
treatment rather than the treatment itself (Cochran &
Rubin, 1973). As an example of confoundedness, ash tree

F I GURE 1 Study area. Forest Inventory and Analysis (FIA) plots in counties where emerald ash borer (EAB) was detected before 2007

are in the treatment group; observations from counties where EAB was detected after 2012 are in the control group. Tree characteristics and

harvest data were extracted from 2007–2012. Treatment observations (orange) had a range of EAB infestations from between 1 and 10 years.

Negative values in the histogram indicate time to arrival for EAB
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density may be a causal mechanism for both EAB inva-
sions and ash harvesting; in this scenario, it would be
impossible to identify the relationship between EAB and
ash harvesting without controlling for ash tree density.
Therefore, before assessing the relationship between EAB
and harvest regimes, we: (1) identified variables known
to be correlated with the treatment effect; and (2) ensured
that the joint distributions of these variables were similar
between treatment and control groups.

We matched covariates using the Genetic Matching
algorithm (Diamond & Sekhon, 2013), which is a gener-
alization of propensity score and Mahalanobis distance
matching (Rosenbaum & Rubin, 1985). The algorithm is
a multivariate matching method that uses an evolution-
ary search routine developed by Sekhon and Mebane
(Sekhon & Mebane, 1998) to maximize the balance of
observed covariates (i.e., the joint distribution) across
treatment and control units. Human population density,
ash tree density, non-ash tree density, and temperature
are variables shown to be correlated with EAB invasion
(Ward et al., 2020), and therefore were used as covariates
for the matching algorithm. EAB spread has also been
shown to be spatially and temporally autocorrelated
(e.g., EAB in a county is influenced by EAB in neighbor-
ing counties). We removed spatiotemporal interactions
between the treatment and response by using the follow-
ing framework: All sites that first detected EAB from
2002–2006 were treatment units; sites that first detected
EAB from 2013 onwards were control units; and we
collected response data between 2007–2012, effectively
separating the treatment effect from the response. The
trade-off of this approach is that we introduce variability
in the time since EAB was detected; as EAB was first
detected at treatment sites anywhere between 2002–2012,
the duration human knowledge of EAB in the county
varied from 1 to 10 years (Figure 1, histogram).

The Genetic Matching algorithm assigns weights to con-
trol observations such that the weighted controls are similar
to the unweighted treatment units. For matching numeric
covariates, as in our case, the standardized difference in
means can be used to diagnose balance. While there is no
universally agreed upon threshold of the standardized differ-
ence in means, a difference that is near or below 0.1 has gen-
erally been taken to indicate a negligible difference in the
mean covariate between treatment and control groups
(Normand et al., 2001). We used the MatchIt package (Ho
et al., 2020) to implement the Genetic Matching algorithm.

Regression modeling

Using the matched data, our statistical model estimated
two components of the harvest regime: (1) probability of

being logged; and (2) percentage basal area removed if log-
ged. Both components were modeled simultaneously, simi-
lar to Canham et al. (2013). We used a zero-inflated beta
distribution for the likelihood function, since the harvest
data include many zeros (unlogged plots), and the distribu-
tion of percentage basal area removed (if logged) must fall
between zero and one. The zero-inflation term was
modeled as a logistic regression. Both the logistic and beta
components of the model varied as a function of the same
four harvest covariates: aboveground biomass (AGB) at the
previous observation, human population density (popden),
median household income (MHHI), and EAB.

We followed a Bayesian model-fitting procedure to esti-
mate our piecewise regression. The zero-inflation term
(harvest probability) is modeled as follows, where N is the
number of years between plot observations and w is the
probability of not harvesting. By raising the inverse of
harvest probability to the power N , we return estimates
for annualized harvest probability. The regression coeffi-
cients β have uninformative priors β�Normal 0,102ð Þ :

μi ¼ β0þβ1AGBiþβ2popdeniþβ3MHHIiþβ4EABi ð1Þ

pi ¼ invLogit μið Þ ð2Þ

wi ¼ 1�pið ÞN ð3Þ

The beta-distributed component of the model (harvest
intensity) is expressed as follows, where γ is a regression
coefficient drawn from an uninformative prior
γ�Normal 0,102ð Þ; y is the percent basal area harvested;
and r is the concentration parameter of the beta distribu-
tion, which we treat as a random variable with prior
r�Gamma 0:1,0:1ð Þ. For readability, we define the log of
the beta distribution explicitly:

