IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

SMURF: Efficient and Scalable Metadata
Access for Distributed Applications

Bing Zhang and Tevfik Kosar, Senior Member, IEEE

Abstract—In parallel with big data processing and analysis dominating the usage of distributed and Cloud infrastructures, the demand
for distributed metadata access and transfer has increased. The volume of data generated by many application domains exceeds
petabytes, while the corresponding metadata amounts to terabytes or even more. This paper proposes a novel solution for efficient and
scalable metadata access for distributed applications across wide-area networks, dubbed SMURF. Our solution combines novel
pipelining and concurrent transfer mechanisms with reliability, provides distributed continuum caching and semantic locality-aware
prefetching strategies to sidestep fetching latency, and achieves scalable and high-performance metadata fetch/prefetch services in the
Cloud. We incorporate the phenomenon of semantic locality awareness for increased prefetch prediction rate using real-life application
1/0 traces from Yahoo! Hadoop audit logs and propose a novel prefetch predictor. By effectively caching and prefetching metadata
based on the access patterns, our continuum caching and prefetching mechanism significantly improves the local cache hit rate and
reduces the average fetching latency. We replay approximately 20 Million metadata access operations from real audit traces, where
SMUREF achieves 90% accuracy during prefetch prediction and reduced the average fetch latency by 50% compared to the

state-of-the-art mechanisms.

Index Terms—Heterogeneity, scalability, metadata access, prefetch prediction, continuum caching, semantic locality.

1 INTRODUCTION

E are witnessing a new era that offers new op-
Wportunities to conduct data-intensive scientific re-
search with the help of recent advancements in computa-
tional, storage, and network technologies. With the rapid
deployment of distributed infrastructures and the collab-
orations between different organizations (e.g., XSEDE [1],
OSG [2], Chameleon [3] and Cloudlab [4]), it is feasible
and promising to run scientific applications on these large-
scale geo-distributed infrastructures. In many application
domains, including environmental and coastal hazard pre-
diction, climate modeling, high-energy physics, astronomy,
and genome mapping, the volume of data generated has
already exceeded petabytes, while the corresponding meta-
data (the data providing information about one or more
aspects of the data) [5], [6] amounts to terabytes or even
more [7]. According to Roselli [8]'s study, more than 50% of
all I/ O operations are due to metadata-intensive computing,
and the requests to read file attributes dominate in all
workloads. The data movement is the common operation
between the data I/O nodes, compute clusters, and user
workstations for reconstruction, analysis, and visualization
of the data. The Cloud-hosted metadata catalog (e.g., Globus
Catalog [9], iRODS Metadata Catalog [10]) mitigates the
difficulty of browsing, tracking, and discovery of the data.
Thus, remote metadata retrieval and searching always have
been conducted frequently between the users and Cloud
services, even over wide-area networks. Data lakes [11]-[13]

e B. Zhang is with National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign, Champaign, IL 61801
E-mail: bing@illinois.edu

o T Kosar is with the Department of Computer Science and Engineering at
the University at Buffalo (SUNY), Buffalo, NY, 14260.

have been proposed to meet the requirement that scientists
and researchers are seeking broader access to different types
of “raw data” organized in a contextual format that can
be used across different projects. In contrast to the data
warehouse schema [14], the data schema in a data lake is
not predefined. With the help of a metadata description, a
data lake system can annotate, integrate, and query the raw
data. Without the metadata, data alone is not useful, and the
data lake becomes a data swamp [11].

More recently, with the unprecedented growth of the
Internet of Things (IoT) devices (e.g., sensors, virtual real-
ity, smartphones, smart vehicles, smart homes, and smart
grocery stores) connecting to the world [15], the drops
in the cost of sensors [16], and new technologies in wired
and wireless networks, more than 50 billion Edge devices
are expected to be connected to the Cloud by 2022 [17].
IoT devices autonomously capture and ingest data and
seamlessly integrate with the modern IT infrastructures, and
it is tenable to argue that IoT data is becoming the Big
Data. In the IoT data processing, the real-time response is
the inherent core feature. Intelligent IoT applications such
as camera-based monitoring systems collect real-time data
and send the aggregated information to remote analytic
platforms (e.g., Apache Storm [18], Apache Spark [19], and
IBM Infosphere Streams [20]) for real-time decision-making.
Traditional remote exchange of information from the distant
Cloud cannot meet the ultra-low latency requirements of
these time-sensitive and geographically dispersed IoT appli-
cations. Consequentially, the challenge beckons a paradigm
shift in which the data and metadata can be accessed any-
where, anytime, and from any device.

Access to proper metadata is latency-sensitive also due
to user experience and critical business operations: Google
reported 20% revenue loss due to a specific experiment that

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

increased the time to display search results by as little as
500 milliseconds; and Amazon reported 1% sales decrease
for an additional delay of as little as 100 milliseconds [21].
Unfortunately, most of the existing studies have focused on
the efficient and scalable transfer of large-scale data, and
there has been little work focusing on the optimization of
remote access and transferring of metadata [22] in wide-area
networks. By considering long-distance network latency,
the frequency of revalidation of metadata, and the rapid
growth of IoT, efficient and scalable metadata access and
transfer technologies are demanded and expected to become
a cornerstone of modern distributed IT infrastructures.

In this paper, we present a novel metadata access and
retrieval system, called SMUREF, which is built on the dis-
tributed continuum caching and semantic locality-aware
prefetching architecture to effectively fetch, prefetch, and
cache metadata on different hierarchical layers (as shown
in Figure 1) between clients and remote I/O servers in a
wide-area network (WAN) setting. The merits of the SMURF
system have been illustrated by the increased performance
and scalability of the real-time metadata transferring and
the low latency metadata access from heterogeneous remote
I/0 nodes. The main contributions of this paper include:

o An efficient, scalable, and interoperable metadata
access and transferring technique for large-scale (i.e.,
millions of) metadata instances in WAN based on
distributed continuum caching and prefetching to
sidestep metadata access and transfer latency.

e A novel universal metadata transfer stream pro-
gramming model which abstracts and reconstructs
the definition of application-level transfer protocol
request as a chain of commands and parsers. This
enables the transfer stream to send and parse dif-
ferent protocol requests in a universal mechanism to
provide maximum interoperability.

e A novel semantic locality-aware directory and file
metadata prefetching and caching scheme which
achieves over 90% accurate prefetch prediction rate.

e A detailed comparison of four different prefetch
predictors (our semantic locality-aware prefetch pre-
dictor and three state-of-the-art predictors, namely,
NEXUS, AMP and FARMER) and the legacy LRU
cache on the real-life Yahoo HDFS traces.

The rest of the paper is organized as follows: Section 2
describes the proposed system architecture and discusses its
design; Section 3 presents the simulation methodology and
performance evaluations; Section 4 discusses existing work
in this area; and Section 5 concludes the paper.

2 SYSTEM ARCHITECTURE

Two major goals of the SMURF system are (1) provid-
ing interoperability between heterogeneous and distributed
nodes through on-the-fly inter-protocol translation and (2)
improvement of the metadata transfer performance while
reducing access latency and meeting the scalability demands
to enable large-scale metadata access over WAN. Both of
these capabilities are crucial in translating raw data into
knowledge and discovery in an efficient way.

2
[Continuum Caching and Prefetchingmata
Client Edge Fog Cloud Sources

Cache

5@
&)

§9
4
|[||

Predictor Protocols

(ad)] ()

Lan |
Layer-1

Layer-2 Layer-3
Fig. 1: Client devices fetch/prefetch metadata of interest
in WAN via SMURF’s distributed continuum cache and
prefetch mechanism.

Interoperability is a critical need since valuable data may
reside on different I/O servers or Cloud services. Especially,
IoT devices and Edge nodes are highly heterogeneous [23].
In such heterogeneous and distributed environments, users
have to install different protocol clients (e.g., HTTP [24],
FTP [25], gsiFTP [26], IRODS [27], and Amazon S3 [28]) or
implement and install the customized client and server with
the help of well-known software libraries (e.g., gRPC [29],
Apache Thrift [30]) , which makes the Edge devices of IoT
ecosystem tightly coupled with specific services. Therefore,
it is cumbersome and requires extra expertise to switch
between the different services. SMURF deploys a Cloudlet
Edge cluster to the proximity of IoT devices, where the Edge
application can communicate with the Edge Cloudlet ser-
vices through a a universal programming interface, and the
remote metadata resources to be retrieved can be expressed
as Uniform Resource Identifiers (URI) inside the requests.

Scalability is another central technical challenge in dis-
tributed metadata access. IoT applications, especially the
sensor-based applications, have to process the dynamic
workloads in real-time. The scalability of transferring large-
scale metadata is a significant criterion to evaluate the
performance of such systems. SMURF improves metadata
transfer performance and meets scalability demands by
using optimized pipelining and concurrency techniques. It
also utilizes a hierarchical mechanism for the continuum
caching and prefetching along the IoT-to-Cloud path, where
the cache and the metadata prefetch predictor have been
installed on each Edge/Fog layer. SMURF employs a novel
approach based on semantic locality to predict the metadata
access of distributed workloads over WAN.

In the following subsections, we introduce the details of
the SMUREF architecture, discuss each functional component
of the system, and outline the system’s end-to-end operation
workflow.

