
Code Synthesis for Sparse Tensor Format Conversion
and Optimization

Tobi Popoola
tobipopoola@u.boisestate.edu

Computer Science
Boise State University

USA

Tuowen Zhao
Computer Science
University of Utah

USA
ztuowen@gmail.com

Aaron St. George
Kalyan Bhetwal

aaron.george@u.boisestate.edu
kalyanbhetwal@u.boisestate.edu

Computer Science
Boise State University

USA

Michelle Mills Strout
Computer Science

University of Arizona
USA

mstrout@cs.arizona.edu

Mary Hall
School of Computing
University of Utah

USA
mhall@cs.utah.edu

Catherine Olschanowsky
Computer Science

Boise State University
USA

catherineolschan@boisestate.edu

Abstract
Many scientific applications compute using sparse data and
store that data in a variety of sparse formats because each
format has unique space and performance benefits. Optimiz-
ing applications that use sparse data involves translating
the sparse data into the chosen format and transforming the
computation to iterate over that format. This paper presents
a formal definition of sparse tensor formats and an auto-
mated approach to synthesize the transformation between
formats. This approach is unique in that it supports ordering
constraints not supported by other approaches and synthe-
sizes the transformation code in a high-level intermediate
representation suitable for applying composable transforma-
tions such as loop fusion and temporary storage reduction.
We demonstrate that the synthesized code for COO to CSR
with optimizations is 2.85X faster than TACO, Intel MKL,
and SPARSKIT while the more complex COO to DIA is 1.4x
slower than TACO but faster than SPARSKIT and Intel MKL
using the geometric average of execution time.

Keywords: Sparse Format Synthesis, Re-ordering

1 Introduction
Many scientific applications process sparse data. Data is
sparse if it has a relatively large percentage of zeros. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

applications use sparse tensor formats to reduce memory
requirements. Given the increasing number of sparse ten-
sor formats and the need for highly optimized routines that
translate among them, automated methods are required to
synthesize the translation code. This paper presents an ap-
proach that describes sparse tensor formats and synthesizes
translation code among them.

Synthesizing format conversion code that is performant is
preferable to handwriting and optimizing all possible combi-
nations. The best choice of sparse tensor format changes with
computational patterns and the sparsity pattern of data. Once
a choice of format has been made, optimized routines that
transform the sparse code from one format to another are
required. Sparse format conversion can be from any sparse
format to any other sparse format, creating a vast space of
transformations. Furthermore, that choice may change over
the lifetime of application execution. As a simple example,
consider a sparse tensor that is used in multiple phases of
computation and will sometimes be read in the first mode
and later in the last. Changing formats between phases may
be advantageous depending on the number of times the op-
erations are executed.

Current automated techniques are limited by the types of
sparse formats that can be expressed and transformed be-
tween. Our solution supports formats that require ordering
such as ALTO [11] and HICOO [17]. These formats (ALTO
and HICOO), utilize Morton ordering on the data indices
to improve locality when performing mode-agnostic com-
putations. Other approaches to synthesizing sparse format
conversion do not support these formats [1, 30].

An expressive and precise mechanism to describe existing
and develop new sparse tensor formats is a key component in
the code synthesis algorithm. We propose to describe sparse
tensor formats as functions from the sparse iteration space
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to the dense coordinates. The functions are expressed as re-
lations and each uninterpreted function is further described
by providing the domain, range, and universal constraints
for each. Sparse format descriptors are expressed using the
sparse polyhedral framework.

The sparse polyhedral framework (SPF) provides the syn-
tax and operations needed to specify sparse formats and
synthesize code from those specifications. Based on the poly-
hedral framework, SPF uses a mathematical infrastructure
based on sets and relations to express and transform compu-
tations. SPF builds on previous efforts including Omega [13]
by using uninterpreted functions to abstract non-affine con-
straints on execution schedules. SPF supports many loop
transformations including fusion, skewing, unrolling, tiling,
and others. By directly synthesizing the sparse format code
to SPF and expressing the original computation in SPF, both
can be optimized in tandem.
The SPF Internal Representation (SPF-IR) provides an

object-oriented interface to access SPF operations and re-
quirements for a fully specified computation [21]. It can
express a wide class of computations including those with
imperfect loop nests and loop-carried dependences. This
work proposes a sparse format conversion synthesis tech-
nique that emits code expressed in the SPF using the SPF-IR.

The contributions of this paper include:

• a specification of sparse tensor formats using the sparse
polyhedral framework, and

• a method to synthesize sparse format conversion rou-
tines.

We demonstrate the expressiveness of the specification
with a collection of common sparse tensor formats and we
evaluate the correctness of the synthesis algorithm. A per-
formance comparison between our work and TACO’s im-
plementation shows that our approach is competitive or
outperforms TACO in cases where a comparison was possi-
ble.

2 Background
In this section, we discuss the necessary background for our
work. Sparse polyhedral model, SPF internal representation
and sparse formats are fundamental concepts used in this
work.

2.1 Sparse Polyhedral Model
The polyhedral model is a mathematical representation of
execution schedules used for loop transformations and de-
pendence analysis. It represents computations as sets and
relations. Iteration spaces are represented with sets and data
dependences are represented using relations. Combined iter-
ation spaces and data dependences provide a partial ordering
for the target computation. Within the partial ordering, the
order of execution can be altered by applying relations to

the iteration space. These relations are referred to as trans-
formations.

