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The striatum is composed of two principal outputs, the direct 
and indirect pathways, which are thought to exert opposing 
effects on behavior1. In support of this view, many influen-

tial studies have shown that pathway-specific activation of the 
striatum produces opposing behavioral biases2–14. For example, 
direct or indirect pathway activation oppositely influences locomo-
tion2–4,14, licking5,11,15, left/right rotations2,3,11,16, repetition/cessation 
of activation-paired behaviors6–8 and left/right movements to report 
value-based decisions9,13.

Despite this pioneering work, it remains unresolved whether 
the endogenous activity of the two pathways provides opposing 
control over the generation of movements, or instead contributes 
to the cognitive process of deciding which movement to perform. 
This is in part because pathway-specific manipulations have dispro-
portionately relied on artificial and synchronous activation, rather 
than inhibition of endogenous activity2–11,13. The imbalance toward 
reports of activation suggests a wealth of negative results from 
inhibition, raising questions about the function of the endogenous 
activity, and whether it contributes to cognition. In fact, most pre-
vious pathway-specific activation studies have not used cognitively 
demanding tasks, making it difficult to dissociate a role in the deci-
sion toward a movement versus the generation of the movement 
itself2–4,6,11,14,16. In contrast, studies of the striatum that were not 
pathway specific have instead focused on cognitively demanding 
behaviors17–24. Taken together, this raises the possibility that stria-
tal pathways exert opposing control of movement in the context 
of decision-making, rather than directly controlling motor output 
irrespective of cognition.

Thus, to determine if the contribution of endogenous activity in 
striatal pathways depends on cognition, we examined the effects of 
pathway-specific inhibition across a set of virtual reality tasks that 
had the same motor output and similar sensory features, but different  

cognitive requirements. This allowed us to ask if a task’s demands 
determined the effect of pathway-specific inhibition on behavior. 
Second, we used a latent state model to identify time-varying states 
within the same task. This allowed us to determine if the contribu-
tion of each pathway to behavior changed across time, even within 
the same task.

We found that inhibition of neither pathway produced a detect-
able influence on behavior as mice navigated a virtual corridor 
in the absence of a decision-making requirement. In contrast, 
pathway-specific inhibition produced strong and opposing biases 
on decisions based on the accumulation of evidence in a virtual 
T-maze25, and had weaker effects on choice during less demand-
ing task variants. Our latent state model further revealed that even 
within the evidence accumulation task, mice occupy different states 
across time that differ in the weighting of sensory evidence and 
trial history, as well as the extent that pathway-specific inhibition 
impacts choice. Thus, by comparing the effects of pathway-specific 
inhibition across behavioral tasks, and across time within a task, we 
conclude that both demands of the task and internal state of the 
mice determine whether striatal pathways exert strong and oppos-
ing control over behavior.

Results
Inhibition of pathway-specific dorsomedial striatum activity is 
effective. We first sought to validate the effectiveness of halorho-
dopsin18 (NpHR)-mediated inhibition of indirect and direct striatal 
pathway activity in awake, head-fixed mice (Fig. 1a and Extended 
Data Fig. 1a,b). Toward this end, we bilaterally delivered virus car-
rying Cre-dependent NpHR to the dorsomedial striatum (DMS) 
in transgenic mouse lines (A2a-Cre/D2R-Cre/D1R-Cre), which we 
verified to have high degrees of specificity and penetrance for each 
pathway (Supplementary Fig. 1). We confirmed that 532-nm (5 mW) 
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Fig. 1 | Pathway-specific dorsomedial striatum inhibition has no detectable impact on movement in mice navigating a virtual corridor. a, Schematic 
of viral delivery of Cre-dependent NpHR to the DMS of A2a-Cre, D2R-Cre or D1R-Cre mice. Schematic of optrode, that is, a 32-channel silicon probe 
coupled with tapered optical fiber, which delivered 532-nm (5-mW) light to the DMS of awake, ambulating mice. b, Example peristimulus time 
histograms (PSTH; top) and rasters of trial-by-trial spike times (bottom) from a DMS single-unit recorded in an ambulating A2a-Cre mouse expressing 
Cre-dependent NpHR (indirect pathway). Inset shows an average spike waveform (black) and 100 randomly sampled spike waveforms (gray). A 
trial consisted of 5 s without laser (pre, −5 to 0 s), a 5-s laser sweep (on, 0 to 5 s) and a 10-s intertrial interval (ITI; 40 total trials). c, As in b but for 
DMS single-unit recorded in a D1R-Cre mouse expressing Cre-dependent NpHR (direct pathway). d, Schematic of bilateral fiber-optic implantation 
of DMS and unilateral illumination in behaving mice, with example histology from a mouse expressing NpHR in the indirect (D2R-/A2a-Cre) or direct 
(D1R-Cre) pathways, or control mouse without opsin (no opsin, A2a-/D2R-Cre or D1R-Cre). Light (532 nm; 5 mW) was delivered unilaterally to the left 
or right hemisphere on alternate testing sessions and lateralized behavior was defined as ipsilateral or contralateral relative to the laser hemisphere. e, 
Schematic of head fixation of mice in a VR apparatus allowing 2D navigation. Displacements of an air-suspended spherical ball in the anteroposterior 
(and mediolateral) axes of the mouse-controlled y- (and x-) position movements in a visual VR environment. f, Schematic of the virtual corridor (6-cm 
wide, 330-cm long), consisting of a start region (−10 to 0 cm), an inhibition region (0–200 cm) in which mice received unilateral 532 nm illumination 
on a random subset of trials (30%), a reward location (310 cm) where mice received reward, and a teleportation location (320 cm) where mice were 
transported to the start region following a variable ITI with mean of 2 s. g, Average y-velocity (cm s−1) across mice as a function of y-position (0–300 cm 
in 25-cm bins) while navigating the virtual corridor on laser-off (black) or laser-on (green) trials in groups receiving DMS indirect (n = 7 mice, n = 1,712 
laser-off and n = 1,288 laser-on trials) or direct (n = 6 mice, n = 1,088 laser-off and n = 757 laser-on trials) pathway inhibition, or illumination of the 
DMS in the absence of NpHR expression (no opsin, n = 5 mice, n = 1,178 laser-off and n = 827 laser-on trials). h, Same as g but for average x-position 
(cm) contralateral to the unilaterally coupled laser hemisphere. i, Same as g but for view angle (degrees, contralateral to laser hemisphere). j, Average 
across-mouse distance traveled (cm) to traverse the virtual corridor during laser-off (black) or laser-on (green) trials for mice receiving DMS indirect 
(n = 7 mice, n = 2,109 laser-off and n = 1,574 laser-on trials) or direct (n = 6 mice, n = 1,330 laser-off and n = 930 laser-on trials) pathway inhibition, or 
DMS illumination in the absence of NpHR (n = 6 mice, n = 1,688 laser-off and n = 1,199 laser-on trials). Solid bars depict the mean ± s.e.m. across mice; 
gray lines indicate individual mouse mean values.
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of light delivery to the DMS through a tapered optical fiber pro-
duced rapid, sustained and reversible inhibition of spiking in mice 
expressing NpHR in the indirect pathway (Fig. 1b and Extended 
Data Fig. 1c–e, n = 18/60, 30% of neurons significantly inhibited) or 
the direct pathway (Fig. 1c and Extended Data Fig. 1f–h, n = 21/50, 
42% of neurons significantly inhibited). Moreover, we observed: 
(1) minimal excitation during illumination26,27 (Extended Data Fig. 
1d,g), (2) minimal effects on spiking upon laser offset (Extended 
Data Fig. 1d,g), indicating limited post-inhibitory rebound, and (3) 
stability in the efficacy of inhibition across time (Supplementary 
Fig. 2). Together, our findings indicate that NpHR-mediated inhibi-
tion of DMS pathways is effective.

Dorsomedial striatum pathway inhibition does not impact vir-
tual corridor navigation. To determine if endogenous activity in 
DMS pathways provides bidirectional control of motor output in 
the absence of a decision, we carried out unilateral inhibition of 
indirect and direct pathways in head-fixed mice running on an 
air-supported ball to traverse a two-dimensional (2D) linear cor-
ridor in virtual reality (VR; Figs. 1d–f, 6-cm × 330-cm corridor). 
Illumination of the DMS was restricted to 0–200 cm (laser on for 
30% of trials; hemisphere of illumination alternated across days). 

The parameters of the virtual corridor and inhibition period 
were selected to closely match the stem of the VR-based T-maze 
decision-making tasks that are the focus of subsequent experiments.

We found no detectable impact of pathway-specific DMS inhi-
bition, nor DMS illumination alone, on multiple indicators of 
motor output during virtual corridor navigation. This included 
measures of velocity, x-position or view angle relative to the laser 
hemisphere, and distance traveled (Fig. 1g–j; see Extended Data  
Fig. 2 for additional measures). Similarly, we obtained null effects of 
pathway-specific inhibition on velocity (and spatial preference) in 
freely behaving mice in a conditioned place preference (CPP) assay 
(Supplementary Fig. 3).

These negative findings argue against a major involvement of 
endogenous activity in DMS pathways in the execution of move-
ment in the absence of a decision. This is consistent with the 
dearth of reports demonstrating strong and opposing modulation 
of behavior by striatal pathways using pathway-specific optoge-
netic inhibition.