ηi ¼ γ0þ γ1AGBiþ γ2popdeniþ γ3MHHIiþ γ4EABi ð4Þ

si ¼ invLogit ηið Þ ð5Þ

logBetai ¼ log beta yi,rsi,r 1� siðð Þð Þ ð6Þ

Next, we define an indicator variable z to denote
harvested and non-harvested observations:

zi ¼
1 if y>0

0 if y¼ 0

(
ð7Þ

Combining the zero-inflation and continuous model
components, we arrive at the likelihood function.
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Observe that in the absence of harvest (z¼ 0), the logistic
term dominates the likelihood, whereas both the logistic
and beta terms are influential when harvest is non-zero:

logLikelihoodi ¼ 1� zið Þ � log wið Þþ zi � log 1�wið Þþ logBetaið Þ
ð8Þ

The model was implemented using “JAGS” via the R2jags
package (Su & Yajima, 2012). In total, three separate
models were estimated to characterize the influence of
EAB on ash and non-ash harvest regimes: Model 1 (ash
species only); Model 2 (non-ash species); and Model
3 (ash expressed as a fraction of total harvest).

Harvest diameter

Using the matched dataset, we conducted a weighted Stu-
dent’s t test to compare the diameters of harvested trees
(diameter ≥ 12.7 cm) in EAB and non-EAB counties. Ash
and non-ash species were analyzed separately.

RESULTS

Matching

Before we matched the data, the treatment and control
groups exhibited significant mean differences in covariates
that are known to impact the probability of EAB invasion,
thereby confounding causal interpretation of the results.
Ash density and non-ash density both had standardized
mean differences of 0.36. Population density was the most
similar covariate between the two groups (0.15), whereas
PC1 had the greatest contrast (0.90). The large difference in
PC1, which represents temperature, can be explained by
the fact that most treatment observations were located in

the northern state of Michigan, whereas many of the con-
trol observations were in warmer areas of West Virginia,
Indiana, and Illinois (Figure 1).

The Genetic Matching algorithm achieved negligible
mean differences between treatment and control groups
in ash density (0.07), non-ash density (0.01), population
density (0.002) and PC1 (0.06) (Appendix S1). This bal-
ance was achieved by selecting 310 of the control observa-
tions most similar to the 691 treatment observations (2033
control observations were discarded). The 310 control units
were assigned weights such that all units sum to one.

EAB impacts on harvest probability and
intensity

Ash and non-ash harvests were detected in 6% and 9% of
the FIA plots, respectively. When ash was harvested, 63%
of the plot’s basal area ash was removed, and ash species
amounted to about one-half of the total harvest, on aver-
age. Non-ash removals averaged 32% of the plot’s basal
area. The average time interval between subsequent mea-
surements (N in Equation 3) was 5.08 years (SD = 0.65).

Harvest probability was modeled in tandem with har-
vest intensity (Equation 8), in which both the probability
and intensity terms varied as functions of AGB, EAB pres-
ence, human population density, and median household
income (MHHI). Each model converged after 2000 itera-
tions with a burn-in period of 200. Based on the deviance
information criterion (DIC) (Spiegelhalter et al., 2002),
Model 1 (ash species only) had the best fit, followed by
Model 3 (ash species expressed as a fraction of total har-
vest) and Model 2 (non-ash species; Table 1).

