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Opponent control of behavior by dorsomedial
striatal pathways depends on task demands and
internal state

Scott S. Bolkan'3, Iris R. Stone ©®'3, Lucas Pinto®?, Zoe C. Ashwood ®?, Jorge M. Iravedra Garcia',
Alison L. Herman', Priyanka Singh', Akhil Bandi', Julia Cox’, Christopher A. Zimmerman’,
Jounhong Ryan Cho', Ben Engelhard’, Jonathan W. Pillow ©'2% and llana B. Witten®2X

A classic view of the striatum holds that activity in direct and indirect pathways oppositely modulates motor output. Whether
this involves direct control of movement, or reflects a cognitive process underlying movement, remains unresolved. Here we
find that strong, opponent control of behavior by the two pathways of the dorsomedial striatum depends on the cognitive
requirements of a task. Furthermore, a latent state model (a hidden Markov model with generalized linear model observations)
reveals that—even within a single task—the contribution of the two pathways to behavior is state dependent. Specifically, the
two pathways have large contributions in one of two states associated with a strategy of evidence accumulation, compared
to a state associated with a strategy of repeating previous choices. Thus, both the demands imposed by a task, as well as the
internal state of mice when performing a task, determine whether dorsomedial striatum pathways provide strong and opponent

control of behavior.

and indirect pathways, which are thought to exert opposing

effects on behavior'. In support of this view, many influen-
tial studies have shown that pathway-specific activation of the
striatum produces opposing behavioral biases’'*. For example,
direct or indirect pathway activation oppositely influences locomo-
tion”**, licking™'"", left/right rotations>'"'°, repetition/cessation
of activation-paired behaviors®* and left/right movements to report
value-based decisions™"’.

Despite this pioneering work, it remains unresolved whether
the endogenous activity of the two pathways provides opposing
control over the generation of movements, or instead contributes
to the cognitive process of deciding which movement to perform.
This is in part because pathway-specific manipulations have dispro-
portionately relied on artificial and synchronous activation, rather
than inhibition of endogenous activity’'>**. The imbalance toward
reports of activation suggests a wealth of negative results from
inhibition, raising questions about the function of the endogenous
activity, and whether it contributes to cognition. In fact, most pre-
vious pathway-specific activation studies have not used cognitively
demanding tasks, making it difficult to dissociate a role in the deci-
sion toward a movement versus the generation of the movement
itself*~*>!4141° In contrast, studies of the striatum that were not
pathway specific have instead focused on cognitively demanding
behaviors'’-**. Taken together, this raises the possibility that stria-
tal pathways exert opposing control of movement in the context
of decision-making, rather than directly controlling motor output
irrespective of cognition.

Thus, to determine if the contribution of endogenous activity in
striatal pathways depends on cognition, we examined the effects of
pathway-specific inhibition across a set of virtual reality tasks that
had the same motor output and similar sensory features, but different

| he striatum is composed of two principal outputs, the direct

cognitive requirements. This allowed us to ask if a task’s demands
determined the effect of pathway-specific inhibition on behavior.
Second, we used a latent state model to identify time-varying states
within the same task. This allowed us to determine if the contribu-
tion of each pathway to behavior changed across time, even within
the same task.

We found that inhibition of neither pathway produced a detect-
able influence on behavior as mice navigated a virtual corridor
in the absence of a decision-making requirement. In contrast,
pathway-specific inhibition produced strong and opposing biases
on decisions based on the accumulation of evidence in a virtual
T-maze”, and had weaker effects on choice during less demand-
ing task variants. Our latent state model further revealed that even
within the evidence accumulation task, mice occupy different states
across time that differ in the weighting of sensory evidence and
trial history, as well as the extent that pathway-specific inhibition
impacts choice. Thus, by comparing the effects of pathway-specific
inhibition across behavioral tasks, and across time within a task, we
conclude that both demands of the task and internal state of the
mice determine whether striatal pathways exert strong and oppos-
ing control over behavior.

Results

Inhibition of pathway-specific dorsomedial striatum activity is
effective. We first sought to validate the effectiveness of halorho-
dopsin'® (NpHR)-mediated inhibition of indirect and direct striatal
pathway activity in awake, head-fixed mice (Fig. 1a and Extended
Data Fig. 1a,b). Toward this end, we bilaterally delivered virus car-
rying Cre-dependent NpHR to the dorsomedial striatum (DMS)
in transgenic mouse lines (A2a-Cre/D2R-Cre/D1R-Cre), which we
verified to have high degrees of specificity and penetrance for each
pathway (Supplementary Fig. 1). We confirmed that 532-nm (5 mW)
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Fig. 1| Pathway-specific dorsomedial striatum inhibition has no detectable impact on movement in mice navigating a virtual corridor. a, Schematic
of viral delivery of Cre-dependent NpHR to the DMS of A2a-Cre, D2R-Cre or DIR-Cre mice. Schematic of optrode, that is, a 32-channel silicon probe
coupled with tapered optical fiber, which delivered 532-nm (5-mW) light to the DMS of awake, ambulating mice. b, Example peristimulus time
histograms (PSTH; top) and rasters of trial-by-trial spike times (bottom) from a DMS single-unit recorded in an ambulating A2a-Cre mouse expressing
Cre-dependent NpHR (indirect pathway). Inset shows an average spike waveform (black) and 100 randomly sampled spike waveforms (gray). A

trial consisted of 5s without laser (pre, =5 to 0s), a 5-s laser sweep (on, O to 5s) and a 10-s intertrial interval (ITl; 40 total trials). ¢, As in b but for
DMS single-unit recorded in a D1R-Cre mouse expressing Cre-dependent NpHR (direct pathway). d, Schematic of bilateral fiber-optic implantation

of DMS and unilateral illumination in behaving mice, with example histology from a mouse expressing NpHR in the indirect (D2R-/A2a-Cre) or direct
(D1R-Cre) pathways, or control mouse without opsin (no opsin, A2a-/D2R-Cre or DIR-Cre). Light (532 nm; 5mW) was delivered unilaterally to the left
or right hemisphere on alternate testing sessions and lateralized behavior was defined as ipsilateral or contralateral relative to the laser hemisphere. e,
Schematic of head fixation of mice in a VR apparatus allowing 2D navigation. Displacements of an air-suspended spherical ball in the anteroposterior
(and mediolateral) axes of the mouse-controlled y- (and x-) position movements in a visual VR environment. f, Schematic of the virtual corridor (6-cm
wide, 330-cm long), consisting of a start region (=10 to O cm), an inhibition region (0-200 cm) in which mice received unilateral 532 nm illumination
on a random subset of trials (30%), a reward location (310 cm) where mice received reward, and a teleportation location (320 cm) where mice were
transported to the start region following a variable ITI with mean of 2s. g, Average y-velocity (cm s™") across mice as a function of y-position (0-300cm
in 25-cm bins) while navigating the virtual corridor on laser-off (black) or laser-on (green) trials in groups receiving DMS indirect (n=7 mice, n=1,712
laser-off and n=1,288 laser-on trials) or direct (n=6 mice, n=1,088 laser-off and n=757 laser-on trials) pathway inhibition, or illumination of the
DMS in the absence of NpHR expression (no opsin, n=5 mice, n=1,178 laser-off and n=2827 laser-on trials). h, Same as g but for average x-position
(cm) contralateral to the unilaterally coupled laser hemisphere. i, Same as g but for view angle (degrees, contralateral to laser hemisphere). j, Average
across-mouse distance traveled (cm) to traverse the virtual corridor during laser-off (black) or laser-on (green) trials for mice receiving DMS indirect
(n=7 mice, n=2,109 laser-off and n=1,574 laser-on trials) or direct (n=6 mice, n=1,330 laser-off and n=930 laser-on trials) pathway inhibition, or

DMS illumination in the absence of NpHR (n=6 mice, n=1,688 laser-off and n=1,199 laser-on trials). Solid bars depict the mean +s.e.m. across mice;
gray lines indicate individual mouse mean values.
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Fig. 2 | A set of virtual reality T-mazes has similar sensory features and identical motor requirements but different cognitive demands. a, Schematic

of three VR-based T-maze tasks. b, Example mouse perspective at the same maze position (=10 cm, 120 cm, 195cm and 295 cm) from the example trial
depicted in a of the accumulation of evidence (AoE; black), no distractors (ctrl 1) or permanent cues (ctrl 2) tasks. €, Average choice accuracy (percentage
correct) across mice performing the accumulation of evidence (black, n=32 mice, n=52,381 trials), no distractors (magenta, ctrl 1: n=31mice, n=56,783

trials) or permanent cues (cyan, ctrl 2: n=20 mice, n=27,870 trials) tasks.

P value denotes one-way analysis of variance (ANOVA) of task on accuracy

(P=1.3%10"%, F,5,=109.4). Asterisks indicate statistical significance of post hoc, unpaired, two-tailed rank-sum comparisons of accuracy between groups

(top to bottom: ***P=3.9x1077, z=-51, **P=21%x10"", z=-6.7, ***P=2.
y-position (0-300 cm in 25-cm bins) during performance of each task (colo
choice trials. f, Same as d but for average view angle (degrees) on left/right
accumulation, n=32 mice, n=53,833 trials; no distractors (ctrl 1): n=32 mi
P value reflects one-way ANOVA of task on distance (P=0.16, F,5=1.8). So
the mean for individual mice.

of light delivery to the DMS through a tapered optical fiber pro-
duced rapid, sustained and reversible inhibition of spiking in mice
expressing NpHR in the indirect pathway (Fig. 1b and Extended
Data Fig. 1c—e, n=18/60, 30% of neurons significantly inhibited) or
the direct pathway (Fig. 1c and Extended Data Fig. 1f-h, n=21/50,
42% of neurons significantly inhibited). Moreover, we observed:
(1) minimal excitation during illumination’**” (Extended Data Fig.
1d,g), (2) minimal effects on spiking upon laser offset (Extended
Data Fig. 1d,g), indicating limited post-inhibitory rebound, and (3)
stability in the efficacy of inhibition across time (Supplementary
Fig. 2). Together, our findings indicate that NpHR-mediated inhibi-
tion of DMS pathways is effective.

Dorsomedial striatum pathway inhibition does not impact vir-
tual corridor navigation. To determine if endogenous activity in
DMS pathways provides bidirectional control of motor output in
the absence of a decision, we carried out unilateral inhibition of
indirect and direct pathways in head-fixed mice running on an
air-supported ball to traverse a two-dimensional (2D) linear cor-
ridor in virtual reality (VR; Figs. 1d-f, 6-cm X 330-cm corridor).
Ilumination of the DMS was restricted to 0-200cm (laser on for
30% of trials; hemisphere of illumination alternated across days).
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lid bars denote the across-mouse mean +s.e.m. and the transparent 'x’ indicates

The parameters of the virtual corridor and inhibition period
were selected to closely match the stem of the VR-based T-maze
decision-making tasks that are the focus of subsequent experiments.

We found no detectable impact of pathway-specific DMS inhi-
bition, nor DMS illumination alone, on multiple indicators of
motor output during virtual corridor navigation. This included
measures of velocity, x-position or view angle relative to the laser
hemisphere, and distance traveled (Fig. 1g-j; see Extended Data
Fig. 2 for additional measures). Similarly, we obtained null effects of
pathway-specific inhibition on velocity (and spatial preference) in
freely behaving mice in a conditioned place preference (CPP) assay
(Supplementary Fig. 3).

These negative findings argue against a major involvement of
endogenous activity in DMS pathways in the execution of move-
ment in the absence of a decision. This is consistent with the
dearth of reports demonstrating strong and opposing modulation
of behavior by striatal pathways using pathway-specific optoge-
netic inhibition.

Three virtual reality T-mazes with varying cognitive demands.
We next considered the possibility that, rather than contributing
directly to a motor output, endogenous activity in DMS pathways
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may instead have opposing influence over decisions in a manner
that is dependent on cognitive demand. To test this idea, we trained
mice to perform a set of VR-based, decision-making tasks* that
shared identical motor readouts (left or right choice), had highly
similar sensory environments, and yet differed in their cognitive
requirements (Fig. 2a,b).

The first task was an ‘evidence accumulation’ task, in which
visuo-tactile cues were transiently presented on each side of the
central stem of a virtual T-maze according to a Poisson distribu-
tion (‘cue region, 0-200 cm), and mice were rewarded for turning
to the maze side with the greater number of cues (Fig. 2a,b; black).
Thus, mice were required to continually accumulate sensory cues
over several seconds into a memory (or motor plan) that guided
their left/right decision.

In two additional control tasks, we made modifications intended
to weaken the cognitive demands of each task. In the first control
task (‘no distractors’), cues were presented on the rewarded maze
side during the same maze region (0-200cm) according to the
same Poisson distribution, but distractor cues on the side of the
non-rewarded arm were omitted (Fig. 2a,b; magenta). The absence
of distractors on the non-rewarded side meant that each cue signaled
reward with 100% probability, and thus gradual evidence accumula-
tion was not required. Further ensuring that evidence accumulation
was not required, an additional cue at the end of the maze was present
only during the cue period (0-200 cm) to signal the rewarded side.

In the second control task (‘permanent cues’), the sensory sta-
tistics of the cues were identical to those in the evidence accumula-
tion task, but rather than transient visual cue presentation, visual
cues were permanently visible from trial onset (Fig. 2a,b; cyan).
This maintained the same conceptual task structure of the evidence
accumulation task while decreasing the memory demands, as the
sensory cues (or the motor plan) did not need to be remembered
until the cues were passed.

We assessed how task demands impacted choice accuracy in
each task. Consistent with the greatest cognitive and mnemonic

demand in the evidence accumulation task, we found that overall
choice accuracy was significantly lower compared to both control
tasks (Fig. 2¢, AoE: 73.1 +/- 0.8%. Ctrl 1: 90.6 +/- 0.9%. Ctrl 2: 83.3
+/- 1.2% mean +/- s.e.m).

While the motor requirements of a decision were the same across
tasks (crossing an x-position threshold at the end of the central
stem; Methods), we examined the possibility that cross-task differ-
ences in cognitive requirements altered movement within the stem
of the maze (0-300cm). We observed no consistent cross-task dif-
ferences in velocity, x-position or view angle on left or right choice
trials, nor distance traveled (Fig. 2d-g; see Extended Data Fig.
3a-f for additional measures). We further compared the relation-
ship between behavior in the stem of the maze and choice across
tasks by using a decoder to predict choice based on the trial-by-trial
x-position or view angle (Extended Data Fig. 3g-j) at successive
maze positions (0-300cm in 25-cm bins). While we were able to
predict choice from either measure above chance levels in all three
tasks (consistent with previous studies®), choice prediction accu-
racy was statistically indistinguishable across tasks (Extended Data
Fig. 3g-j). Together, this indicated that cross-task differences in
task demands did not prompt mice to systematically adopt distinct
motor strategies.

Behavioral effects of dorsomedial striatum pathway inhibi-
tion depend on task demand. We performed unilateral inhibi-
tion of DMS indirect and direct pathways restricted to the cue
region (0-200cm) of each task (Fig. 3a,b; laser on 10-20% of tri-
als; hemisphere of illumination alternated across days). We found
that inhibition of the indirect pathway produced a large bias toward
contralateral choices during the accumulation of evidence task
(Fig. 3c,d), which was significantly greater than that observed
in control animals that did not express opsin (Fig. 3e, average
contralateral bias: DMS indirect, 42.3% +4.4%, versus no opsin,
5.9% +3.6%). Similarly, inhibition of the direct pathway also pro-
duced a large choice bias during the accumulation of evidence task

\]