Consider the following example of an affine loop.
for(int i=0; i<M; i++){

for(int j=0; j<N ;j++){
printf("i: %d, j:%d\n",i,j);

}
}

The iteration space, expressed in the polyhedral model is a
set with all valid combinations of the tuple [i, j].

I = {[i, j] : 0 ≤ i < M ∧ 0 ≤ j < N }

One can apply the following relation to the set to do loop
interchange.

IC = {[i, j] → [j, i]}

I ′ = IC(I )

Performing code generation on I ′ yields the following code.
for(int j=0; j<N; j++){

for(int i=0; i<M ;i++){
printf("i: %d, j:%d\n",i,j);}}

The sparse polyhedral framework (SPF) extends the poly-
hedral model by supporting non-affine iteration spaces and
transformations using uninterpreted functions. SPF provides
much of the same functionality as traditional polyhedral
tools: code generationwith CodeGen+ [6] built onOmega [14]
and precise set and relation operations in the presence of
uninterpreted functions with IEGenLib [27]. Uninterpreted
functions (UF) are a special case of symbolic constants. Un-
interpreted functions represent data structures such as index
arrays in sparse data formats. In sparse computations, array
accesses become part of the loop bounds in computation,
this cannot be modeled in the polyhedral framework.

The example below prints the coordinates of nonzeros in
a Compressed Sparse Row (CSR) format.
for(int i=0; i<N; i++){

for(int k=rowptr[i]; k < rowptr[i+1] ;k++){
int j = col[k];
printf("i: %d, j:%d\n",i,j);

}
}

The iteration space has constraints involving uninter-
preted functions (rowptr and col ).

I = {[i,k, j] : 0 ≤ i < N ∧ rowptr (i) ≤ k < rowptr (i + 1)
∧ j = col(k)}

SPF provides mechanisms to further describe uninter-
preted functions. This information is used for data depen-
dence optimizations [19] and in this work, for code synthesis.
Universal quantifiers are used to declare index array proper-
ties such as monotonicity.
The sparse polyhedral model employs the inspector/ex-

ecutor paradigm to enable the use of run-time information
2
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Figure 1. Sparse Matrix Formats.

for compiler optimizations. An inspector computes informa-
tion at run-time to drive transformations. The executor—-
a compile-time transformation of the original code—- uses
information computed by the inspector. Inspectors can be
reasoned as the population of uninterpreted functions and ex-
ecutors can be reasoned to use these uninterpreted functions
to guide transformations.

2.2 SPF - Internal Representation
The SPF-IR [21] formalizes the sparse polyhedral model as
an intermediate representation and provides a low-level API
for sparse transformations and code generation. The SPF-IR
API integrates CHiLL [7], CodeGen+ [6], Omega [13], and
IEGenLib [27]. It provides a computation class to express
a computation or series of computations. For one specific
computation, we need to define data spaces, statements, data
dependences, and execution schedules. Once constructed, a
code generation algorithm based on Fourier Motzkin elimina-
tion can generate C code or a visual data flow graph to help
performance engineers identify optimization opportunities.
The example below shows the SPF representation that

corresponds to the CSR example above.

Computation* comp = new Computation ();
Stmt* sps0 = new Stmt(
"printf (\"i: %d, j:%d\n\",i,j);",
"{[i,k,j]: 0 <= i < N && rowptr(i) <= k <
rowptr(i+1) && j = col(k)}","{[0]}", {},{});
comp ->addStmt(sps0);
string code = comp ->codeGen ();

This example shows only a single statement in the Com-
putation. Before the codeдen function is invoked transfor-
mations can be applied through the API to transform the
execution schedule.

2.3 Sparse Formats
Sparse formats describe how sparse coordinates and cor-
responding data are stored and are often based on sparse
matrix formats. Figure 1 shows a few of the most common
sparse matrix formats including the coordinate format. Co-
ordinate(COO) format stores each non-zero and stores the

coordinate indices in separate arrays organized by dimen-
sion. Compressed Sparse Row (CSR) compresses the rows
and each non-zero is ordered and has a corresponding un-
compressed column coordinate. Blocked Compressed Sparse
Row splits the dense matrix into blocks and compresses the
blocked rows. Diagonal (DIA) compresses each diagonal of
a matrix.

Sparse tensor formats specifically designed for higher di-
mensional data include HICOO [17] and Alto [12]. These
formats are more complex and involve sorting and other data
structures.

The key concept for each sparse tensor format is that the
auxiliary (or index) arrays provide the dense coordinates
of the corresponding data. Taken together they provide a
mapping from an iteration space to a data space.

3 Sparse Tensor Format Conversion
This work introduces an approach to inspector program syn-
thesis using deductive reasoning for sparse tensor format
conversion. Sparse formats are described using format de-
scriptors. The descriptors are designed to support a variety
of sparse tensor formats, specifically those that depend on
user-defined sorting. User-defined sorting allows users to
specify re-ordering constraints in a sparse tensor description.
Format descriptors are combined to create a mapping from
one sparse space to another. The map serves as a source of
constrained relationships between the source and destina-
tion data structures and is the basis of inspector synthesis.
The inspector synthesis algorithm generates an SPF in-

termediate representation that ensures uninterpreted func-
tions in the destination format are created and satisfy all
constraints. The resulting intermediate representation is a
sparse loop chain that populates destination uninterpreted
functions. The last operation in the sparse loop chain is the
copy operation. The initial, complete sparse loop chain, while
correct, will often perform poorly. It can be transformed us-
ing standard SPF operations to improve performance.
This section covers each of the required components in

detail: sparse format descriptions, the synthesis algorithm,
and common transformations.