2.1 SMURF Overview

SMUREF has a hierarchical architecture, as shown in Figure 1,
consisting of two major components: (1) a centralized Cloud
cluster with the scalable fetch/prefetch services provides
the universal pipelining and concurrent metadata transfer
mechanisms with reliability; (2) the distributed continuum
caching and smart prefetching strategies are deployed on
Edge/Fog layers in clients’ nearby networks, where the cus-
tomized locality prefetch schemes utilize the local storage
effectively to capture the future metadata to the proximity
of clients.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

| | 0
: PN refetch Jobs &, °
§ Fetch Jobs & | |Queue | [F s
o | |[Frontend) | Queue [! =
Servers[* | HTTP | w :
i | Service : : '
§ Fetch Services| | Prefetch Servicgs |
Fetch Prefetch) (Metadata
i (Frontend Queue Queue Updates || Py
'4—{> HTTP Subscriber | : Q
i (Service ‘

Fig. 2: High-level overview of SMURF’s metadata fetching
and prefetching between Edge server and Cloud.

Figure 2 shows the high-level metadata fetching and
prefetching mechanism between the Edge and the Cloud.
When clients submit the metadata fetch requests to the Edge
server, the Edge server will first try to read the metadata
from the local storage and reply to the clients. The Edge
server will then send the requests to the prefetch predictor
to analyze the request access patterns and predict the cor-
relation metadata. The Edge server establishes connections
to the Cloud server and sends/receives the fetch request
and its correlation prefetch requests in pipelining. The Edge
requests will be dispatched to the clusters of fetch/prefetch
services in the Cloud and processed in parallel.

2.2 Universal Metadata Transfer Stream

The universal transfer stream is designed and implemented
to coordinate and optimize the metadata access and trans-
fer over different heterogeneous application-level trans-
fer protocols over WAN. One universal transfer stream
retrieves the metadata of interest from the remote I/O
server using a single TCP connection, and it is novel in
three aspects. First, quite different from traditional pro-
gramming models, a proof of concept transfer stream pro-
gramming model (Section 2.2.1) has been proposed by
decoupling the application-level transfer protocol’s defini-
tion (e.g., FIP [25], SFTP [31]) and the message transfer
mechanism. We abstract and reconstruct the definition of
protocol request as a chain of commands and parsers, and
our transfer stream can send and parse different protocol
requests in a universal mechanism. The protocol definition
is provided as a library with programmability and exten-
sibility; thus, users can follow the convention to customize
their protocol to interact with the SMURF’s universal trans-
fer stream. Currently, SMURF supports application-layer
transfer protocols such as FTP [25], SFTP [31], GSIFTP [32],
IRODS [27], and Amazon S3 [28]. Second, our transfer
stream can efficiently utilize the network bandwidth via
metadata transfer pipelining. The value of pipeline capacity
can configure transfer stream channel, where the pipelining
capacity defines the maximum value of C' requests (request
is a user’s logical activity, such as auth, login, and metadata
retrieval) to be continuously sent over one TCP connection
without blocking or waiting for the completion of the previ-
ous replies from remote servers. Third, the stream is aware
of the transfer status and supports failure recovery. When

3

the connection is broken, the stream can automatically re-
establish the connection and notify the service to re-dispatch
the pending requests.

2.2.1 Metadata Transfer Stream Programming Model

An application-level protocol defines how the application
exchanges the information between its distributed compo-
nents. Especially during end-to-end metadata transferring,
one round of information exchange will be initiated by a
command sent from a client to the remote server, waiting for
the arrival of the reply from the remote server, and then ter-
minated by parsing the reply based on the protocol defini-
tion. The completion of one metadata request will require at
least one round of message exchange between the client and
the server. This whole process can be formally expressed in
Traditional(Request) = fi(c1) o fa(ca) -+ fn(cn), where
the completion of one request takes n rounds of mes-
sage exchanges and the notion of f denotes a function to
pack/send the protocol command ¢ and parse the reply.
The operator o concatenating two adjacent functions defines
the order of message sending, receiving and parsing, thus it
can denote the strict dependent relationship between two
adjacent functions f; o fiy; = fix1 = g(f;) where
the sending of current message depends on the reply of
previous messages. Moreover, the operator o will take at
least one round-trip-time (RTT) between two dependent
adjacent command transmissions.

We decompose the function f into two parts: message
sending s and message parsing p. Both functions of s
and p can take a list of input parameters and apply the
function execution over each element inside the given pa-
rameters. When the protocol definition does not require the
dependency, then the pipeline transferring of one meta-
data request can be expressed as Pipeline(request) =
s(ci,¢2,- -+ ,cn) op(er,c2,- -, ¢p). This expression follows
three constraints: (1) The sender s can continuously send
request commands in the sequence order of ci,ca, - , ¢y
without blocking, and meanwhile, the parser p will parse
the incoming replies in the same sequence order. (2) The
operator o strictly guarantees that the order of sending
a command c; happens before parsing the reply of this
command ¢;, namely, order(s(c;)) < order(p(c;)). The
overlapping executions of sending messages and parsing
replies can be denoted as s(ci ---¢,) Np(ey - -cp—1). It is
possible because of the settings of the pipeline levels and
the value of the RTT between the client and the server. (3)
The completion of Pipeline(request) will take at least one
RTT.

If the protocol is stateless and requires the independent
relationship between two adjacent commands’ sending and
receiving, the pipeline transferring of multiple m requests
over one stream will be expressed as (assuming transfer
of the same type of requests, each of which consists of n
commands):

Pipeline(Ry1, Rz, -+ ,Rm) =
s(c11,c12, -+ ycin) o p(ci1, €12, - 4 Cin)
s(c21,c22, - ,can) 0 p(C21, 22, + , Can)

S(th Cm2, """ 7Cmn) Op(th Cm2, """ 7Cmn)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

Algorithm 1: Send Metadata Requests

Algorithm 2: SMUREF Protocol Request

1: channel < METACHANNEL(host, port, pipelineCapacity)
2: protocolType <+ FTP, GSIFTP, IRODS ...
3: channel .OPEN(protocol Type)

. request < REQUEST()

. request.AUTHENTICATE(channel, credentials)
. dependent <— True False

. request.SETDEPENDENTCHAIN(dependent)

: wait < True
: channel SEND(request, wait)

False

O 0 NI O Ul i~

10: request + REQUEST()

11: request.LIST(path)

12: response <+ channel .SEND(request, wait)
if response.wait = True then

13: PRINT(response)

This expression resembles a matrix where the sender(s)
and parser(s) of one request R; have been defined as row-
wise, and the order of processing the requests has been
defined as column-wise. The operator o still follows the
aforementioned notion to define the order between the
sender s and the parser p on the same row. Moreover, the
overlapping executions of sending messages and parsing
will happen across the requests, increasing the pipeline
system throughput. If the protocol is stateful that requires
the dependent relationship between the commands’ sending
and parsing, then the transfer of one request cannot be
interleaved by other requests. In this scenario, the pipeline
transferring cannot give outstanding performance, but the
system can still increase the transfer performance via con-
currency. Namely, the system establishes multiple isolated
connections to the remote server and transfers metadata
messages simultaneously. Concurrent transferring will be
discussed in more detail in section 2.3.1.

To maximize the pipeline system’s performance, the real-
time stream transfer is preferable to the batch transfer. The
new request should be put into the pipeline immediately
for transferring as long as the pipeline capacity is not
full. Meanwhile, one request should be removed from the
pipeline system once it is completed successfully or aborted.
This real-time design of the pipeline system still needs to
guarantee that the parser ordering is consistent with the
sender ordering, which will be discussed in section 2.2.2.

Algorithm 1 shows the pseudocode for sending the
metadata requests. First, the client establishes the metadata
channel to the remote server (lines 1-3) with the provided
information, such as host address, port number, and the
pipeline capacity. It also needs to provide the type of proto-
col to be used for metadata retrieval. Then an authentication
request is generated with the given credentials (line 4).
When sending the request, it is optional to specify that this
client will do a blocking wait to complete authentication.
Line 10 - 12 is to send the metadata request, namely, a
listing request to retrieve the metadata content denoted by
the resource path. Every metadata request can be sent in this
convention, and the client can populate more requests into
the metadata channel without waiting for the completion
of the previous requests. Moreover, the metadata channel
will automatically handle the commands’ sending/parsing
in the pipeline mechanism.

In practice, users can rewrite a protocol by customiz-

1: procedure AUTHENTICATE(channel, credentials)

2: cmdInfo + PACKCRED(credentials)

3: emd < COMMAND(” auth’’, cmdInfo)

4: parser <— PROTOCOLPARSER(request). AUTHCMDPARSER(cmd)
5: pair < PAIR(cmd, parser)

6: pairs.APPEND(pair)

7: end procedure

8: procedure LIST(path)

9: ecmdInfo < PACKPATH(path)

10: cmd <+ COMMAND("list”, cmdIn fo)

11: parser < PROTOCOLPARSER(request).LISTCMDPARSER(cmd)
12: pair + PAIR(cmd, parser)

13: pairs.APPEND(pair)
14: end procedure

Algorithm 3: SMUREF Protocol Parser

1: procedure PARSE(reply)
: myreply < READ(reply)
globalDatal < PARSEREPLY(myreply)
request.SAVE(globalDatal)
globalData2 < request.GET()
emdInfo < PACKNEXT(reply, globalData?2)
nextCmd <+ COMMAND(" next”’, cmdIn fo)
nextParser <
PROTOCOLPARSER(request).CMDPARSERNEXT(nextC'md)
9: request.ADDPAIR(nextC'md, next Parser)
10: end procedure

ing SMURF protocol request and parser functions (a.k.a.,
method overriding in object-oriented programming), as
shown in Algorithms 2 and 3. In Algorithm 2, the SMURF
protocol request library packs the command message (line 3)
and assigns the user defined parser to parse this reply (line
4). One request maintains a chain of pairs (line 6), where
each pair is organized in the format of {command, parser}.
The request decides the sequence order of commands in this
pair chain and can append more pairs as the independent
relationship (line 6). In Algorithm 3, each SMURF protocol
parser can design and implement its logic to read the reply
from the remote server (line 2). Parsers of this request share
the data variables via the request space (lines 3 - 5). One
parser can define the next dependent {command, parser}
based on the current result and append this pair into the
pair chain (lines 6 - 9).