Fig. 3 | Inhibition of dorsomedial striatum but not nucleus accumbens pathways has strong and opposing influence on choice during an evidence
accumulation task, while having weaker effects during task variants with diminished cognitive demands. a, Schematic of bilateral viral delivery of
Cre-dependent NpHR to the DMS. b, Schematic of bilateral fiber-optic implantation of the DMS and unilateral inhibition in behaving mice, with example
histology from a mouse expressing NpHR in the indirect (D2R-/A2a-Cre) or direct (DIR-Cre) pathways, or DMS illumination in the absence of NpHR (no
opsin, A2a-/D2R- or D1R-Cre). Light (532 nm, 5mW) was delivered unilaterally to the left or right hemisphere on alternate testing sessions and choice
bias contralateral or ipsilateral to the hemisphere of inhibition was quantified. ¢, Schematic of the evidence accumulation task with delivery of 532-nm light
restricted to the cue region (0-200 cm) on a random subset of trials (10-20%). d, Average across-mouse choice bias during the evidence accumulation
task. Choice bias was defined as the difference between the percentage of correct performance on trials when the correct choice was contralateral or
ipsilateral to the inhibited hemisphere (percentage correct, contralateral-ipsilateral, positive values indicate a contralateral bias). Bias was calculated
separately on laser-off (black) and laser-on (green) trials for mice receiving unilateral indirect pathway inhibition (n=11 mice, n=16,935 laser-off and
n=3,390 laser-on trials), unilateral direct pathway inhibition (n=10 mice; n=14,030 laser-off and n=3,103 laser-on trials), or unilateral illumination

of the DMS in the absence of NpHR (n=11 mice, n=21,422 laser-off and n=5,113 laser-on trials). e, Difference in contralateral choice bias (percentage
correct) between laser-off and laser-on trials (percentage bias, on-off) in mice performing the evidence accumulation task and receiving indirect

pathway inhibition, direct pathway inhibition or DMS illumination in the absence of NpHR. Asterisks indicate the significance of an unpaired, two-tailed
Wilcoxon rank-sum comparison of indirect to no opsin: ***P=11x10"%, z=3.9; direct to no opsin: ***P=2.2 %104, z=—-3.7). f-h, Same as c-e but for

the no-distractors (ctrl 1) task. Indirect: n=7 mice, n=13,706 laser-off and n= 3,288 laser-on trials; direct: n=9 mice, n=14,647 laser-off and n=3,682
laser-on trials; no opsin: n=4 mice, n= 3,654 laser-off and n=901 laser-on trials. Asterisks indicate the significance of an unpaired, two-tailed Wilcoxon
rank-sum comparison of indirect to no opsin: not significant (NS), P=0.22, z=1.2. Direct to no opsin: NS, P=0.08, z=-1.8. i-k, As in c-e but for the
permanent cues (ctrl 2) task. Indirect: n=7 mice, n=4,033 laser-off and n=929 laser-on trials; direct: n=7 mice, n=6,061 laser-off and n=1,494 laser-on
trials; no opsin: n=6 mice, n=3,975 laser-off and n=923 laser-on trials. Asterisks indicate the significance of an unpaired, two-tailed Wilcoxon rank-sum
comparison of indirect to no opsin: NS, P=0.13, z=1.5. Direct to no opsin: NS, P=0.62, z=0.5. 1, As in a but for bilateral viral delivery of Cre-dependent
NpHR to the NAc. m, Same as b but for bilateral fiber-optic implantation of the NAc and unilateral inhibition in behaving mice, with example histology
from a mouse expressing NpHR in the indirect (D2R-/A2a-Cre) or direct (D1R-Cre) pathways, or NAc illumination in the absence of NpHR (no opsin,
A2a-/D2R-Cre or DIR-Cre). n-p, As in ¢ but for pathway-specific NAc inhibition during the accumulation of evidence task. Indirect: n=9 mice, n=11,978
laser-off and n=2,604 laser-on trials; direct: n=10 mice, n=15,430 laser-off and n= 3,348 laser-on trials; no opsin: n="7 mice, n=9,819 laser-off and
n=1,488 laser-on trials. Asterisks indicate the significance of an unpaired, two-tailed Wilcoxon rank-sum comparison of indirect to no opsin: NS, P=0.86,
z=0.18; direct to no opsin: NS, P=0.04, z=2.0. Solid bars denote across-mouse mean value +s.e.m. and the transparent ‘x’ indicates the mean for
individual mice. To account for multiple-group comparisons, we considered P values significant after Bonferroni correction (two comparisons).
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(Fig. 3d; average contralateral bias: DMS direct, —36.8% =+ 8.6%),
which was also significantly greater than that observed in control
animals (Fig. 3e). However, in this case, the direction of the choice
bias was in the opposite (ipsilateral) direction to that observed with
indirect pathway inhibition (also see Extended Data Fig. 4a-i for
psychometric curves).

Indirect pathway
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532-nm [

Providing a stark contrast to the large effects of pathway-specific
DMS inhibition on choice during the evidence accumulation task,
inhibition of either pathway had significantly less impact on choice
duringthe ‘nodistractors’and ‘permanentcues control tasks (Fig. 3f-k
and Extended Data Fig. 5a—c; unpaired, two-tailed Wilcoxon rank-
sum test of indirect pathway inhibition evidence accumulation
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pathway inhibition and trial history predict choice during the evidence
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psychometric curve. a, Schematic of the evidence accumulation task and
the coding of the external covariates for an example trial. b, Schematic

of the Bernoulli GLM for an example trial, showing the relationship
between external covariates (inputs) and choice on each trial. On each
trial, a set of GLM weights maps each input (A cues, laser, bias, previous
choice and existence of a previous rewarded choice) to the probability

of each outcome through a sigmoid function, which gives the probability
of a ‘rightward’ choice on the current trial. ¢, Fitted GLM weights using
aggregated data from all mice in the indirect pathway DMS inhibition
group. The magnitude of each weight indicates the relative importance of
that covariate in predicting choice, whereas the sign of the weight indicates
the direction of the effect (for example, a negative laser weight indicates
that if inhibition is in the right hemisphere, the mice will be more likely to
turn left, while a positive weight on the previous choice indicates that if the
previous choice was to the right, in the current trial this will bias the mice
to turn right again). Error bars denote +1 posterior s.d. credible intervals.

d, Same as ¢ but for mice receiving DMS direct pathway inhibition.

e, Fraction of contralateral choice trials as a function of the difference

in contralateral versus ipsilateral cues for laser-off (black) and laser-on
(green) trials, for mice receiving indirect pathway DMS inhibition for the
data and for simulations of the model. Error bars denote 95% confidence
intervals around the fraction of choices in each bin of the data; solid curves
denote logistic fits (n=13 mice, n=46,313 laser-off and n=8,570 laser-on
trials). f, Same as e but for the mice receiving direct pathway inhibition of
the DMS (n=13 mice, n=41,250 laser-off and n=7,927 laser-on trials).

versus no distractors, P=8.0x107%, z=3.4, or evidence accu-
mulation versus permanent cues, P=0.001, z=3.3; and direct
pathway inhibition evidence accumulation versus no distractors,
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P=0.002, z=-3.1, or evidence accumulation versus permanent
cues, P=0.005, z=-2.8). In fact, the effects of pathway-specific
DMS inhibition on choice bias in either control task did not signifi-
cantly differ from those observed in control animals (Fig. 3h, for ‘no
distractors’; Fig. 3k, for ‘permanent cues’; see also Extended Data
Fig. 4a-i for psychometric curves).

Thus, inhibition of DMS pathways elicited strong and opposing
effects on choice in the task with the greatest cognitive demand,
which required the accumulation of sensory evidence across mul-
tiple seconds to arrive at a decision and had a far limited impact on
choice in task variants with reduced cognitive demand.

While DMS pathway inhibition had minimal impact on move-
ment in a virtual corridor (Fig. 1 and Extended Data Fig. 2), we
considered the possibility that pathway-specific DMS inhibi-
tion altered motor performance in the T-mazes. We found no
cross-task differences in the effects of pathway-specific inhibi-
tion on measures of velocity, distance traveled or per-trial stan-
dard deviation in view angle (Extended Data Fig. 6a-i). However,
we found subtle but opposing effects of pathway-specific inhibi-
tion on average x-position and view angle (Extended Data Fig.
6j-k) in the evidence accumulation task. The direction of these
biases was similar in the control tasks, but consistently smaller
than in the evidence accumulation task. Thus, in line with the
close relationship between x-position/view angle and choice in
the absence of inhibition in each task (Extended Data Fig. 3g-j),
pathway-specific DMS inhibition produced the same general pat-
tern of cross-task effects on choice bias (Extended Data Fig. 5b-d)
and x-position/view angle (Extended Data Fig. 6j,k). As the quan-
titative relationship between x-position or view angle and choice
is indistinguishable across tasks in the absence of neural inhibition
(Extended Data Fig. 3g-j), cross-task differences in motor strategy
do not provide a trivial explanation for these effects. Rather, taken
together with the absence of an effect of pathway-specific DMS
inhibition on motor output in the virtual corridor (Fig. 1h,i), these
data imply that the effects of inhibition on behavior depend on
cognitive demands.

Little effect of nucleus accumbens pathway inhibition on choice.
We next sought to determine whether opponent control of choice
by striatal pathways during the evidence accumulation task was
specific to the DMS, or if it extended to the ventral striatum. To
this end, we delivered unilateral laser illumination to the nucleus
accumbens (NAc) of mice expressing NpHR in the indirect or direct
pathways (or non-opsin control mice), which was restricted to the
cue region (0-200 cm) of the evidence accumulation task (Fig. 31-p
and Extended Data Fig. 4j-1).

Providing a clear functional dissociation between DMS and
NAg, effects of pathway-specific NAc inhibition on choice bias were
significantly smaller than those observed with inhibition of DMS
pathways (Extended Data Fig. 5e,f; unpaired, two-tailed Wilcoxon
rank-sum test of DMS versus NAc indirect pathway inhibition,
P=2.6x107*z=3.6; of DMS versus NAc direct pathway inhibition,
P=1.8%x10", z=-3.7), and were also not significantly different
from NAc control animals (Fig. 30,p). It is unlikely that this dis-
sociation between DMS and NAc can be explained by greater coex-
pression of pathway-specific markers in the ventral versus dorsal
striatum?®, as both subregions exhibited equally low colocalization
of D1R and D2R receptors (Supplementary Fig. 1j-1).

Bernoulli generalized linear model does not fully capture psy-
chometric curves. Our inactivation experiments suggest that DMS
pathways make strong contributions to behavior during a cogni-
tively demanding evidence accumulation task, but do not contribute
strongly to similar tasks with weaker cognitive demands. However,
even during the evidence accumulation task, it is possible that the
animals’ level of cognitive engagement varies over time. This raises
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Fig. 5| A GLM-HMM better explains choice during the evidence accumulation task than the GLM, particularly on trials with dorsomedial striatum
pathway inhibition. a, Example sequence of three trials of the evidence accumulation task, showing the relationship between external covariates (inputs),
latent state and choice on each trial. On each trial, the latent state defines which GLM weights map inputs (A cues, laser, previous choice and previous
rewarded choice) to the probability of choosing right or left. The transition probability P governs the probability of changing states between trials. See
Methods for information on how the inputs were coded. b, Schematic of GLM-HMM. The model has three latent states with fixed probabilities of
transitioning between them. Each state is associated with a distinct decision-making strategy, defined by a mapping from external covariates or inputs,
such as A cues, to choice probability. ¢, Cross-validated log-likelihood demonstrating the increased performance of the GLM-HMM over a standard
Bernoulli GLM on held-out sessions. Dots represent model performance for individual mice (n=13 for each group). d, Same as ¢ but showing prediction
accuracy as a fraction of the choices correctly predicted by each model across all trials or on the subset of trials when the laser was on. e, Histograms
showing the number of consecutive laser trials for which the animal’s choice was in the same direction as the expected biasing effect of the laser (that

is, a choice contralateral to the laser hemisphere during DMS indirect pathway inhibition). Data are shown in black, the GLM simulation is shown in blue
and the GLM-HMM simulation is shown in pink. For the simulations, data of the same length as the real data were generated 100 times and the resulting
histograms averaged. Curves denote smoothed counts using a sliding window average (window size of three bins). Shaded regions around the GLM and
GLM-HMM curves indicate 95% confidence intervals. f, Same as e but for mice receiving direct pathway inhibition of the DMS; therefore, laser-biased
choices were defined as those ipsilateral to the hemisphere of inhibition.

the possibility that the contributions of the two pathways to behav-  to predict choice based on a set of external covariates (Fig. 4a,b).
ior could change over time, even within the same task. These covariates included the sensory evidence (difference between

To address this possibility, we sought to understand the factors the number of right and left cues, or ‘A cues’), the recent choice
that contribute to decisions in the evidence accumulation task. As  and reward history, the delivery of optical inhibition (‘laser’), as
a first step, we used a Bernoulli generalized linear model (GLM)  well as a bias. Note that we set the value of the laser covariate to +1
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(or —1) on trials with right (or left) hemisphere inhibition, and zero
otherwise. A positive (or negative) GLM weight on this covariate
thus captured an ipsilateral (or contralateral) ‘laser’-induced bias
in choices relative to the hemisphere of inhibition. For the choice
history covariates, a positive weight indicates a tendency toward
repeating past choices (Methods).

We fit the GLM to aggregated behavioral data from mice inhib-
ited in each DMS pathway and found that sensory evidence, trial
history and optical inhibition all contributed to predicting choice
(Fig. 4c,d). As expected, the effect of inhibition of each pathway was
large and opposite in sign. However, the GLM did not accurately
capture the animals’ psychometric curve, describing the probability
of a rightward choice as a function of the sensory evidence (Fig.
4e,f). This led us to consider variants of the standard GLM that
might better account for choice behavior.

GLM-HMM better explains choice data with dorsomedial stria-
tum inhibition. The standard GLM describes choice as depending
on a fixed linear combination of sensory evidence, trial history and
the presence or absence of optical inhibition. However, an alterna-
tive possibility is that mice use a weighting function that varies over
time. To test this idea, we adopted a latent state model with differ-
ent GLM weights for different states (Fig. 4). The model consists
of a hidden Markov model (HMM) with Bernoulli GLM observa-
tions, or GLM-HMM?*** (Fig. 5a,b). Each hidden state is associated
with a unique set of GLM weights governing choice behavior in that
state. Probabilistic transitions between states occur after every trial,
governed by a fixed matrix of transition probabilities (Methods).

The GLM-HMM explained the choice data in the evidence accu-
mulation task better than the GLM across multiple measures. To
compare models, we computed the test log-likelihood of each ani-
mal’s data using cross-validation with held-out sessions (three-state
GLM-HMM in Fig. 5; see Extended Data Fig. 7a—e and Methods
(‘GLM-HMM’) for more information on model selection). The
three-state GLM-HMM achieved an average of a 6.2 bits per ses-
sion (bps) increase in log-likelihood, making an average session ~76
times more likely under the GLM-HMM (Fig. 5c). Furthermore,
the GLM-HMM correctly predicted choice on held-out data more
often than the GLM, especially on laser trials (Fig. 5d; average
improvement across mice of 1.6% on all trials, 3.5% on trials with
optical inhibition and 4.1% on trials with optical inhibition when
considering only mice with at least 100 inhibition trials).

Most interestingly, the GLM-HMM was better able to cap-
ture the temporal structure in the effect of inhibition on choice.
Specifically, the choice data contained long runs in which choice
was consistent with the bias direction predicted by pathway-specific
inhibition (‘laser’), a feature which GLM-HMM simulations reca-
pitulated, but GLM simulations did not (Fig. 5e,f). Thus, taken

together, the GLM-HMM provided a better model of the choice data
than a standard GLM, particularly on trials with pathway-specific
DMS inhibition.

GLM-HMM identifies states with varying dorsomedial stria-
tum dependence. We examined the state-dependent weights of the
GLM-HMM and found substantial differences across states in the
weighting of sensory evidence, previous choice and, most intrigu-
ingly, inhibition of DMS pathways (Fig. 6a,b). In particular, two of
the three states (states 1 and 2) displayed a large weighting of sen-
sory evidence on choice, while the ‘laser’ weight was large only in
state 2. In contrast, in state 3, choice history had a larger weight
than in the other states, and neither sensory evidence nor ‘laser’ had
much influence on choice.

To characterize state-dependent psychometric performance, we
used the fitted model to compute the posterior probability of each
state given the choice data and assigned each trial to its most proba-
ble state (Fig. 6¢,d). We then examined the psychometric curves for
trials assigned to each state. In state 3, performance was low (Fig. 6g)
and DMS inhibition had little effect on behavior (Fig. 6¢,d). This
is consistent with the high GLM weight on choice history in this
state and low weights on sensory evidence and laser (Fig. 6a,b).
This implies relatively little contribution of DMS pathways during
a task-disengaged state when mice pursued a strategy of repeat-
ing previous choices rather than accumulating sensory evidence.
When considered together with comparisons of the effect of
pathway-specific DMS inhibition in control T-maze tasks where
performance is high (Fig. 2c) but effects of inhibition are limited
(Fig. 3f-k and Extended Data Fig. 5b,c), this implies a dissociation
between task performance and the contributions of DMS path-
ways to behavior.

Compared to state 3, sensory evidence heavily modulated behav-
ior in both states 1 and 2, and performance was accordingly high
(Fig. 6¢,d,g). Interestingly, the effect of DMS pathway inhibition
was much larger in state 2. These results were again consistent with
the GLM weights: both state 1 and 2 had high weighting of sensory
evidence and low weighting of choice history but greatly differed
in their weighting of the ‘laser’ (Fig. 6a,b). The discovery of state
2 implies that DMS pathways contribute most heavily to choices
in a state in which mice are pursuing a strategy of evidence accu-
mulation, consistent with cross-task comparisons of the effects of
inhibition (Fig. 3). The discovery of state 1, which differed most
noticeably from state 2 in the extent that the laser affected choice,
may suggest the existence of another neural mechanism for evi-
dence accumulation with minimal DMS dependence.

We found that GLM-HMM simulations closely recapitulated
these state-dependent psychometric curves (Fig. 6e,f). This not only
validated our fitting procedure but provided additional evidence

>
>

Fig. 6 | A GLM-HMM uncovers states during the evidence accumulation task with different weighting on sensory evidence, choice history and

dorsomedial striatum pathway inhibition. a, Fitted GLM weights for the three-state model from mice in the indirect pathway DMS inhibition group. Error
bars denote +1 posterior s.d. for each weight. The magnitude of the weight represents the relative importance of that covariate in predicting choice, and
the sign of the weight indicates whether it biases choice to the left or to the right. Thus, for example, a negative ‘laser’ weight indicates that inhibition of
the right hemisphere makes the mouse more likely to turn left, while a positive ‘previous choice’ weight makes the mouse more likely to repeat its previous
choice. b, Per-state GLM weights for the direct pathway group. ¢, Fraction of contralateral choices as a function of the difference in contralateral versus
ipsilateral cues in each trial for mice in the indirect pathway inhibition group. To compute psychometric functions for each state, we assigned each trial to
its most probable state under the fitted model. Error bars denote +1s.e.m. for light-off (solid) and light-on (dashed) trials. Solid curves denote logistic fits
to the concatenated data across mice for light-off (solid) and light-on (dashed) trials. d, Same as ¢ but for the mice receiving direct pathway inhibition of
the DMS. e, Same as ¢ but for data simulated from the model fit to mice receiving indirect pathway inhibition of the DMS (Methods). f, Same as e but for
mice receiving direct pathway inhibition of the DMS. g, Performance in each state for mice receiving DMS inhibition in the indirect and direct pathways,
shown as the percentage of total trials assigned to that state in which the mice made the correct choice. Colored bars denote the average performance
across all mice. Black dots show averages for individual mice (n=13 mice for both groups). h, The percentage of ‘laser-on' trials that the model assigned to
each state for mice receiving DMS inhibition in the indirect and direct pathways. Colored bars denote the average performance across all mice. Black dots
show averages for individual mice (n=13 mice for both groups). i, The posterior probability of each state for the five trials before and after a laser-on trial,
averaged across all such periods (n=38,570, indirect; n=7,927, direct).
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that a multistate model provides a good account of the animals’
decision-making behavior during the evidence accumulation task.
While the effect of the laser differed across states, the probability
of being in a particular state did not change on or after trials with
optical inhibition (Fig. 6i), implying that DMS pathway inhibition
itself did not generate transitions between states. In addition, the
fraction of trials with optical inhibition was equivalent across states
(~15% of all trials in each state; Fig. 6h). This implies that the model
did not identify states simply based on the presence of laser trials.
We obtained similar states when fitting the model to a combined
dataset including all groups of mice (those receiving DMS indirect
and direct pathway inhibition, as well as control mice receiving
DMS illumination in the absence of NpHR; Extended Data Fig. 7f).
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As when fitting each group separately, the combined fit revealed that
both inhibition groups contained a single state with large weights on
sensory evidence and the laser. In contrast, the control mice had
small laser weights across all three states.