Three virtual reality T-mazes with varying cognitive demands. 
We next considered the possibility that, rather than contributing 
directly to a motor output, endogenous activity in DMS pathways 
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Fig. 2 | A set of virtual reality T-mazes has similar sensory features and identical motor requirements but different cognitive demands. a, Schematic 
of three VR-based T-maze tasks. b, Example mouse perspective at the same maze position (−10 cm, 120 cm, 195 cm and 295 cm) from the example trial 
depicted in a of the accumulation of evidence (AoE; black), no distractors (ctrl 1) or permanent cues (ctrl 2) tasks. c, Average choice accuracy (percentage 
correct) across mice performing the accumulation of evidence (black, n = 32 mice, n = 52,381 trials), no distractors (magenta, ctrl 1: n = 31 mice, n = 56,783 
trials) or permanent cues (cyan, ctrl 2: n = 20 mice, n = 27,870 trials) tasks. P value denotes one-way analysis of variance (ANOVA) of task on accuracy 
(P = 1.3 × 10−23, F2,80 = 109.4). Asterisks indicate statistical significance of post hoc, unpaired, two-tailed rank-sum comparisons of accuracy between groups 
(top to bottom: ***P = 3.9 × 10−7, z = −5.1; ***P = 2.1 × 10−11, z = −6.7; ***P = 2.1 × 10−5, z = 4.3). d, Average y-velocity (cm s−1) across mice as a function of 
y-position (0–300 cm in 25-cm bins) during performance of each task (colors and n as in c). e, Same as d but for average x-position (cm) on left/right 
choice trials. f, Same as d but for average view angle (degrees) on left/right choice trials. g, Average distance (cm) traveled per trial across mice (evidence 
accumulation, n = 32 mice, n = 53,833 trials; no distractors (ctrl 1): n = 32 mice, n = 60,074 trials; permanent cues (ctrl 2): n = 20 mice, n = 29,192 trials).  
P value reflects one-way ANOVA of task on distance (P = 0.16, F2,81 = 1.8). Solid bars denote the across-mouse mean  ± s.e.m. and the transparent ‘x’ indicates 
the mean for individual mice.
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may instead have opposing influence over decisions in a manner 
that is dependent on cognitive demand. To test this idea, we trained 
mice to perform a set of VR-based, decision-making tasks25 that 
shared identical motor readouts (left or right choice), had highly 
similar sensory environments, and yet differed in their cognitive 
requirements (Fig. 2a,b).

The first task was an ‘evidence accumulation’ task, in which 
visuo-tactile cues were transiently presented on each side of the 
central stem of a virtual T-maze according to a Poisson distribu-
tion (‘cue region’, 0–200 cm), and mice were rewarded for turning 
to the maze side with the greater number of cues (Fig. 2a,b; black). 
Thus, mice were required to continually accumulate sensory cues 
over several seconds into a memory (or motor plan) that guided 
their left/right decision.

In two additional control tasks, we made modifications intended 
to weaken the cognitive demands of each task. In the first control 
task (‘no distractors’), cues were presented on the rewarded maze 
side during the same maze region (0–200 cm) according to the 
same Poisson distribution, but distractor cues on the side of the 
non-rewarded arm were omitted (Fig. 2a,b; magenta). The absence 
of distractors on the non-rewarded side meant that each cue signaled 
reward with 100% probability, and thus gradual evidence accumula-
tion was not required. Further ensuring that evidence accumulation 
was not required, an additional cue at the end of the maze was present 
only during the cue period (0–200 cm) to signal the rewarded side.

In the second control task (‘permanent cues’), the sensory sta-
tistics of the cues were identical to those in the evidence accumula-
tion task, but rather than transient visual cue presentation, visual 
cues were permanently visible from trial onset (Fig. 2a,b; cyan). 
This maintained the same conceptual task structure of the evidence 
accumulation task while decreasing the memory demands, as the 
sensory cues (or the motor plan) did not need to be remembered 
until the cues were passed.

We assessed how task demands impacted choice accuracy in 
each task. Consistent with the greatest cognitive and mnemonic 

demand in the evidence accumulation task, we found that overall 
choice accuracy was significantly lower compared to both control 
tasks (Fig. 2c, AoE: 73.1 +/- 0.8%. Ctrl 1: 90.6 +/- 0.9%. Ctrl 2: 83.3 
+/- 1.2% mean +/- s.e.m).

While the motor requirements of a decision were the same across 
tasks (crossing an x-position threshold at the end of the central 
stem; Methods), we examined the possibility that cross-task differ-
ences in cognitive requirements altered movement within the stem 
of the maze (0–300 cm). We observed no consistent cross-task dif-
ferences in velocity, x-position or view angle on left or right choice 
trials, nor distance traveled (Fig. 2d–g; see Extended Data Fig. 
3a–f for additional measures). We further compared the relation-
ship between behavior in the stem of the maze and choice across 
tasks by using a decoder to predict choice based on the trial-by-trial 
x-position or view angle (Extended Data Fig. 3g–j) at successive 
maze positions (0–300 cm in 25-cm bins). While we were able to 
predict choice from either measure above chance levels in all three 
tasks (consistent with previous studies25), choice prediction accu-
racy was statistically indistinguishable across tasks (Extended Data 
Fig. 3g–j). Together, this indicated that cross-task differences in 
task demands did not prompt mice to systematically adopt distinct 
motor strategies.

Behavioral effects of dorsomedial striatum pathway inhibi-
tion depend on task demand. We performed unilateral inhibi-
tion of DMS indirect and direct pathways restricted to the cue 
region (0–200 cm) of each task (Fig. 3a,b; laser on 10–20% of tri-
als; hemisphere of illumination alternated across days). We found 
that inhibition of the indirect pathway produced a large bias toward 
contralateral choices during the accumulation of evidence task  
(Fig. 3c,d), which was significantly greater than that observed 
in control animals that did not express opsin (Fig. 3e, average 
contralateral bias: DMS indirect, 42.3% ± 4.4%, versus no opsin, 
5.9% ± 3.6%). Similarly, inhibition of the direct pathway also pro-
duced a large choice bias during the accumulation of evidence task 

Fig. 3 | Inhibition of dorsomedial striatum but not nucleus accumbens pathways has strong and opposing influence on choice during an evidence 
accumulation task, while having weaker effects during task variants with diminished cognitive demands. a, Schematic of bilateral viral delivery of 
Cre-dependent NpHR to the DMS. b, Schematic of bilateral fiber-optic implantation of the DMS and unilateral inhibition in behaving mice, with example 
histology from a mouse expressing NpHR in the indirect (D2R-/A2a-Cre) or direct (D1R-Cre) pathways, or DMS illumination in the absence of NpHR (no 
opsin, A2a-/D2R- or D1R-Cre). Light (532 nm, 5 mW) was delivered unilaterally to the left or right hemisphere on alternate testing sessions and choice 
bias contralateral or ipsilateral to the hemisphere of inhibition was quantified. c, Schematic of the evidence accumulation task with delivery of 532-nm light 
restricted to the cue region (0–200 cm) on a random subset of trials (10–20%). d, Average across-mouse choice bias during the evidence accumulation 
task. Choice bias was defined as the difference between the percentage of correct performance on trials when the correct choice was contralateral or 
ipsilateral to the inhibited hemisphere (percentage correct, contralateral–ipsilateral, positive values indicate a contralateral bias). Bias was calculated 
separately on laser-off (black) and laser-on (green) trials for mice receiving unilateral indirect pathway inhibition (n = 11 mice, n = 16,935 laser-off and 
n = 3,390 laser-on trials), unilateral direct pathway inhibition (n = 10 mice; n = 14,030 laser-off and n = 3,103 laser-on trials), or unilateral illumination 
of the DMS in the absence of NpHR (n = 11 mice, n = 21,422 laser-off and n = 5,113 laser-on trials). e, Difference in contralateral choice bias (percentage 
correct) between laser-off and laser-on trials (percentage bias, on–off) in mice performing the evidence accumulation task and receiving indirect 
pathway inhibition, direct pathway inhibition or DMS illumination in the absence of NpHR. Asterisks indicate the significance of an unpaired, two-tailed 
Wilcoxon rank-sum comparison of indirect to no opsin: ***P = 1.1 × 10−4, z = 3.9; direct to no opsin: ***P = 2.2 × 10−4, z = −3.7). f–h, Same as c–e but for 
the no-distractors (ctrl 1) task. Indirect: n = 7 mice, n = 13,706 laser-off and n = 3,288 laser-on trials; direct: n = 9 mice, n = 14,647 laser-off and n = 3,682 
laser-on trials; no opsin: n = 4 mice, n = 3,654 laser-off and n = 901 laser-on trials. Asterisks indicate the significance of an unpaired, two-tailed Wilcoxon 
rank-sum comparison of indirect to no opsin: not significant (NS), P = 0.22, z = 1.2. Direct to no opsin: NS, P = 0.08, z = −1.8. i–k, As in c–e but for the 
permanent cues (ctrl 2) task. Indirect: n = 7 mice, n = 4,033 laser-off and n = 929 laser-on trials; direct: n = 7 mice, n = 6,061 laser-off and n = 1,494 laser-on 
trials; no opsin: n = 6 mice, n = 3,975 laser-off and n = 923 laser-on trials. Asterisks indicate the significance of an unpaired, two-tailed Wilcoxon rank-sum 
comparison of indirect to no opsin: NS, P = 0.13, z = 1.5. Direct to no opsin: NS, P = 0.62, z = 0.5. l, As in a but for bilateral viral delivery of Cre-dependent 
NpHR to the NAc. m, Same as b but for bilateral fiber-optic implantation of the NAc and unilateral inhibition in behaving mice, with example histology 
from a mouse expressing NpHR in the indirect (D2R-/A2a-Cre) or direct (D1R-Cre) pathways, or NAc illumination in the absence of NpHR (no opsin, 
A2a-/D2R-Cre or D1R-Cre). n–p, As in c but for pathway-specific NAc inhibition during the accumulation of evidence task. Indirect: n = 9 mice, n = 11,978 
laser-off and n = 2,604 laser-on trials; direct: n = 10 mice, n = 15,430 laser-off and n = 3,348 laser-on trials; no opsin: n = 7 mice, n = 9,819 laser-off and 
n = 1,488 laser-on trials. Asterisks indicate the significance of an unpaired, two-tailed Wilcoxon rank-sum comparison of indirect to no opsin: NS, P = 0.86, 
z = 0.18; direct to no opsin: NS, P = 0.04, z = 2.0. Solid bars denote across-mouse mean value ± s.e.m. and the transparent ‘x’ indicates the mean for 
individual mice. To account for multiple-group comparisons, we considered P values significant after Bonferroni correction (two comparisons).
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(Fig. 3d; average contralateral bias: DMS direct, −36.8% ± 8.6%), 
which was also significantly greater than that observed in control 
animals (Fig. 3e). However, in this case, the direction of the choice 
bias was in the opposite (ipsilateral) direction to that observed with 
indirect pathway inhibition (also see Extended Data Fig. 4a–i for 
psychometric curves).