2.2.2 Matrix Ordering Guarantees the Rule of “You Parse
What You Send”

Matrix ordering abstracts the messages’ sending/parsing
orders inside the universal transferring stream. One request
with the chain of pairs is expressed as a matrix column,
where each pair {command, parser} is a one-row element.
Each row element also contains the information to specify
whether this command will require the next row element’s
dependent relationship.

The system can guarantee the correctness of the pipeline
sending and parsing over multiple requests. Moreover,
this correctness comes from two facts: (1) The underlying
transfer connection guarantees that the order of sending
messages is the same as the order of receiving the replies;
(2) The matrix ordering guarantees that the order of parser
in each pair is the same as sending its command message.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

Commands' Sending Order

»
'

Protocol | |R3(Cmd1, Parserl) |[R2(Cmd1, Parserl) R1(Cmd1l, Parserl)
RSEU?S‘ R3(Cmd2, Parser2) | R2(Cmd2, Parser2) | R1(Cmd2, Parser2)
ain
Order R3(Cmd3, Parser3) R1(Cmd3, Parser3)
R3(Cmd4, Parser4)
- Arrival Replies' Parsing Order
Fig. 3: One possible scenario of matrix ordering to

send/parse the requests in pipeline. Green color denotes the
request’s inner cursor position to parse the arriving reply.

The system serves the message sending and parsing in
parallel. The message sending is in Round Robin on the
column order (as shown in Figure 3). We assume the request
on the left-most column of the matrix will be served first
without loss of generality. For example, followed by the
sending of a command of R, the commands of Rs, R3
will be sent. When a new request comes, it will be placed
on the left-most column, and the first command Cmd;
from its chain will be sent immediately. Each request main-
tains an internal cursor pointing to the pair whose parser
will be invoked for its incoming reply. When a request’s
parser has completed the arriving reply’s execution, it will
check the dependent relationship of the next pair on the
below row. This parser will send the next command, and
meanwhile, this request will be removed from the current
column position and appended to the right-most. If there
is no dependent relationship, this request will send all of
its commands, and its parsers will continue to parse the
arriving replies. The matrix ordering is thread-safe and can
be interleaved by multiple threads.

As shown in Algorithm 3, each parser has its own design
and implementation to parse the incoming reply and decide
the completion of parsing. Usually, this can be implemented
as a state machine, where the transition of a state will be
defined by the protocol’s Request for Comments (RFC).
For example, on retrieving the metadata of a filesystem
folder containing millions of subfiles from a GSIFTP server,
SMUREF’s transferring stream will receive a continuous in-
termediate part of metadata. The whole transferring will
be terminated successfully when the parser can parse code
250 of the reply. When one request’s last parser has been
completed, and then this request is finished. One request
will be marked as success as long as its protocol commands
have been sent and parsed correctly. Otherwise, this request
will be regarded as a failure, either re-transferred or skipped
according to parsers’ results. One request failure will not
block the next requests to be transferred over the same
connection as long as this connection is not broken.

2.3 Fetch/Prefetch Services

SMUREF-Cloud transfers the large-scale metadata using con-
currency and pipelining and guarantees the reliability of
the transfers in WAN. The details of sub-components and
features are described below.

2.3.1 Metadata Transferring via a Cluster of Fetch/Prefetch

The dispatcher assigns the pending jobs to all available
services in Round-Robin. One service will become available

5

to process the next job as long as the service completes
one fetch/prefetch job and sends back an ACK message
to the queue dispatcher. When a service is terminated, the
unacknowledged jobs will be re-dispatched to the rest of the
available services. A fetch/prefetch service keeps at most
one singleton connection to the remote server and serves up to
C (pipelining capacity) fetch/prefetch jobs from the queue.
If one established connection has been idle for a while, this
connection will receive a TIMEOUT reply from a remote
I/O node, and resources of this connection will be de-
allocated from the service. Re-establishment of connection
will be triggered by the next dispatch job and automatically
handled by the Transferring Stream 2.2.

To fully exploit the computing power and network I/O
bandwidth of the Cloud cluster, the Cloud backend deploys
and launches multiple instances of fetch/prefetch services
on a single cluster node. With N services running in the
cluster, the Cloud establishes N TCP connections to remote
servers and transfers [N metadata requests concurrently. The
Cloud backend controls the concurrency level by changing
the number of fetch/prefetch service instances depending
on the demand and the load. When the Cloud deploys
services across M machines, the Cloud service can trans-
fer N metadata requests from M nodes that exceed the
single machine’s limitation and bottleneck. Meanwhile, the
Cloud service can tolerate the failure of (M — 1) nodes. The
instances of services running on the failed nodes will be
redeployed to the other available nodes.

2.3.2 Metadata Schema, Storage and Transfer Format

On the Cloud backend, the metadata is stored as a {key,
value} pair in a NoSQL database, where key is the hash
value of the resource path and value is the metadata content
in JSON-like format (schemaless data structure). The value
consists of Version, Attributes and Manifest of ID. NoSQL
database provides native storage and query support for
JSON data. For example, the Cloud resolves the overwrite
conflicts of metadata contents using the property of times-
tamp on remote I/O node as the “version”. The underlying
database clusters can guarantee the atomic read/write on
the same metadata entry. Moreover, as long as the re-
trieval metadata’s timestamp is newer than what has been
cached, it is safe to overwrite it. Otherwise, the retrieved
metadata with the stale timestamp will be discarded. The
service will return currently cached metadata content to the
Edge/Fog service that requested this metadata retrieval. On
the Edge/Fog node, the metadata resides in the memory
cache as ProtocolBuffer [33] objects. When transferring the
metadata between the system nodes, the metadata content
is encoded into bytestreams by ProtocolBuffer.

Attributes are the result of “list” command on a resource
path. In file system, it contains access mode, ownership, size,
timestamp and file name. When a “list” command has been
executed on a directory, the result contains the attributes of
all sub-files/sub-directories under this directory. We store
the manifest of subfiles and subfolders as a part of a direc-
tory’s metadata content. The metadata size of a directory
is proportional to the number of subfiles/subfolders. The
size of metadata can be as small as a few bytes or up to
hundreds of megabytes. NTFS [34] allows the maximum
number of files per directory to be 4,294,967,295. Amazon

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

S3 [28] sets the limits of kilobytes on the metadata size. The
overhead of encoding, decoding, and transferring such large
metadata content between the continuum cache layers will
severely degrade the system response time and increase the
user-perceived latency. Thus, the Cloud divides the large
metadata object into fixed-size blocks and guarantees that
each block object’s size will not exceed the size limit. One
block will be considered full when it contains more than
100,000 files. The large-sized metadata will be stored as a
bunch of metadata blocks, and these metadata blocks will
form into a logic tree structure, where the blocks of partial
subfiles will be stored at the bottom as the leaf nodes. A
manifest of sub-blocks will be stored as part of the metadata
to locate the metadata blocks, and any metadata block can
be accessed by a uniform resource identifier (URI).

The metadata block is stored in a distributed storage;
thus, the services can access and update the metadata blocks
in parallel. Moreover, the pipeline and concurrency transfer-
ring of the metadata blocks significantly increase the end-to-
end system throughput between the hierarchical layers. This
also benefits the prefetching since once the metadata block
has been received and decoded, its content can be immedi-
ately available to the cache instead of waiting to transfer and
decode the original metadata. Thus, the prefetch predictor
can adjust its prefetching decision on time based on the real-
time prefetch results. In our experiments, we set the block
size to be 100,000 files per block and evaluate the average
fetch latency and memory usage in Yahoo! Hadoop logs.

2.3.3 Directory Tree Structure Synchronization

SMURF provides a way to maintain the metadata consis-
tency between Cloud and remote I/O nodes on the directory
tree structure. It caches metadata content under the key of
the request URL. If a folder has been renamed, deleted, or
moved on the remote I/O node, then the subfolder meta-
data cached in SMURF will become dirty. If any metadata
retrieval with force-refresh option has such an invalid path,
the service will receive “No such file or directory” exception
in the reply from remote I/O nodes.

Once a fetch/prefetch service gets such an error from
a remote I/O node, then SMURF Cloud does backtrace
synchronization to conservatively clean up the cached meta-
data under those invalid file paths. First, the fetch/prefetch
service will try to read the currently cached metadata digest
D. The atomic operation will compare and overwrite the
“DELETE” status into current caching metadata D’ if D
is equal to D’ without overwriting the metadata content
of another success update D”. Finally, if this deletion has
been successfully populated into Cloud DB, the deletion
message will be sent to update all subscribed Edge/Fog
servers which have fetched/prefetched on this invalid file
path previously. Moreover, when deletion happens, the
fetch/prefetch service will create a new fetch/prefetch re-
quest to do force-refresh on the parent file path and prefetch
sublayer files (without force-refresh).