We also examined the results of fitting the four-state GLM-
HMM (Extended Data Fig. 7d,e), given it had a slightly higher
cross-validated log-likelihood than the three-state model (Extended
Data Fig. 7a). In this case, the weights for states 1 and 2 were very
similar to those in the three-state model; the key difference was that
the choice history state (state 3 of the three-state model) was further
subdivided into two states that differed in having a slight rightward
versus a slight leftward bias. This suggests that while the model
may uncover finer-grained structure in the data beyond three states
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Fig. 7 | Diversity across sessions in the timing and number of GLM-HMM state transitions. a, Transition probabilities for the indirect pathway group.

b, Same as a but for the direct pathway group. ¢, The posterior probability of being in each state for each trial for three example sessions from a mouse

in the indirect pathway group. d, Same as ¢ but for two mice from the direct pathway group. e, Dwell times showing the average consecutive number

of trials that the mice spent in each state for mice with indirect (range 39-86 trials, average session length 202 trials) and direct (range 52-59 trials,
average session length 185 trials) pathway inhibition. Black dots show averages for individual mice (n=13 mice for both groups). f, The fraction of trials
that the mice spent in each state in each session. Each dot represents an individual session (n= 271, indirect pathway; n=266, direct pathway). Color
coding reinforces the state composition of each session (for example, blue indicates that the mouse spent 100% of the session in state 1). A small amount
of Gaussian noise was added to the position of each dot for visualization purposes. Gray arrows identify the example sessions shown in c and d. g, The
fraction of sessions in which the mice entered one, two or all three states. Gray bars denote the average fraction of sessions for all mice. Black dots show
averages for individual mice (n=13 mice for both groups). h, Time spent in each state represented as a percentage of total trials for mice inhibited in the
indirect and direct pathways. Colored bars denote the average state occupancies across all mice. Black dots show averages for individual mice (n=13 mice
both groups). i, Same as f except state assignments were obtained from a model in which the transition probabilities were restricted to disallow transitions
between states (that is, all off-diagonal transition probabilities equal zero; Methods). j, Same as f except state assignments were obtained from a model in
which transitions were disallowed between state 2 and the other states. k, Comparison of the cross-validated log-likelihood of the data when fitting
GLM-HMMs with the reduced models from i and j, relative to the log-likelihood of the full model, in bps.

(Extended Data Fig. 7d,e), these states yield diminishing interpre-  Diversity in timing and number of GLM-HMM state transitions.
tive insight on the weighting of sensory evidence, choice historyand  The fitted transition matrix revealed a high probability of remain-
DMS pathway inhibition across time. ing in the same state across trials (Fig. 7a,b). These transition
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probabilities produced a diversity in the timing and number of state
transitions across sessions, which we visualized by calculating the
maximum posterior probability of each state on each trial (Fig. 7c,d
and ‘GLM-HMM’ in Methods). In some sessions, mice persisted in
the same state, while in many sessions, mice visited two or even all
three states (see example sessions in Fig. 7c,d, summaries of state
occupancies across sessions in Fig. 7e-h and a summary of all indi-
vidual mice in Supplementary Fig. 4). Average single-state dwell
times ranged from 39 to 86 trials (Fig. 7g). This was shorter than the
average session length of 194 trials, consistent with visits to multiple
states per session.

While individual sessions were heterogeneous in terms of
their state occupancies, averaged across sessions, the posterior
probability of being in each state tended to be stable across trials
(Fig. 7e and Extended Data Fig. 8a,b). Model simulations recapit-
ulated these state transition characteristics, including dwell times
and state occupancies (Extended Data Fig. 9), further indicating our
model captures latent structure in our data.

One notable exception in the stability of posterior probabili-
ties of each state across time was an increase in state 3 probabil-
ity toward the end of a session (Extended Data Fig. 8a), potentially
reflecting a decrease in task engagement related to reward satiety.
Consistent with a relationship to satiety, within-session transitions
into state 3 were associated with higher amounts of previously accu-
mulated reward and higher preceding rates of reward (Extended
Data Fig. 8c-f). In addition, while the posterior probability of
each state showed minimal modulation surrounding a rewarded
trial, the probability of state 3 was much more likely surrounding
trials with excess travel (Extended Data Fig. 8g-j), an indicator of
non-goal-directed movement and task disengagement. Indeed, the
probability of state 3 gradually increased and decreased approxi-
mately 25 trials before and following excess travel trials, consistent
with the average dwell time for state 3 (Fig. 7e).

Given the presence of sessions in which mice occupied a single
state, we considered model variants that disallowed within-session
state transitions. Our goal was to determine if these variant models
could provide a better explanation of the data, or alternatively, if
within-session state transitions are in fact an important structural
feature for explaining the data. In one model variant, we disal-
lowed transitions between states entirely (Fig. 7k). In the other, we
tested the possibility that state 2, which is unique in the strength
of its laser weight, captured a session-specific feature of inhibition
by disallowing transitions in and out of that state (Fig. 71). Using
cross-validation, we found that neither alternative model explained
the data as well as a model with unrestricted transitions (Fig. 7m),
indicating that within-session transitions between states was an
important feature of the model.

Motor performance across GLM-HMM states. Given the close
relationship between excess travel and the posterior probability of
state 3, we considered the possibility that other measures of motor
behavior varied across states. We found that on trials without DMS
pathway inhibition (Extended Data Fig. 10a-g,0-u), mice exhibited
no obvious differences across states in velocity, x-position or view
angle (Extended Data Fig. 10a-d,o-r). However, during state 3 rela-
tive to state 1 and 2, we observed an increased tendency in measures
of non-goal-directed movements (Extended Data Fig. 10e-g,s—u).
This is consistent with the higher probability of state 3 around trials
with excess travel (Extended Data Fig. 8h,j), and the interpretation
of state 3 as a task-disengaged state.

We also considered the possibility that DMS pathway inhibition
had state-dependent effects on motor output (Extended Data Fig.
10h-n,v-bb). We observed limited effects of inhibition on veloc-
ity, per-trial standard deviation in view angle and distance traveled
across all three states. However, similar to our cross-task compari-
sons (Extended Data Fig. 6j,k), DMS pathway inhibition produced
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a small but opposing bias in average x-position (Extended Data
Fig. 10j,x) and view angle (Extended Data Fig. 10k,y), which was
greatest in the state with the largest laser weight (state 2; Fig. 6). This
is consistent with our conclusions that the effects of DMS inhibition
on behavior are state dependent, and that x-position and view angle
are closely linked indicators of choice in the context of VR-based
T-maze tasks (Extended Data Fig. 3g-j).

Discussion

Our findings indicate that the opposing contributions of DMS path-
ways to movement are minimal in the absence of a decision (Fig. 1),
while the pathways provide large and opponent contributions to
decision-making. Moreover, this contribution depends on the
demands of a task (Fig. 2), as the effect of inhibition is much larger
during decisions that require evidence accumulation relative to con-
trol tasks with weaker cognitive requirements yet similar sensory
features and motor requirements (Fig. 3). The GLM-HMM further
revealed that even within the evidence accumulation task, the con-
tribution of DMS pathways to choice is not fixed. For example, DMS
pathways have little contribution when mice pursue a strategy of
repeating previous choices during the evidence accumulation task
(Fig. 6). Thus, together our findings imply that opposing contribu-
tions of DMS pathways to behavior are dependent on task demands
and internal state.

Cross-task differences in effects of dorsomedial striatum path-
way inhibition. Our finding that DMS activity contributes to the
evidence accumulation task, but not to task variants with weaker
cognitive demands, is broadly consistent with previous work based
on lesions, pharmacology, and recordings implicating DMS in
short-term memory and the dynamic comparison of the value of
competing options'#"**-%, But then why have most previous opto-
genetic pathway-specific manipulations emphasized an opposing
role for DMS pathways in the direct control of motor output**'>'¢,
rather than on decision-making? Prior work has overwhelm-
ingly relied on the synchronous activation of striatal pathways, as
opposed to the inhibition used here. While DMS pathway activa-
tion is sufficient to bias movements such as spontaneous rotations,
we observed relatively little impact of inhibition on behavior in the
absence of a decision (Fig. 1). Taken together with previous work,
our findings may thus imply limits in the use of artificial activa-
tions in assessing striatal pathway function. Our results may also
imply that DMS pathways would not necessarily display opposing
correlates of movements'*'”*"-*’, but rather opposing correlates of a
decision process'>!'>!921:33:36,

While our observations are consistent with the classic view of
opposing contributions of striatal pathways to behavior', several
prominent studies have instead challenged this view by reporting
non-opposing behavioral effects of activating each pathway*'~*.
This may be because the pathways of a specific striatal subregion
only exert opposing control on behavior in a specific context,
for example, during cognitively demanding decision-making as
shown here for the DMS, or during an interval timing task that
requires the proactive suppression of actions, as shown for the
dorsolateral striatum”. Along these lines, our comparison to NAc
pathways, where inhibition produced weak effects on behavior in
similar directions (Fig. 3p), may imply that we have not discovered
the context in which NAc pathways have opposing contributions
to behavior.

We designed our T-maze tasks to have very similar sensory
features and identical motor requirements, and yet very different
cognitive demands, as assessed by task accuracy. That being said,
the sensory features were not identical. Therefore, while unlikely,
we cannot rule out that the subtle sensory differences contrib-
uted to the cross-task differences in the effect of pathway inhibi-
tion. A future direction would be to maintain an identical sensory
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environment across tasks and instead change the decision-making
rule to be more cognitively demanding.

Within-task changes in effects of dorsomedial striatum pathway
inhibition. Complimenting our cross-task comparison, we reveal
the new insight that mice occupy time-varying latent states within
a single task and that the contribution of DMS pathways to choice
depends on the internal state of mice. The application of a GLM-
HMM was critical in uncovering this feature of behavior, allowing
the unsupervised discovery of latent states that differ in how external
covariates were weighted to influence a choice’***’. This provided
two insights on the contributions of DMS pathways to behavior.

First, the impact of DMS inhibition was diminished when mice
occupied a task-disengaged state in which choice history heavily
predicted decisions, while conversely, the impact of DMS inhibi-
tion was accentuated when mice occupied a task-engaged state in
which sensory evidence strongly influenced choice (Fig. 6). This
strengthens our conclusion from the cross-task comparison, which
is that DMS pathways have a greater contribution to behavior when
actively accumulating evidence toward a decision.

Second, mice occupied two similar task-engaged states that were
modestly distinguished in overall accuracy (Fig. 6g) and prominently
distinguished by the influence of DMS inhibition on choice (Fig.
6a-d). While transitions between these two states were relatively rare
on the same day, there were days that included both states (Fig. 7).
The discovery of these two states leads to the intriguing suggestion
that mice are capable of accumulating evidence toward a decision
in at least two neurally distinct manners: one that depends on each
DMS pathway (state 2), and another that does not (state 1). This may
relate to demonstrations that neural circuits have substantial capac-
ity for compensation to perturbations®*’, and our modeling approach
may provide a new avenue for the identification of such compensatory
mechanisms on relatively short timescales.

While our work focused on the three-state GLM-HMM, our con-
clusions do not depend on assuming exactly three states. In fact, the
cross-validated log-likelihood of our data is higher for four states than
three. Yet the conclusions from the four-state model were similar to
those from the three-state model (compare Fig. 6a,b to Extended Data
Fig. 7d,e), and additional gains in log-likelihood decrease for larger
numbers of states. Nevertheless, it will be important for future work
to compare the GLM-HMM framework used here, which assumes
discrete states, to models that assume continuously varying states’**.

Altogether, our studies provide new perspectives on the neural
mechanisms by which DMS pathways exert opponent control over
behavior, with particular emphasis on the importance of accounting
for task demands, internal state and associated behavioral strate-
gies when assessing neural mechanisms. To this end, we expect our
behavioral and computational frameworks to be of broad utility
in uncovering the neural substrates of decision-making in a wide
range of settings.
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Methods

Animals. For optogenetic experiments we used both male and female transgenic
mice on heterozygous backgrounds, aged 2-6 months of age, from the following
three strains backcrossed to a C57BL/6] background (Jackson Laboratory, 000664)
and maintained in-house: Drd1-Cre (n=45, EY262Gsat, MMRRC-UCD),
Drd2-Cre (n=24, ER44Gsat, MMRRC-UCD) and A2a-Cre (n=18, KG139Gsat,
MMRRC-UCD). An additional 35 mice were excluded from all optogenetic
analyses due to failed task acquisition (n=11 mice) or failed viral/fiber-optic
targeting of DMS (n=8) or NAc (n=16). An additional four Drd1-Cre mice,

three A2a-Cre mice and two Drd2-Cre mice were used for electrophysiological
characterization of NpHR-mediated inhibition, or fluorescence in situ
hybridization (FISH) characterization of Cre expression profiles. FISH experiments
also utilized 2 Drd1a-tdTomato mice (Jax, 016204). Mice were co-housed with
same-sex littermates and maintained on a 12-h light-12-h dark cycle. All surgical
procedures and behavioral training occurred in the dark cycle. All procedures were
conducted in accordance with National Institute of Health guidelines and were
reviewed and approved by the Institutional Animal Care and Use Committee at
Princeton University.

Surgical procedures. All mice underwent sterile stereotaxic surgery to implant
ferrule-coupled optical fibers (Newport, 200 pm core, 0.37 NA) and a custom
titanium headplate for head fixation under isoflurane anesthesia (5% induction,
1.5% maintenance). Mice received a preoperative antibiotic injection of Baytril
(enrofloxacin; 5 mg per kg body weight) intramuscularly, as well as analgesia
pre-operatively and 24 h later in the form of subcutaneous meloxicam injections
(2mg per kg body weight). A microsyringe pump controlling a 10-pl glass
syringe (Nanofill) was used to bilaterally deliver virus targeted to either the DMS
(0.74mm anterior, 1.5 mm lateral, —3.0 mm ventral) or the NAc (1.3 mm anterior,
1.2 mm lateral, —4.7 mm ventral). For optogenetic inhibition, the following
viruses were used: AAV2/5-eFla-DIO-eNpHR3.0-EYFP-WPRE-hGH (UPenn,
1.3 10" parts per ml) or AAV2/5-eFla-DIO-eNpHR3.0-EYFP-WPRE-hGH
(PNI Viral Core, 2.2 10" parts per ml; 1:5 dilution). For FISH experiments,
AAV2/5-eF1a-DIO-EYFP-hGHpA (PNI Viral Core, 6.0 X 10" parts per ml) was
used to label DIR* and D2R* neurons in D1R-Cre and A2A-Cre transgenic lines.
In all experiments, virus was delivered at a rate of 0.2 ul min™* for a total volume
0f 0.3-0.7 ul in the DMS, or 0.3-0.4 pl in the NAc. To accommodate patch fiber
coupling, optical fibers were implanted at angles (DMS: 15°, NAc 10°). The
following coordinates (in unrotated space) were targeted: DMS, 0.74 mm anterior,
1.1 mm lateral, —3.6 mm ventral; NAc: 1.3 mm anterior, 0.55 mm lateral, —5.0
ventral. Fibers were fixed to the skull using dental cement. Mice were allowed

to recover and closely monitored for 5d before beginning water restriction and
behavioral training.