Tree biomass was the strongest predictor of harvest
and was a significant variable in all three models. AGB
had a statistically significant positive effect on harvest
probability in Model 1 (ash) and Model 2 (non-ash). AGB

TAB L E 1 Model estimates

Model
Harvest
component

AGB EAB
Population
Density MHHI

DICMean SD Mean SD Mean SD Mean SD

1: Ash species Probability 0.04 0.01 �0.27 0.27 �0.39 0.29 �0.24 0.17 187,137

Intensity �0.01 0.01 0.91 0.35 �0.18 0.51 �0.14 0.22

2: Non-ash species Probability 0.02 0 �0.54 0.22 �0.28 0.2 �0.33 0.14 188,703

Intensity �0.01 0 0.25 0.25 0.49 0.27 �0.21 0.16

3: Ash as a fraction of total
harvest

Probability 0.01 0.01 �0.28 0.28 �0.38 0.29 �0.22 0.17 187,212

Intensity 0.02 0.01 0.55 0.33 0.24 0.47 0.75 0.22

Note: Both the zero-inflation (harvest probability) and continuous (harvest intensity) components of each model vary as a function of aboveground biomass
(AGB), emerald ash borer (EAB), human population density, and median household income (MHHI). Mean estimates with a non-zero 95% credible interval
are in bold. Deviance information criterion (DIC) is an estimate of model error.
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was also positively correlated with the intensity compo-
nent of Model 3 (fraction of harvest composed of ash)
(Table 1). By contrast, AGB had a negative impact on
non-ash harvest intensity.

The two demographic variables, human population
density and median household income, displayed limited
effects in our models. MHHI was negatively correlated
with the probability of non-ash harvest but had a positive
influence on the intensity component of Model 3. Human
population density was not estimated to be significant in
any of the regressions.

EAB, our main variable of interest, had a statistically
significant and negative impact on non-ash harvest prob-
ability. Our model predicts that a plot with 50 Mg/ha of
non-ash biomass will experience a 0.13 reduction in
annual probability of harvest due to EAB (Figure 2a).

Ash harvest probability, conversely, was not sensitive to
the presence of EAB within the 95% credible interval.

Harvest intensity was positively influenced by EAB,
but this effect was statistically significant for ash species
only (Model 1). Figure 2(b) illustrates the predicted
effects of EAB on harvest intensity. The percentage of
basal area removed decreases as a function of AGB, and,
for ash species, EAB induces approximately 25% more
basal area removal (Figure 2b).

Finally, EAB had a positive impact on the ash fraction of
harvest (Model 3, intensity component), although this esti-
mate is statistically significant only at the 90% credible inter-
val. Figure 3 portrays the predicted probabilities of harvesting
ash (Figure 3a) and, if ash is harvested, the fraction of the total
harvest comprised of ash (Figure 3b), as a function of the ash
fraction of available AGB. For an FIA plot with 50%

F I GURE 2 Model predictions for Model 1 (ash species) and Model 2 (non-ash species). Annual probability of harvest follows a logistic

distribution (a); intensity of harvest (percentage basal area removed) follows a beta distribution (b). Gray shading indicates the 95% credible

interval for the estimated effect of emerald ash borer (EAB)
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aboveground ash biomass, EAB is estimated to increase the
ash composition of harvest by ~15% (Figure 3b).

Harvest diameter

A weighted Student’s t test indicated that trees harvested
in EAB counties were smaller than those in non-EAB
counties, for both ash and non-ash species. The mean
diameter of harvested ash trees in EAB counties was
25.1 cm, compared with 31.9 cm in counties without EAB
(p = 0.06). Harvested trees of non-ash species had a mean
diameter of 27.2 cm in EAB counties, compared with
36.7 cm in non-EAB counties (p = 0.007) (Figure 4).

DISCUSSION

The inevitable spread of EAB throughout much of the
United States poses an interesting question: To what
degree will EAB influence harvest regimes? And, if har-
vest regimes are altered by EAB, what is the significance
of those shifts? Using publicly available data, we com-
bined covariate matching and regression analysis to
uncover causal relationships between EAB and several
aspects of private forest owner harvest regimes. Our
results demonstrated that EAB increased the amount of
harvested biomass, and that EAB-induced harvests con-
tained greater quantities of ash, relative to non-ash spe-
cies. We also find that harvested trees in EAB-infested
areas had smaller diameters, on average, compared with
those unaffected by EAB.