3.1 Sparse Format Descriptor
The sparse format descriptor contains sufficient information
to create and use a specific sparse format. Each part of the
format descriptor is expressed using SPF notation. The com-
ponents include a map from the sparse to dense iteration
space (a relation), a map from the sparse iteration space to
the data (a relation), the domain and range of each unin-
terpreted function, and a list of universal quantifiers that
further describe the uninterpreted functions used in the first
map.

Sparse to dense map. A relation expresses a function
from the sparse iteration space to the dense iteration space.
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Format Map & Data Access Domain/Range Universal Quantifiers
COO RACOO→AD = {[n, ii, jj] → [i, j]| ranдe(row1) = {0 ≤ i < NR}

row1(n) = i ∧ col1(n) = j∧ domain(row1) = {0 ≤ x < NNZ }
ii = i ∧ jj = j ∧ 0 ≤ i < NR ∧ 0 ≤ j < NC∧ ranдe(col1) = {0 ≤ i < NC}

0 ≤ n < NNZ } domain(col1) = {0 ≤ x < NNZ }
DICOO→ACOO = {[n, ii, jj] → [n]}

COO3D RACOO3D→AD = {[n, ii, jj,kk] → [i, j,k]| ranдe(row1) = {0 ≤ i < NR}
row1(n) = i ∧ col1(n) = j ∧ z1(n) = k∧ domain(row1) = {0 ≤ x < NNZ }

ii = i ∧ jj = j ∧ 0 ≤ i < NR ∧ 0 ≤ j < NC∧ ranдe(col1) = {0 ≤ i < NC}
kk = k ∧ 0 ≤ k < NZ ∧ 0 ≤ n < NNZ } domain(col1) = {0 ≤ x < NNZ }
DICOO3D→ACOO3D = {[n, ii, jj,kk] → [n]} ranдe(z1) = {0 ≤ k < NZ }

domain(z1) = {0 ≤ x < NNZ }
MCOO RAMCOO→AD = {[n, ii, jj] → [i, j]| ranдe(rowm) = {0 ≤ i < NR} ∀n1,n2 : n1 < n2 ⇐⇒

rowm(n) = i ∧ colm(n) = j∧ domain(rowm) = {0 ≤ x < NNZ } MORTON (rowm(n1), colm(n1))
ii = i ∧ jj = j ∧ 0 ≤ i < NR ∧ 0 ≤ j < NC∧ ranдe(colm) = {0 ≤ i < NC} <

0 ≤ n < NNZ } domain(colm) = {0 ≤ x < NNZ } MORTON (rowm(n2), colm(n2))
DIMCOO→AMCOO = {[n, ii, jj] → [n]}

MCOO3 RAMCOO3→AD = {[n, ii, jj,kk] → [i, j,k]| ranдe(row1) = {0 ≤ i < NR} ∀n1,n2 : n1 < n2 ⇐⇒

row1(n) = i ∧ col1(n) = j ∧ z1(n) = k∧ domain(row1) = {0 ≤ x < NNZ } MORTON (row1(n1),
ii = i ∧ jj = j ∧ 0 ≤ i < NR ∧ 0 ≤ j < NC∧ ranдe(col1) = {0 ≤ i < NC} col1(n1), z1(n1)) <
kk = k ∧ 0 ≤ k < NZ ∧ 0 ≤ n < NNZ } domain(col1) = {0 ≤ x < NNZ } MORTON (row1(n2),
DIMCOO3→AMCOO3 = {[n, ii, jj,kk] → [n]} ranдe(z1) = {0 ≤ k < NZ } col1(n2), z1(n2))

domain(z1) = {0 ≤ x < NNZ }
CSR RACSR→AD = {[ii,k, jj] → [i, j]| ranдe(rowptr ) = {0 ≤ n ≤ NNZ } ∀ii1, ii2 : ii1 < ii2 ⇐⇒

ii = i ∧ jj = j ∧ col2(k) = j domain(rowptr ) = {0 ≤ x ≤ NR} rowptr (ii1) ≤ rowptr (ii2)
∧0 ≤ ii < NR ∧ rowptr (ii) ≤ k∧ ranдe(col2) = {0 ≤ i < NC} ∀k1,k2 : k1 < k2 ⇐⇒

k < rowptr (ii + 1)} domain(col2) = {0 ≤ x < NNZ } ii ∗ NR + col2(k1)
DICSR→ACSR = {[ii,k, jj] → [k]} < ii ∗ NR + col2(k2)

CSC RACSC→AD = {[jj,k, ii] → [i, j]| ranдe(colptr ) = {0 ≤ n ≤ NNZ } ∀jj1, jj2 : jj1 < jj2 ⇐⇒

∧0 ≤ jj < NC ∧ colptr (jj) <= k∧ domain(colptr ) = {0 ≤ x ≤ NC} colptr (jj1) ≤ colptr (jj2)
k < colptr (jj + 1)} ranдe(row) = {0 ≤ i < NR} ∀k1,k2 : k1 < k2 ⇐⇒

DICSC→ACSC = {[ii,k, jj] → [k]} domain(row) = {0 ≤ x < NNZ } ii ∗ NC + row(k1)
< ii ∗ NC + row(k2)

DIA RADIA→AD = {[ii,d, jj] → [i, j]| domain(o f f ) = {0 ≤ x ≤ ND} ∀d1,d2 : d1 < d2 ⇐⇒

i = ii ∧ 0 ≤ i < NR ∧ 0 ≤ d < ND of f (d1) < o f f (d2)
∧j = i + o f f (d) ∧ 0 <= j < NC}
DIDIA→ADIA = {[ii,d, jj] → [kd]|}

kd = ND ∗ ii + d}

Table 1. Format Descriptors for COO, CSR, MortonCOO (MCOO), Sorted-COO (SCOO), DIA and CSC.