Providing a stark contrast to the large effects of pathway-specific 
DMS inhibition on choice during the evidence accumulation task, 
inhibition of either pathway had significantly less impact on choice 
during the ‘no distractors’ and ‘permanent cues’ control tasks (Fig. 3f–k  
and Extended Data Fig. 5a–c; unpaired, two-tailed Wilcoxon rank- 
sum test of indirect pathway inhibition evidence accumulation  
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versus no distractors, P = 8.0 × 10−4, z = 3.4, or evidence accu-
mulation versus permanent cues, P = 0.001, z = 3.3; and direct 
pathway inhibition evidence accumulation versus no distractors, 

P = 0.002, z = −3.1, or evidence accumulation versus permanent 
cues, P = 0.005, z = −2.8). In fact, the effects of pathway-specific 
DMS inhibition on choice bias in either control task did not signifi-
cantly differ from those observed in control animals (Fig. 3h, for ‘no 
distractors’; Fig. 3k, for ‘permanent cues’; see also Extended Data  
Fig. 4a–i for psychometric curves).

Thus, inhibition of DMS pathways elicited strong and opposing 
effects on choice in the task with the greatest cognitive demand, 
which required the accumulation of sensory evidence across mul-
tiple seconds to arrive at a decision and had a far limited impact on 
choice in task variants with reduced cognitive demand.

While DMS pathway inhibition had minimal impact on move-
ment in a virtual corridor (Fig. 1 and Extended Data Fig. 2), we 
considered the possibility that pathway-specific DMS inhibi-
tion altered motor performance in the T-mazes. We found no 
cross-task differences in the effects of pathway-specific inhibi-
tion on measures of velocity, distance traveled or per-trial stan-
dard deviation in view angle (Extended Data Fig. 6a–i). However, 
we found subtle but opposing effects of pathway-specific inhibi-
tion on average x-position and view angle (Extended Data Fig. 
6j–k) in the evidence accumulation task. The direction of these 
biases was similar in the control tasks, but consistently smaller 
than in the evidence accumulation task. Thus, in line with the 
close relationship between x-position/view angle and choice in 
the absence of inhibition in each task (Extended Data Fig. 3g–j), 
pathway-specific DMS inhibition produced the same general pat-
tern of cross-task effects on choice bias (Extended Data Fig. 5b–d) 
and x-position/view angle (Extended Data Fig. 6j,k). As the quan-
titative relationship between x-position or view angle and choice 
is indistinguishable across tasks in the absence of neural inhibition 
(Extended Data Fig. 3g–j), cross-task differences in motor strategy 
do not provide a trivial explanation for these effects. Rather, taken 
together with the absence of an effect of pathway-specific DMS 
inhibition on motor output in the virtual corridor (Fig. 1h,i), these 
data imply that the effects of inhibition on behavior depend on 
cognitive demands.

Little effect of nucleus accumbens pathway inhibition on choice. 
We next sought to determine whether opponent control of choice 
by striatal pathways during the evidence accumulation task was 
specific to the DMS, or if it extended to the ventral striatum. To 
this end, we delivered unilateral laser illumination to the nucleus 
accumbens (NAc) of mice expressing NpHR in the indirect or direct 
pathways (or non-opsin control mice), which was restricted to the 
cue region (0–200 cm) of the evidence accumulation task (Fig. 3l–p 
and Extended Data Fig. 4j–l).

Providing a clear functional dissociation between DMS and 
NAc, effects of pathway-specific NAc inhibition on choice bias were 
significantly smaller than those observed with inhibition of DMS 
pathways (Extended Data Fig. 5e,f; unpaired, two-tailed Wilcoxon 
rank-sum test of DMS versus NAc indirect pathway inhibition, 
P = 2.6 × 10−4, z = 3.6; of DMS versus NAc direct pathway inhibition, 
P = 1.8 × 10−4, z = −3.7), and were also not significantly different 
from NAc control animals (Fig. 3o,p). It is unlikely that this dis-
sociation between DMS and NAc can be explained by greater coex-
pression of pathway-specific markers in the ventral versus dorsal 
striatum28, as both subregions exhibited equally low colocalization 
of D1R and D2R receptors (Supplementary Fig. 1j–l).

Bernoulli generalized linear model does not fully capture psy-
chometric curves. Our inactivation experiments suggest that DMS 
pathways make strong contributions to behavior during a cogni-
tively demanding evidence accumulation task, but do not contribute 
strongly to similar tasks with weaker cognitive demands. However, 
even during the evidence accumulation task, it is possible that the 
animals’ level of cognitive engagement varies over time. This raises 
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the possibility that the contributions of the two pathways to behav-
ior could change over time, even within the same task.

To address this possibility, we sought to understand the factors 
that contribute to decisions in the evidence accumulation task. As 
a first step, we used a Bernoulli generalized linear model (GLM) 

to predict choice based on a set of external covariates (Fig. 4a,b). 
These covariates included the sensory evidence (difference between 
the number of right and left cues, or ‘Δ cues’), the recent choice 
and reward history, the delivery of optical inhibition (‘laser’), as 
well as a bias. Note that we set the value of the laser covariate to +1  
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(or −1) on trials with right (or left) hemisphere inhibition, and zero 
otherwise. A positive (or negative) GLM weight on this covariate 
thus captured an ipsilateral (or contralateral) ‘laser’-induced bias 
in choices relative to the hemisphere of inhibition. For the choice 
history covariates, a positive weight indicates a tendency toward 
repeating past choices (Methods).

We fit the GLM to aggregated behavioral data from mice inhib-
ited in each DMS pathway and found that sensory evidence, trial 
history and optical inhibition all contributed to predicting choice 
(Fig. 4c,d). As expected, the effect of inhibition of each pathway was 
large and opposite in sign. However, the GLM did not accurately 
capture the animals’ psychometric curve, describing the probability 
of a rightward choice as a function of the sensory evidence (Fig. 
4e,f). This led us to consider variants of the standard GLM that 
might better account for choice behavior.

GLM–HMM better explains choice data with dorsomedial stria-
tum inhibition. The standard GLM describes choice as depending 
on a fixed linear combination of sensory evidence, trial history and 
the presence or absence of optical inhibition. However, an alterna-
tive possibility is that mice use a weighting function that varies over 
time. To test this idea, we adopted a latent state model with differ-
ent GLM weights for different states (Fig. 4). The model consists 
of a hidden Markov model (HMM) with Bernoulli GLM observa-
tions, or GLM–HMM29–32 (Fig. 5a,b). Each hidden state is associated 
with a unique set of GLM weights governing choice behavior in that 
state. Probabilistic transitions between states occur after every trial, 
governed by a fixed matrix of transition probabilities (Methods).

The GLM–HMM explained the choice data in the evidence accu-
mulation task better than the GLM across multiple measures. To 
compare models, we computed the test log-likelihood of each ani-
mal’s data using cross-validation with held-out sessions (three-state 
GLM–HMM in Fig. 5; see Extended Data Fig. 7a–e and Methods 
(‘GLM-HMM’) for more information on model selection). The 
three-state GLM–HMM achieved an average of a 6.2 bits per ses-
sion (bps) increase in log-likelihood, making an average session ~76 
times more likely under the GLM–HMM (Fig. 5c). Furthermore, 
the GLM–HMM correctly predicted choice on held-out data more 
often than the GLM, especially on laser trials (Fig. 5d; average 
improvement across mice of 1.6% on all trials, 3.5% on trials with 
optical inhibition and 4.1% on trials with optical inhibition when 
considering only mice with at least 100 inhibition trials).