Optrode recording for NpHR validation. Following the surgical procedures
described above, Cre-dependent NpHR was virally delivered bilaterally to the DMS
of mice (n=3 A2a-Cre; n=2 D1R-Cre) via small (~300 um) craniotomies made
using a carbide drill (Extended Data Fig. 1a). The craniotomies were filled with
a small amount of silicon adhesive (Kwik-Sil, World Precision instruments) and
then covered with ultraviolet-curing optical adhesive (Norland Optical Adhesive
61), while a custom-designed headplate for head fixation was cemented to the
skull. Following a recovery period of >4 weeks, awake mice were head-fixed on
a plastic running wheel attached to a breadboard via Thorlabs posts and holders,
which was fixed immediately adjacent to a stereotaxic setup (Kopf) enclosed
within a Faraday cage (Extended Data Fig. 1b). Silicon and optical adhesive was
removed from the craniotomies and a 32-channel, single-shank silicon probe
(A1x32-Poly3, NeuroNexus) coupled to a tapered optical fiber (65 pum, 0.22NA)
was stereotaxically inserted under visual guidance of a stereoscope and allowed
to stabilize for ~30 min. Signals were acquired at 20 kHz using a digital headstage
amplifier (RHD2132, Intan) connected to an RHD USB data acquisition board
(C3100, Intan). A screw implanted over the cerebellum served as ground.
Continuous signal was imported into MATLAB for referencing to a local probe
channel and high-pass filtering at 200 Hz, and then imported into Offline Sorter
v3 (Plexon) for spike thresholding and single-unit sorting. During recording,

the optical fiber was connected via a patch cable to a 532-nm laser, which was
triggered by a transistor—transistor logic (TTL) pulse sent by a pulse generator
controlled by a computer running Spike2 software. TTL pulse times were copied
directly to the RHD USB data acquisition board. Laser sweeps consisted of 40
deliveries of 5s of light (5mW, measured from fiber tip), separated by 15-s ITIs.
One to three recordings were made at different depths within a single probe
penetration (minimum separation of 300 um), with each hemisphere receiving
one to three penetrations at different mediolateral or anteroposterior coordinates.
For recordings in mice carried out over multiple days, craniotomies were filled
with Kwik-Sil and covered with silicone elastomer between recordings (Kwik-Cast,
World Precision Instruments).

Virtual reality behavior. Virtual reality setup. Mice were head-fixed over an 8-inch
Styrofoam ball suspended by compressed air (~60 p.s.i.) facing a custom-built
Styrofoam toroidal screen spanning a visual field of 270° horizontally and

80° vertically. The setup was enclosed within a custom-designed cabinet built

from optical rails (Thorlabs) and lined with sound-attenuating foam sheeting
(McMaster-Carr). A DLP projector (Optoma HD141X) with a refresh rate of
120 Hz projected the VR environment onto the toroidal screen (Fig. le).

An optical flow sensor (ADNS-3080 APM2.6), located beneath the
ball and connected to an Arduino Due, ran custom code to transform
real-world ball rotations into virtual-world movements (https://github.com/
sakoay/AccumTowersTools/tree/master/OpticalSensorPackage/) within
the MATLAB-based VIRMEn™ software engine (http://pni.princeton.edu/
pni-software-tools/virmen/). The ball and sensor of each VR rig were calibrated
such that ball displacements (dX and dY, where X (and Y) are parallel to the
anteroposterior (and mediolateral) axes of the mouse) produced translational
displacements proportional to ball circumference in the virtual environment of
equal distance in corresponding X and Y axes. The y-velocity of the mouse is
given by v/dY?/dt, where dt is the elapsed time from the previous sampling of the
sensor. The virtual view angle of mice was obtained by first calculating the current
displacement angle as: @ = atan2 (—dX X sin(dY), |dY]). Then the rate of change
of view angle (6) for each sampling of the sensor is given by equation (1):

,g)—e o)

% = sin (w) X min (el"”’”llZ -1
This exponential function was tuned to (1) minimize the influence of small
ball displacements and thus stabilize virtual-world trajectories, and (2) increase the

influence of large ball displacements to allow sharp turns into the maze arms®.

Reward and whisker air puffs were delivered by sending a TTL pulse to
solenoid valves (NResearch), which were generated according to behavioral events
on the VIRMEn computer. Each TTL pulse resulted in either the release of a drop
of reward (~4-8ul of 10% sweetened condensed milk in water, vol/vol) to a lick
tube, or the release of air flow (40ms, 15p.s.i.) to an air puff cannula (Ziggy’s
Tubes and Wires, 16 gauge) directed to the left and right whisker pads from the
rear position. The VIRMEn computer also controlled TTL pulses sent directly to a
532-nm DPSS laser (Shanghai, 200 mW).

Behavioral shaping. Following post-surgical recovery, over the course of 4-7d,
mice were extensively handled while gradually restricting water intake to an
allotted volume of 1-2ml per day. Throughout water restriction, mice were closely
monitored to ensure no signs of dehydration were present and that body mass
was at least 80% of the pre-restriction value. Mice were then introduced to the VR
setup where behavior was shaped to perform the accumulation of evidence task
as previously described in detail” (Supplementary Fig. 5a) or the permanent cues
(control 2) task (Supplementary Fig. 5f). We tested a total of 32, 34 and 20 mice
in the accumulation of evidence, no distractors (control 1) and permanent cues
(control 2) tasks, respectively. No mice received optogenetic testing in all three
tasks, but 7 mice received optogenetic testing in the accumulation of evidence and
no distractors task, and 19 mice received optogenetic testing in the no distractors
and permanent cues tasks (Supplementary Table 1).

Shaping followed a similar progression in both tasks. In the first four shaping
mazes of both procedures, a visual guide located in the rewarded arm was
continuously visible, and the maze stem was gradually extended to a final length
of 300 cm (Supplementary Fig. 5a,f). In mazes 5-7 of the evidence accumulation
shaping procedure (Supplementary Fig. 5a), the visual guide was removed and
the cue region was gradually decreased to 200 cm, thus introducing the full
100-cm delay region of the testing mazes. The same shift to a 200-cm cue region
and 100-cm delay region occurred in mazes 5-6 of the permanent cues shaping
procedure, but without removing the visibility of the visual guide (Supplementary
Fig. 5f). In mazes 8-9 of evidence accumulation shaping, distractor cues were
introduced to the non-rewarded maze side with increasing frequency (mean side
ratio (s.d.) of rewarded:non-rewarded side cues of 8.3:0.7 to 8.0:1.6m™). Distractor
cues were similarly introduced with increasing frequency in mazes 6-8 of the
permanent cues shaping procedure, while the visual guide was removed in mazes
7 and 8. In all evidence accumulation shaping mazes (mazes 1-9), cues were only
made visible when mice were 10-cm from the cue location and remained visible
until trial completion. In the final evidence accumulation testing mazes (maze
10 and 11), cues were made transiently visible (200 ms) after first presentation
(10 cm from cue location), while the mean side ratio of rewarded:non-rewarded
side cues changed from 8.0:1.6 (Supplementary Fig. 5a; maze 10) to 7.7:2.3m™!
(Supplementary Fig. 5a; maze 11). In contrast, throughout all shaping mazes (1-6)
and testing mazes (7-8) of the permanent cues task, cues were visible from the
onset of a trial.

The median number of sessions to reach the first evidence accumulation
testing maze (maze 10) was 22 sessions, while the mean number of sessions was
23.0 +0.8 (Supplementary Fig. 5b,c). Mice typically spent between 2 and 5 sessions
on each shaping maze before progressing to the next, with performance increasing
or remaining stable throughout (Supplementary Fig. 5d,e; maze 9: 74.1% +9.8%
correct). The median number of sessions to reach the first permanent cues (control
2) testing maze (maze 7) was 17 sessions, while the mean number of sessions
was 18.0 + 1.5 (Supplementary Fig. 5g-j). Mice typically spent between 2 and 4
sessions on each shaping maze before progressing to the next, with performance
increasing or remaining largely stable throughout (Supplementary Fig. 5g-j; maze
6: 87% +4.3% correct).
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Optogenetic testing mazes. The evidence accumulation task took place in a
330-cm-long virtual T-maze with a 30-cm start region (—30 to 0 cm), followed

by a 200-cm cue region and finally a 100-cm delay region (Fig. 2a, black, left).
While navigating the cue region of the maze, mice were transiently presented with
high-contrast visual cues (wall-sized ‘towers’) on either maze side, which were
also paired with a mild air puff (15 p.s.i., 40 ms) to the corresponding whisker
pad. The side containing the greater number of cues indicated the future rewarded
arm. A left or right choice was determined when mice crossed an x-position
threshold > 15 cm, which was only possible within one of the maze arms (the
width of choice arms was +25 cm relative to the center of the maze stem). Mice
received reward (~4-8 pl of 10% vol/vol sweetened condensed milk in drinking
water) followed by a 3-s ITI after turning to the correct arm at the end of the maze,
while incorrect choices were indicated by a tone followed by a 12-s IT1. In each
trial, the position of cues was drawn randomly from a spatial Poisson process
with a rate of 8.0m™" for the rewarded side and 1.6 m™" for the non-rewarded side
(Supplementary Fig. 5a; maze 10) or 7.3:2.3m™! (Supplementary Fig. 5a; maze 11).
Note that only maze 10 data were used for cross-task comparisons of optogenetic
effects with permanent cues and no distractors control tasks to precisely match
cue presentation statistics (Figs. 2 and 3 and Extended Data Figs. 3 and 6). Visual
cues (and air puffs) were presented when mice were 10 cm away from their

drawn location and ended 200 ms (or 40 ms) later. Cue positions on the same

side were also constrained by a 12-cm refractory period. Each session began with
warm-up trials of a visually guided maze (Supplementary Fig. 5a; maze 4), with
mice progressing to the evidence accumulation testing maze after ten trials (or
until accuracy reached 85% correct). During performance of the testing maze, if
accuracy fell below 55% over a 40-trial running window, mice were transitioned
to an easier maze in which cues were presented only on the rewarded side and did
not disappear following presentation (Supplementary Fig. 5a; maze 7). These ‘easy
blocks’ were limited to ten trials, after which mice returned to the main testing
maze regardless of performance. Behavioral sessions lasted for ~1h and typically
consisted of ~150-200 trials.

All features of the ‘no distractors’ (control 1) task (Fig. 2b, magenta;
Supplementary Fig. 5a,g, maze 12) were identical to the evidence accumulation
task (Supplementary Fig. 5a, maze 10) except that (1) distractor cues were removed
from the non-rewarded side, and (2) a distal visual guide located in the rewarded
arm was transiently visible during the cue region (0-200 cm).

All features of the ‘permanent cues’ (control 2) task (Fig. 2b, cyan;
Supplementary Fig. 5g, maze 8) were identical to the evidence accumulation task
except that reward and non-reward side visual cues were made permanently visible
from trial onset. As in the evidence accumulation task, whisker air puffs were only
delivered when mouse position was 10 cm from visual cue location. Note that
mice underwent optogenetic testing on two permanent cues mazes (mazes 7 and
8). Maze 8 shared identical reward to non-reward side cue statistics (8.0:1.6 m™")
as maze 10 of the evidence accumulation task. Therefore, for all cross-task
comparisons of optogenetic inhibition, only data from these mazes were analyzed
(Figs. 2 and 3 and Extended Data Figs. 3-6).

To discourage side biases, in all tasks we used a previously implemented debiasing
algorithm™. This was achieved by changing the underlying probability of drawing a
left or a right trial according to a balanced method described in detail elsewhere®. In
brief, the probability of drawing a right trial, p,, is given by equation (2):

&
PR = e+ ) @

where eg and ey are the weighted average of the fraction of errors the mouse has
made in the past 40 right (and left) trials. The weighting for this average is based
on a half-Gaussian with ¢ = 20 trials in the past, which ensures that most recent
trials have larger weight on the debiasing algorithm. To discourage the generation
of sequences of all-right (or all-left) trials, we capped /e and /e to be within
the range of (0.15, 0.85). Because the empirical fraction of drawn right trials could
deviate from pg, particularly when the number of trials is small, we applied an
additional pseudorandom drawing prescription to pr. Specifically, if the empirical
fraction of right trials (calculated using a 6= 60 trials half-Gaussian weighting
window) was above pg, right trials were drawn with probability 0.5pr, whereas if
this fraction was below pg, right trials were drawn with probability 0.5(1 + pg).

Virtual corridor. Following shaping in the behavioral tasks, mice were transitioned
to free navigation in a virtual corridor arena in the same VR apparatus described
above. The virtual corridor was 6 cm in diameter and 330 cm in effective length
(Fig. le,f). This included a start region (—10 to 0 cm), a reward location (310 cm)
in which mice received 4l of 10% vol/vol sweetened condensed milk in drinking
water, and a teleportation region (320 cm) in which mice were transported back
to the start region following a variable ITI with mean of 2s. Mice were otherwise
allowed to freely navigate the virtual corridor during ~70-min sessions. The
virtual environment was controlled by the VIRMEn software engine, with
real-to-virtual-world movement transformations as described above.

Optogenetics during virtual reality behavior. According to a previously published
protocol™, optical fibers (200 um, 0.37 NA) were chemically etched using 48%
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hydrofluoric acid to achieve tapered tips 1.5-2mm (DMS-targeted) or 1-1.5mm
(NAc-targeted) in length. Following behavioral shaping in VR (and >6 weeks of
viral expression), mice underwent optogenetic testing. On alternate daily sessions,
optical fibers in the left or right hemisphere were unilaterally coupled to a 532-nm
DPSS laser (Shanghai, 200 mW) via a multimode fiber-optic patch cable (PFP,
62.5um). On a random subset of trials (10-30%), mice received unilateral laser
illumination (5mW, measured from patch cable) that was restricted to the first
passage through 0-200 cm of the virtual corridor (Fig. 1 and Extended Data Fig. 2),
or the cue region (0-200 cm) of each T-maze decision-making task (Fig. 3). The
laser was controlled by TTL pulses generated using a National Instruments DAQ
card on a computer running the VIRMEn-based virtual environment.

Conditioned place preference test. Mice underwent a real-time conditioned place
preference (CPP) test with bilateral optogenetic inhibition paired to one side of a
two-chamber apparatus (Supplementary Fig. 3). The CPP apparatus consisted of a
rectangular Plexiglass box with two chambers (29 cm X 25 cm) separated by a clear
portal in the center. The same gray, plastic flooring was used for both chambers,
but each chamber was distinguished by vertical or horizontal black and white bars
on the chamber walls. During a baseline test, mice were placed in the central portal
while connected to patch cables coupled to an optical commutator (Doric) and
were allowed to freely move between both sides for 5min. In a subsequent 20-min
test, mice received continuous, bilateral optogenetic inhibition (532nm, 5mW)
when located in one of the two chamber sides (balanced across groups). Video
tracking, TTL triggering and data analysis were carried out using EthoVision
software (Noldus). Mice who displayed a bias for one chamber side greater than
45s during the baseline test were excluded from the analysis.

Behavior analyses. Data selection. See Supplementary Table 1 for a list of all mice
with optogenetic testing data in the virtual corridor, the accumulation of evidence,
no distractors or permanent cues tasks. The following describes the trial selection
criteria for inclusion in analyses throughout.

For cross-task comparisons (Figs. 2 and 3 and Extended Data Figs. 3-6), we
analyzed only trials from evidence accumulation maze 10 (Supplementary Fig. 5a),
‘no distractors’ maze 12 (Supplementary Fig. 5a,g) and ‘permanent cues’ maze
8 (Supplementary Fig. 5g), which each followed matching rewarded and
non-rewarded side cue probability statistics (saved for the by-design absence of
non-rewarded cues in the ‘no distractors’ control task). For model-based analyses
of the evidence accumulation task (Figs. 4-7 and Extended Data Figs. 7-10), both
maze 10 and maze 11 data were included, which differed only modestly in the side
ratio of reward to non-reward side cues (Supplementary Fig. 5a; ~50% of trials
were maze 10 or 11). In all tasks and all analyses throughout, we removed initial
warm-up blocks (Supplementary Fig. 5a; maze 4, approximately 5-15% of total
trials). For model-based analyses of the evidence accumulation task (Figs. 4-7
and Extended Data Figs. 7-10), we included interspersed ‘easy blocks’ capped at
ten trials in length (Supplementary Fig. 5a; maze 7, see above). These trial blocks
comprised approximately ~5% of total trials, were included to avoid gaps in trial
history, and were treated identically to the main evidence accumulation mazes by
the models. These trials were removed from cross-task comparisons of optogenetic
inhibition (Figs. 2 and 3 and Extended Data Fig. 3-6).

For analysis of optogenetic inhibition during virtual corridor navigation
(Fig. 1 and Extended Data Fig. 2), we removed trials with excess travel of >10%
of maze stem (or >330cm) and mice with <150 total trials from measures of
y-velocity, x-position and average view angle. Trials with excess travel had similar
proportions across laser-off and laser-on trials and pathway-specific inhibition
and control groups (indirect pathway: 8.1% of laser-off and 8.2% of laser-on trials;
direct pathway: 8.2% of laser-off and 8.1% of laser-on trials; no opsin control: 7.0%
of laser-off and 6.9% laser-on trials). Excess travel trials reflected the minority
of trials in which mice made multiple traversals of the virtual corridor, thus
skewing measures of average y-velocity, x-position and view angle during the
majority of ‘clean’ corridor traversals. Importantly, we excluded no trials in direct
measurements of distance, per-trial view angle standard deviation, and trials with
excess travel to detect potential effects of pathway-specific DMS inhibition (or
DMS illumination alone) on these measures (Fig. 1 and Extended Data Fig. 2).

Similarly, for all cross-task comparisons (Figs. 2 and 3 and Extended Data
Figs. 3 and 6), we removed trials with excess travel for all analyses comparing
choice, y-velocity, x-position and average view angle. To better capture
task-engaged behavior, we also only considered trial blocks in which choice
accuracy was greater than >60% for these measures. Excess travel trials were not
excluded for cross-task comparisons of effects on measures of distance, per-trial
view angle standard deviation and trials with excess travel. Exact trial and mouse
number are reported in figure legends.