The positive effects of EAB on (1) ash harvest inten-
sity and (2) the fraction of the overall harvest composed
of ash suggest that a wave of ash removals will follow the
spread of EAB across the landscape. This synchronized har-
vest behavior by private woodland owners is in contrast
with the general characterization of private landowners as
exhibiting unpredictable harvest behavior. Kittredge (2004)
presented a decision cycle for private woodland owners,
whereby the individual does not engage in harvesting until
an exogenous personal event (e.g., medical expenses, college
tuition, etc.) occurs that incentivizes a timber sell-off. How-
ever, the detection (or impending detection) of EAB could
serve to upend this variability and harmonize harvest
patterns of private forest owners. This opportunistic
harmonization of logging has the potential to alter forest
development trajectories and change structural legacies,
with consequences for ecosystem services and biodiversity
(Leverkus et al., 2018). Species that co-occur with ash, and
particularly those that are preferred species for harvest, are
the most likely to be removed and are the most vulnerable
to EAB-induced harvests (MacLean et al., 2020).

The increased intensity of ash removals in response to
EAB supports the survey results of Markowski-Lindsay
et al. (2020), which found that that private landowners in
the northeastern United States overwhelmingly intended

F I GURE 4 Boxplots comparing the mean plot diameters of

harvested trees in counties with and without emerald ash borer

(EAB). p-values of the weighted Student’s t test are printed in the

center of each panel

F I GURE 3 Model predictions for the probability (a) and

intensity (b) components of Model 3 (ash as a fraction of total

harvest). The gray shading indicates the 95% credible interval for

the effect of emerald ash borer (EAB) on the probability of

harvesting ash (a) and, if ash is harvested, the fraction of the total

harvest comprised of ash (b)

8 of 12 HOLT ET AL.



to harvest in response to invasive insects (including EAB,
hemlock woolly adelgid, and/or Asian longhorn beetle). In
fact, ash removal was encouraged in the early years of
EAB detection as a means to contain the invasion
(McCullough & Siegert, 2007). Somewhat surprising, how-
ever, is the estimated negative effect of EAB on harvest
probability, a reduction that was statistically significant for
non-ash species but not for ash. This negative effect could
be due to sanitation logging that occurred prior to the
timeframe of our analysis. In other words, while we esti-
mated the effects of EAB within the first 10 years of detec-
tion, it is likely that EAB-induced harvesting occurred
prior to this time, either due to undocumented EAB cases
or to the foresight of proactive landowners. Savvy forest
owners in the control group might also have preemptively
harvested trees prior to the official EAB detection date,
which would weaken the observed effect of EAB on har-
vest probability. The lower annual probability of harvest
on EAB plots could also be due to the fact that more of
these plots are located in colder regions where trees experi-
ence slower growth rates, compared with non-EAB plots.
It is important to note that, despite the negative effect of
EAB on harvest probability, the positive effect of EAB on
harvest intensity dominated our statistical model and
yields a predicted net increase in harvested basal area.

In addition to changes in the probability and intensity
of tree removals due to EAB, we detected differences in the
average plot harvest diameter for both ash (p = 0.06) and
non-ash (p = 0.007) species when comparing treatment and
control groups. On the one hand, this is surprising as early
efforts in Michigan were originally focused on removing
only the largest ash trees to reduce the available phloem for
EAB development to slow its spread (McCullough &
Siegert, 2007). However, McCullough and Siegert (2007)
also mention locations in MI and OH where all ash stems
surrounding a focal tree in infested areas were removed.
Our results are more indicative of the latter and suggest that
EAB may reduce the choice of foresters, who, faced with
either infected timber or the impending threat of EAB,
decide to harvest more ash from a site, resulting in the har-
vest of smaller average trees than would normally be cut.
Given that non-ash species also exhibited a difference in
harvest diameter, this reduced choice appears to extend to
the entire harvest. It is unclear from the data whether the
increased removal of smaller non-ash trees due to EAB
serves a silvicultural purpose, economic goal, or both.

Regression analysis of the matched dataset supports
previous estimates of the influence of AGB on harvest
probability. Similar to Canham et al. (2013) and Thomp-
son et al. (2017), we estimated that AGB had a positive
effect on harvest probability for both ash and non-ash spe-
cies (Figure 2). The relationship between AGB and harvest
intensity has been found to vary greatly by state and forest

type, but northern hardwood forests and the Great Lakes
states are known to exhibit a negative trend (Canham
et al., 2013; Thompson et al., 2017), which we also
observed in our estimated effect of AGB in the non-ash
model (Model 2). This may be because most harvests on
land owned by private owners are frequent, low intensity
harvests that remove less than 20% of overstory basal area
(Thompson et al., 2017).