Most interestingly, the GLM–HMM was better able to cap-
ture the temporal structure in the effect of inhibition on choice. 
Specifically, the choice data contained long runs in which choice 
was consistent with the bias direction predicted by pathway-specific 
inhibition (‘laser’), a feature which GLM–HMM simulations reca-
pitulated, but GLM simulations did not (Fig. 5e,f). Thus, taken 

together, the GLM–HMM provided a better model of the choice data  
than a standard GLM, particularly on trials with pathway-specific 
DMS inhibition.

GLM–HMM identifies states with varying dorsomedial stria-
tum dependence. We examined the state-dependent weights of the 
GLM–HMM and found substantial differences across states in the 
weighting of sensory evidence, previous choice and, most intrigu-
ingly, inhibition of DMS pathways (Fig. 6a,b). In particular, two of 
the three states (states 1 and 2) displayed a large weighting of sen-
sory evidence on choice, while the ‘laser’ weight was large only in 
state 2. In contrast, in state 3, choice history had a larger weight 
than in the other states, and neither sensory evidence nor ‘laser’ had 
much influence on choice.

To characterize state-dependent psychometric performance, we 
used the fitted model to compute the posterior probability of each 
state given the choice data and assigned each trial to its most proba-
ble state (Fig. 6c,d). We then examined the psychometric curves for 
trials assigned to each state. In state 3, performance was low (Fig. 6g)  
and DMS inhibition had little effect on behavior (Fig. 6c,d). This 
is consistent with the high GLM weight on choice history in this 
state and low weights on sensory evidence and laser (Fig. 6a,b). 
This implies relatively little contribution of DMS pathways during 
a task-disengaged state when mice pursued a strategy of repeat-
ing previous choices rather than accumulating sensory evidence. 
When considered together with comparisons of the effect of 
pathway-specific DMS inhibition in control T-maze tasks where 
performance is high (Fig. 2c) but effects of inhibition are limited 
(Fig. 3f–k and Extended Data Fig. 5b,c), this implies a dissociation 
between task performance and the contributions of DMS path-
ways to behavior.

Compared to state 3, sensory evidence heavily modulated behav-
ior in both states 1 and 2, and performance was accordingly high 
(Fig. 6c,d,g). Interestingly, the effect of DMS pathway inhibition 
was much larger in state 2. These results were again consistent with 
the GLM weights: both state 1 and 2 had high weighting of sensory 
evidence and low weighting of choice history but greatly differed 
in their weighting of the ‘laser’ (Fig. 6a,b). The discovery of state 
2 implies that DMS pathways contribute most heavily to choices 
in a state in which mice are pursuing a strategy of evidence accu-
mulation, consistent with cross-task comparisons of the effects of 
inhibition (Fig. 3). The discovery of state 1, which differed most 
noticeably from state 2 in the extent that the laser affected choice, 
may suggest the existence of another neural mechanism for evi-
dence accumulation with minimal DMS dependence.

We found that GLM–HMM simulations closely recapitulated 
these state-dependent psychometric curves (Fig. 6e,f). This not only 
validated our fitting procedure but provided additional evidence 

Fig. 6 | A GLM–HMM uncovers states during the evidence accumulation task with different weighting on sensory evidence, choice history and 
dorsomedial striatum pathway inhibition. a, Fitted GLM weights for the three-state model from mice in the indirect pathway DMS inhibition group. Error 
bars denote ±1 posterior s.d. for each weight. The magnitude of the weight represents the relative importance of that covariate in predicting choice, and 
the sign of the weight indicates whether it biases choice to the left or to the right. Thus, for example, a negative ‘laser’ weight indicates that inhibition of 
the right hemisphere makes the mouse more likely to turn left, while a positive ‘previous choice’ weight makes the mouse more likely to repeat its previous 
choice. b, Per-state GLM weights for the direct pathway group. c, Fraction of contralateral choices as a function of the difference in contralateral versus 
ipsilateral cues in each trial for mice in the indirect pathway inhibition group. To compute psychometric functions for each state, we assigned each trial to 
its most probable state under the fitted model. Error bars denote ±1 s.e.m. for light-off (solid) and light-on (dashed) trials. Solid curves denote logistic fits 
to the concatenated data across mice for light-off (solid) and light-on (dashed) trials. d, Same as c but for the mice receiving direct pathway inhibition of 
the DMS. e, Same as c but for data simulated from the model fit to mice receiving indirect pathway inhibition of the DMS (Methods). f, Same as e but for 
mice receiving direct pathway inhibition of the DMS. g, Performance in each state for mice receiving DMS inhibition in the indirect and direct pathways, 
shown as the percentage of total trials assigned to that state in which the mice made the correct choice. Colored bars denote the average performance 
across all mice. Black dots show averages for individual mice (n = 13 mice for both groups). h, The percentage of ‘laser-on’ trials that the model assigned to 
each state for mice receiving DMS inhibition in the indirect and direct pathways. Colored bars denote the average performance across all mice. Black dots 
show averages for individual mice (n = 13 mice for both groups). i, The posterior probability of each state for the five trials before and after a laser-on trial, 
averaged across all such periods (n = 8,570, indirect; n = 7,927, direct).
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that a multistate model provides a good account of the animals’ 
decision-making behavior during the evidence accumulation task.

While the effect of the laser differed across states, the probability 
of being in a particular state did not change on or after trials with 
optical inhibition (Fig. 6i), implying that DMS pathway inhibition 
itself did not generate transitions between states. In addition, the 
fraction of trials with optical inhibition was equivalent across states 
(~15% of all trials in each state; Fig. 6h). This implies that the model 
did not identify states simply based on the presence of laser trials.

We obtained similar states when fitting the model to a combined 
dataset including all groups of mice (those receiving DMS indirect 
and direct pathway inhibition, as well as control mice receiving 
DMS illumination in the absence of NpHR; Extended Data Fig. 7f). 

As when fitting each group separately, the combined fit revealed that 
both inhibition groups contained a single state with large weights on 
sensory evidence and the laser. In contrast, the control mice had 
small laser weights across all three states.

We also examined the results of fitting the four-state GLM–
HMM (Extended Data Fig. 7d,e), given it had a slightly higher 
cross-validated log-likelihood than the three-state model (Extended 
Data Fig. 7a). In this case, the weights for states 1 and 2 were very 
similar to those in the three-state model; the key difference was that 
the choice history state (state 3 of the three-state model) was further 
subdivided into two states that differed in having a slight rightward 
versus a slight leftward bias. This suggests that while the model 
may uncover finer-grained structure in the data beyond three states 
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(Extended Data Fig. 7d,e), these states yield diminishing interpre-
tive insight on the weighting of sensory evidence, choice history and 
DMS pathway inhibition across time.

Diversity in timing and number of GLM–HMM state transitions. 
The fitted transition matrix revealed a high probability of remain-
ing in the same state across trials (Fig. 7a,b). These transition  
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Fig. 7 | Diversity across sessions in the timing and number of GLM–HMM state transitions. a, Transition probabilities for the indirect pathway group.  
b, Same as a but for the direct pathway group. c, The posterior probability of being in each state for each trial for three example sessions from a mouse 
in the indirect pathway group. d, Same as c but for two mice from the direct pathway group. e, Dwell times showing the average consecutive number 
of trials that the mice spent in each state for mice with indirect (range 39–86 trials, average session length 202 trials) and direct (range 52–59 trials, 
average session length 185 trials) pathway inhibition. Black dots show averages for individual mice (n = 13 mice for both groups). f, The fraction of trials 
that the mice spent in each state in each session. Each dot represents an individual session (n = 271, indirect pathway; n = 266, direct pathway). Color 
coding reinforces the state composition of each session (for example, blue indicates that the mouse spent 100% of the session in state 1). A small amount 
of Gaussian noise was added to the position of each dot for visualization purposes. Gray arrows identify the example sessions shown in c and d. g, The 
fraction of sessions in which the mice entered one, two or all three states. Gray bars denote the average fraction of sessions for all mice. Black dots show 
averages for individual mice (n = 13 mice for both groups). h, Time spent in each state represented as a percentage of total trials for mice inhibited in the 
indirect and direct pathways. Colored bars denote the average state occupancies across all mice. Black dots show averages for individual mice (n = 13 mice 
both groups). i, Same as f except state assignments were obtained from a model in which the transition probabilities were restricted to disallow transitions 
between states (that is, all off-diagonal transition probabilities equal zero; Methods). j, Same as f except state assignments were obtained from a model in 
which transitions were disallowed between state 2 and the other states. k, Comparison of the cross-validated log-likelihood of the data when fitting  
GLM–HMMs with the reduced models from i and j, relative to the log-likelihood of the full model, in bps.
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probabilities produced a diversity in the timing and number of state 
transitions across sessions, which we visualized by calculating the 
maximum posterior probability of each state on each trial (Fig. 7c,d 
and ‘GLM–HMM’ in Methods). In some sessions, mice persisted in 
the same state, while in many sessions, mice visited two or even all 
three states (see example sessions in Fig. 7c,d, summaries of state 
occupancies across sessions in Fig. 7e–h and a summary of all indi-
vidual mice in Supplementary Fig. 4). Average single-state dwell 
times ranged from 39 to 86 trials (Fig. 7g). This was shorter than the 
average session length of 194 trials, consistent with visits to multiple 
states per session.