For cross-state comparisons of motor output measures (Extended Data
Fig. 10), we did not exclude trial blocks with choice accuracy of <60%, given that
different GLM-HMM states were associated with performance levels. However,
for the reasons outlined above, we removed excess travel trials from measures of
y-velocity, x-position and average view angle, and additionally only considered
mice who occupied all three GLM-HMM states after trial selection. For measures
of per-trial standard deviation in view angle, distance and excess travel, we applied
no trial selection criteria, but only mice who occupied all three GLM-HMM states
were included for analysis.
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General performance indicators. Accuracy was defined as the percentage of trials
in which mice chose the maze arm corresponding to the side having the greater
number of cues (Fig. 2¢). For measures of choice bias, sensory evidence and
choice were defined as either ipsilateral or contralateral relative to the unilaterally
coupled laser hemisphere. Choice bias was calculated separately for laser-off and
laser-on trials as the difference in choice accuracy between trials where sensory
evidence indicated a contralateral reward versus when sensory evidence indicated
an ipsilateral reward (percentage correct, ‘contralateral’ — ‘ipsilateral; positive
values indicate greater contralateral choice bias; Fig. 3d,g,j,0). Delta choice bias
was calculated as the difference in contralateral choice bias between laser-off

and laser-on trials (‘on’ — ‘off’, positive values indicate laser-induced contralateral
choice bias; Fig. 3e,g,k,p). In Extended Data Fig. 8c-f, reward at GLM-HMM state
transition reflects the total amount of reward (ml) received from the start of the
session up to the trial before a state transition (mice typically received 1-1.5ml
per session). Reward rate at GLM-HMM state transition was calculated as the
sum of reward received from the start of the session up to the trial before a state
transition, divided by the sum of all trial durations from the start of the session

up to the trial before a state transition. GLM-HMM transitions were defined as a
within-session change in the most likely state based on the posterior probability of
each state (see ‘GLM-HMM’ below for more details).

Psychometric curve fitting. Psychometric performance was assessed based on the
percentage of contralateral choices as a function of the difference in the number
of contralateral and ipsilateral cues (n contra — n ipsi; Fig. 6c-f and Extended Data
Fig. 4). In Extended Data Fig. 4, transparent lines reflect the mean performance
of individual mice in bins (—16:4:16, n contra — n ipsi) of sensory evidence

during laser-off (black) and laser-on (green) trials, while bold lines reflect the
corresponding mean and s.e.m. across mice. In Fig. 6, psychometric curves,
indicating the probability of a rightward choice as a function of the sensory
evidence, were fit to the following four-parameter sigmoid using maximum
likelihood fitting™:

1—4A—y

p(choice =RJA) = 4+ o= — s

(3)

where 4 and y are the right and left lapse rates, respectively, o is the offset, y is the
slope, and A is the difference in the number of contralateral and ipsilateral cues
on a given trial. Each point in Fig. 6¢c-f represents the binned difference in cues
in increments of 4 from —16 to 16 (as in Extended Data Fig. 4), from which we
calculated the percentage of contralateral choice trials for each bin.

Motor performance indicators. Y-velocity (cm s™') was calculated on every sampling
iteration (120 Hz, or every ~8 ms) of the ball motion sensor as dY/dt where dY was
the change in Y-position displacement in VR, and dt was the elapsed time from the
previous sampling of the sensor. The y-velocity for all iterations in which a mouse
occupied y-positions 0-300 cm in 25-cm bins were then averaged across iterations
in each bin to obtain per-trial y-velocity as a function of y-position. Binned
y-velocity as a function of y-position was then averaged across trials for individual
mice, and the average and s.e.m. across mice reported throughout (Figs. 1g and 2d
and Extended Data Figs. 6a—c and 10b,p,i,w; averaged across y-position 0-200 cm
in Extended Data Figs. 2b and 3b).

X-position trajectory (cm) as a function of y-position was calculated per trial
by first taking the x-position at y-positions 0-300 cm in 1-cm steps, which was
defined as the x-position at the last sampling time ¢ in which y () > Y, and
then averaging the y-position bins of 25 cm from 0 to 300 cm. Binned x-position
as a function of y-position was then averaged across left/right (or ipsilateral/
contralateral) choice trials for individual mice, and the average and s.e.m. across
mice was reported throughout (Figs. 1h and Fig. 2e and Extended Data Fig. 10c,q;
averaged across y-positions 0-200 cm in Extended Data Figs. 2c, 3c, 6j,1 and 10j,x).
Average view angle trajectory (degrees) was calculated in the same manner as
x-position (Figs. 1i and 2f and Extended Data Fig. 10d,r; average across y-positions
0-200cm in Extended Data Figs. 2d, 3d, 6j-1 and 10k,y). View angle standard
deviation was calculated by first sampling the per-trial view angle from
0 to 300 cm of the maze in 5-cm steps. The standard deviation in view angle was
then calculated for each trial, and then averaged across trials for individual mice.
The average and s.e.m. across mice are reported throughout (Extended Data
Figs. 2e, 3f, 6g-i and 10e,s,1,z). This measure sought to capture unusually large
deviations in single-trial view angles, which would be indicative of excessive
turning or rotations.

Distance traveled was measured per trial as the sum of the total x and y
displacement calculated at each sampling iteration ¢, as v/dX? + dY?. Distance
traveled per trial was then averaged across trials for individual mice and the
average and s.e.m. across mice was reported throughout (Figs. 1j and 2g and
Extended Data Figs. 2f, 6d-f and 10f,t,m,aa). Excess travel was defined as the
fraction of trials with total distance traveled per trial (calculated as above) greater
than 10% of maze length (o r>330cm). The average and s.e.m. across mice was
reported throughout (Extended Data Figs. 2g, 3e, 6d—f and 10g,u,n,bb).

Decoding of choice based on the trial-by-trial x-position (Extended Data
Fig. 3g,i) or view angle (Extended Data Fig. 3h,j) of mice was carried out by
performing a binomial logistic regression using the MATLAB function ‘glmfit’.

In Extended Data Fig. 3g,h, the logistic regression was fit separately for individual
mice at successive y-positions in each T-maze stem (0-300 cm in 25-cm bins),
where the trial-by-trial average x-position (or view angle) at each y-position bin
(calculated as above) was used to generate weights predicting the probability of a
left or right choice given a particular x-position (or view angle) value. Individual
mouse fits were weighted according to the proportion of left and right choice
trials. Fivefold cross-validation (resampled for new folds ten times) was used

to evaluate prediction accuracy on held-out trials. A choice probability greater
than or equal to 0.5 was decoded as a right choice, and prediction accuracy for
individual mice was calculated as the fraction of predicted choices matching actual
mouse choice, averaged across cross-validation sets. The same approach was used
in Extended Data Fig. 3i,j, except that the training data were randomly sampled
across all mice from a single task (50% of total trials, resampled 50 times; training
data from evidence accumulation, no distractors or permanent cues task). The
learned weights were then used to predict choice based on held-out x-position (or
view angle) data from all three tasks, with prediction accuracy calculated as the
fraction of predicted choices matching actual choice, parsed by individual mice,
and averaged across cross-validation sets. A package of code for behavioral analysis
in VR-based T-maze settings is available at https://github.com/BrainCOGS/
behavioral Analysis/. In addition, all analyses described here can be replicated at
https://github.com/ssbolkan/BolkanStoneEtAl/.

General statistics and reproducibility. We performed one-way ANOVAs to assess
effects of the factor task (three levels: evidence accumulation, no distractors or
permanent cue) on choice accuracy (Fig. 2¢), distance traveled (Fig. 1g), average
y-velocity (0-200 cm; Extended Data Fig. 3b), average x-position (0-200cm) on left
or right choice trials (Extended Data Fig. 6¢), average view angle (0-200 cm) on left
or right choice trials (Extended Data Fig. 3d), percentage of trials with excess travel
(Extended Data Fig. 3e), per-trial standard deviation in view angle (Extended Data
Fig. 3f), delta (laser on-off) choice bias (Extended Data Fig. 5b-d), delta (laser on-
off) distance traveled (Extended Data Fig. 6d-f, left), delta (laser on-off) percentage
of trials with excess travel (Extended Data Fig. 6d—f, right), delta (laser on—off)
per-trial standard deviation in view angle (Extended Data Fig. 6g-i), delta (laser
on-off) average x-position (0-200 cm; Extended Data Fig. 6j-1, left), and delta (laser
on-off) average view angle (0-200 cm; Extended Data Fig. 6j-1, right). Post hoc
comparisons between tasks were made when a main effect of the factor task had a P
value less than alpha < 0.05/2 to account for multiple-group comparisons (Extended
Data Fig. 5b—d). One exception to this is Extended Data Fig. 6j-1, where all post
hoc comparisons were made for laser effects on delta (on-off) x-position and view
angle (and displayed with corresponding exact P values) to provide greater clarity
around trend-level effects. We did not assume normality of the data in all post

hoc comparisons, which used the nonparametric, unpaired, two-tailed Wilcoxon
rank-sum test. A P value below 0.025 was considered significant to correct for
multiple comparisons (P=0.05/2 comparisons per group). Exact P values, degrees
of freedom, and z-statistics are reported in the text and/or legends.

We performed one-way ANOVAs to assess effects of the factor group
(three levels: indirect pathway inhibition, direct pathway inhibition or no
opsin illumination) on delta (laser on-off) y-velocity (Extended Data Fig. 2b),
delta (laser on-off) x-position (Extended Data Fig. 2¢c), delta (laser on-off) view
angle (Extended Data Fig. 2d), delta (laser on-off) per-trial standard deviation
in view angle (Extended Data Fig. 2e), delta (laser on-off) distance (Extended
Data Fig. 2f), delta (laser on-off), and delta (laser on-off) percentage of trials
with excess travel (Extended Data Fig. 2g) and delta (laser on-off) preference
(that is, time) and speed during the real-time CPP test (Supplementary Fig. 3).

We performed a repeated-measure one-way ANOVA to assess effects of
the within-subject factor state (three levels: GLM-HMM state 1, 2 or 3) on
within-session accumulated reward or reward rate before GLM-HMM transition
(Extended Data Fig. 8c-f), per-trial standard deviation in view angle (Extended
Data Fig. 10e,s), distance traveled (Extended Data Fig. 10ft), percentage of
trials with excess travel (Extended Data Fig. 10g,u), delta (laser on-off) average
x-position 0-200 cm (Extended Data Fig. 10j,x), delta (laser on-off) average view
angle 0-200 cm (Extended Data Fig. 10k,y), delta (laser on-off) per-trial standard
deviation in view angle (Extended Data Fig. 10,z), delta (laser on-off) distance
traveled (Extended Data Fig. 10m,aa) and delta (laser on—off) percentage of trials
with excess travel (Extended Data Fig. 10n,bb). Post hoc comparisons between
groups were made when a main effect of the factor task had a P value <0.05. One
exception is in Extended Data Fig. 6j,k.x,y, where all post hoc comparisons were
made for laser effects on delta (on-off) x-position and view angle (and displayed
with corresponding exact P values) to provide greater clarity around trend-level
effects. We did not assume normality of the data in all post hoc comparisons,
which used the nonparametric, unpaired, two-tailed Wilcoxon rank-sum test. A P
value below 0.025 was considered significant to correct for multiple comparisons
(P=0.05/2 comparisons per group). Exact P values, degrees of freedom and
z-statistics are reported in the text and/or legends.

In Fig. 3e,h,k,p, we used the nonparametric, unpaired, two-tailed Wilcoxon
rank-sum test to assess effects of indirect or direct pathway inhibition versus no
opsin illumination of brain tissue on delta (laser on-off) choice bias. A P value
below 0.025 was considered significant to correct for multiple comparisons
(P=0.05/2 comparisons per group). Exact P values, degrees of freedom and
z-statistics are reported in the text and/or legends.
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Related to Fig. la—c, Extended Data Fig. 1 and Supplementary Fig. 2, we
used a paired, two-tailed Wilcoxon signed-rank test on cross-trial average firing
rates (baseline-pre versus laser-on or laser-on versus laser-post) to determine the
significance of laser modulation of single-neuron activity. A Bonferroni-corrected
P value was used to determine significance (P <0.00083 for 60 indirect pathway
neurons or P<0.001 for 50 direct pathway neurons).

All experiments, but not analysis, were conducted blind to experimental
conditions. All experiments were conducted over multiple cohorts (see
Supplementary Table 1 for details of individual mouse testing across experiments).
Individual cohorts consisted of a random selection of test groups (for example,
DMS indirect and direct pathway inhibition, and DMS no-opsin mice). We
did not account for cohort effects in our statistical analyses, but no obvious
cohort-dependent effects were qualitatively observable. No statistical method was
used to predetermine group sample sizes; rather, animal and trial numbers were
targeted to match or exceed those from similar studies.

Bernoulli GLM. Coding of covariates and choice output. We coded the external
covariates (referred to as inputs in Fig. 4b) and output (the mouse’s choice) on each
trial as follows:

A cues: an integer value from —16 to 16, divided by the standard deviation of
the A cues across all sessions in all mice, representing the standardized difference
between the number of cues on the right and left sides of the maze.

Laser: a value of 1, —1 or 0 depending on whether optogenetic inhibition was
on the right hemisphere, left hemisphere or off, respectively.

Previous choice: a value of 1 or —1 if the choice on a previous trial was to the
right or left, respectively. We set the value to 0 at the start of each session when
there was an absence of previous choices (for example, for the third trial of a
session, previous choices 3-6 would be coded as 0).

Previous rewarded choice: a value of 1, —1 or 0 depending on whether the
previous choice was correct and to the right, correct and to the left or incorrect,
respectively.

Choice output: a value of 1 or 0 depending on whether the mouse turned right
or left.

Fitting. We used a Bernoulli GLM, also known as logistic regression, to model

the binary (right/left) choices of mice as a function of task covariates. This also
corresponds to a one-state GLM-HMM (Fig. 4 and Extended Data Fig. 7a).

The model was parameterized by a weight vector (carrying weights for sensory
evidence, choice and reward history, and DMS inhibition). On each trial ¢, the
weights map the external covariates to the probability of each choice y,. The model
can be written according to equation (4) as:

P =1lx) )

1y exp (—wTx)’

where y=1 indicates a rightward choice, and y=0 indicates a leftward choice. We

fit the model by penalized maximum likelihood, which involved minimizing the
negative log-likelihood function plus a squared penalty term on the model weights.
The log-likelihood function is given by the conditional probability of the choice
data Y = y, ..., yr given all the external covariates X = xj, ..., xr, considered as a
function of the model parameters given by equation (5):

T
log (p (YIX, w)) = ;llog (p elxr))
T T ) ®)
= t;l)’tlog(l’()’t = 1lx)) + ::21 (1 —y)log (1 —p (e = 1|x1))

We then minimized the loss function, given by — log p (Y|X, w) + 1w'w,
using Python’s ‘scipy.optimize.minimize’ This can be interpreted as a log-posterior
over the weights, with 1 w”w representing the negative log of a Gaussian prior
distribution with mean zero and variance 1, which regularizes by penalizing
large weight values. A variance of 1 was chosen because the resulting penalty
was sufficient to resolve cases where the weights would grow unusually large and
lead to decreases in the log-likelihood during fitting. We computed the posterior
standard deviation of the fitted GLM weights (shown as error bars in Fig. 4c,d)
by taking the diagonal elements of the inverse negative Hessian (matrix of second
derivatives) of the log-posterior at its maximum® .

GLM-HMM. Model architecture. To incorporate discrete internal states, we

used a hidden Markov model (HMM) with a Bernoulli GLM governing the
decision-making behavior in each state. The model is defined by a transition
matrix and a vector of GLM weights for each state. The transition matrix contains
a fixed set of probabilities that govern the probability of changing from a state

z € {1,..., K} on trial t to any other state on the next trial. We refer to these as
transition probabilities, which can be abbreviated according to equation (6):

Pj = p (241 = jlze = i) (6)

Each GLM has a unique set of weights w, that maps the external covariates x,
(coded as described in ‘Bernoulli GLM’) to the probability of the choice y, for each
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of the k states. These probabilities can be expressed as a modified version of Eq.
(4), as given by equation (7):

1

1+ exp <—ijxt) @

P =1xt 2zt =j) =

where w; is the vector of GLM weights for state j. Note that in this expression,
the choice probability depends on both the external covariates (inputs) and the
state via the state-dependent GLM weights*-*'. We refer to these as ‘observation
probabilities, which can be abbreviated according to equation (8):

i =p (e = jlxo 2z = i) (8)

Fitting. We fit the GLM-HMM to the data using the expectation-maximization
(EM) algorithm™. The EM algorithm computes the maximum likelihood
estimate of the model parameters using an iterative procedure that involves an
E-step (expectation), in which the posterior distribution of the latent variables is
calculated, followed by an M-step (maximization), in which the values of the model
parameters are updated given the posterior distribution of the latents. These steps
are repeated until the log-likelihood of the model converges on a local optimum®’.
The log-likelihood (also referred to as the log marginal likelihood) is obtained
from the joint probability distribution over the latent states Z = zy, ..., zr and
the observations Y = yy, ..., yr on each trial given the model parameters 6.
Marginalizing over the latents, the log-likelihood is computed as the log of the sum
over states of the marginal probabilities and is written as shown in equation (9):

log (p (Y/X, 0)) = log (Zp(x Z|X, 6)) ©)
z

The set of parameters 6 governing the model consists of a transition matrix and
the state-dependent GLM weights, which we described above. We initialized the
transition matrix by sampling each row from a Dirichlet distribution, with a larger
concentration parameter over the entries along the diagonal (a; = 5, a;; = 1),
reflecting a slight bias toward self-transitions. For the GLM weights, we reasoned
that the true values for each state would likely be in approximately the same
range as the true values for the one-state (GLM) case. Therefore, we initialized
the per-state GLM weights w, with k € {1, ..., K} by first fitting a basic GLM
(‘Bernoulli GLM’) to find w,. Then, as we didn’t want the initial weights to be the
same in each state, we initialized wy, = wy + ¢ where ¢ ~ N(0,0.2).