The input tuple of the relation is the sparse iteration space.
Intuitively, the sparse-to-dense map can be derived from a
computation that iterates through the non zeros in a sparse
format. Iterating through COO to retrieve non zeros will
have a space [n, ii, jj] and the actual dense coordinate is [i, j].
A sparse to dense map of COO is shown in Table 1 based on
how the sparse iteration space maps to the dense coordinate.
The sparse-to-dense map must be a function. This is required
by inspector synthesis and executor transformations.

Data access relation. The data access relation, also ex-
pressed as an SPF relation, maps from the sparse iteration

space to the data space. In our example using COO, the re-
lation is {[n, ii, jj] → [n]}. The iteration space of CSR is
{[ii,k, jj]}, and its data access relation is {[ii,k, jj] → [k]}.
The data access relation decouples the iteration space and
the data space allowing them to be transformed separately.

Domain and range. The domain and range of each un-
interpreted function are required. In the COO example, the
domain of each is the same. Notice that the domain and
range definitions, in this case, introduce additional symbolic
constants.

Universal quantifiers. Universal quantifiers further re-
fine the specification of the sparse format. COO in the Table 1
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has no universal quantifiers while MCOO introduces a uni-
versal quantifier to ensure that this COO format is sorted
using a Morton order. This is achieved with a user-defined
comparison function. It is important to note that functions
that appear onlywithin universal quantifiers are user-defined
and full definitions must be provided.

3.2 Synthesis Algorithm
Code synthesis refers to automatically writing the code that
transforms data from one sparse format, the source, to an-
other, the destination. Throughout this section, we refer to
examples using COO as the source. This process works using
any format as the source. However, most sparse tensors are
stored in COO and it is the easiest format to explain.

The input to the synthesis algorithm is two sparse format
descriptors and the output is an SPF representation of the
inspector. The process begins by composing the inverse of
the destination sparse to dense map with the source sparse
to dense map (see compose definition in [27]).

RAsrc→Adest =

(RAdest→Adense )
−1 ◦ RAsrc→Adense

Using the relation and the universal constraints, we solve
for each unknown uninterpreted function and generate an
SPF representation of code that generates those uninter-
preted functions. The relation that results from the compo-
sition is used to generate the data copy code. Below is a
summary of the synthesis process followed by a detailed
description of each step.

1. Invert destination format and insert permutation func-
tion.

2. Compose sparse to dense maps.
3. For each unknown UF, create the SPF representation

to populate.
4. For each quantifier q in Universal Quantifiers,UQ cre-

ate the SPF representation to enforce.
5. Generate the SPF representation for the copy opera-

tion.
Invert destination format relation and insert Per-

mutation. The format description specifies a map from the
sparse iteration space to the dense iteration space. Inverting
the relation switches the input and output tuples. Next, we
introduce a temporary uninterpreted function, referred to
as the permutation, to ensure inverse maps are functions:
P([input_tuple]) = [output_tuple]. The input and output
tuples are tuples of the inverse destination format. The fol-
lowing demonstrates this step when transforming to MCOO.

RAMCOO→Adense
−1 = {[i, j] → [n2, ii, jj]|colm(n2) = jj∧

rowm(n2) = ii ∧ P(i, j) = [n2, ii, jj]
i = ii ∧ j = jj}

Compose. The relations are composed to realize a single
mapping from the source to the destination iteration spaces.

Composition in the presence of uninterpreted functions is
supported by IEGenLib [28]. The code synthesis process
centers around this mapping.

RACOO→AMCOO = RAMCOO→Adense
−1 ◦ RACOO→Adense

RACOO→AMCOO = {[n1, ii, jj] → [n2, ii, jj]|
jj = col1(n1) ∧ col1(n1) = colm(n2)∧
ii = row1(n1) ∧ row1(n1) = rowm(n2)∧
P(row1(n1), col1(n1)) = [n2, ii, jj]}

UnknownUninterpreted Functions. The relation that re-
sults from composition in the previous step (in our example
RACOO→AMCOO ) contains a list of constraints. The uninter-
preted functions (UF) from the destination format are as-
sumed to be unknown (unknown UF). Known UFs are UFs
from the source format, or that has been resolved at some
point in synthesis. We solve for each of the unknown unin-
terpreted functions and synthesize code to populate them
(Unknown UFs: rowm , colm , NNZ , P ).

An unknown UF is solved for using its relationship with
known information/functions (from the source format) in
our composed map. Note that NR and NC do not appear in
this list. It is not possible to reliably derive the shape of a
matrix from sparse formats. This is because outermost rows
or columns may be zero values and the matrix would look
smaller than it is. Therefore, we require that variables be
available that describe the shape of the tensor.
The constraints associated with each unknown UF are

identified. There are potentially more constraints in this list
than first anticipated because we must use substitution to
find all of the constraints. The list of constraints associated
with each unknown uninterpreted function in this example
is shown in Table 2.