The subfile prefetching without a force-refresh option is
to maximally reuse local cache and avoid redundant force-
refresh retrieval of the cached metadata. If the parent file
path is also invalid, then the fetch/prefetch service will
repeat the above process to synchronize the metadata on the

6

parent file path and increase the prefetch of subfolder lay-
ers by 1, e.g., prefetch 2-layer (prefetchTTL=2). The Cloud
backend performs early-stop prefetch, which means such
propagation of prefetching will terminate when a file path
is valid or has not been cached yet.

2.4 Distributed Continuum Caching and Prefetching

The same metadata will be cached in the distributed layers-
{1,2,3}, as shown in Figure 1. Our experimental analysis
simulates the IoT network topology and assumes that the
Cloud has unlimited storage space, and the Fog node can
have a larger cache capacity than the Edge server. The
system consists of the distributed continuum cache from
Cloud to an Edge server, where the Cloud caches and stores
all fetch/prefetch metadata, the Fog node caches partial
Cloud metadata, and the Edge server only caches a small
subset of the Fog metadata. The prefetch predictors can be
installed on the Edge server and the Fog node with the
judicious parameters to retrieve the locality metadata into
each layer’s local cache.

When the optional Fog node (layer-2) has been deployed
between the Edge server and Cloud, this Edge server will
fetch/prefetch metadata from the Fog node’s local cache,
which can be denoted as Fegqge and {Peq4c }. The Fog node
can send the cached metadata back to the Edge server or
forward the cache miss fetch request Fqq. and prefetch
requests {Peqge} to the Cloud. The cache miss fetch re-
quest Feqqe can cause the Fog node’s prefetch framework
(more details in 2.5) to consult its prefetch predictor on
the aggressive prefetching {Pjoq}. Thus there would be
overlapping prefetch requests between { P44} and {Pyo4}
requests; however, the wait-notify queue (discussed in 2.4.1)
will de-duplicate the overlapping prefetch requests to send
them to the Cloud, and the Fog node will send back the
Edge server’s requested prefetch metadata {P.qg.} upon
completion.

2.4.1 Layer Server’s Request and Response Multiplexing

We design and implement a wait-and-notify queue to ef-
ficiently send and receive messages between the Edge
server and the Cloud. The wait-and-notify queue consists
of a sender thread and a receiver thread. Multiple worker
threads can enqueue the requests and wait for the notifica-
tion of completion concurrently. The sender thread allocates
a unique context locally for each enqueued request and
sends requests to the remote layers. The receiver thread
extracts the context from the response and then uses this
context to notify and wake up the waiting worker threads.
Especially during one request R’s sending and receiving,
the similar queuing requests will be de-duplicated without
sending them to the Cloud, and their worker threads will
wait for the completion of R. The de-duplication is exe-
cuted on the Edge/Fog layer to ease the Cloud’s computing
overhead and save the network bandwidth. The queue can
also be configured to be in a “nowait” mode, which means
worker threads do not wait for the completion. The wait-
and-notifying queue mechanism exhibits high performance
in multiple threading environments. Message sending and
receiving are designed to be interleaved between multiple
threads. Moreover, the queue has been implemented based

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

on a non-blocking queue, where compare and swap (CAS)
strategy has been applied to improve the concurrent perfor-
mance without the blocking synchronization. Note that the
order of requests sending is not necessarily synchronized
with the receiving order of the responses.

2.5 Prefetch Framework

SMURF employs a generic prefetch framework to apply
the configurable prefetch predictor on Edge/Fog service.
Users and system admins can easily configure and cus-
tomize prefetch schemes for different types of applications.
In this prefetch framework, each fetch request will be sent
to the prefetch predictor to analyze and build a prefetch
correlation relationship. For each fetch request, the prefetch
framework maintains a cache miss counter and its meta-
data content in the cache with Least Recently Used (LRU)
replacement policy. The cache miss counter denotes how
many cache misses are on this request. The cache object
can be evicted using the LRU replacement algorithm when
the cache is full, and new metadata needs to be put into
the cache. When the cache miss counter’s value exceeds the
threshold, the prefetch framework will consult the prefetch
predictor for the potential prefetching candidates and ex-
ecute aggressive prefetching on this request’s correlation
candidates. The prefetch framework checks whether each
prefetch candidate exists in the current local cache. If there is
a cache miss on this candidate, the prefetch framework will
pack and send a prefetch request with the information (e.g.,
URI and priority). Prefetch framework does not maintain
the cache miss counter for all the history requests since the
essence of the LRU cache replacement algorithm is based
on temporal locality, and the cache miss information of the
coldest request will be replaced and cached out to reflect the
temporal access locality and also save the memory usage.

2.6 Semantic Locality Prefetch Predictor

SMUREF uses a novel prefetch predictor based on the direc-
tory semantic locality. The predictor uses a history window
to predict the semantic locality of the trace log. This history
window with the fixed window size stores the unique file
path into segments. For one input file path, the predictor
will find out the pattern of “A ? B” with the maximum
matching number inside the history window, where “A”
stands for the common prefix, “?” stands for one mismatch
segment and “B” is the suffix, and sometimes this suffix can
be empty. If the matching number exceeds the threshold, the
predictor sends back this detected pattern to predict that the
fetching file paths will follow this access pattern in the near
future. When a request on a file path f causes a local cache
miss, the predictor will check whether its pattern file path
fp object is cached or not. If it has not been cached, then the
predictor will create an object of this pattern file path, put it
into the local cache, and set the counter’s value to one. If the
pattern file path object has been cached, then the predictor
will increase the cache miss counter by one. When this cache
miss counter exceeds threshold T, the predictor decides to
prefetch the correlation files of the pattern file path f, and
set the miss counter to zero.

If the pattern file path object has already been cached, the
predictor will iterate the list of metadata of each subfile path

7

TABLE 1: Specifications of the Cloud/Edge/Fog nodes in
the experiments.

[[[Edge/Fog [Cloud [Remote I0 |

Location Champaign, IL | Chicago, IL Austin, TX
Intel Core Intel Xeon Intel Xeon

CPU i7-2600 Gold 6126 E5-2650 v3

RAM 32 GB 187 GB 62 GB

Disk 80 GB 210 GB 350 GB

(O] Ubuntu 16.04 Ubuntu 16.04 | Ubuntu 16.04

of nodes 5 KVM 5 Bare metal 1 Bare metal

fsi in the cache and send the prefetch requests of all cache
missed subfile paths. In the prefetch request, the predictor
can associate with the value of prefetch T'I'L, configured
(by default, the value is 0) in the prediction property file.
The number of prefetch TT'L is to denote how many layers
of subfiles to prefetch. Theoretically, the predictor can set
an arbitrary large number to the value of prefetch T7TL.
However, upon completion of the prefetch on a file path,
the queue system will automatically decrease the value of
prefetch TT'L by one and recreate a new prefetch request
for each subfile and then re-queue those requests with the
lower priority until TT'L degrades to 0. In the competition
of large-scale prefetching requests, higher priority prefetch
requests will be given precedence and always preempt
available prefetching services. It could be a large amount
of lowest priority prefetch requests in the queue system,
which can never be served or completed in a period and
will be finally reclaimed and destroyed by queue cleaning.
Section 3.4.2 discusses the prefetch settings of 7" and T7T'L.

3 EVALUATION

We conduct our experiments over Yahoo! Hadoop grid
trace logs from Yahoo! Webscope dataset [35]. This trace
consists of more than 20 Million continuous daily meta-
data operations of the Hadoop name node throughout
the year 2010. Geographical locations of the servers used
in our experiments, the system settings and configura-
tion are shown in Table 1. Round-trip-time (RTT) between
Edge/Fog and Chameleon-UC is 8 millisecond and RTT be-
tween Chameleon-UC and Chameleon-TACC is 32 millisec-
ond. Chameleon Cloud uses the dedicated 100G between
Chameleon’s UC and TACC sites. To simulate the heteroge-
neous remote I/O nodes, we setup FTP and iRODS servers
at the Chameleon-TACC site and installed Globus Toolkit
6.0 [36] to configure the SimpleCA and GSIFTP server for
the GSIFTP metadata transfers. The Minio [37] server is in-
stalled to simulate the Amazon S3 object storage service. In
all experiments, SMURF protocol libraries are installed only
on SMURF Cloud, deployed on the Chameleon-UC bare-
metal cluster. SMURF’s fetch / prefetch services are launched
as Docker [38] services and managed under the Docker
orchestration tool. Fetch/prefetch requests have been man-
aged and dispatched by the advanced message queue pro-
tocol(AMQP) [39] broker. The Edge and Fog clusters are de-
ployed into a Kernel-based Virtual Machine (KVM) cluster
and configured with limited computing resources for more
realistic experimental evaluation.

We organize our evaluation experiments as follows:
Section 3.1 demonstrate the scalability of fetch/prefetch

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022
TABLE 2: Yahoo! Hadoop log’s ‘list’ command statistics.