The goal of the E-step of the EM algorithm is to compute p(Z|X, Y, 0), the
posterior probability of the latent states given the observations and the model
parameters. This can be obtained using a two-stage message passing algorithm
known as the forward-backward algorithm*. The forward pass, sometimes called
‘filtering) finds the normalized conditional probability a(z;) for each state z at trial
t by iteratively computing the following according to equation (10):

a(zt) = p(ztlyr:o X1:t)

K
= Folan), 2 p (e =k b)) palzo = K) 10)

K
1 N
=¢ ¢, M ];1 a(zi1 =k) Py,

where ¢; = p(y:|y1:1—1) is a scale factor ensuring the probabilities over states sum
to 1, which is computed by summing the unnormalized probabilities. We set the
prior distribution over states before the first trial, denoted @(z), to be the uniform
distribution. Note that this is a normalized version of the forward-backward
algorithm that avoids underflow errors™.

The backward step, also referred to as ‘smoothing) takes the information from
the forward pass and works in the reverse direction, carrying the information
about future states backwards in time to further refine the latent state probabilities.
Here we find the normalized conditional probability B (2) for each state z at trial ¢
by iteratively computing the following according to equation (11):

B (z) = POurlFipuns)
Bz) = POy

K
1 P(y1+Z:T‘Xl+2:T‘ZA+l:k)

= Zip1 =k, x zi11 = k|z
P(J’r+1|}'1::) k=1 P(J’H»Z:TU’l;H»l) p (}/H»l‘ i t+l)P( s ‘ t)

K .
=cih kZI B (zr1 = k) iy Prok

11
where f3 (z7) = 1.
From these two conditional probabilities, we can calculate the marginal
posterior probabilities of the latent states given by equation (12):
v (@) = p(z|X. Y, 0) = a(z)b(z) (12)
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which was the goal of the E-step. We can also compute the joint posterior

distribution of two successive latents, given by equation (13):
E(zn zep1) = @ (2) P (2e41) Pz,,zl+1¢z,+l.y!+l (13)
which will be important for computing updates in the M-step. Because the
format of the data included sessions from several different mice over many days,
we computed the forward-backward pass separately for each session. This ensured
that the learned transition probabilities would not take into account the effect of
the last trial of one session on the first trial of the next session.

The M-step of the EM algorithm takes the newly computed posterior
probabilities over the latents and uses them to update the values of the model
parameters (Eqgs. (6)-(8)) by maximizing the expression for P and w. Because
the transition probabilities are fixed, we can compute their updates using the
closed-form solution given by equation (14):

S, Ezp ziak)
P, = (14)
* Zle ZZ‘:Z g(zt,jr Zt+l,l)

This closed-form update can be derived by applying the appropriate Lagrange
multipliers to the complete-data log-likelihood function™.

Maximization for w involves minimizing the negative of the log-likelihood
function, weighted by the marginal posterior probabilities of the latent states,
plus a squared penalty term on the model weights. This penalty can be interpreted
as the negative log of a Gaussian prior with mean zero and variance 1, which
regularizes by penalizing large weight values. The resulting loss function is given
by equation (15):

L) = 303 rte = log (il = K) — wiwe (1)

t=1 k=1

which we optimized using numerical optimization and the L-BFGS-B
algorithm as previously described (see ‘Bernoulli GLM’).

Both E- and M-steps of the EM algorithm are guaranteed to increase the
log-posterior. We alternated E- and M-steps until the difference between the
log-posteriors over ten iterations was smaller than a given tolerance (tol=1x107?).
Because the EM algorithm only guarantees that the log-likelihood will converge
upon a local optimum™, we fit the model 20 times using different initializations
of the weights and transition matrix and verified that the top four or more fits all
converged on the same solution (meaning that the weights for each fit were the
same within a tolerance of +0.05) to confirm that the algorithm had indeed found
the global optimum. After determining the best fit, we computed the posterior
standard deviation of the fitted GLM weights (shown as error bars in Fig. 6a,b
and Extended Data Fig. 7d-f) by computing the inverse Hessian of the optimized
log-posterior using Python’s autograd package.

Model selection. In Extended Data Fig. 7a, we performed cross-validation on the
data from both the indirect and direct pathway inhibition groups, which revealed
that three to five latent states were sufficient to reach a plateau in likelihood. To
obtain a test set, we selected ~20% of sessions from the data to hold out from
model fitting. Test sessions were chosen by randomly selecting an approximately
equal number of sessions from each of the 13 mice in either group. Constraining
the held-out data in this way ensured that the cross-validation results were not
affected by possible individual differences across mice. We then calculated the
log-likelihood of the test data after fitting the model under parameterizations of
1-5 states to the remaining ~80% of sessions. We express the log-likelihood in bps,
defined according to equation (16):

Lo L—1L
T T log(2)

(16)
where [is the average session length, T is the number of trials in the test set and

Ly is the log-likelihood of the test-set data under the bias-only Bernoulli GLM. To
obtain the bias term b we computed the following given by equation (17):

_ ‘T(rzght) (17)
T (right) + T(left)

where T(side) is the number of trials in the test set in which the mice turned in

that direction. For all cross-validation results presented in the paper, we report

the averaged Ly, from five different test sets. We followed the same procedure as

above in Extended Data Fig. 7c, selecting the optimal number of previous choices

using a three-state GLM-HMM under parameterizations of 1-8 previous choices

while holding the number of all other external inputs (A cues, laser, bias and

previous rewarded choice) constant. In Extended Data Fig. 7b, we simulated data

from the inferred parameters (see ‘Simulating data’) for a two-state GLM-HMM

fit to the real data for the indirect pathway inhibition group. We then performed

cross-validation as described above on both the full simulated dataset (‘all data’)

and for a small subset (‘5% of data’). We chose to simulate from the two-state model

to differentiate the simulation from the real data and to demonstrate the results for
an arbitrary choice in the true number of states.

Testing. In Fig. 5c, we compared the performance of the GLM-HMM to the GLM
by calculating the log-likelihood of the test sets of individual mice. To do so, we
held out data and fitted the model across all animals using the same procedure
described above. However, we then split the test set by mouse (thus creating 13
different test sets) and calculated the log-likelihood for each individual animal,
thus expressing the log-likelihood in units of mouse bits per session (mbps) given
by equation (18):

I:m — iIOm

T Tog(2) a8

Lmbps =1

Here, L, is the optimized log-likelihood of the model in question (either
the GLM or three-state GLM-HMM) for a single mouse. Similarly, Lo is the
optimized log-likelihood under the bias-only Bernoulli GLM and T,, is the total
number of trials for that mouse. We then repeated the procedure for five test sets
and took the average of the results for each mouse.

In Fig. 5d, we evaluated the prediction accuracy of the GLM for each animal
by taking the same training and test sets that we used to find the log-likelihoods
and using Eq. (2) to calculate the probability of turning right on each trial. We then
compared this probability to the mouse’s actual choice on that trial, labeling the
trial as correct if the model predicted a 50% or greater probability of turning in the
direction of the mouse’s true choice. We then calculated the prediction accuracy
for each mouse as the number of correct trials divided by the total number of
trials for that mouse. To evaluate the prediction accuracy of the GLM-HMM for
each animal, we computed p(y¢|x1:t—1, y1:¢—1), or the predictive distribution for
trial # of the test set using the observations from trials 1 to ¢ — 1. This arises from
averaging over the state probabilities given previous choice data to get a prediction
for a particular trial. That is, we ran the forward pass (see Fitting’) to obtain the
state probabilities p(z¢|x1.+—1, y1:¢—1), computed the initial choice probabilities
Pp(ye|x1, z) using Egs. (7) and (8), and then calculated the predictive distribution
according to equation (19):

K
P Oelxri—1, Yru—1) = ZP ilx z = k) p (ze = k|x1:0—1, Yr:0—1) (19)

k=1

We then ran this forward over all the trials in the test set for each mouse.
Finally, we computed the prediction accuracy using the same method described for
the GLM prediction accuracy.

State assignments. To determine the most likely state on each trial (Figs. 6¢-i
and 7g,j and Extended Data Figs. 7g,h, 8 and 10 and Supplementary Fig. 4), we
assigned each trial to the state with maximum marginal probability given the
inputs and choice data, as computed by the forward-backward algorithm given
by equation (20):

sy = argmax (p (%X, Y, 09)) (20)

Simulating data. For the analyses in Fig. 6e,f and Extended Data Figs. 7 and 9, we
evaluated the ability of the three-state GLM-HMM to predict choices and state
transitions that matched the animals’ actual behavior in each state. Regarding

the covariates for the simulation, we kept the evidence (A cues) and optogenetic
inhibition from the real data but populated the trial history covariates using
simulated previous choices. To simulate choices on each trial, we first computed
the observation probabilities (Egs. (7) and (8)) using x; (the external covariates)
and w (the learned weights from the model fitted to real data). The state k on

each trial was randomly chosen from a distribution given by the learned transition
probabilities P | - from the model fitted to real data. We then randomly
generated choices y, from the distribution of observation probabilities. Repeating
this process for each trial to obtain x},; and y;.;, we fit the model to the simulated
data using the same procedure described previously (see ‘Fitting’) to obtain

the posterior probability over states. For Fig. 6e,f and Extended Data Fig. 7, we
computed the psychometric curves for each state using these posterior probabilities
and the simulated choices (see ‘Psychometric curve fitting’).

Model comparisons. For the two alternative model comparisons with restricted
transition probabilities (Fig. 7k-m), we fit the three-state GLM-HMM using

the same general procedure as described above. However, in the case where we
disallowed transitions during a session (Fig. 7k), we fixed the transition matrix

to the identity matrix and only fit the state-dependent GLM weights. In the

case where we disallowed transitions in and out of state 2 (Fig. 71), we derived a
constrained M-step that forced the transition probabilities for state 2 to 0. In detail,
the constrained M-step involved zeroing out the transition probabilities associated
with state 2 and then renormalizing so the rows of the transition matrix summed to
1. Note that the three sessions that appear to still allow transitions in and/or out of
state 2 for mice inhibited in the direct pathway of the DMS (Fig. 71, right) were due
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to rare cases where the model had high uncertainty about the state, and the most
probable state flipped between state 2 and another state at some point during the
session. In Fig. 7m, solid curves denote the average log-likelihood for five different
test sets. Held-out data for test sets were selected as a random 20% of sessions,
using an approximately equal number of sessions for each mouse.

Fluorescence in situ hybridization and stereological quantification. In situ
hybridization (Supplementary Fig. 1) was performed using the RNAscope
Multiplex Fluorescent Assay (ACD, no. 323110) with the following probes:
Mm-Drdla (406491), Mm-Drd2-C2 (406501-C2, 1:50 dilution in C1 solution)
and Cre-01-C3 (474001-C3, 1:50 dilution in C1 solution). Likely due to lower
expression of Cre mRNA in D1R-Cre and A2a-Cre mice, we did not detect
unambiguous Cre fluorescence signal in these lines. We therefore relied on
Cre-dependent viral expression of AAV5-DIO-EYFP to report Cre* neurons
alongside Drdla and Drd2 probes in sections from two D1R-Cre and two A2R-Cre
mice, but used all three probes in sections from two D2R-Cre mice. In D1R-Cre
and A2R-Cre mice, the Drdla and Drd2 probes were fluorescently linked to

TSA Plus Cy-3 and TSA Plus Cy-5, respectively (Perkin Elmer). In D2R-cre

mice, Drdla, Drd2 and Cre probes were linked to TSA Plus Cy-3, TSA Plus
Fluorescein or TSA Plus Cy-5, respectively. All fluorophores were reconstituted in
dimethylsulfoxide according to Perkin Elmer instructions and diluted 1:1,200 in
TSA buffer included in the RNAscope kit. After in situ hybridization, slides were
coverslipped using Fluoromount-G containing DAPI (SouthernBiotech).

‘We then obtained x20 confocal z-stacks from the DMS, NAcCore and NAcShell
in all lines and manually quantified specificity, penetrance and D1R*/D2R* overlap
using LASX software (Leica). Specificity was determined as the percentage of the
following: GFP* neurons coexpressing Drd1 in D1R-Cre mice (DMS, n=>5 sections,
193 cells; NAcCore, n=>5 sections, 298 cells; NAcShell, n=5 sections, 363 cells),
GFP* neurons coexpressing Drd2 in A2A-Cre mice (DMS, n=4 sections, 144 cells;
NAcCore, n=4 sections, 326 cells; NAcShell, n=4 sections, 312 cells) or Cre* neurons
coexpressing Drd2 in D2R-Cre mice (DMS, n=5 sections, 1,302 cells; NAcCore, n=5
sections, 1,104 cells; NAcShell, n=5 sections, 1,187 cells). Penetrance was determined
as the percentage of Drd2* neurons coexpressing Cre in D2R-Cre mice (DMS, n=5
sections, 1,269 cells; NAcCore, n=>5 sections, 1,055 cells; NAcShell, n=5 sections,
1,144 cells). We did not assess penetrance in D1R-Cre or A2a-Cre lines because our
Cre-dependent viral reporter did not fully penetrate all Cre* neurons. Quantification
of DIR*/D2R* overlap in striatal regions was carried out on two D2R-Cre mice and/
or two DIR-tdTomato mice and measured as both the percentage of D1R* neurons
that were D2R* (DMS, n=10 sections, 2,423 cells; NAcCore, n= 10 sections, 2,196
cells; NAcShell, n=10 sections, 2,220 cells) and the percentage of D2R* neurons
that were DIR* (DMS, n=>5 sections, 868 cells; NAcCore, n=>5 sections, 834 cells;
NAcShell, n=>5 sections, 874 cells).

Histology. Mice were anesthetized with a 0.05-ml injection of Euthasol
intraperitoneally and transcardially perfused with 1x PBS, followed by fixation
with 4% paraformaldehyde (PFA). Whole brains with intact fiber-optic implants
were post-fixed in 4% PFA for 1-3d, followed by brain dissection and another
24h of post-fixation in PFA. For optogenetic experiments, brains were then
transferred to PBS for coronal sectioning (50 pm) on a vibratome. Viral expression
and fiber-optic placements were assessed under slide-scanning (NanoZoomer,
Hamamatsu) or single slide (Leica) epifluorescent microscopes (Supplementary
Fig. 6). For FISH experiments, post-fixation dissected brains were transferred
through a sucrose gradient: 10% sucrose in PBS for 6-8h, 20% sucrose in PBS
overnight and 30% sucrose in PBS overnight. Coronal sections (18 um) containing
the DMS and NAc were made using a cryostat, mounted without coverslips on
Superfrost plus slides (Fisher), and stored at —80° before the FISH protocol. After
the FISH protocol, tile-scanning and cellular resolution images of coverslipped
slides were acquired using a confocal microscope (Leica TCS SP8).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.
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Data availability
The data that support the findings of this study are publicly available on figshare at
https://doi.org/10.6084/m9.figshare.17299142.v1.

Code availability

Code for general use applications of GLM-HMM analyses developed in this study,
including all applications to the present dataset, are available on GitHub at https://
github.com/irisstone/glmhmm/. Code to analyze data and regenerate all other plots
in this study is publicly available at https://github.com/ssbolkan/BolkanStoneEtAl
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Extended Data Fig. 1| Optogenetic inhibition of DMS pathways is effective, generating little post-inhibitory rebound, nor excitation during the
inhibition period. (a) Schematic of viral delivery of AAV5-eF1a-DIO-NpHR to the dorsomedial striatum (DMS) of A2a-Cre or DIR-Cre mice.