While individual sessions were heterogeneous in terms of 
their state occupancies, averaged across sessions, the posterior 
probability of being in each state tended to be stable across trials  
(Fig. 7e and Extended Data Fig. 8a,b). Model simulations recapit-
ulated these state transition characteristics, including dwell times 
and state occupancies (Extended Data Fig. 9), further indicating our 
model captures latent structure in our data.

One notable exception in the stability of posterior probabili-
ties of each state across time was an increase in state 3 probabil-
ity toward the end of a session (Extended Data Fig. 8a), potentially 
reflecting a decrease in task engagement related to reward satiety. 
Consistent with a relationship to satiety, within-session transitions 
into state 3 were associated with higher amounts of previously accu-
mulated reward and higher preceding rates of reward (Extended 
Data Fig. 8c–f). In addition, while the posterior probability of 
each state showed minimal modulation surrounding a rewarded 
trial, the probability of state 3 was much more likely surrounding 
trials with excess travel (Extended Data Fig. 8g–j), an indicator of 
non-goal-directed movement and task disengagement. Indeed, the 
probability of state 3 gradually increased and decreased approxi-
mately 25 trials before and following excess travel trials, consistent 
with the average dwell time for state 3 (Fig. 7e).

Given the presence of sessions in which mice occupied a single 
state, we considered model variants that disallowed within-session 
state transitions. Our goal was to determine if these variant models 
could provide a better explanation of the data, or alternatively, if 
within-session state transitions are in fact an important structural 
feature for explaining the data. In one model variant, we disal-
lowed transitions between states entirely (Fig. 7k). In the other, we 
tested the possibility that state 2, which is unique in the strength 
of its laser weight, captured a session-specific feature of inhibition 
by disallowing transitions in and out of that state (Fig. 7l). Using 
cross-validation, we found that neither alternative model explained 
the data as well as a model with unrestricted transitions (Fig. 7m), 
indicating that within-session transitions between states was an 
important feature of the model.

Motor performance across GLM–HMM states. Given the close 
relationship between excess travel and the posterior probability of 
state 3, we considered the possibility that other measures of motor 
behavior varied across states. We found that on trials without DMS 
pathway inhibition (Extended Data Fig. 10a–g,o–u), mice exhibited 
no obvious differences across states in velocity, x-position or view 
angle (Extended Data Fig. 10a–d,o–r). However, during state 3 rela-
tive to state 1 and 2, we observed an increased tendency in measures 
of non-goal-directed movements (Extended Data Fig. 10e–g,s–u). 
This is consistent with the higher probability of state 3 around trials 
with excess travel (Extended Data Fig. 8h,j), and the interpretation 
of state 3 as a task-disengaged state.

We also considered the possibility that DMS pathway inhibition 
had state-dependent effects on motor output (Extended Data Fig. 
10h–n,v–bb). We observed limited effects of inhibition on veloc-
ity, per-trial standard deviation in view angle and distance traveled 
across all three states. However, similar to our cross-task compari-
sons (Extended Data Fig. 6j,k), DMS pathway inhibition produced 

a small but opposing bias in average x-position (Extended Data  
Fig. 10j,x) and view angle (Extended Data Fig. 10k,y), which was 
greatest in the state with the largest laser weight (state 2; Fig. 6). This 
is consistent with our conclusions that the effects of DMS inhibition 
on behavior are state dependent, and that x-position and view angle 
are closely linked indicators of choice in the context of VR-based 
T-maze tasks (Extended Data Fig. 3g–j).

Discussion
Our findings indicate that the opposing contributions of DMS path-
ways to movement are minimal in the absence of a decision (Fig. 1),  
while the pathways provide large and opponent contributions to 
decision-making. Moreover, this contribution depends on the 
demands of a task (Fig. 2), as the effect of inhibition is much larger 
during decisions that require evidence accumulation relative to con-
trol tasks with weaker cognitive requirements yet similar sensory 
features and motor requirements (Fig. 3). The GLM–HMM further 
revealed that even within the evidence accumulation task, the con-
tribution of DMS pathways to choice is not fixed. For example, DMS 
pathways have little contribution when mice pursue a strategy of 
repeating previous choices during the evidence accumulation task 
(Fig. 6). Thus, together our findings imply that opposing contribu-
tions of DMS pathways to behavior are dependent on task demands 
and internal state.

Cross-task differences in effects of dorsomedial striatum path-
way inhibition. Our finding that DMS activity contributes to the 
evidence accumulation task, but not to task variants with weaker 
cognitive demands, is broadly consistent with previous work based 
on lesions, pharmacology, and recordings implicating DMS in 
short-term memory and the dynamic comparison of the value of 
competing options18–21,24,33–36. But then why have most previous opto-
genetic pathway-specific manipulations emphasized an opposing 
role for DMS pathways in the direct control of motor output2–4,8,11,16, 
rather than on decision-making? Prior work has overwhelm-
ingly relied on the synchronous activation of striatal pathways, as 
opposed to the inhibition used here. While DMS pathway activa-
tion is sufficient to bias movements such as spontaneous rotations, 
we observed relatively little impact of inhibition on behavior in the 
absence of a decision (Fig. 1). Taken together with previous work, 
our findings may thus imply limits in the use of artificial activa-
tions in assessing striatal pathway function. Our results may also 
imply that DMS pathways would not necessarily display opposing 
correlates of movements14,17,37–40, but rather opposing correlates of a 
decision process12,13,19,21,33,36.

While our observations are consistent with the classic view of 
opposing contributions of striatal pathways to behavior1, several 
prominent studies have instead challenged this view by reporting 
non-opposing behavioral effects of activating each pathway41–47. 
This may be because the pathways of a specific striatal subregion 
only exert opposing control on behavior in a specific context, 
for example, during cognitively demanding decision-making as 
shown here for the DMS, or during an interval timing task that 
requires the proactive suppression of actions, as shown for the 
dorsolateral striatum27. Along these lines, our comparison to NAc 
pathways, where inhibition produced weak effects on behavior in 
similar directions (Fig. 3p), may imply that we have not discovered 
the context in which NAc pathways have opposing contributions  
to behavior.

We designed our T-maze tasks to have very similar sensory 
features and identical motor requirements, and yet very different 
cognitive demands, as assessed by task accuracy. That being said, 
the sensory features were not identical. Therefore, while unlikely, 
we cannot rule out that the subtle sensory differences contrib-
uted to the cross-task differences in the effect of pathway inhibi-
tion. A future direction would be to maintain an identical sensory 
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environment across tasks and instead change the decision-making 
rule to be more cognitively demanding.

Within-task changes in effects of dorsomedial striatum pathway 
inhibition. Complimenting our cross-task comparison, we reveal 
the new insight that mice occupy time-varying latent states within 
a single task and that the contribution of DMS pathways to choice 
depends on the internal state of mice. The application of a GLM–
HMM was critical in uncovering this feature of behavior, allowing 
the unsupervised discovery of latent states that differ in how external 
covariates were weighted to influence a choice31,48,49. This provided 
two insights on the contributions of DMS pathways to behavior.

First, the impact of DMS inhibition was diminished when mice 
occupied a task-disengaged state in which choice history heavily 
predicted decisions, while conversely, the impact of DMS inhibi-
tion was accentuated when mice occupied a task-engaged state in 
which sensory evidence strongly influenced choice (Fig. 6). This 
strengthens our conclusion from the cross-task comparison, which 
is that DMS pathways have a greater contribution to behavior when 
actively accumulating evidence toward a decision.

Second, mice occupied two similar task-engaged states that were 
modestly distinguished in overall accuracy (Fig. 6g) and prominently 
distinguished by the influence of DMS inhibition on choice (Fig. 
6a–d). While transitions between these two states were relatively rare 
on the same day, there were days that included both states (Fig. 7). 
The discovery of these two states leads to the intriguing suggestion 
that mice are capable of accumulating evidence toward a decision 
in at least two neurally distinct manners: one that depends on each 
DMS pathway (state 2), and another that does not (state 1). This may 
relate to demonstrations that neural circuits have substantial capac-
ity for compensation to perturbations50,51, and our modeling approach 
may provide a new avenue for the identification of such compensatory 
mechanisms on relatively short timescales.

While our work focused on the three-state GLM–HMM, our con-
clusions do not depend on assuming exactly three states. In fact, the 
cross-validated log-likelihood of our data is higher for four states than 
three. Yet the conclusions from the four-state model were similar to 
those from the three-state model (compare Fig. 6a,b to Extended Data 
Fig. 7d,e), and additional gains in log-likelihood decrease for larger 
numbers of states. Nevertheless, it will be important for future work 
to compare the GLM–HMM framework used here, which assumes 
discrete states, to models that assume continuously varying states32,52.