Log Name [# of list cmds [unique file path [histogram=1 |

part-00000 4,750,645 49.72% 92.6%
part-00001 4,090,678 62.31% 92.98%
part-00002 3,732,058 62.52% 92.33%
part-00004 3,895,900 62.77% 91.85%
part-00005 4,148,414 54.23% 92.76%

Latency Distribution of

Latency Distribution of
1000 Concurrent Requests

100 Concurrent Requests

1 1
cc=5 — — cc=5 e

0.8 cc=10 7 /],,, 0.8 (CC: g - _

0.6 7| cc=20 % 061/ [cc520 - e

04t lce=30 |~ |05 . 04l =30 |05/

0.2 [/] : ;g;w/ A=

— - 804‘30500 0.2 ‘ <50 —— | 9.040060.0s
T FEL AN 05 0704 06 08 T T2 14

latency in second latency in second

Fig. 4: Concurrent fetch latency distribution.

services by transferring the synthetic data without cache ef-
fects; Section 3.3 describes how we reconstruct the trace log
of the real system in our experiments; Section 3.4 studies the
prefetch schemes; Section 3.5 demonstrates the performance
of continuum caching.

3.1

To emulate concurrent metadata transferring performance
from remote servers, we use Yahoo! Cloud Serving Bench-
mark (YCSB) [40] to continuously send a large number of
distinct requests from the client to the SMURF system and
evaluate the latency distribution with the different number
of Cloud fetch services. All the requests will be transferred
along the Edge-Cloud I/0O path with around 40ms accumu-
lated RTT. In this experiment, we turn off the caching and
prefetching effects in the testbed and configure the Edge
cluster with different number of fetch services, and set the
value of each Cloud fetch service’s pipeline capacity to be
5. Figure 4 shows the latency measured on the Edge cluster
and demonstrates that the latency distribution curves of 100
and 1000 concurrent requests with five Cloud fetch services
are almost linear due to the queuing effect of Cloud, which
means five Cloud fetch services are not sufficient enough to
scale the number of concurrent requests. Thus, with more
number of services in the Cloud, most of the requests can
be made concurrently, and the latency of the majority of
requests is within the small range between 40ms and 80m:s.

Both fetch and prefech services use the aforementioned
“universal metadata transfer stream” to retrieve the meta-
data from the remote 1/O node. Each stream establishes
one connection, thus we increase the level of concurrent
connections (denoted as “CC”) in Figures 4 and 5 by
increasing the number of services. Figure 5 demonstrates the
scalability of prefetching files metadata from heterogeneous
I/0 servers. We turn off caching effects in the testbed and
let one Edge service initialize the sending of 100,000 distinct
prefetch requests to the cloud, respectively, and calculated
the average prefetching elapse time on the SMURF Edge
side. We continue to increase the number of concurrency
channels and each channel’s maximum pipeline capacity
until there are no noticeable performance gains. The scala-
bility performance between the different protocols is similar,

Scalability of Fetch/Prefetch Services

FTP: 10,000 prefetch
request scalability

FTP: 100,000 prefetch

2 request scalabilit
500 o 0.04 q 00_1)/
® 0.03 cc=5 =
cc=10 0.03 cgf?g
< 0.02 cc=15 —— 0.02 CC:1 5
%) cc=20 cc=20 ——
c 0.01 0.01 =
2 e —
g0 5 25 0 5, 50
pipeline level pipeline level
GSIFTP: 10,000 prefetch GSIFTP: 100,000 prefetch
o request scalability request scalability
£0.0 0.04
8 ce=1 ce=1
® 0.03 cc=5 0.03 cc=5
2 cc=10 cc=10
£0.02 cc=15 —— 0.02 cc=15 ——
> cc=20 —— cc=20 ——
20.01 0.01
2 e E—
g0 5 25 03 ~ 5, 50
pipeline level pipeline level
iRODS: 10,000 prefetch iRODS: 100,000 prefetch
o request scalability request scalability
£ 0.04 0.04
8 ce=1 ce=1
®0.03 cc=5 0.03 ce=5
2 cc=10 cc=10
£0.02 cc=15 —— 0.02 cc=15 ——
2 cc=20 —— cc=20 ——
20.01 0.01
2 — I
5 03 5 % 50 07 5, 50
pipeline level pipeline level
§3: 10,000 prefetch $3: 100,000 prefetch
request scalability request scalability
0.04 0.04
ce=1 ce=1
0.03 ce=5 0.03 cc=5
cc=10 cc=10
0.02 cc=15 —— 0.02 cc=15 ——
cc=20 —— cc=20 ——
0.01 0.01
L E— 50 %T 5 50
pipeline level pipeline level
Fig. 5: Scalability of pipeline and concurrency.
g GSIFTP: prefetch GSIFTP: prefetch
1) 00 10,000 files’ metadata 100,000 files’ metadata
< 0.
Z 0.01 0.012
I
% 0.03 0004 8882 0.001
Soo02 0.002 - 0.0008
o, 075 5 10 | o3 0.0006
go.o:) 0.002 00085565 7585
o 1 2 3 456 7 8 910 10 20 30 40 50 60 70 80
z prefetch services count prefetch services count

Fig. 6: Scalability of metadata prefetching from XSEDE-
Comet@SDSC.

and the SMUREF system can reduce the prefetching latency
to 0.6 millisecond per request on average, which means the
system can complete the prefetching of 100,000 metadata
contents in 60 seconds.

We also evaluated the scalability of prefetching from
XSEDE Comet [41] endpoints at San Diego Supercomputer
Center (SDSC) in Figure 6, where the average prefetch
latency per request is around 0.8 millisecond. Note that
RTT between Cloud and XSEDE Comet is around 53ms and
the transferring of files metadata over GSIFTP is conducted
in the control channel by sending the command “MLSC”.
SMUREF still supports FTP/GSIFTP data channel metadata
transferring, which has been evaluated in our previous
work [22].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

Part-00000 Part-00000
! 1
08 /’/, os
06 " cdf —— || 06
0.4 weighted cdf -------- 0.4
0.2 o
909 i o 35 Tpe 0
0 10" 10° 10° 10" 10° 10

0 10 20 30 40 50

Files per Directory Depth per Directory

Part-00000
0.; | weighted cdf ——]
0.6
0.4
0.2
%04 167 102 16T 100 i

Size in MB

Fig. 7: Trace file system statistics in Yahoo! HDFS: (a) CDF
and Weighted CDF of files per directory; (b) Distribution of
files by directory depth; (c) Weighted CDF of metadata size
per directory/file

3.2 Evaluation of Directory Tree Structure Synchro-
nization

To evaluate the synchronization of directory tree structure
between Cloud and the remote I/O node, we construct
directory trees with different sizes m (i.e., the number of
files/directories inside) and tree heights [(1, 5, 10), where
each layer of directory tree contains * files/directories. In
experiments, we rename the root folder of one directory tree
and fetch the metadata of file/directory on the longest path
with the force refresh option to trigger the synchronization.
It is trivial to know that the smaller size of directory tree
costs the less synchronization time in total. In Figure 9, we
consider to calculate the average synchronization latency
per file/directory with the settings of tree size and height.
For smaller size of directory trees, the height increases the
latency (83 millisecond in the worst case) since it requires
more rounds of metadata exchange between Cloud and
remote 1/O node. When the size (e.g., 10%, 10°) of tree is
much larger than the height, the average synchronization
latency per file/directory has been reduced up to 100 times
(around 0.7 millisecond).

3.3 Trace File System Directory Tree Reconstruction

In trace logs, file path f always associates with types of op-
erations, e.g., open, ls, delete, etc. Metadata read operations
are directory tree idempotent (e.g., open and [s) and will
not change the directory tree structure on trace file system.
The write operations (e.g., mkdir, rename and delete) can
change trace file system directory tree dynamically. Yahoo!
Webscope dataset encrypts each segment of the file path into
27 bytes string. Thus the approximate directory tree size of
each Hadoop trace log on disk will be more than 250GB.
We extract file paths from all types of operations for
each audit log and construct them on the disk. This is the
approximate emulation of trace file system directory tree
structure in our prediction experiments. Figure 7 shows the
cumulative distribution of directories by the number of files
they contain and files by directory depth. This reconstructed
file system’s shape is flat: millions of files (nearly 90%) reside

9

in the directories with a depth between 5 and 10. Most of
the directories (around 95%) contain only a few files, and
the majority of files (around 75%) are stored under a small
portion of directories (about 3%), each of which contains
more than hundreds of files and even up to hundreds of
thousands of files. The metadata size ranges from few bytes
to the maximum size of 25 MB, where the metadata size
of the majority of files (around 80%) is less than 1 MB and
nearly 3% files” metadata size is larger than 10 MB.

We extract requests containing the “listStatus” command
from Yahoo! Webscope Hadoop audit trace logs in our ex-
periments. In table 2, we statistically analyze the histogram
of distinct file path in “listStatus” command. The histogram
results show very skew access of “listStatus” metadata
operation in Hadoop audit log: among the total number of
four million “listStatus” operations, there are 50%-62% of
unique file paths. The majority (92%) of unique file paths
have been accessed only once, and only 8% of unique file
paths contribute nearly half of total “listStatus” metadata
operations. This skew access to behavior can cause prefetch
predictors based on historical access sequence abysmal pre-
diction rate. Their prediction rate is almost the same as that
of LRU cache since most of their prefetch candidates are
from history requests, but they will never appear again in
the next “listStatus” requests, and the most frequent file
paths will reside in the memory by the cache replacement

policy.