Socioeconomic variables did not play a large role in
our statistical models. We estimated no significant effect of
human population density; moreover, median household
income influenced only the probability of harvest for non-
ash species and the intensity of ash composition of the
harvest. The positive relationship between affluence and
the ash composition of harvest could suggest that private
landowners of lower affluence capitalize on the opportu-
nity to harvest more tree species (in addition to ash) due
to higher financial need. In general, lower-income forest
owners are thought to harvest at greater intensities than
their wealthier counterparts (Thompson et al., 2017).

Causal interpretation of our regression analysis was
enabled by a Genetic Matching algorithm that achieved
covariate balance between treatment and control units.
However, this balance came at the expense of statistical
power; to achieve such balance, 1723 out of 2033 control
observations were discarded. This “imbalance-n” trade-
off typically observed in matching routines is analogous
to the well known “bias-variance” trade-off encountered
in statistics and machine learning (Geman et al., 1992).
Furthermore, in matching the joint distributions between
treatment and control groups, we assumed that we had iden-
tified the key sources of confoundedness. Indeed, our four
matching covariates (ash density, non-ash density, PC1, and
human population density) are well founded correlates of
EAB invasion in the literature; however, other potential
influences of EAB spread exist. For instance, urban forests,
which are absent from the FIA dataset, are known to play
an important role in the spread of EAB by serving as the first
point of contact for the pest (Colunga-Garcia et al., 2010;
Paap et al., 2017). Urban trees often exist as single species
plantings (Donaldson et al., 2014), and may be predisposed
to infestation due to anthropogenic stress, increasing the like-
lihood of exotic forest pests becoming established and prolif-
erating (Pautasso et al., 2015). Nevertheless, spatiotemporal
dynamics are the primary driver of EAB invasion (Ward
et al., 2020) and, in our experimental design, we remove spa-
tiotemporal pressure as a potential confounder by separating
the treatment and response in time and space (Figure 1).

Despite controlling for many potentially confounding
influences, several potential sources of bias remain within
our quasi-experimental design. As indicated previously,
EAB detection methods were more refined for the control
group compared with the treatment group. Similarly, the
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control group had higher levels of knowledge of, and famil-
iarity with, EAB. These disparities could mean that: (1) the
treatment group experienced a wider range of damage due
to EAB; and (2) the control group had a better opportunity
to preemptively harvest healthy trees, both of which could
dampen the observed effect of EAB on harvest regimes
(i.e., our estimated effect may be underestimated). The
evolving understanding of EAB, and the ever-changing pro-
tocols associated with its spread, make it difficult to general-
ize causal effects observed during any particular period of
time. Another potential confounder is the implementation
of quarantines (efforts to curb the transportation of infested
wood), which were typically established at the county level
once EAB was detected. As quarantines roughly coincide
with EAB arrival, the effect of quarantines on harvest activ-
ity is a potential source of noise.

CONCLUSION

Our study suggests that private forest owners alter their
management decisions based on the presence of invasive
forest insects. For the EAB in the central United States,
we showed that landowners harvested more intensely
and across a wider range of tree sizes when the insect
was present in the county. This finding is significant
because the abundance and severity of wood-boring
insects in North America is projected to increase three- to
four-fold by 2050 as a result of climate change and global
trade (Ayres & Lombardero, 2000; Leung et al., 2014). It
is particularly valuable to understand private landowner
dynamics with regard to wood-boring insects, as this
owner group controls a large majority of forestland in the
United States and its decision-making is largely
uncoordinated. Our analysis suggests that these insects
will influence timber harvest regimes in novel ways with
potentially significant impacts on forest and the services
they provide. By understanding the relationship between
insects and harvest regimes, policymakers, forest man-
agers, and extension programs will be better equipped to
advise landowners and managers about their options and
the associated outcomes for forests.
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