Altogether, our studies provide new perspectives on the neural 
mechanisms by which DMS pathways exert opponent control over 
behavior, with particular emphasis on the importance of accounting 
for task demands, internal state and associated behavioral strate-
gies when assessing neural mechanisms. To this end, we expect our 
behavioral and computational frameworks to be of broad utility 
in uncovering the neural substrates of decision-making in a wide 
range of settings.
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Methods
Animals. For optogenetic experiments we used both male and female transgenic 
mice on heterozygous backgrounds, aged 2–6 months of age, from the following 
three strains backcrossed to a C57BL/6J background (Jackson Laboratory, 000664) 
and maintained in-house: Drd1-Cre (n = 45, EY262Gsat, MMRRC-UCD), 
Drd2-Cre (n = 24, ER44Gsat, MMRRC-UCD) and A2a-Cre (n = 18, KG139Gsat, 
MMRRC-UCD). An additional 35 mice were excluded from all optogenetic 
analyses due to failed task acquisition (n = 11 mice) or failed viral/fiber-optic 
targeting of DMS (n = 8) or NAc (n = 16). An additional four Drd1-Cre mice, 
three A2a-Cre mice and two Drd2-Cre mice were used for electrophysiological 
characterization of NpHR-mediated inhibition, or fluorescence in situ 
hybridization (FISH) characterization of Cre expression profiles. FISH experiments 
also utilized 2 Drd1a-tdTomato mice (Jax, 016204). Mice were co-housed with 
same-sex littermates and maintained on a 12-h light–12-h dark cycle. All surgical 
procedures and behavioral training occurred in the dark cycle. All procedures were 
conducted in accordance with National Institute of Health guidelines and were 
reviewed and approved by the Institutional Animal Care and Use Committee at 
Princeton University.

Surgical procedures. All mice underwent sterile stereotaxic surgery to implant 
ferrule-coupled optical fibers (Newport, 200 µm core, 0.37 NA) and a custom 
titanium headplate for head fixation under isoflurane anesthesia (5% induction, 
1.5% maintenance). Mice received a preoperative antibiotic injection of Baytril 
(enrofloxacin; 5 mg per kg body weight) intramuscularly, as well as analgesia 
pre-operatively and 24 h later in the form of subcutaneous meloxicam injections 
(2 mg per kg body weight). A microsyringe pump controlling a 10-µl glass 
syringe (Nanofill) was used to bilaterally deliver virus targeted to either the DMS 
(0.74 mm anterior, 1.5 mm lateral, −3.0 mm ventral) or the NAc (1.3 mm anterior, 
1.2 mm lateral, −4.7 mm ventral). For optogenetic inhibition, the following 
viruses were used: AAV2/5-eF1a-DIO-eNpHR3.0-EYFP-WPRE-hGH (UPenn, 
1.3 × 1013 parts per ml) or AAV2/5-eF1a-DIO-eNpHR3.0-EYFP-WPRE-hGH 
(PNI Viral Core, 2.2 × 1014 parts per ml; 1:5 dilution). For FISH experiments, 
AAV2/5-eF1a-DIO-EYFP-hGHpA (PNI Viral Core, 6.0 × 1013 parts per ml) was 
used to label D1R+ and D2R+ neurons in D1R-Cre and A2A-Cre transgenic lines. 
In all experiments, virus was delivered at a rate of 0.2 µl min−1 for a total volume 
of 0.3–0.7 µl in the DMS, or 0.3–0.4 µl in the NAc. To accommodate patch fiber 
coupling, optical fibers were implanted at angles (DMS: 15°, NAc 10°). The 
following coordinates (in unrotated space) were targeted: DMS, 0.74 mm anterior, 
1.1 mm lateral, −3.6 mm ventral; NAc: 1.3 mm anterior, 0.55 mm lateral, −5.0 
ventral. Fibers were fixed to the skull using dental cement. Mice were allowed 
to recover and closely monitored for 5 d before beginning water restriction and 
behavioral training.

Optrode recording for NpHR validation. Following the surgical procedures 
described above, Cre-dependent NpHR was virally delivered bilaterally to the DMS 
of mice (n = 3 A2a-Cre; n = 2 D1R-Cre) via small (~300 µm) craniotomies made 
using a carbide drill (Extended Data Fig. 1a). The craniotomies were filled with 
a small amount of silicon adhesive (Kwik-Sil, World Precision instruments) and 
then covered with ultraviolet-curing optical adhesive (Norland Optical Adhesive 
61), while a custom-designed headplate for head fixation was cemented to the 
skull. Following a recovery period of >4 weeks, awake mice were head-fixed on 
a plastic running wheel attached to a breadboard via Thorlabs posts and holders, 
which was fixed immediately adjacent to a stereotaxic setup (Kopf) enclosed 
within a Faraday cage (Extended Data Fig. 1b). Silicon and optical adhesive was 
removed from the craniotomies and a 32-channel, single-shank silicon probe 
(A1x32-Poly3, NeuroNexus) coupled to a tapered optical fiber (65 µm, 0.22 NA) 
was stereotaxically inserted under visual guidance of a stereoscope and allowed 
to stabilize for ~30 min. Signals were acquired at 20 kHz using a digital headstage 
amplifier (RHD2132, Intan) connected to an RHD USB data acquisition board 
(C3100, Intan). A screw implanted over the cerebellum served as ground. 
Continuous signal was imported into MATLAB for referencing to a local probe 
channel and high-pass filtering at 200 Hz, and then imported into Offline Sorter 
v3 (Plexon) for spike thresholding and single-unit sorting. During recording, 
the optical fiber was connected via a patch cable to a 532-nm laser, which was 
triggered by a transistor–transistor logic (TTL) pulse sent by a pulse generator 
controlled by a computer running Spike2 software. TTL pulse times were copied 
directly to the RHD USB data acquisition board. Laser sweeps consisted of 40 
deliveries of 5 s of light (5 mW, measured from fiber tip), separated by 15-s ITIs. 
One to three recordings were made at different depths within a single probe 
penetration (minimum separation of 300 µm), with each hemisphere receiving 
one to three penetrations at different mediolateral or anteroposterior coordinates. 
For recordings in mice carried out over multiple days, craniotomies were filled 
with Kwik-Sil and covered with silicone elastomer between recordings (Kwik-Cast, 
World Precision Instruments).

Virtual reality behavior. Virtual reality setup. Mice were head-fixed over an 8-inch 
Styrofoam ball suspended by compressed air (~60 p.s.i.) facing a custom-built 
Styrofoam toroidal screen spanning a visual field of 270° horizontally and 
80° vertically. The setup was enclosed within a custom-designed cabinet built 

from optical rails (Thorlabs) and lined with sound-attenuating foam sheeting 
(McMaster-Carr). A DLP projector (Optoma HD141X) with a refresh rate of 
120 Hz projected the VR environment onto the toroidal screen (Fig. 1e).

An optical flow sensor (ADNS-3080 APM2.6), located beneath the 
ball and connected to an Arduino Due, ran custom code to transform 
real-world ball rotations into virtual-world movements (https://github.com/
sakoay/AccumTowersTools/tree/master/OpticalSensorPackage/) within 
the MATLAB-based ViRMEn53 software engine (http://pni.princeton.edu/
pni-software-tools/virmen/). The ball and sensor of each VR rig were calibrated 
such that ball displacements (dX and dY, where X (and Y) are parallel to the 
anteroposterior (and mediolateral) axes of the mouse) produced translational 
displacements proportional to ball circumference in the virtual environment of 
equal distance in corresponding X and Y axes. The y-velocity of the mouse is 
given by 

√

dY2/dt, where dt is the elapsed time from the previous sampling of the 
sensor. The virtual view angle of mice was obtained by first calculating the current 
displacement angle as: ω = atan2 (−dX × sin(dY), |dY|). Then the rate of change 
of view angle (θ) for each sampling of the sensor is given by equation (1):

dθ

dt = sin (ω) × min
(

e1.4|ω|1.2
− 1, π

2

)

− θ (1)

This exponential function was tuned to (1) minimize the influence of small 
ball displacements and thus stabilize virtual-world trajectories, and (2) increase the 
influence of large ball displacements to allow sharp turns into the maze arms25.

Reward and whisker air puffs were delivered by sending a TTL pulse to 
solenoid valves (NResearch), which were generated according to behavioral events 
on the ViRMEn computer. Each TTL pulse resulted in either the release of a drop 
of reward (~4–8µl of 10% sweetened condensed milk in water, vol/vol) to a lick 
tube, or the release of air flow (40 ms, 15 p.s.i.) to an air puff cannula (Ziggy’s 
Tubes and Wires, 16 gauge) directed to the left and right whisker pads from the 
rear position. The ViRMEn computer also controlled TTL pulses sent directly to a 
532-nm DPSS laser (Shanghai, 200 mW).

Behavioral shaping. Following post-surgical recovery, over the course of 4–7 d, 
mice were extensively handled while gradually restricting water intake to an 
allotted volume of 1–2 ml per day. Throughout water restriction, mice were closely 
monitored to ensure no signs of dehydration were present and that body mass 
was at least 80% of the pre-restriction value. Mice were then introduced to the VR 
setup where behavior was shaped to perform the accumulation of evidence task 
as previously described in detail25 (Supplementary Fig. 5a) or the permanent cues 
(control 2) task (Supplementary Fig. 5f). We tested a total of 32, 34 and 20 mice 
in the accumulation of evidence, no distractors (control 1) and permanent cues 
(control 2) tasks, respectively. No mice received optogenetic testing in all three 
tasks, but 7 mice received optogenetic testing in the accumulation of evidence and 
no distractors task, and 19 mice received optogenetic testing in the no distractors 
and permanent cues tasks (Supplementary Table 1).