3.4 Evaluation of Prefetch Schemes on Yahoo! Hadoop
Grid Trace Logs

We conduct the experiments on the Edge node and replay
the trace logs with different settings. The experiments have
been evaluated on the Edge-Cloud I/O path (the abbre-
viation term “EC” in Figure 8) with the prefetch schemes
installation on the Edge node. The cache size also has been
taken into consideration, where the cache capacity on the
Edge node has been increased by the percentage (10%, 20%,
and 30%) of total requests in each trace log, and the aver-
age memory usages have been calculated by the oshi [42]
software tool in Table 3. We also measure the average fetch
time latency without the caching, and prefetching effects on
the Edge node denoted as E (Edge I/O path) and EC in
Figure 8). In the following sections, we will compare and
discuss the prefetch scheme’s performance on the criteria
of cache hit rate, average fetch latency, and storage usages,
respectively.

3.4.1 Cache Hit Rate

Figure 8(a) compares the cache hit rate between LRU cache
and different prefetching schemes. Our directory locality
scheme (denoted as “DLS”) outperforms all other schemes
on cache hit rate. It can achieve around 90%+ on all individ-
ual Hadoop audit logs because the directory locality scheme
can successfully capture the access pattern of the “listStatus”
operation in Yahoo! Webscope Hadoop audit log. AMP is
another prediction scheme with a high prediction rate that
can achieve around 65%+ accuracy. We train the AMP model
on each day’s trace and use that trained model for the
next day’s prefetching prediction. The AMP scheme’s high
prediction rate comes from the fact that there are many

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

~

[l0EC 10% DIEC20% WEC30% ~E EC |
a) Cache Hit Rates b) Fetch Latency(sec)
11077
minlm 47777 o = | -
S 0.8} 3 =
g 06 g 27*" |
Lo4) 8
gt 110
0 5 T T T — 0 H— —— 7\DDD\7
L AN F D L A N F D
! ! ! ! ! ! '\1072\ ! ! ! !
i Y = R S) R B
o O8] : . =ing
§ 0.6 - : ,
% 0.4+ :
A~ 0.2 3
L0010y 11
L AN F D L A N F D
! ! ! ! ! ! '\1072\ ! ! ! !
Ann 4T e
o 03] 8 } .
§ 0.6 - :
L 04f 42 5
©
= o« [AUONGUNORu0EY) | AUUNAE
0 7\UU T T \UU — 0 H— —— 7\DDD\7
L AN F D L A N F D
! ! ! ! ! ! '\10_2\ ! ! ! !
L 08) {oa T i
S 06f 4 I
Io04f S |
g 0.2
~ 0.2 B
AL LI 0T 1
L AN F D L A N F D
! ! ! ! ! ! '\1072\ ! ! ! !
Inin 47T i S R
0 0.8+ : _ =
§ 0.6 - :
L 04f 427 !
(s}
A~ 0.2 3
Al | Kbl
L AN F D L AN F D

Fig. 8: Cache hit rate and average fetch latency between
prediction schemes (LRU, AMP, NEXUS, FARMER, DLS)
on Yahoo! Hadoop trace.

overlapping file paths of “listStatus” metadata operations
between successive days. The first day (Part-00000) of AMP
performance has been set to the same value as that of
the LRU cache since no previous day data is available. In
Yahoo! Webscope datasets, day four (Part-00003) data is not
available; hence, we use the day three (Part-00002) trained
model for conducting the AMP performance prediction on
day four trace. We also found that the cache hit rates of
Nexus and Farmer are almost the same as that of LRU cache
(below 25%) since the prefetching candidates suggested by
the prediction schemes of Nexus and Farmer are all from
the history requests. Simultaneously, the Hadoop audit log
exhibits significantly skew popularity access in the “listSta-
tus” metadata operation. Most of the “listStatus” operations
execute on a file path once or occasionally, which inevitably
causes the low prediction rate of prediction schemes based
on history access sequence.

3.4.2 Effects of T and TTL on Directory Locality Scheme

In this section, we evaluate the effects of prefetching param-
eters: T" and TT'L with the different cache capacities on the
Edge-Cloud I/O path. To evaluate the effects of Threshold

10

[0 Height=1 [0 Height=5 [0 Height=10

Average Sync Latency per File/Directory

80 - B

Millisecond

4
T
!

o O

T T T T T T
10t 102 103 104 10°
Number of Files/Directories Inside
a Directory Tree

Fig. 9: Average sync latency per file/directory with the
settings of size and height of directory trees.

TABLE 3: Prefetch Schemes Average Memory Usage (GB)
on Edge Node.

] Prefetch Scheme \ 10% \ 20% \ 30% ‘

LRU 13 19 22
AMP 13 19 22
NEXUS 15 21 25
FARMER 15 21 25
DLS 13 20 22

T, the value of prefetch TT'L has been set to 1. For each
cache capacity (0.5%, 1% and 5%), we increase the value
of Threshold T" and calculate the average fetch latency and
cache hit rate on the Edge node in Table 7 and 8. The results
show that Threshold 1" = 3 gives better fetch latency when
the cache capacity is relatively small (e.g., 0.5%, 1%). The
smaller value of Threshold (7" = 1, 2) causes an increase in
the fetch latency because the cache with the smaller capacity
is sensitive to the redundant prefetching results and such
large amount of prefetch requests will occupy the network
bandwidth and delay the transferring of fetching metadata.
When the cache capacity has been increased to 5% (around
200,000 metadata entries), the smaller Threshold (T" = 1, 2)
provides the better performance both on the average fetch
latency(nearly 50% improvement) and cache hit rate.

Accordingly, we set the value of Threshold T to be 3
and evaluate the effects of prefetch TT'L in Table 9, 10. It is
evident that the Prefetch TT'L = 2 (i.e. 2-layer prefetchings)
gives bad performance in fetch latency and cache hit rate.
The smaller cache capacity causes the even worse results.
The 2-layer prefetch does not match the workload pattern on
the semantic directory tree structure. Moreover, the massive
redundant 2-layer miss-prefetching can easily pollute the
small cache. When the cache capacity has been set to 1%, the
cache hit rate drops severely (under 20%). The fetch latency
is ten times higher when TT'L has been set to 2. The fetch
latency is even higher than the accumulated RTT (40ms) on
the Edge-Cloud 1/0O path because of the redundant prefetch
results transferring over the network.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

3.5 Performance of Continuum Caching

Based on the evaluation of prefetch schemes, we decide to
choose DLS as the default prefetch scheme and repeat the
experiments on the Yahoo! Hadoop trace logs to evaluate
the continuum caching performance on the Edge-Cloud and
Edge-Fog-Cloud I/O paths. The Edge node and the Fog
cluster are deployed in the same site, and the distributed
cache system is installed across all the Fog cluster nodes to
provide the extra caching layer between the Edge node and
the Cloud. We evaluate the average fetch latency and cache
hit rate on the Edge node between two aforementioned
I/0 paths with the increasing continuum caching capacity
in Tables 5 and 6 and the average system memory usage
in Table 4, where on the Edge-Cloud I/O path we first
set the relatively small cache size at 0.5% percentage of
the total requests (around 20,000 metadata entries) on the
Edge node and keep increasing its cache size to 10% until
there are no obvious performance gains on the average fetch
latency and cache hit rate. Accordingly, on the Edge-Fog-
Cloud I/O path, we increase the Fog cluster cache size to
the percentages of 1%, 5%, and 10%. It is clearly shown that
the average fetch latency of the Edge node is significantly
reduced when the system sets a relatively larger cache size
on the Fog cluster. When the Edge node has been configured
with the constant cache size, namely, 0.5% cache capacity,
the Fog cluster caching and prefetching can reduce the Edge
node average fetch latency up to 46% and slightly increases
the cache hit rate. This result comes from the fact that the
nearby Fog cluster can effectively cache and prefetch the
demanded metadata shortly, and most cache-miss fetching
requests on the Edge node will be directly retrieved from
the nearby Fog cluster instead of the remote Cloud.

Compared with the EC settings, the average fetch elapse
time has been delayed by the communication overhead be-
tween the Edge node and the Fog cluster but can be reduced
by increasing the caching capacity on the Fog cluster. When
the Fog cluster has been configured with 10% cache capacity,
the average fetch latency of the Edge node with 0.5% cache
capacity can be almost the same as that of the dge node with
10% cache capacity.

3.5.1 Average Fetch Latency

In Figure 8(b), we calculate the average fetch time be-
tween the prefetch schemes and measure the accumulated
overhead of metadata transferring without any cache and
prefetch installed. The setting of “E” (denoted with the
solid horizontal line) shows the average latency of fetching
performance that the edge node directly fetches metadata
from the remote I/O server. The average fetching latency
of the “EC” setting is denoted with the dashed horizontal
line. The performance of LRU and all prefetch schemes
are usually below the “EC” bar, which demonstrates that
caching and prefetching is still an effective way to reduce
the average fetching latency even with the low cache hit
rates.

The prefetching scheme with a higher prediction rate can
significantly reduce the average fetch latency since most
metadata can be accessed locally. With the highest predic-
tion rate (90+%) of the DLS prefetch scheme, the average
fetching latency can be reduced to 0.004 seconds. The AMP

11

TABLE 4: Edge Node Average Memory Usage (GB) with
Increasing Cache Capacity.