Synthesizing the code requires that we determine a state-
ment to execute along with an iteration space and an execu-
tion schedule. There are two decisions to make at this point.
First, which order to generate the unknown UFs, and second,
what statements and iteration spaces to synthesize.

Consider the general form of the relation from source
sparse format to destination sparse format.

RAsrc→Adest = {®x → ®y | C}

®x ∈ Zl , ®y ∈ Zr

Where ®x is an integer tuple of length l , ®y is an integer tuple
of length r , andC is a constraints list. In the cases belowUF
represents the unknown uninterpreted function and, f and
f ′ represent functions that comprise linear combinations of
known uninterpreted functions and symbolic constants. ®u
and ®v are integer tuples that are subsets of ®x and ®y respec-
tively.
Constraints from the resulting relation RAsrc→Adest are

grouped into 5 cases. Cases 1-3 below deal with constraints
that use only tuple variables from the input tuple. Cases 4 and
5 deal with constraints that involve both the input and output

5
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rowm colm NNZ P
row1(n1) = rowm(n2) col1(n1) = colm(n2) domain(rowm) = P(ii, jj) = [n2, ii, jj]

ii = rowm(n2) jj = colm(n2) {0 <= x < NNZ } ∀n2,n2′ : n2 < n2′
∀n2,n2′ : n2 < n2′ ∀n2,n2′ : n2 < n2′ ⇐⇒ MORTON (ii, jj) <

⇐⇒ MORTON (ii, jj) < ⇐⇒ MORTON (ii, jj) < MORTON (ii, jj)
MORTON (ii, jj) MORTON (ii, jj)

Table 2. Across the top of this table are the unknown uninterpreted functions (UFs) for the running example COO → COOM .
Under each are the constraints related to that UF.

tuple variables, but the order is swapped. There are additional
combinations of operators and relation characteristics that
are not considered. It may be that they will need to be added
if they are found to exist in sparse tensor formats. However,
at this point, we have added cases only for the combinations
that exist in current formats.

Case 1 Constraint:UF (®u) = f (®u)
Statement:UF (®u) = f (®u)
Domain: {®u : C}, where C is a constraint list from
RAsrc→Adest after projection.

Case 1 consists of an equality constraint and both the
left and right-hand sides take the same tuple (®u) which is a
subset of the tuple variables for the input tuple of the origi-
nal relation. The corresponding statement is an assignment
statement. The iteration space for that statement is created
by projecting out all tuple variables from the original relation
that are not members of ®u. None of the constraints in the
running example are categorized as case 1.

Case 2 Constraint:UF (f ′(®u)) ≤ f (®u)
Statement:UF (®u) =min(UF (®u), f (®u))
Domain: {®u : C}, where C is a constraint list from
RAsrc→Adest after projection.

Case 3 Constraint:UF (®u) ≥ f (®u)
Statement:UF (®u) =max(UF (®u), f (®u))
Domain: {®u : C}, where C is a constraint list from
RAsrc→Adest after projection.

Cases 2 and 3 are inequality constraints where both the left
and right hand side uses ®u which is a subset of the input
tuple variables of the original relation. The unknown UF
in case 2 has an upper bound of f (®u), which translates to
an assignment to the minimum of f (®u). The unknown UF
in case 3 has a lower bound of f (®u), which translate to an
assignment to the maximum of f (®u). The iteration spaces
of both cases 2 and 3 are created by projecting out all tuple
variables from the original relation that are not members of
®u. Given that f (®u) is a linear combination of other known
UFs, for every tuple instance ®u, it is necessary to get the min
or max to satisfy the inequalities in cases 2 and 3. None of
the constraints in this example are categorized as case 2 or 3.

Case 4 Constraint:UF (®u) = f (®v)
Statement:UF .insert(F (®u))

Domain: {®u : C}, where C is a constraint list from
RAsrc→Adest after projection.

Case 4 is an equality constraint where the vector ®u, used on
the left-hand side, is a subset of the input tuple and the vec-
tor ®v , used on the right-hand side, is a subset of the output
tuple. The statement synthesized is an insert call that takes
the function f (®v) as a parameter. The vector ®v inUF differ-
entiates Case 4 from Case 1. In our example, the constraints
on rowm , colm , and P are case 4.
Not all of the constraints that qualify as case 4 in the

running example can be satisfied immediately. The relations
for the constraints on rowm and colm are not functions. Taken
with the universal constraints the relations for P is a function
and should be processed first.

{[®u] → ®v]|Cl ist }

The resulting relation for P follows.

{[ii, jj] → [n2, ii, jj]|}

There are no qualifying constraints. However, when we also
consider the universal quantifiers there is enough informa-
tion to create an exact mapping. The code that would be
generated from the SPF-IR representing the synthesized code
creates a class that will enforce the universal quantifier.

1 P = new OrderedList (2,1,MORTON (),"<");

2 for(int c0=0;c0<NNZ;c0++){

3 P.insert(row1(c0),col1(c0));

4 }

The parameters of the list constructor are the input arity,
the output arity, the function to use as a comparator, and the
desired operation (less than or greater than). It is important
to note that an exact mapping is not required. If the trans-
formation was to an unsorted format an arbitrary order will
be used (the order of insertion). The most specific mapping
that is found is the one chosen for synthesis.