(b,i) Schematic of electrophysiological recording and laser delivery (532-nm, 5-mW) to the DMS in awake, head-fixed mice ambulating on a running
wheel. (b,ii) Example recording electrode tracks and cre-dependent NpHR expression in an A2a-Cre mouse targeting the indirect pathway of the DMS.
(b,iii) As in b,ii but in a DIR-Cre mouse targeting the DMS direct pathway. (b,iv) Schematic of silicon optrode recording tip, including tapered optical fiber
coupled to a 32-channel silicon probe. (¢) Two example peristimulus time histograms (PSTH) (top) and raster plots of trial-by-trial spike times (bottom)
from single neurons recorded from the DMS of an A2a-Cre mouse. Inset at top displays average spike waveform (black) and 100 randomly sampled spike
waveforms (grey) for each neuron. A trial consisted of 5-s without laser (pre, —5 to 0-s), 5-s of 532-nm light (5-mW) delivery (on, O to 5-s), followed by
a10-s ITI (40 trials per recording site). The first 2-s following laser offset (post, 5-7-s) was used to assess post-inhibitory effects. (d) Left: Histogram of
change in average firing rate (on-pre, Hz) for all neurons (n=60) recorded from the DMS of A2a-Cre mice (n=3). Colors indicate non-significant (black,
n=238 neurons), significantly decreased (red, n=18 neurons) or increased (green, n=4 neurons) changes in firing rate determined via paired, two-tailed
signrank comparison of average across-trial baseline (pre) or laser (on) firing rates. A Bonferroni-corrected significance threshold was used to account
for multiple neuron comparisons (p <0.00083, or p=0.05/60 neuron comparisons). Right: same as left but for change in firing rate (post-pre, Hz): non-
significant (n=55 neurons), significantly decreased (n=4) or increased (n=1). Insets display pie-chart summaries of the proportion of non-significant
(black unfilled), significantly decreased (red) or increased (green) neurons. (e) Left: Mean +1s.e.m. z-scored firing rate across all non-significantly
modulated on vs pre (black, n=38) or significantly decreased on vs pre (red, n=18) neurons recorded from A2a-Cre mice. Right: same as left but for all
non-significantly modulated post vs pre (black, n=55) or significantly decreased post vs pre (red, n=4) neurons. (f) Same as ¢ but for example neurons
recorded from the DMS of D1R-Cre mice. (g) Same as d but for all neurons (n=50) recorded from the DMS of D1R-Cre mice (n=2). Left (on-pre): non-
significant (n=27), significantly decreased (n=21), or increased (n=2). Right (post-pre): non-significant (n=46), significantly decreased (n=2) or
increased (n=2). A Bonferroni-corrected significance threshold was used to account for multiple neuron comparisons (p < 0.001, or p=0.05/50 neuron
comparisons). (h) same as e but for neurons recorded from the DMS of DIR-Cre mice.
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Extended Data Fig. 2 | Non-significant motor effects of DMS pathway inhibition compared to non-opsin expressing controls during virtual corridor
navigation. (a) Schematic of virtual corridor and unilateral delivery of 532-nm light (5-mW) restricted to 0-200 cm. (b) Difference in average y-velocity
(cm/s) during laser on and off trials (on-off) for mice receiving indirect (n=7 mice, n=1,712 laser off and n=1,288 laser on trials) or direct (n=6

mice, n=1,088 laser off and n=757 laser on trials) pathway inhibition of the DMS, or DMS illumination alone (no opsin; n=>5 mice, n=1,178 laser off

and n=827 laser on trials). p-value denotes significance of one-way ANOVA of group on delta y-velocity (p=0.98, F,,;=0.02). (¢) Same as b but for
difference in x-position (cm, on-off) contralateral to the laser hemisphere (p=0.60, F,,;=0.53). (d) Same as ¢ but for difference in view angle (deg,
on-off) contralateral to the laser hemisphere (p=0.20, F,;;=1.90). (e) Same as ¢ but for difference in mean standard deviation in view angle (deg, on-off).
The mean of the standard deviation in view angles sampled in 5-cm steps from 0-300 cm were calculated per trial, and then averaged across all laser off
(or on) trials for a mouse (p=0.94, F,,,=0.06). Indirect: n=7 mice, n=2,109 laser off and n=1,574 laser on trials; direct: n=6 mice, n=1,330 laser off
and n=930 laser on trials; no opsin: n=6 mice, n=1,688 laser off and n=1,199 laser on trials). (f) As in e but for difference in total distance travelled
(cm, on-off) to complete a trial (p=0.93, F,,,=0.08). (g) As in e but for the difference in percentage of trials with excess travel (defined as >10% of
corridor length to reward, or >330cm) (p=0.76, F,,4=0.28). Throughout solid black lines indicate mean +1s.e.m. across mice and transparent 'x’ denote
individual mouse mean throughout.
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Extended Data Fig. 3 | Similar motor performance across three virtual reality T-mazes. Schematic of three virtual reality (VR)-based T-mazes that differ
in task requirements. (b) Average y-velocity (cm/s) of mice during the cue region (0-200 cm) of the accumulation of evidence task (black, n=32 mice,
n=52,381 trials), no distractors (ctrl #1) task (magenta: n=32 mice, 56,783 trials), or permanent cues (ctrl #2) task (cyan: n=20 mice, n=27,870 trials).
Solid bars denote mean +1 s.e.m. across mice while transparent ‘x’ denotes individual mouse mean. p-value denotes one-way ANOVA of task on y-velocity
(p=0.51, F,4,=0.67). (¢) Same as b but for average x-position (cm) during the cue region (0-200 cm) on left and right choice trials. p-value denotes one-
way ANOVA of task on x-position (left choice: p=0.50, F,5,=0.70; right choice: p=0.37, F,5,=1.0). (d) Same as b but for average view angle (degrees)
during the cue region (0-200 cm) on left and right choice trials (left choice: p=0.53, F,5,=0.64; right choice: p=0.70, F,4,=0.37). (e) As in b but for
average percent of trials with excess travel (defined as travel >10% of maze stem, or >330 cm). Accumulation of evidence: n=32 mice, n=53,833 trials;
control #2 (no distractors): n=32 mice, n=60,074 trials; control #2 (permanent cues): n=20 mice, n=29,192 trials. p-value denotes one-way ANOVA
of task on excess travel (p=0.06, F,5,=2.9). (f) As in b but for mean standard deviation in view angle (degrees) per trial (n as in ). p-value denotes one-
way ANOVA of task on view angle deviation (p=0.07, F,5=2.8). (g) Average accuracy of decoding left/right choice based on the trial-by-trial x-position
(cm) of mice as a function of y-position in the maze (0-300 cm in 25-cm bins). Training and test trial sets were selected within individual mice (80% train,
5-fold cross-validation, re-sampled 10 times). Left: Each x’ depicts decoding accuracy at each y-position bin for individual mice performing the evidence
accumulation (black), no distractors (ctrl #1, magenta), or permanent cues (ctrl #2, cyan) tasks. Right: Group mean and +1 s.e.m. across mice for each
task (n asin b). (h) Same as f but for average accuracy of decoding left/right choice based on the trial-by-trial view angle (degrees) of mice (nasinb).

(i) Average accuracy of decoding left/right choice based on the trial-by-trial x-position (cm) of mice as a function of y-position in the maze (0-300cm

in 25-cm bins). Training trial sets were randomly selected across all mice (50% total trials, re-sampled 50 times) performing either the accumulation of
evidence (left, AoE, black), no distractors (middle, ctrl#1, magenta), or permanent cues (right, ctrl#2, cyan) tasks. Testing trial sets were the 50% of held-
out trials in the task used for training, or all trials in the alternate tasks. Top: Each ‘x’ depicts average decoding accuracy across all training/tests sets at
each y-position bin for individual mice performing the evidence accumulation (black), no distractors (ctrl #1, magenta), or permanent cues (ctrl #2, cyan)
tasks. Right: Group mean and +1 s.e.m. across mice for each task (n as in a). (j) Same as | but for average accuracy of decoding left/right choice based on
the trial-by-trial view angle (degrees) of mice (n as in b).
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Extended Data Fig. 4 | Effects of pathway-specific DMS and NAc inhibition on psychometric performance across virtual reality tasks. (a) Schematic

of unilateral indirect pathway DMS inhibition with choice defined ipsilateral or contralateral to the hemisphere receiving 532-nm laser illumination.

(b) Schematic of three virtual reality based decision-making tasks (left: accumulation of evidence; middle: control #1, no distractors; right: control #2,
permanent cues) and laser illumination restricted to the cue region (0-200 cm). (¢) Percent of contralateral choice trials as a function of the difference

in sensory cues (contralateral-ipsilateral) binned in increments of 5 from —15 to 15. Transparent lines indicate individual mouse mean during laser off
(grey) and on (green) trials for mice receiving indirect-pathway DMS inhibition during the evidence accumulation (black, left), no distractors (magenta,
ctrl#1, middle), or permanent cues (cyan, ctrl#2, right). Thick lines indicate mean +1s.e.m. across mice at each evidence bin during laser off (black) and

on (green) trials. (d) Same as a but for mice receiving unilateral direct pathway DMS inhibition. (e) same as b. (f) Same as ¢ but for mice receiving direct
pathway DMS inhibition. (g) Same as a but for mice receiving unilateral DMS illumination in the absence of NpHR (no opsin). (h) Same as b. (i) same as ¢
but for mice receiving unilateral DMS illumination in the absence of NpHR (no opsin). (j) Schematic of unilateral inhibition of NAc indirect (left) or direct
(middle) pathway, or NAc illumination in the absence of NpHR (no opsin). (k) Schematic of accumulation of evidence task and delivery of 532-nm light
during the cue region (0-200cm). () As in ¢ but for psychometric comparison between groups receiving NAc indirect or direct pathway inhibition, or NAc
illumination in the absence of NpHR (no opsin).
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Extended Data Fig. 5 | Effects of pathway-specific DMS inhibition on choice are larger in the most demanding task, and stronger than effects of
pathway-specific NAc inhibition. (a) Schematic of three virtual reality based decision-making tasks (left: accumulation of evidence; middle: control #1, no
distractors; right: control #2, permanent cues). (b) Schematic of unilateral indirect pathway DMS inhibition with choice defined ipsilateral or contralateral
to the hemisphere receiving 532-nm laser illumination (top). Difference in choice bias (%, contralateral - ipsilateral) between laser on and off trials (on-
off) in mice performing the accumulation of evidence (AoE, black), no distractors (ctrl #1, magenta), or permanent cues (ctrl #2, cyan) tasks. p-value
denotes one-way ANOVA of task on delta (on-off) choice bias (p=1.0 x10-%, F,,,=20.2). Post-hoc comparisons reflect unpaired, two-tailed Wilcoxon
ranksum tests on delta (on-off) choice bias (AoE, n=11, vs ctrl #1, n=7: p=8.0 X104, z=3.4; AoE vs ctrl #2,n=7: p=0.001, z=3.3). (c¢) Same as b but
for direct pathway DMS inhibition. p-value denotes one-way ANOVA of task on delta (on-off) choice bias (p=0.001, F,,;=9.4). Post-hoc comparisons
reflect two-tailed, unpaired Wilcoxon ranksum tests (AoE, n=10, vs ctrl #1, n=9: p=0.002, z=-3.0; AoE vs ctrl #2,n=7: p=0.005, z=-2.8). (d)
Same as b but for DMS illumination in the absence of NpHR (no opsin). p-value denotes one-way ANOVA of task on delta (on-off) choice bias (p=0.09,
F116=2.8). Post-hoc comparisons reflect two-tailed, unpaired Wilcoxon ranksum tests (AoE, n=11, vs ctrl #1, n=4: p=0.65, z=0.46; AoE vs ctrl #2, n=6:
p=0.06, z=1.8). (e) Schema of evidence accumulation task (left), unilateral inhibition of indirect pathway in the DMS (middle left) or NAc (middle right),
and delta (on-off) choice bias in mice receiving indirect pathway DMS (n=11) or NAc (n=9) inhibition (right). Statistical comparison reflects two-tailed,
unpaired Wilcoxon ranksum test (DMS vs NAc: p=2.6 X104, z=3.6). (f) Same as e but for direct pathway DMS (n=10) or NAc (n=10) inhibition.
Statistical comparison reflects two-tailed, unpaired Wilcoxon ranksum test (DMS vs NAc: p=1.8 x10~4, z=—-3.7). Throughout solid bars denote mean +1
s.e.m. across mice and transparent ‘x’ denote individual mouse means.
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Extended Data Fig. 6 | Inhibition of DMS pathways has limited impact on motor performance across VR-based decision-making tasks. (a) Mean +1
s.e.m.. y-velocity (cm/s) as a function of y-position (0- 300 cm in 25 cm bins) during laser off (black) or laser on (green) trials across mice receiving DMS
indirect pathway inhibition during the evidence accumulation (left: n=11 mice, n=16,935 laser off and n=23,390 laser on trials), no distractors (middle,

ctrl #1: n=7 mice, n=13,706 laser off and n=3,288 laser on trials) or permanent cues (right, ctrl #2: n=6 mice, n=4,033 laser off and n=929 laser on
trials). (b) Same as a but for mice receiving direct pathway inhibition during the evidence accumulation (left: n=10 mice, n=14,030 laser off and n=3,103
laser on trials), no distractors (middle, ctrl #2: n=8 mice, n=14,647 laser off and n=3,682 laser on trials) or permanent cues (right, ctrl #3: n=7 mice,
n=6,061 laser off and n=1,494 laser on trials) tasks. (c) Same as a but for mice receiving DMS illumination in the absence of NpHR (no opsin) during

the evidence accumulation (left: n=11 mice, n=21,422 laser off and n=5,113 laser on trials), no distractors (middle, ctrl #1: n=4 mice, n=3,654 laser

off and n=901 laser on trials), or permanent cues (right, ctrl #2: n=4 mice, n=3,975 laser off and n=923 laser on trials) tasks. (d) Mean +1s.e.m. in
delta (on-off) distance (cm) traveled (left) and delta (on-off) trials (%) with excess travel greater than 10% of maze stem (or > 330 cm) (right) in mice
receiving indirect pathway inhibition during the evidence accumulation (black, n=11 mice, n=22,090 laser off and n=4,378 laser on trials), no distractors
(magenta, n=7 mice, n=14,826 laser off and n=3,591 laser on trials), or permanent cues (n=6 mice, n=4,447 laser off and n=1050 laser on trials)
tasks. p-value denotes one-way ANOVA of task on delta (on-off) distance (p=0.45, F,,,=0.81) or excess travel (p=0.52, F,,,=0.66). (e) Same as

d but for delta (on-off) distance (cm) traveled (left) or delta percent trials with excess travel (right) in mice receiving direct pathway inhibition during

the evidence accumulation (black, n=10 mice, n=20,914 laser off and n=4,721 laser on trials), no distractors (magenta, n=9 mice, n=15,778 laser off
and n=3,992 laser on trials), or permanent cues (n=7 mice, n=6,430 laser off and n=1,591 laser on trials) tasks. p-value denotes one-way ANOVA of
task on delta (on-off) distance (p=0.13, F,,;=2.2) or excess travel (p=0.50, F,,;=0.71). (f) Same as d but for delta (on-off) in distance (cm) traveled
(left) or percent trials with excess travel (right) in mice receiving DMS illumination in the absence of NpHR (no opsin) during the evidence accumulation
(black, n=11 mice, n=28,557 laser off and n=6,772 laser on trials), no distractors (magenta, n=>5 mice, n=4,118 laser off and n=1,002 laser on trials),
or permanent cues (n=6 mice, n=4,360 laser off and n=1,038 laser on trials) tasks. p-value denotes one-way ANOVA of task on delta (on-off) distance
(p=0.06, F,;5=3.3) or excess travel (p=0.23, F,;,=1.6). (g) Same as d but for delta (on-off) in per-trial standard deviation in view angle in mice receiving
DMS indirect pathway inhibition across tasks (p=0.34, F,,, =11, n as in d). (h) Same as g but for mice receiving DMS direct pathway inhibition across
tasks (p=0.27, F,,3=14, nas in e). (i) Same as g but for mice receiving DMS illumination (no opsin) in the absence of NpHR (p=0.03, F,;0=4.3,n as

in f). (j) Delta (on-off) x-position (cm) (left) or view angle (degrees) (right) during the cue region (0-200 cm) in mice receiving DMS indirect pathway
inhibition during the accumulation of evidence (black), no distractors (control #1, magenta), or permanent cues (control #2, cyan) tasks (n as in a). One-
way ANOVA of task on delta (on-off) x-position (p=0.01, F,,,=5.6). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on delta (on-off) x-position
(AoE v control #1: p=0.2, z=1.3; AoE v control #2: p=0.004, z=2.9; control #1v control #2: p=0.13, z=1.5). One-way ANOVA of task on delta (on-off)
view angle (p=0.14, F,,,=2.2). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on delta (on-off) view angle (AoE v control #1: p=0.58, z=0.5;
AoE v control #2: p=0.24, z=1.78; control #1v control #2: p=0.52, z=0.6). (k) Same as j but for mice receiving DMS direct pathway inhibition (n as

in b). One-way ANOVA of task on delta (on-off) x-position (p=0.08, F,,;=2.8). Post-hoc, two-tailed unpaired Wilcoxon ranksum test on delta (on-off)
x-position (AoE v control #1: p=0.13, z=-1.5; AoE v control #2: p=0.1, z=-1.6; control #1v control #2: p=0.46, z=—-0.7). One-way ANOVA of task

on delta (on-off) view angle (p=0.02, F,,;=3.6). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on delta (on-off) view angle (AoE v control #1:
p=0.21,z=-1.3; AoE v control #2: p=0.03, z=-2.1; control #1v control #2: p=0.24, z=-1.6). (I) Same as j but for mice receiving DMS illumination

in the absence of NpHR (no opsin, n as in €). One-way ANOVA of task on delta (on-off) x-position (p=0.24, F,,s=1.54). Post-hoc, two-tailed, unpaired
Wilcoxon ranksum test on delta (on-off) x-position (AoE v control #1: p=0.21, z=—1.24; AoE v control #2: p=0.51, z=0.06; control #1v control #2:
p=0.04, z=2.0). One-way ANOVA of task on delta (on-off) view angle (p=0.23, F,;3=1.56). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on
delta (on-off) view angle (AoE v control #1: p=0.84, z=0.19; AoE v control #2: p=0.20, z=1.2; control #1v control #2: p=0.24, z=1.7). Throughout solid
bars denote mean +1s.e.m. and transparent ‘x" indicates individual mouse mean.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Model selection and control data analyses for the GLM-HMM. (a) Comparison of the log-likelihood of the data using GLM-HMMs
with different numbers of states for mice inhibited in the DMS direct pathway (dark gray), or indirect pathway (light gray), and mice without DMS opsin
(black). All values are relative to the log-likelihood of the standard GLM (1-state GLM-HMM). Values are calculated in bits per session (see Methods).
Solid curves denote mean +s.e.m. of five different test sets. Held-out data for test sets was selected as a random 20% of sessions, using an approximately
equal number of sessions for each mouse. (b) Same as a but with different numbers of previous choice covariates using a three-state GLM-HMM. (¢)
Comparison of the log-likelihood of simulated data using GLM-HMMs with different numbers of states. Data was simulated from a two-state GLM-HMM
that had been fit to data for mice inhibited in the indirect pathway of the DMS and then cross-validation performed either on the entire simulated dataset
(~54000 trials, left) or a subset of 5% of the data (2600 trials, right). All values are relative to the log-likelihood of a GLM (one-state GLM-HMM). Values
are calculated in bits per session (see Methods). Solid curves denote the average of five different test sets. Held-out data for test sets was selected as a
random 20% of sessions. Performing cross validation on a small subset of the data serves to demonstrate that the log-likelihood does in fact decrease

as the model starts to overfit. This is difficult to see with large datasets where overfitting is less of a concern and therefore the log-likelihood begins to
flatten rather than decrease. (d) Fitted GLM weights for the four-state GLM-HMM using aggregated data from all mice inhibited in the indirect pathway
of the DMS. Error bars denote (+1) posterior standard deviation for each weight. The magnitude of the weight represents the relative importance of that
covariate in predicting choice, whereas the sign of the weight indicates the side bias. (e) Same as d but for mice inhibited in the DMS direct pathway.