Log Name | 0.5% | 1% 5%
)

part-00000 | 4.34 | 5.74 | 8.76
part-00001 | 3.07 | 4.41 | 7.79
part-00002 | 3.12 | 41 | 7.87
part-00004 | 4.15 | 535 | 8.31
part-00005 | 3.01 | 4.88 | 8.02

(65+%) can achieve the average fetching latency of 0.015
seconds. Note that we have to use external storage to store
the AMP training model, but the AMP model’s high pre-
diction rate can offset the overhead of database operations.
The LRU with a larger amount of cache size can slightly
reduce the average fetching latency. Nexus and Farmer’s
average latencies are relatively higher (above the solid bar).
This may be due to two factors: 1) The RTT between client
and remote I/0 server is around 32 milliseconds, while
the accumulated RTT of EC path is above 40 milliseconds;
2) Nexus and Farmer prediction rates are nearly the same
as that of LRU cache, but there is extra computation to
build relation graph on the fly. Moreover, the overhead of
constructing and updating the relation graph in the Nexus
and Farmer prefetch schemes is not ignorable.

4 RELATED WORK

Metadata prefetch prediction [43]-[45] studies developed
different strategies to predict future requests as accurately
as possible. NEXUS [44] applies a weighted-group-based
prefetching algorithm to prefetch prediction. A weighted
directed graph is built on the fly when the metadata server
(MDS) receives requests from clients. The proposed polyno-
mial time complexity algorithm looks up and analyzes re-
quests in a predefined capacity history window. For a given
access sequence, the history queue is populated with each
request in the access sequence order. Each enqueued request
is created as a vertex in this weighted relationship graph,
where a directed Edge from any queuing request connects
to this newly enqueued request. The weight of each Edge
connection is calculated according to the successor relation-
ship strength. For a given request, the prediction predictor
looks up the graph to find out the directly connected vertices
(requests) and predict top-k vertices with the largest Edge
weight as the best prefetching candidates. Experiments
show that their prefetching prediction can effectively reduce
clients” average response time with reasonable overhead.
FARMER [46] investigates how a request’s attributes
information (e.g., “Host”, “UserID”, “ProcessID” and file
path) can affect the file successor probability (the likelihood
of successor being accessed if the predecessor has been ac-
cessed). The authors statistically analyze the average proba-
bilities for the different trace sequences. They conclude that
the same attribute will have a different successor probability
between various traces. The access pattern without con-
sidering the semantic attributes is not sufficient to predict
the file access probability. They apply a linear combination
model to consider the combined effect of the history access
sequence and the semantic attributes of requests. FARMER

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

12

TABLE 5: Edge Node Average Fetch Latency (milliseconds) Scalability with Increasing Continuum Caching Capacity.

Log Name | EC0.5% | EC1% | EC5% | EC10% | E0.5% F 1% [E0.5% F 5% | E 0.5% F 10% |

part-00000 5.9 4.7 3.8 3.8 7.0 44 3.8
part-00001 6.4 4.8 4.0 4.0 6.2 4.5 44
part-00002 4.7 44 4.3 42 4.5 4.3 42
part-00004 54 5.0 44 4.3 52 5.0 4.7
part-00005 5.7 5.3 4.1 3.7 7.8 55 4.3

TABLE 6: Edge Node Cache Hit Rate (percentage) with Increasing Continuum Caching Capacity.

Log Name | EC0.5% | EC1% | EC5% | EC10% | E0.5% F1% | E0.5% F 5% | E 0.5% F 10% |

part-00000 83% 88% 93% 93% 77% 82% 84%
part-00001 85% 88% 93% 93% 79% 87% 88%
part-00002 89% 90% 92% 92% 88% 89% 89%
part-00004 84% 88% 92% 92% 83% 83% 84%
part-00005 78% 81% 88% 93% 73% 78% 77%

TABLE 7: Edge Node Average Fetch Latency (milliseconds) Scalability with the Effect of Threshold T.

| Log Name | EC0.5% (T=1,2,3,4) | EC 1% \ EC 5% \
part-00000 [7 [63[59] 73 [57[51[47[58[37[39][38]41
part-00001 | 6.8 | 6.7 | 64 | 69 | 55|53 |48 |56 |38 |38 |40 |44
part-00002 | 5.4 | 54 | 47 | 55 |49 |46 |44 |51 |36 |35|43 |46
part-00004 | 7.5 | 6.7 | 54 | 72 |56 |54 (50|57 |44 |45 |44 |45
part-00005 | 81 | 71 | 57| 67 | 61|56 |53 |59 |42 |43 |41 44

TABLE 8: Edge Node Cache Hit Rate (percentage) with the Effect of Threshold T.

| Log Name | EC0.5% (T=1,2,3,4)

|

EC 1%

|

EC 5% \

part-00000
part-00001
part-00002
part-00004
part-00005

81%
87%
89%
80%
71%

84%
87%
90%
85%
73%

83%
85%
89%
84%
78%

82%
83%
85%
81%
75%

89%
88%
91%
89%
80%

89% | 88%
89% | 88%
91% | 90%
89% | 88%
82% | 81%

86%
85%
87%
86%
79%

94%
94%
93%
93%
90%

94%
94%
93%
93%
90%

93%
93%
92%
92%
88%

91%
92%
90%
91%
87%

TABLE 9: Edge Node Average Fetch Latency (milliseconds) with the Effect of Prefetch TTL.

[Log Name | EC1% (TTL=1,2) | EC5% | EC 10% |

part-00000
part-00001
part-00002
part-00004
part-00005

4.7
4.8
44
5.0
5.3

53
49
51
52
58

3.8
4.0
4.3
44
4.1

44
38
47
43
47

3.8
4.0
42
4.3
3.7

31
27
29
28
33

TABLE 10: Edge Node Cache Hit Rate (percentage) with the Effect of Prefetch TTL.

Log Name | EC 1% (TTL =1, 2) EC 5% EC 10%

part-00000 | 88% 15% 93% | 29% | 93% | 37%
part-00001 | 88% 20% 93% | 30% | 93% | 42%
part-00002 | 90% 18% 92% | 31% | 92% | 38%
part-00004 | 88% 16% 92% | 33% | 92% | 41%
part-00005 | 81% 14% 88% | 27% | 93% | 36%

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

builds a relationship graph between predecessor and suc-
cessors in a specific size history window similar to NEXUS
and applies Integrated Path Algorithm (IPA) to detect the
semantic attributes correlation between predecessor and
each successor.

AMP [45] uses a different approach to predict the re-
quest pattern based on the analysis of the historical access
sequence. The authors apply N-gram [47] model, which has
been widely used in natural language processing, to train
the prediction model in a quasi-online fashion (overnight
training and use training result for the next day’s prefetch-
ing prediction). AMP states that a 3-gram model can have
more constraints on prediction and give more accurate
predictions. They also claim that a 3-gram with up to 6
prefetching items can achieve a better hit ratio with less
computation overhead.

Thrift [30] and gRPC [29] provide the high performance
Remote Procedure Call (RPC) framework and employ an
interface definition language (IDL) to compile the code
written in a different programming language (e.g., C++,
Python, Java, etc.). Their transport layer exchanges mes-
sages between client and server. Thrift and gRPC are client-
server architectures and their framework requires the imple-
mentation of both client and server sides and deployment
of their implementation to the I/O server or IoT end device.
Without changing the server-side, there are challenges in the
design and implementation. Our work provides the original
and novel mechanisms to solve those challenges.

Hierarchical caching has been well studied in the liter-
ature. For the web caching systems, Wolman et al. [48]
conducted their analysis on the hierarchical tree structure
cache and evaluated the advantages and drawbacks of inter-
proxy cooperation to demonstrate the performance benefits
of cooperative caching. Sadeghi et al. [49] represented the
popular tree hierarchical cache networks into a two-level
network caching, where the network of caching nodes has
been managed in a two-timescale approach. The researchers
formulated the file transmission cost model as the Markov
decision process (MDP) and propose a novel reinforcement
learning (RL) to select the efficient caching policy to adapt to
the dynamic evolution of file requests and caching policies
of the network nodes. Jia et al. [50] considered a cached
content placement problem in a hierarchical web proxies
environment. The authors formulated the problem to min-
imize the data access costs by considering the distance
between the source of requests and the closest destination
with the requested data. Tran et al [51] introduced a novel
cooperative hierarchical caching framework under the C-
RAN [52] architecture. Inside the proposed framework,
the complementary Cloud cache and Edge caches have
been managed by a centralized controller at the Cloud.
The authors evaluated the performance by configuring the
cache installation on the different hierarchical layers. The
experiments show that the proposed framework signifi-
cantly outperforms traditional Edge-only caching schemes.
SMURF employs a generic prefetch framework to apply the
configurable prefetch predictor on Edge/Fog service. Users
and system admins can easily configure and customize
prefetch schemes for different types of applications.

13

5 CONCLUSION

This paper addresses two crucial IoT research challenges
in accessing remote metadata: heterogeneity and scalabil-
ity. We have presented a novel solution for efficient and
scalable metadata access for distributed and heterogeneous
applications across wide-area networks, called SMURF. Our
solution combines novel pipelining and concurrent transfer
mechanisms with reliability, provides distributed contin-
uum caching and prefetching strategies to sidestep fetch-
ing latency, and achieves scalable and high-performance
metadata fetch/prefetch services in the Cloud. We also
studied the applicability of semantic locality in real trace
logs, which is not well utilized in traditional metadata access
prediction techniques, and implemented a novel prefetch
predictor based on semantic locality. We compared it with
three existing state-of-the-art prefetch schemes (NEXUS,
FARMER, and AMP) on Yahoo! Hadoop audit traces. Our
experimental results show that SMURF can achieve 90%
accuracy during prefetch prediction and reduce the average
fetch latency up to 50% compared to the other mechanisms.

ACKNOWLEDGMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award numbers OAC-1724898 and
CCF-2007829. The results presented in this paper were ob-
tained using the Chameleon Cloud and XSEDE resources.