Case 5 Constraint:UF (®v) = f (®u)
Statement:UF .insert(F (®u))
Domain: {®u : C}, where C is a constraint list from
RAsrc→Adest after projection.

Case 5 consists of equality constraints where the vector ®v
used by the left-hand side is a subset of the input tuple and
the right-hand side’s vector ®u is a subset of the output tuple.
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The only difference between cases 4 and 5 is the use of ®v and
®u on opposite sides of the statement.
An example of this case is the constraint on off as seen in

DIA (see Table 1). Suppose DIA is the destination tensor and
off is to be solved for: solving for off in the constraints will
result in o f f (d) = j−i . Tuple variables j and i are known but
tuple variable d is not a linear combination of known tuple
variables and is bounded by ND which is also not known.
In the insert abstraction, whatever constraints are present
as a universal quantifier on the UF in the description are
enforced. In this example, (j − i) is inserted into the off and
the constraint ∀e1, e2 : e1 < e2 ⇐⇒ o f f (e1) < o f f (e2) is
enforced. More of this will be this behavior will be discussed
in Section 4.

The order that the constraints are processed is determined
by the availability of information and the RHS of the con-
straint and the qualities of the relation. All UFs on the RHS
must either be known from the source format or have been
previously processed. Relations that are functions are pri-
oritized. It is possible that the format specification is not
precise enough for the relation to be a function. For example,
if the destination format is an unsorted COO, the relation
will not be a function because there are many UFs that will
satisfy the constraints. Relations that are not functions will
be chosen only after there are no relations that are functions.
By processing them last we ensure that we are satisfying the
more-specific constraints and not creating a contradiction.
Our running example has 4 unknown UFs: rowm , colm ,

NNZ , and P . P is processed first, after P , both rowm and colm
have relations that are functions and can be processed in any
order. NNZ can be processed after either rowm or colm . The
naive implementation will be case 2. However, loop fusion
and dead code elimination make it a simple assignment.

Enforce Universal Quantifiers. Any universal quanti-
fiers present in the destination format are enforced. There
are two types of universal quantifiers on an uninterpreted
function: a reordering quantifier and a monotonic quanti-
fier. Reordering universal quantifiers results in an ordering
constraint placed on the entire destination tensor, while a
monotonic quantifier is only applicable to the uninterpreted
function being described. The Morton example below is an
example of a reordering quantifier.

ranдe(rowm) = {0 <= i < NR}

domain(rowm) = {0 <= x < NNZ }

∀n1,n2 : n1 < n2 ⇐⇒ MORTON (rown(n1), coln(n1)) <
MORTON (rown(n2), coln(n2))

Here the constraint on n1,n2 has a side effect on the order of
the format. A monotonic quantifier on the other hand is local
to the uninterpreted function and does not have any effect
on the ordering of the tensor. An example will be rowptr in
compressed sparse row format (CSR)- see Figure 1.

ranдe(rowptr ) = {0 <= x <= NNZ }

domain(rowptr ) = {0 <= i <= NR}

∀e1, e2 : e1 < e2 ⇐⇒ rowptr (e1) <= rowptr (e2)

In both cases, the synthesis will ensure these constraints
are satisfied. In the case of re-ordering quantifiers, the con-
straints will be enforced as sorting constraints. The gener-
ality of these constraints allows for user-defined functions
in format specifications and this is our unique contribution.
In almost all cases the code synthesized during this phase is
not required for the correctness and can be removed during
optimization.

Generate Data Copy. The final step in the synthesis is
the "copy" code. At this point, all uninterpreted functions in
the destination format have been successfully synthesized
as SPF specification. The copy code copies the data from the
source to the destination. The domain of the copy code is the
composed relation as a set. The statement is a copy statement
and the reads and writes are the source and destination data
accesses respectively.

3.3 SPF Transformations for Optimization
The initial SPF representation may contain redundant or
unnecessary code and use loop structures that are less than
ideal for performance. We employ a collection of standard
SPF transformations to improve performance.

In the synthesis process, we pick up constraints that are vi-
able candidates for synthesizing statements for an unknown
UF. However, this can produce multiple statements that do
the same thing. If multiple statements cover the same data
space we remove all but one of them.
There are situations where the permutation, P is not re-

quired for code correctness. This case is detected using stan-
dard dead code elimination. SPF, at itsmost basic, is a dataflow
graph. That graph is traversed backward, starting with the
live-out dataspaces. Any dataspace and corresponding com-
putation that is not visited is removed.

Fusion combines two loops into one loop. Read reduction
fusion aims at combining statements that read from the same
location in memory to reduce memory footprint. Previous
work [21] shows support for fusion in SPF. Multiple reads
on the same data location occur in synthesis as a series of
loop chains.

Producer-consumer fusion combines chains of loops that
write and then read from the same date. This often results in
reducing the space needed for temporary data storage. All op-
portunities to apply read-reduction and producer-consumer
fusion are applied.

4 Evaluation
We evaluated the correctness and performance of the synthe-
sized code using a set of sparse matrices from the SuiteSparse
Matrix Collection [10]. The synthesized code is serial, we do
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(a) COO to CSC. (b) CSR to CSC.