Shaping followed a similar progression in both tasks. In the first four shaping 
mazes of both procedures, a visual guide located in the rewarded arm was 
continuously visible, and the maze stem was gradually extended to a final length 
of 300 cm (Supplementary Fig. 5a,f). In mazes 5–7 of the evidence accumulation 
shaping procedure (Supplementary Fig. 5a), the visual guide was removed and 
the cue region was gradually decreased to 200 cm, thus introducing the full 
100-cm delay region of the testing mazes. The same shift to a 200-cm cue region 
and 100-cm delay region occurred in mazes 5–6 of the permanent cues shaping 
procedure, but without removing the visibility of the visual guide (Supplementary 
Fig. 5f). In mazes 8–9 of evidence accumulation shaping, distractor cues were 
introduced to the non-rewarded maze side with increasing frequency (mean side 
ratio (s.d.) of rewarded:non-rewarded side cues of 8.3:0.7 to 8.0:1.6 m−1). Distractor 
cues were similarly introduced with increasing frequency in mazes 6–8 of the 
permanent cues shaping procedure, while the visual guide was removed in mazes 
7 and 8. In all evidence accumulation shaping mazes (mazes 1–9), cues were only 
made visible when mice were 10-cm from the cue location and remained visible 
until trial completion. In the final evidence accumulation testing mazes (maze 
10 and 11), cues were made transiently visible (200 ms) after first presentation 
(10 cm from cue location), while the mean side ratio of rewarded:non-rewarded 
side cues changed from 8.0:1.6 (Supplementary Fig. 5a; maze 10) to 7.7:2.3 m−1 
(Supplementary Fig. 5a; maze 11). In contrast, throughout all shaping mazes (1–6) 
and testing mazes (7–8) of the permanent cues task, cues were visible from the 
onset of a trial.

The median number of sessions to reach the first evidence accumulation 
testing maze (maze 10) was 22 sessions, while the mean number of sessions was 
23.0 ± 0.8 (Supplementary Fig. 5b,c). Mice typically spent between 2 and 5 sessions 
on each shaping maze before progressing to the next, with performance increasing 
or remaining stable throughout (Supplementary Fig. 5d,e; maze 9: 74.1% ± 9.8% 
correct). The median number of sessions to reach the first permanent cues (control 
2) testing maze (maze 7) was 17 sessions, while the mean number of sessions 
was 18.0 ± 1.5 (Supplementary Fig. 5g–j). Mice typically spent between 2 and 4 
sessions on each shaping maze before progressing to the next, with performance 
increasing or remaining largely stable throughout (Supplementary Fig. 5g–j; maze 
6: 87% ± 4.3% correct).
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Optogenetic testing mazes. The evidence accumulation task took place in a 
330-cm-long virtual T-maze with a 30-cm start region (−30 to 0 cm), followed 
by a 200-cm cue region and finally a 100-cm delay region (Fig. 2a, black, left). 
While navigating the cue region of the maze, mice were transiently presented with 
high-contrast visual cues (wall-sized ‘towers’) on either maze side, which were 
also paired with a mild air puff (15 p.s.i., 40 ms) to the corresponding whisker 
pad. The side containing the greater number of cues indicated the future rewarded 
arm. A left or right choice was determined when mice crossed an x-position 
threshold > 15 cm, which was only possible within one of the maze arms (the 
width of choice arms was ±25 cm relative to the center of the maze stem). Mice 
received reward (~4–8 µl of 10% vol/vol sweetened condensed milk in drinking 
water) followed by a 3-s ITI after turning to the correct arm at the end of the maze, 
while incorrect choices were indicated by a tone followed by a 12-s ITI. In each 
trial, the position of cues was drawn randomly from a spatial Poisson process 
with a rate of 8.0 m−1 for the rewarded side and 1.6 m−1 for the non-rewarded side 
(Supplementary Fig. 5a; maze 10) or 7.3:2.3 m−1 (Supplementary Fig. 5a; maze 11). 
Note that only maze 10 data were used for cross-task comparisons of optogenetic 
effects with permanent cues and no distractors control tasks to precisely match 
cue presentation statistics (Figs. 2 and 3 and Extended Data Figs. 3 and 6). Visual 
cues (and air puffs) were presented when mice were 10 cm away from their 
drawn location and ended 200 ms (or 40 ms) later. Cue positions on the same 
side were also constrained by a 12-cm refractory period. Each session began with 
warm-up trials of a visually guided maze (Supplementary Fig. 5a; maze 4), with 
mice progressing to the evidence accumulation testing maze after ten trials (or 
until accuracy reached 85% correct). During performance of the testing maze, if 
accuracy fell below 55% over a 40-trial running window, mice were transitioned 
to an easier maze in which cues were presented only on the rewarded side and did 
not disappear following presentation (Supplementary Fig. 5a; maze 7). These ‘easy 
blocks’ were limited to ten trials, after which mice returned to the main testing 
maze regardless of performance. Behavioral sessions lasted for ~1 h and typically 
consisted of ~150–200 trials.

All features of the ‘no distractors’ (control 1) task (Fig. 2b, magenta; 
Supplementary Fig. 5a,g, maze 12) were identical to the evidence accumulation 
task (Supplementary Fig. 5a, maze 10) except that (1) distractor cues were removed 
from the non-rewarded side, and (2) a distal visual guide located in the rewarded 
arm was transiently visible during the cue region (0–200 cm).

All features of the ‘permanent cues’ (control 2) task (Fig. 2b, cyan; 
Supplementary Fig. 5g, maze 8) were identical to the evidence accumulation task 
except that reward and non-reward side visual cues were made permanently visible 
from trial onset. As in the evidence accumulation task, whisker air puffs were only 
delivered when mouse position was 10 cm from visual cue location. Note that 
mice underwent optogenetic testing on two permanent cues mazes (mazes 7 and 
8). Maze 8 shared identical reward to non-reward side cue statistics (8.0:1.6 m−1) 
as maze 10 of the evidence accumulation task. Therefore, for all cross-task 
comparisons of optogenetic inhibition, only data from these mazes were analyzed 
(Figs. 2 and 3 and Extended Data Figs. 3–6).

To discourage side biases, in all tasks we used a previously implemented debiasing 
algorithm25. This was achieved by changing the underlying probability of drawing a 
left or a right trial according to a balanced method described in detail elsewhere25. In 
brief, the probability of drawing a right trial, pR, is given by equation (2):

pR =

√eR
(
√eR +

√eL)
(2)

where eR and eL are the weighted average of the fraction of errors the mouse has 
made in the past 40 right (and left) trials. The weighting for this average is based 
on a half-Gaussian with σ = 20 trials in the past, which ensures that most recent 
trials have larger weight on the debiasing algorithm. To discourage the generation 
of sequences of all-right (or all-left) trials, we capped √eR  and √eL  to be within 
the range of (0.15, 0.85). Because the empirical fraction of drawn right trials could 
deviate from pR, particularly when the number of trials is small, we applied an 
additional pseudorandom drawing prescription to pR. Specifically, if the empirical 
fraction of right trials (calculated using a σ = 60 trials half-Gaussian weighting 
window) was above pR, right trials were drawn with probability 0.5pR, whereas if 
this fraction was below pR, right trials were drawn with probability 0.5(1 + pR).

Virtual corridor. Following shaping in the behavioral tasks, mice were transitioned 
to free navigation in a virtual corridor arena in the same VR apparatus described 
above. The virtual corridor was 6 cm in diameter and 330 cm in effective length 
(Fig. 1e,f). This included a start region (−10 to 0 cm), a reward location (310 cm) 
in which mice received 4 µl of 10% vol/vol sweetened condensed milk in drinking 
water, and a teleportation region (320 cm) in which mice were transported back 
to the start region following a variable ITI with mean of 2 s. Mice were otherwise 
allowed to freely navigate the virtual corridor during ~70-min sessions. The 
virtual environment was controlled by the ViRMEn software engine, with 
real-to-virtual-world movement transformations as described above.

Optogenetics during virtual reality behavior. According to a previously published 
protocol54, optical fibers (200 µm, 0.37 NA) were chemically etched using 48% 

hydrofluoric acid to achieve tapered tips 1.5–2 mm (DMS-targeted) or 1–1.5 mm 
(NAc-targeted) in length. Following behavioral shaping in VR (and >6 weeks of 
viral expression), mice underwent optogenetic testing. On alternate daily sessions, 
optical fibers in the left or right hemisphere were unilaterally coupled to a 532-nm 
DPSS laser (Shanghai, 200 mW) via a multimode fiber-optic patch cable (PFP, 
62.5 µm). On a random subset of trials (10–30%), mice received unilateral laser 
illumination (5 mW, measured from patch cable) that was restricted to the first 
passage through 0–200 cm of the virtual corridor (Fig. 1 and Extended Data Fig. 2),  
or the cue region (0–200 cm) of each T-maze decision-making task (Fig. 3). The 
laser was controlled by TTL pulses generated using a National Instruments DAQ 
card on a computer running the ViRMEn-based virtual environment.