REFERENCES

[1] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, et al.,
“Xsede: accelerating scientific discovery,” Computing in Science &
Engineering, vol. 16, no. 5, pp. 62-74, 2014.

[2] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny et al., “The
open science grid,” in Journal of Physics: Conference Series, vol. 78,
no. 1. IOP Publishing, 2007, p. 012057.

[3] J. Mambretti,]. Chen, and F. Yeh, “Next generation clouds,
the chameleon cloud testbed, and software defined networking
(sdn),” in Proceedings of ICCCRI 15, 2015.

[4] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig ef al., “The
design and operation of cloudlab,” in Proceedings of USENIX ATC,
2019.

[5] DCMI Usage Board, “DCMI Metadata Terms,”
https:/ /www.dublincore.org/specifications / dublin-core/dcmi-
terms/, 2021.

[6] “Metadata,” https://en.wikipedia.org/wiki/Metadata, 2021.

[7] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in Proceed-
ings of the 2004 ACM/IEEE conference on Supercomputing, 2004, p. 4.

[8] D.S. Roselli, J. R. Lorch, T. E. Anderson et al., “A comparison of
file system workloads.” in USENIX Annual Technical Conference,
General Track, 2000, pp. 41-54.

[9] J. M. Wozniak, K. Chard, B. Blaiszik, R. Osborn, M. Wilde, and
I. Foster, “Big data remote access interfaces for light source sci-
ence,” in 2015 IEEE/ACM 2nd International Symposium on Big Data
Computing (BDC). 1EEE, 2015, pp. 51-60.

[10] J. L. Schnase, D. Q. Duffy, G. S. Tamkin, D. Nadeau, J. H. Thomp-
son et al., “Merra analytic services: Meeting the big data challenges
of climate science through cloud-enabled climate analytics-as-a-
service,” Computers, Environment and Urban Systems, vol. 61, pp.
198-211, 2017.

[11] R. Hai, S. Geisler, and C. Quix, “Constance: An intelligent data
lake system,” in Proceedings of the 2016 International Conference on
Management of Data. ACM, 2016, pp. 2097-2100.

[12] C. Quix, R. Hai, and I. Vatov, “Gemms: A generic and extensible
metadata management system for data lakes.” in CAiSE Forum,
2016, pp. 129-136.

[13] I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino, “Data
wrangling: The challenging journey from the wild to the lake.” in
CIDR, 2015, pp. 4-7.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022

[14]

[15]
(16]
(17]

(18]
(19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
(28]
[29]
(30]
[31]
(32]
(33]

[34]
[35]

[36]
[37]
[38]
[39]
[40]
[41]
[42]

(43]

[44]

S. Chaudhuri and U. Dayal, “An overview of data warehousing
and olap technology,” ACM Sigmod record, vol. 26, no. 1, pp. 65—
74,1997.

K. Ashton et al., “That ‘internet of things’ thing,” RFID journal,
vol. 22, no. 7, pp. 97-114, 2009.

D. K. Dhillon and R. S. Uppal, “Internet of things-making sense of
the next mega-trend,” J. Netw. Comput. Appl, vol. 67, p. 19, 2016.
D. Evans, “The internet of things: How the next evolution of the
internet is changing everything,” CISCO white paper, vol. 1, no.
2011, pp. 1-11, 2011.

“Storm,” http:/ /storm.apache.org, 2021.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust et al.,
“Apache spark: a unified engine for big data processing,” Com-
munications of the ACM, vol. 59, no. 11, pp. 56-65, 2016.

A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Ver-
scheure, H. Koutsopoulos, and C. Moran, “Ibm infosphere streams
for scalable, real-time, intelligent transportation services,” in Pro-
ceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 1093-1104.

R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to
controlled experiments on the web: Listen to your customers not
to the hippo,” in Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2007.

B. Zhang, B. Ross, and T. Kosar, “Dls: a cloud-hosted data caching
and prefetching service for distributed metadata access,” Interna-
tional Journal of Big Data Intelligence, vol. 2, no. 3, pp. 183-200, 2015.
L. D. Xu, “Enterprise systems: State-of-the-art and future trends,”
IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 630-640,
2011.

E. Rescorla et al, “RFC 2812: HTTP over TLS,”
https:/ /www.hjp.at/doc/rfc/rfc2818.html, 2021.

J. Postel and J. Reynolds, “Rfc 959: File transfer protocol (ftp),”
InterNet Network Working Group, 1985.

G. Aloisio, M. Cafaro, and I. Epicoco, “Early experiences with the
gridftp protocol using the grb-gsiftp library,” Future Generation
Computer Systems, vol. 18, no. 8, pp. 1053-1059, 2002.

“The integrated rule oriented data system iRODS,”
http:/ /www.irods.org/, 2021.

M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon s3 for science grids: A viable solution?” in Proceedings of
DADC, 2008, pp. 55-64.

“Google remote procedure call gRPC,” https://grpc.io/, 2021.
“Apache thrift software framework Thrift,”
https:/ /thrift.apache.org/, 2021.

J. A. Moore, J. M. Johnson, S. E. T. P. Initiative et al., “Transporta-
tion, land use and sustainability,” 1994.

W. Allcock, “Gridftp protocol specification,” GGF GridFTP working
group document, 2002.

“Protocolbuffers,” https:/ /en.wikipedia.org/wiki/Protocol_Buffers,
2021.

“Ntfs,” https:/ /en.wikipedia.org/wiki/NTFES, 2021.

“Yahoo webscope,” https://webscope.sandbox.yahoo.com/,
2021.

“Globus-toolkit,” https://github.com/globus/globus-toolkit,
2021.

“Minio,” https://min.io/, 2021.

C. Boettiger, “An introduction to docker for reproducible re-
search,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1,
pp. 71-79, 2015.

“Amqp,” https:/ /en.wikipedia.org/wiki/ Advanced_Message
_Queuing_Protocol, 2021.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the ACM symposium on Cloud computing, 2010, pp. 143-154.
“Xsede-comet,” https:/ /portal.xsede.org/sdsc-comet, 2021.
“Operating system and hardware information,”
http:/ /oshi.github.io/oshi/, 2021.

J. Li and S. Wu, “Real-time data prefetching algorithm based
on sequential patternmining in cloud environment,” in Industrial
Control and Electronics Engineering (ICICEE), 2012, pp. 1044-1048.
P. Gu, Y. Zhu, H. Jiang, and]. Wang, “Nexus: a novel
weighted-graph-based prefetching algorithm for metadata servers
in petabyte-scale storage systems,” in Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID’06), vol. 1.
IEEE, 2006, pp. 8-pp.

14

[45] L.Lin, X.Li, H. Jiang, Y. Zhu, and L. Tian, “Amp: An affinity-based
metadata prefetching scheme in large-scale distributed storage
systems,” in Proceedings of CCGRID, 2008, pp. 459-466.

[46] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “Farmer: a novel
approach to file access correlation mining and evaluation reference
model for optimizing peta-scale file system performance,” in
Proceedings of HPDC, 2008, pp. 185-196.

[47] P.E Brown, P. V. Desouza, R. L. Mercer, V.]. D. Pietra, and J. C. Lai,
“Class-based n-gram models of natural language,” Computational
linguistics, vol. 18, no. 4, pp. 467-479, 1992.

[48] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. M. Levy, “On the scale and performance of cooperative web
proxy caching,” in Proceedings of the seventeenth ACM symposium
on Operating systems principles, 1999, pp. 16-31.

[49] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement
learning for adaptive caching in hierarchical content delivery
networks,” IEEE Transactions on Cognitive Communications and Net-
working, vol. 5, no. 4, pp. 1024-1033, 2019.

[50] X. Jia, D. Li, H. Du, and J. Cao, “On optimal replication of
data object at hierarchical and transparent web proxies,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 8, pp.
673-685, 2005.

[51] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical
caching in 5g cloud radio access networks,” IEEE Network, vol. 31,
no. 4, pp. 35-41, 2017.

[52] L Chih-Lin, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li, “Recent
progress on c-ran centralization and cloudification,” IEEE Access,
vol. 2, pp. 1030-1039, 2014.

Bing Zhang is a research programmer at the
National Center for Supercomputing Applica-
tions (NCSA). He received a BE degree in Com-
puter Science from JiLin University, the MS de-

== gree from University at Buffalo, SUNY, and a
S Ph.D. in Computer Science and Engineering

from University at Buffalo, SUNY, 2019. His re-
4 ~ search interests include High-performance net-
work, network and protocol optimization, Dis-

tributed systems, computer networks, and Cloud
systems.

Tevfik Kosar Tevfik Kosar is a Professor in
the Department of Computer Science and En-
gineering at the State University of New York
at Buffalo. He has received his Ph.D. in Com-
puter Science from the University of Wisconsin-
Madison in 2005. His main research interests in-
clude data-intensive distributed computing, big-
data analytics, data-center networking and I/O
. optimization, performance and energy efficiency
A in loT and Edge computing systems. Some of
the awards received by Dr. Kosar include NSF
CAREER Award, IBM Research Award, Google Research Award, LSU
Rainmaker Award, LSU Flagship Faculty Award, Baton Rouge Busi-
ness Report’s Top 40 Under 40 Award, 1012 Corridor’s Young Scientist
Award, UB Senior Faculty Research Award, and IEEE Region-| Techno-
logical Innovation Award. Dr. Kosar is a Senior Member of the IEEE.