(c) COO to CSR. (d) COO to DIA (W/O Optimization) See Figure 3.

Figure 2. Performance results of generated synthesis code for COO_CSC, CSR_CSC, COO_CSR and COO_DIA. COO is
assumed to be sorted lexicographically.

Figure 3. COO to DIA with binary search used to take ad-
vantage of monotonicity of synthesized offset array used in
copy.

not explore parallelization opportunities. We show results
for COO to CSR (COO_CSR), CSR to CSC (CSR_CSC), and

COO to DIA (COO_DIA). The performance of the transfor-
mations varies depending on the target format. The COO
to CSR transformation is 2.85x faster than TACO, while the
more complex COO to DIA is 1.4x slower than TACO but
faster than SPARSKIT and Intel MKL using a geometric av-
erage. We evaluate results for COO_MCOO by comparing
our results with handwritten z-Morton step reordering in
HiCOO. All speedup or slowdown comparisons use geomet-
ric averages.

4.1 Experimental Setup
All experiments are run on a Linux (CentOS release 7) cluster
supporting 27 compute nodes, each with dual Intel Xeon E5-
2680 14-core CPUs. We compile generated code and TACO
code using GCC 10.2.0.

The performance comparison is made using the same ma-
trix tensors used in TACO’s format conversion work. Table 3
shows the matrices used in our evaluation. The COO matrix
is assumed to be sorted lexicographically row first. Table 4
shows 3D tensors used in evaluating COO_MCOO reorder-
ing.
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Matrix Dimensions NNZ
pdb1HYS 36.4K × 36.4K 4.3M
jnlbrng1 40.0K × 40.0K 199K
obstclae 40.0K × 40.0K 199K
chem_master1 40.4K × 40.4K 201K
rma10 46.8K × 46.8K 2.4M
dixmaanl 60.0K × 60.0K 300K
cant 62.5K × 62.5K 4.0M
shyy161 76.5K × 76.5K 330K
consph 83.3K × 83.3K 6.0M
denormal 89.4K × 89.4K 1.2M
Baumann 112K × 112K 748K
cop20k_A 121K × 121K 2.6M
shipsec1 141K × 141K 3.6M
majorbasis 160K × 160K 1.8M
scircuit 171K × 171K 959K
mac_econ_fwd500 207K × 207K 1.3M
pwtk 218K × 218K 11.5M
Lin 256K × 256K 1.8M
ecology1 1.00M × 1.00M 5.0M
webbase1M 1.00M × 1.00M 3.1M
atmosmodd 1.27M × 1.27M 8.8M

Table 3. Matrices statistics used in evaluating COO_CSR,
CSR_CSC,COO_DIA.

Tensor Dim Mode NNZ Exec Time(s)
M-Hi-coo Ours

darpa 22K × 22K × 24M 3 28M 11.85 20.13
fb-m 23M × 23M × 166 3 100M 49.35 78.24
fb-s 39M × 39M × 532 3 140M 70.52 114.45

Table 4. Tensors used in evaluating COO3D_MCOO3.

4.2 Performance Evaluation
We evaluate our algorithm by comparing our results to Intel
MKL, TACO [15], SPARSKIT, HiCOO z-morton reordering.
Figure 2c shows conversion results from COO to CSR where
we see a significant 2.85x speedup compared to TACO and
other libraries. Code generated for COO to CSC (Figure 2a)
and CSR to CSC (Figure 2b) shows a 1.3x and a 1.5x speedup
on a geometric average respectively. COO to CSR shows a
significant speed-up compared to CSR_CSC and COO_CSC
due to the row first lexicographical ordering of the source
COO format, no permute function is generated.

We compare our COO-3D to Morton COO-3D conversion
to hand-written highly optimized z-morton ordering step
in Hi-COO and we also see a 1.64x slow down on a geo-
metric average as seen in Table 4. Hand-written z-Morton
ordering splits the original tensor into smaller kernels and
then applies a quick Morton sort to sort each block. This
results in a significantly improved performance compared
to our results, as they only sort small sections at a time. Our

Format Description Support
Tool Mapping Re- Universal

order Quantifiers
TACO [15] ✓ × ×

Nandy et. al [20] × ✓ ✓
Venkat et. al [31] × ✓ ✓
This work ✓ ✓ ✓

Table 5. Automatic sparse format conversion support in our
work compared to others.

morton-ordered tensor conversion routine spans the whole
tensors.
The permutation data structure enforces reordering con-

straints in the destination format, however retrieving the per-
mutation (re-ordered position of nonzeros) incurs overhead.
This is a limitation in the permutation abstraction implemen-
tation and not the approach. The overhead introduced by
permutation abstraction can be amortized by parallelizing
insertion and sort. Permutation of source format can also be
done in place, which could potentially reduce the overhead
of copying from the source to destination format. We do
not explore this currently as we assume the original source
tensor will need to be available after synthesis. A faster copy
from source to destination can be done using direct memcopy
which we do not explore in this work.