(F) GLM weights fitted to a concatenated dataset consisting of the indirect, direct, and control (no opsin) groups. Solid lines on the left connect covariates
that are shared across groups. Horizontal marks on the right denote laser weights, which were learned separately for each group. Error bars denote (+1)
posterior standard deviation of each weight. (g) Percent of contralateral choice based on the difference in contralateral versus ipsilateral cues in each trial
for mice in the control (no opsin) group. To compute psychometric functions, trials were assigned to each state by taking the maximum of the model's
posterior state probabilities on each trial. Error bars denote +1 s.e.m. for light-off (solid) and light-on (dotted) trials. Solid curves denote logistic fits to

the concatenated data across mice for light-off (solid) and light-on (dotted) trials. (h) Same as f but for data simulated from the model fit to mice in the
control group (see Methods).
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Extended Data Fig. 8 | GLM-HMM state 3 is associated with indicators of task disengagement. (a) The mean posterior probability of each state over the
first and last 50 trials of a session, averaged across all sessions for mice inhibited in the indirect pathway of the DMS (n=271 sessions). (b) Same as a but
for mice receiving DMS direct pathway inhibition (n=266 sessions). (¢) Mean +s.e.m. of the cumulative reward received in a session prior to transitions
into state 1 (n=142), state 2 (n=85), or state 3 (n=237) in the indirect pathway group. One-way ANOVA of transition state on cumulative reward
(p=1.0 xX107% F, 440=14.2). Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1vs 2: p=0.96, z=—0.03; state 2 vs 3:
p=0,z=-3.6;state 1vs 3: p=0, z=—4.5). (d) Mean +s.e.m. of the reward rate (uL/min) in a session prior to transitions into each state for the indirect
pathway group. Reward rate was calculated as the sum of reward received from the start of the session up to the transition trial divided by the sum of the
duration of all trials from the start of the session up to the transition trial. One-way ANOVA of transition state on reward rate (p=4.1x107"; F, ., =32.9).
Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1vs 2: p=0.55, z=-0.6; state 2 vs 3: p=0, z=-4.9; state 1vs 3:
p=0,z=-74). (e) Same as ¢ but for the direct pathway group (state 1: n=140; state 2: n=29; state 3: n=159). One-way ANOVA of transition state on
cumulative reward (p=0.14; F, 3s=1.99). Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1vs 2: p=0.35,z=-0.9;
state 2 vs 3: p=0.78, z=—-0.27; state 1vs 3: p=0.08, z=-1.74). (f) Same as d but for the direct pathway group. One-way ANOVA of transition state on
reward rate (p=8.7 X107, F, ,s=22.6). Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1vs 2: p=0.49, z=0.69;
state 2 vs 3: p=0.0, z=—-4.2; state 1vs 3: p=0.0, z=-5.9). (g) The mean posterior probability of each state aligned +25 trials to trials in which reward
was received for the indirect pathway group. (h) Same as g but state probability aligned to trials with excess travel (defined as 10% greater than the maze
stem, or 330 cm). (i) Same as g but for the direct pathway group. (j) Same as h but for the direct pathway group.
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Extended Data Fig. 9 | Model simulations recapitulate transition and state characteristics of real data. (a) Transition probabilities of the model fit to
data from mice inhibited in the DMS indirect pathway (black) and from five simulated datasets generated from the model fit to mice inhibited in the

DMS indirect pathway (gray), shown separately for diagonal (left) and off-diagonal (right) probabilities. (b) Same as a but for mice inhibited in the direct
pathway of the DMS. (¢) The posterior probability of each state over the first and last 50 trials of a session, averaged across all sessions for mice inhibited
in the indirect pathway of the DMS (n=271). Dark lines denote average for real data (same as Fig. 7E) and faded lines indicate averages for each of the
five simulations. (d) Same as ¢ but for mice inhibited in the direct pathway of the DMS (dark lines are the same as shown in Fig. 7 F). (e) Dwell times
showing the average consecutive number of trials that mice inhibited in the DMS indirect pathway spent in each state for real data (left; range 39-86 trials,
average session length 202 trials, same as shown in Fig. 7g) and one simulated dataset (right; range 60-71 trials, average session length 202 trials). Black
dots show averages for individual mice (n=13). We removed the last run in each session (including any run that lasted the entire session length) from the
analysis, as the termination of the session prematurely truncated the length of those runs. (f) Same as e but without removing the last run in each session
for real data (left; range 51-118 trials, average session length 202 trials) and one simulated dataset (right; range 65-93 trials, average session length 202
trials). (g) Same as e but for mice inhibited in the direct pathway of the DMS for real data (left; range 52-59 trials, average session length 185 trials,

same as shown in Fig. 7g) and one simulated dataset (right; range 61-66 trials, average session length 185 trials). Black dots show averages for individual
mice (n=13). (h) Same as g but without removing the last run in each session for real data (left; 67-89 trials, average session length 185 trials) and one
simulated dataset (right; range 74-110 trials, average session length 185 trials).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of motor performance across GLM-HMM states with and without pathway-specific DMS inhibition. (a) Schematic
denoting analysis of motor performance across GLM-HMM states on laser off trials only (panels b-g) in mice unilaterally coupled to a fiberoptic for
indirect pathway inhibition. (b) Average y-velocity (cm/s) during laser off trials as a function of y-position in the maze (0-300 cm in 25-cm bins) in
indirect pathway mice across GLM-HMM states (state 1, blue: n=13,394 trials; state 2, yellow: n=13,570 trials; state 3, red: n=16,982 trials). (¢) As in

b but for average x-position (cm) on ipsilateral or contralateral choice trials (n asin b). (d) As in ¢ but for average view angle (degrees) on ipsilateral and
contralateral choice trials (n as in b). (e) Mean per-trial standard deviation in view angle during laser off trials across GLM-HMM states (state 1, blue:
n=13,854 trials; state 2, yellow: n=14,201 trials; state 3, red: n=18,258 trials). p-value denotes one-way repeated measures ANOVA of state on view
angle deviation (p=0.06, F,,,=3.2). (f) As in e but for average distance traveled (cm) per trial. p-value denotes one-way repeated measures ANOVA

of state on distance (p=0.02, F,,,=5.0, n as in e). (g) As in e but for average percent of trials with excess travel. p-value denotes one-way repeated
measures ANOVA of state on excess travel (p=0.0004, F,,,=10.9, n as in e). (h) Schematic denoting analysis of effects of indirect pathway DMS
inhibition on motor performance across GLM-HMM states in i-n. (i) As in b but for average y-velocity on laser off (black) or laser on (green) trials across
GLM-HMM states (n of laser off trials as in b-g, n of laser on trials: state 1, blue: n=2,302 trials; state 2, yellow: n=1,858 trials; state 3, red: n=3,005
trials). (j) As in ¢ but for delta (on-off) x-position (cm) during the cue region (0-200 cm) across GLM-HMM states in mice with indirect pathway
inhibition. p-value denotes one-way repeated measures ANOVA of state on delta x-position (p=3.2x107%, F,,,=11.4, n as in i). Post-hoc comparisons
reflect two-tailed, paired Willcoxon signed rank tests between states (state 1vs state 3: p=0.07, z=1.7; state 1 vs state 2: p=0.006, z=2.7; state 2 vs
state 3: p=0.03, z=2.4). (k) As in j but for delta (on-off) view angle (degrees). p-value denotes one-way repeated measures ANOVA of state on delta
view angle (p=1.2x10">,F,,,=18.7, n as in i). Post-hoc comparisons reflect two-tailed, paired Willcoxon signed rank tests between states (state 1vs state
3:p=0.009, z=2.6; state 1 vs state 2: p=0.001, z=—-3.18; state 2 vs state 3: p=0.002, z=-3.1). (I) Same as e but for delta (on-off) mean per-trial view
angle standard deviation across GLM-HMM states in mice with indirect pathway inhibition (n of laser off trials as in e-g, n of laser on trials: state 1, blue:
n=2,887 trials; state 2, yellow: n=2,713 trials; state 3, red: n=2,970 trials). p-value denotes one-way repeated measures ANOVA of state on delta view
angle deviation (p=0.97, F,,,=0.03, n as in ). (m) Same as f but for delta (on-off) in mean per-trial distance (cm) traveled across GLM-HMM states with
indirect pathway inhibition (p=0.68, F,,,=0.38, nasin I). (n) Same as g but for delta (on-off) in percent of trials with excess travel across GLM-HMM
states with direct pathway inhibition (p=0.08, F,,,=2.8, n asin ). (0) As in a but schematic denoting analysis of motor performance across GLM-HMM
states on laser off trials only in mice unilaterally coupled to a fiberoptic for direct pathway inhibition in p-u. (p) As in b but for y-velocity (cm/s) on laser
off trials across GLM-HMM states in direct pathway mice (state 1, blue: n=12,294 laser off and n=2,302 laser on trials; state 2, yellow: n=9,201 laser
off and n=1,858 laser on trials; state 3, red: n=16,239 laser off and n=3,005 laser on trials). () As in ¢ but x-position (cm) for direct pathway mice (n
as inp). (r) Asind but for view angle (degrees) for direct pathway mice (n as in p). (s) As in e but for mean per-trial view angle standard deviation across
GLM-HMM states in direct pathway mice (state 1, blue: n=13,403 laser off and n=2,508 laser on trials; state 2, yellow: n=9,555 laser off and n=1,969
laser on trials; state 3, red: n=18,292 laser off and n=3,450 laser on trials). p-value denotes one-way repeated measures ANOVA of state on per-trial
view angle standard deviation (p=0.12, F,,,=2.3). () As in f but for distance (cm) in direct pathway mice (p=0.1, F,,,=2.5). (u) As in g but for percent
trials with excess travel in direct pathway mice (p=0.14, F,,,=2.1). (v) As in h but schematic denoting analysis of effects of direct pathway DMS inhibition
on motor performance across GLM-HMM states in w-bb. (w) As in i but for the mean y-velocity (cm/s) on laser on (green) and off (black) trials across
GLM-HMM states in direct pathway mice. (x) As in j but for the delta (on-off) x-position (cm) across GLM-HMM states in direct pathway mice. p-value
denotes one-way repeated measures ANOVA of state on delta x-position (p=7.9x10-%, F,,,=14.9). Posthoc comparisons reflect two-tailed, paired
Willcoxon signed rank tests between states (state 1vs state 3: p=0.06, z=1.8; state 1 vs state 2: p=0.005, z=2.8; state 2 vs state 3: p=0.005, z=2.8).
(y) As in k but for delta (on-off) view angle (degrees) across GLM-HMM states in direct pathway mice. p-value denotes one-way repeated measures
ANOVA of state on delta view angle (p=2.6x10"%, F,,,=12.3). Posthoc comparisons reflect two-tailed, paired Willcoxon signed rank tests between states
(state 1vs state 3: p=0.03, z=2.3; state 1vs state 2: p=0.003, z=2.98; state 2 vs state 3: p=0.03, z=2.1). (2) As in | but for delta (on-off) mean per-
trial view angle standard deviation (degrees) in direct pathway mice (p=0.40, F,,,=0.94, n as in s-u). (aa) as in m but for delta (on-off) in mean distance
(cm) traveled in direct pathway mice (p=0.43, F,,,=0.89). (bb) as in n but for delta (on-off) in percent trials with excess travel in direct pathway mice
(p=0.90, F,,,=0.1). Throughout solid colored bars denote mean +1s.e.m. while transparent grey lines reflect individual mouse mean.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

nature portfolio

Corresponding author(s): Ilana B. Witten

Last updated by author(s): Dec 23, 2021

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

lXI The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XX OO OO0 o 00
OOX X X XK

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Virtual reality behavioral data was collected using Matlab code (Matlab 2015b and above, Mathworks Inc) running the VIRMEn package
(https://pni.princeton.edu/pni-software-tools/virmen-virtual-reality-matlab-engine), and using the following Arduino based optical sensor
package
(https://github.com/sakoay/AccumTowersTools/tree/master/OpticalSensorPackage). Experimental code is collected at the following public
repository (https://github.com/BrainCOGS/TankMouseVR). Ethovision XT 9 (Noldus) was used to acquire real-time conditioned place
preference data.
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Sample size Statistical calculations were not used to select sample sizes. Number of animals per group were chosen based on sample sizes in comparable
tasks employing optogenetic inhibition (e.g. Yartsev et al 2018; Deverett et al 2019). Our sample sizes meet or exceed these studies.
Moreover, our experiments allow for a total number of trials that are orders of magnitude greater than comparable tasks in the field. Our
compiled data set consists of well over 100,000+ trials, providing us with greater statistical power than most comparable studies.

Data exclusions  We used histological assessment of viral expression, and viral/fiberoptic targeting to remove data from mice. If expression or targeting was
absent or misplaced on only one hemisphere, only data from this hemisphere was removed. The total number of animals excluded due to
histological criteria is detailed in Methods, Animals. For some analysis, trial exclusions were implemented and are fully described in Methods,
Data Selection.

Replication Due to the number of manipulations and required sample sizes per group, multiple cohorts were required to fill our data set. All cohorts
replicated our main findings.

Randomization = Whenever possible, in all cohorts efforts were made to include mice from all experimental groups as evenly as possible. This includes across
cage-mates, genotype, and sex. We did not observe any systematic bias or modulation of our main effects according to these variables.

Blinding Experimenters were blind to group allocation during data collection, but not during analysis.
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XNXXOXXX s
OO0OXOO

Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We used male and female mice, aged 2-6mos, on the following transgenic lines back-crossed to a CB7BL/6J background (Jackson
Laboratory, 000664): Drd1-Cre (n=45, EY262Gsat, MMRRC-UCD), Drd2-Cre (n=23, ER44Gsat, MMRRC-UCD), and A2a-Cre (n=18,
KG139Gsat, MMRRC-UCD).




Wild animals This study did not involve wild animals.
Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight All procedures were conducted in accordance with National Institute of Health guidelines and were reviewed and approved by the
Institutional Animal Care and Use Committee at Princeton University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

>
Q
Q
<
=
)
e,
]
=3
o
=
—
@
o
]
=
>
@
(%2}
C
3
3
Q
E
2




	Opponent control of behavior by dorsomedial striatal pathways depends on task demands and internal state

	Results

	Inhibition of pathway-specific dorsomedial striatum activity is effective. 
	Dorsomedial striatum pathway inhibition does not impact virtual corridor navigation. 
	Three virtual reality T-mazes with varying cognitive demands. 
	Behavioral effects of dorsomedial striatum pathway inhibition depend on task demand. 
	Little effect of nucleus accumbens pathway inhibition on choice. 
	Bernoulli generalized linear model does not fully capture psychometric curves. 
	GLM–HMM better explains choice data with dorsomedial striatum inhibition. 
	GLM–HMM identifies states with varying dorsomedial striatum dependence. 
	Diversity in timing and number of GLM–HMM state transitions. 
	Motor performance across GLM–HMM states. 

	Discussion

	Cross-task differences in effects of dorsomedial striatum pathway inhibition. 
	Within-task changes in effects of dorsomedial striatum pathway inhibition. 

	Online content

	Fig. 1 Pathway-specific dorsomedial striatum inhibition has no detectable impact on movement in mice navigating a virtual corridor.
	Fig. 2 A set of virtual reality T-mazes has similar sensory features and identical motor requirements but different cognitive demands.
	Fig. 3 Inhibition of dorsomedial striatum but not nucleus accumbens pathways has strong and opposing influence on choice during an evidence accumulation task, while having weaker effects during task variants with diminished cognitive demands.
	Fig. 4 A GLM reveals that sensory evidence, dorsomedial striatum pathway inhibition and trial history predict choice during the evidence accumulation task, but does not precisely recapitulate the shape of the psychometric curve.
	Fig. 5 A GLM–HMM better explains choice during the evidence accumulation task than the GLM, particularly on trials with dorsomedial striatum pathway inhibition.
	Fig. 6 A GLM–HMM uncovers states during the evidence accumulation task with different weighting on sensory evidence, choice history and dorsomedial striatum pathway inhibition.
	Fig. 7 Diversity across sessions in the timing and number of GLM–HMM state transitions.
	Extended Data Fig. 1 Optogenetic inhibition of DMS pathways is effective, generating little post-inhibitory rebound, nor excitation during the inhibition period.
	Extended Data Fig. 2 Non-significant motor effects of DMS pathway inhibition compared to non-opsin expressing controls during virtual corridor navigation.
	Extended Data Fig. 3 Similar motor performance across three virtual reality T-mazes.
	Extended Data Fig. 4 Effects of pathway-specific DMS and NAc inhibition on psychometric performance across virtual reality tasks.
	Extended Data Fig. 5 Effects of pathway-specific DMS inhibition on choice are larger in the most demanding task, and stronger than effects of pathway-specific NAc inhibition.
	Extended Data Fig. 6 Inhibition of DMS pathways has limited impact on motor performance across VR-based decision-making tasks.
	Extended Data Fig. 7 Model selection and control data analyses for the GLM-HMM.
	Extended Data Fig. 8 GLM-HMM state 3 is associated with indicators of task disengagement.
	Extended Data Fig. 9 Model simulations recapitulate transition and state characteristics of real data.
	Extended Data Fig. 10 Comparison of motor performance across GLM-HMM states with and without pathway-specific DMS inhibition.