Performance results for COO_DIA in Figure 2d show a
fairly competitive performance with handwritten libraries
but 5x slower on average compared to TACO. This is partially
due to the fact that our optimizations cannot fuse the loops
generating offset and copy code. The synthesis algorithm
generates code to enforce index properties of unknown UF.
The offset UF in this case has an index array property that
has to be enforced before the UF is valid to be used in the
copied code preventing fusion opportunities for copy code
and offset code. Performance degrades with the number of
diagonals. Taking a closer look at majorbasis (see Figure 2d)
which showed the worst performance, the number of diago-
nals with nonzeros is 22 while the best performing ecology1
has 5 diagonals. Our synthesized code tries every iteration
to find the d that satisfies the constraints o f f (d) + i = j
before copying the value into the appropriate destination
tensor. This constraint describes a linear search operation,
which when replaced with a binary search shows a better-
performing result as shown in Figure 3. Binary search is
made possible due to the universal quantifiers on off (See Ta-
ble 1). This change shows an improved result as we are 3.1x
and 3.54x faster than SPARSKIT and MKL and 1.4x slower
than TACO on a geometric average.

In summary, the synthesized code is competitive with the
state-of-the-art, in some cases beating the performance. We
anticipate that more aggressive optimization will yield better
results.

9



Conference’17, July 2017, Washington, DC, USA Popoola et al.

5 Related Work
Work most closely related to this includes tensor re-ordering,
automatic sparse layout conversion (see Table 5), handwrit-
ten sparse layout conversion, and program synthesis.

5.1 Sparse Tensor Reordering
Sparse tensor reordering involves changing the order of
non-zero entries in sparse formats to improve spatial or
temporal locality. This includes heuristic techniques: BFS-
MCS a breadth-first search over maximum cardinal search
family, and Lexi-Order an extension of the doubly lexical
ordering of matrices to tensors [18]. Another approach to
tensor reordering is to use discrete cosine transform (DCT) to
compress Convolutional Neural Networks (CNN) [18]. Our
work is similar to this class of work as we introduce a formal
approach to specify reordering functions for the automatic
synthesis of conversion routines.

5.2 Automatic Sparse Layout Conversion
Table 5 shows work on automatic data layout transforma-
tions. Mapping includes work that uses a function to describe
the relationship between the sparse space and dense space,
reordering is a class of work with data layout shuffling, and
universal quantifiers describe array properties and integrate
such information in dependence analysis and optimizations.

Script-based techniques introduce a set of transformations,
when combined in certain order facilitates data layout trans-
formations [20, 29, 31]. Compiler transformations are used
as building blocks to write scripts that transform from one
data format to another. This approach requires 2n scripts
to be manually written; one for each possible combination
of formats. Our work differs from this work as we focus
on format conversion, and use a descriptor-based approach
using maps to automatically synthesize code between for-
mats. This means we only need n descriptions. Our approach
is similar as we build on the sparse polyhedral framework;
we also both support reordering and make use of universal
quantifiers which opens up opportunities for dependence
tests and optimizations.
TACO [8, 9, 15] is a tensor algebra compiler that defines

sparse layouts using a set of names for each dimension of
the tensor called level formats. Level functions are defined
for this format to support primitive operations of the dimen-
sion, including iterating, accessing, and assembling. Format
conversion is achieved in TACO by mapping to and from the
dense space, analyzing the tensor’s structural statistics, and
assembling the destination layout using the level functions.
This work, however, does not consider attributes such as
universal quantifiers and reordering as shown in Table 5.

Bik et al. [4] sparse tensor work is complementary to our
work, they describe sparse formats with level properties
and generate sparse computation code in MLIR. In a case
where there is the need to transform from one format to

another, level properties can be translated to our high-level
sparse description after which our synthesis algorithm is
applied. Our synthesis produces a high-level intermediate
representation that can be extended to generate code for
MLIR.

5.3 Optimal Tensor Layout
Bik et al. [3] and SIPR [22] optimize computation involving
sparse tensors by suggesting more efficient layouts from
statically analyzing the computation. Sparso [23] optimizes
a sequence of tensor computation using context-driven col-
lective reordering analysis and matrix property discovery.
Sparso can determine automatically based on static and run-
time information when should layout be converted using
pre-defined library routines. However, these works do not
target the conversion routine: either excluding them from
consideration or treating them as a black box.

5.4 Manual Sparse Format Conversion
Sparskit provides various functionalities for dealing with
sparse matrices. It helps to translate one matrix form to oth-
ers [24]. It supports 12 different storage formats for matrices.
Intel MKL is another library that provides various routines
and functionalities to perform computations on sparse ma-
trices [32]. Sometimes to get to a destination format, an
intermediary format has to be converted first. Our approach
is different from this approach as we require n description
to automatically synthesize 2n conversion routines.

5.5 Program Synthesis
Sketching [5, 25, 26] is an approach to program synthesis
that limits the scope of the synthesis to low-level details
in an algorithm sketch or meta-sketches provided by the
programmer. Syntax-guided synthesis [2] uses a counter-
example-guided-inductive-synthesis strategy for solving the
synthesis problem under valid programs following a set of
syntax. More recently, Knoth et al. [16] introduced a type
system that provides automatic amortized resource analysis
to use as a heuristic during the synthesis process.

6 Conclusion
In this work, we introduce an approach to formally describe
sparse tensor formats and synthesize translation code be-
tween them using the sparse polyhedral framework. This
framework is unique as it supports tensor formats that rely
on re-ordering. A significant limitation of this work is the
cost of re-ordering, which introduces a significant overhead.
For future work, we intend to introduce more efficient imple-
mentations to improve the current performance of our work.
Automatically guiding users in selecting the best format is a
body of research work that is beyond the scope of this work.
This work serves as a foundation for a complete automatic
layout transformation for workloads.
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