Conditioned place preference test. Mice underwent a real-time conditioned place 
preference (CPP) test with bilateral optogenetic inhibition paired to one side of a 
two-chamber apparatus (Supplementary Fig. 3). The CPP apparatus consisted of a 
rectangular Plexiglass box with two chambers (29 cm × 25 cm) separated by a clear 
portal in the center. The same gray, plastic flooring was used for both chambers, 
but each chamber was distinguished by vertical or horizontal black and white bars 
on the chamber walls. During a baseline test, mice were placed in the central portal 
while connected to patch cables coupled to an optical commutator (Doric) and 
were allowed to freely move between both sides for 5 min. In a subsequent 20-min 
test, mice received continuous, bilateral optogenetic inhibition (532 nm, 5 mW) 
when located in one of the two chamber sides (balanced across groups). Video 
tracking, TTL triggering and data analysis were carried out using EthoVision 
software (Noldus). Mice who displayed a bias for one chamber side greater than 
45 s during the baseline test were excluded from the analysis.

Behavior analyses. Data selection. See Supplementary Table 1 for a list of all mice 
with optogenetic testing data in the virtual corridor, the accumulation of evidence, 
no distractors or permanent cues tasks. The following describes the trial selection 
criteria for inclusion in analyses throughout.

For cross-task comparisons (Figs. 2 and 3 and Extended Data Figs. 3–6), we 
analyzed only trials from evidence accumulation maze 10 (Supplementary Fig. 5a),  
‘no distractors’ maze 12 (Supplementary Fig. 5a,g) and ‘permanent cues’ maze 
8 (Supplementary Fig. 5g), which each followed matching rewarded and 
non-rewarded side cue probability statistics (saved for the by-design absence of 
non-rewarded cues in the ‘no distractors’ control task). For model-based analyses 
of the evidence accumulation task (Figs. 4–7 and Extended Data Figs. 7–10), both 
maze 10 and maze 11 data were included, which differed only modestly in the side 
ratio of reward to non-reward side cues (Supplementary Fig. 5a; ~50% of trials 
were maze 10 or 11). In all tasks and all analyses throughout, we removed initial 
warm-up blocks (Supplementary Fig. 5a; maze 4, approximately 5–15% of total 
trials). For model-based analyses of the evidence accumulation task (Figs. 4–7 
and Extended Data Figs. 7–10), we included interspersed ‘easy blocks’ capped at 
ten trials in length (Supplementary Fig. 5a; maze 7, see above). These trial blocks 
comprised approximately ~5% of total trials, were included to avoid gaps in trial 
history, and were treated identically to the main evidence accumulation mazes by 
the models. These trials were removed from cross-task comparisons of optogenetic 
inhibition (Figs. 2 and 3 and Extended Data Fig. 3–6).

For analysis of optogenetic inhibition during virtual corridor navigation 
(Fig. 1 and Extended Data Fig. 2), we removed trials with excess travel of >10% 
of maze stem (or >330 cm) and mice with <150 total trials from measures of 
y-velocity, x-position and average view angle. Trials with excess travel had similar 
proportions across laser-off and laser-on trials and pathway-specific inhibition 
and control groups (indirect pathway: 8.1% of laser-off and 8.2% of laser-on trials; 
direct pathway: 8.2% of laser-off and 8.1% of laser-on trials; no opsin control: 7.0% 
of laser-off and 6.9% laser-on trials). Excess travel trials reflected the minority 
of trials in which mice made multiple traversals of the virtual corridor, thus 
skewing measures of average y-velocity, x-position and view angle during the 
majority of ‘clean’ corridor traversals. Importantly, we excluded no trials in direct 
measurements of distance, per-trial view angle standard deviation, and trials with 
excess travel to detect potential effects of pathway-specific DMS inhibition (or 
DMS illumination alone) on these measures (Fig. 1 and Extended Data Fig. 2).

Similarly, for all cross-task comparisons (Figs. 2 and 3 and Extended Data  
Figs. 3 and 6), we removed trials with excess travel for all analyses comparing 
choice, y-velocity, x-position and average view angle. To better capture 
task-engaged behavior, we also only considered trial blocks in which choice 
accuracy was greater than >60% for these measures. Excess travel trials were not 
excluded for cross-task comparisons of effects on measures of distance, per-trial 
view angle standard deviation and trials with excess travel. Exact trial and mouse 
number are reported in figure legends.

For cross-state comparisons of motor output measures (Extended Data  
Fig. 10), we did not exclude trial blocks with choice accuracy of <60%, given that 
different GLM–HMM states were associated with performance levels. However, 
for the reasons outlined above, we removed excess travel trials from measures of 
y-velocity, x-position and average view angle, and additionally only considered 
mice who occupied all three GLM–HMM states after trial selection. For measures 
of per-trial standard deviation in view angle, distance and excess travel, we applied 
no trial selection criteria, but only mice who occupied all three GLM–HMM states 
were included for analysis.
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General performance indicators. Accuracy was defined as the percentage of trials 
in which mice chose the maze arm corresponding to the side having the greater 
number of cues (Fig. 2c). For measures of choice bias, sensory evidence and 
choice were defined as either ipsilateral or contralateral relative to the unilaterally 
coupled laser hemisphere. Choice bias was calculated separately for laser-off and 
laser-on trials as the difference in choice accuracy between trials where sensory 
evidence indicated a contralateral reward versus when sensory evidence indicated 
an ipsilateral reward (percentage correct, ‘contralateral’ − ‘ipsilateral’, positive 
values indicate greater contralateral choice bias; Fig. 3d,g,j,o). Delta choice bias 
was calculated as the difference in contralateral choice bias between laser-off 
and laser-on trials (‘on’ − ‘off ’, positive values indicate laser-induced contralateral 
choice bias; Fig. 3e,g,k,p). In Extended Data Fig. 8c–f, reward at GLM–HMM state 
transition reflects the total amount of reward (ml) received from the start of the 
session up to the trial before a state transition (mice typically received 1–1.5 ml 
per session). Reward rate at GLM–HMM state transition was calculated as the 
sum of reward received from the start of the session up to the trial before a state 
transition, divided by the sum of all trial durations from the start of the session 
up to the trial before a state transition. GLM–HMM transitions were defined as a 
within-session change in the most likely state based on the posterior probability of 
each state (see ‘GLM–HMM’ below for more details).

Psychometric curve fitting. Psychometric performance was assessed based on the 
percentage of contralateral choices as a function of the difference in the number 
of contralateral and ipsilateral cues (n contra − n ipsi; Fig. 6c–f and Extended Data 
Fig. 4). In Extended Data Fig. 4, transparent lines reflect the mean performance 
of individual mice in bins (−16:4:16, n contra − n ipsi) of sensory evidence 
during laser-off (black) and laser-on (green) trials, while bold lines reflect the 
corresponding mean and s.e.m. across mice. In Fig. 6, psychometric curves, 
indicating the probability of a rightward choice as a function of the sensory 
evidence, were fit to the following four-parameter sigmoid using maximum 
likelihood fitting55:

p (choice = R|Δ) = λ +
1 − λ − γ

1 + exp (− (Δ − σ) μ)
(3)

where λ and γ are the right and left lapse rates, respectively, σ is the offset, μ is the 
slope, and Δ is the difference in the number of contralateral and ipsilateral cues 
on a given trial. Each point in Fig. 6c–f represents the binned difference in cues 
in increments of 4 from −16 to 16 (as in Extended Data Fig. 4), from which we 
calculated the percentage of contralateral choice trials for each bin.

Motor performance indicators. Y-velocity (cm s−1) was calculated on every sampling 
iteration (120 Hz, or every ~8 ms) of the ball motion sensor as dY/dt where dY was 
the change in Y-position displacement in VR, and dt was the elapsed time from the 
previous sampling of the sensor. The y-velocity for all iterations in which a mouse 
occupied y-positions 0–300 cm in 25-cm bins were then averaged across iterations 
in each bin to obtain per-trial y-velocity as a function of y-position. Binned 
y-velocity as a function of y-position was then averaged across trials for individual 
mice, and the average and s.e.m. across mice reported throughout (Figs. 1g and 2d 
and Extended Data Figs. 6a–c and 10b,p,i,w; averaged across y-position 0–200 cm 
in Extended Data Figs. 2b and 3b).

X-position trajectory (cm) as a function of y-position was calculated per trial 
by first taking the x-position at y-positions 0–300 cm in 1-cm steps, which was 
defined as the x-position at the last sampling time t in which y (t) ≥ Y , and 
then averaging the y-position bins of 25 cm from 0 to 300 cm. Binned x-position 
as a function of y-position was then averaged across left/right (or ipsilateral/
contralateral) choice trials for individual mice, and the average and s.e.m. across 
mice was reported throughout (Figs. 1h and Fig. 2e and Extended Data Fig. 10c,q; 
averaged across y-positions 0–200 cm in Extended Data Figs. 2c, 3c, 6j,l and 10j,x). 
Average view angle trajectory (degrees) was calculated in the same manner as 
x-position (Figs. 1i and 2f and Extended Data Fig. 10d,r; average across y-positions 
0–200 cm in Extended Data Figs. 2d, 3d, 6j–l and 10k,y). View angle standard 
deviation was calculated by first sampling the per-trial view angle from  
0 to 300 cm of the maze in 5-cm steps. The standard deviation in view angle was  
then calculated for each trial, and then averaged across trials for individual mice. 
The average and s.e.m. across mice are reported throughout (Extended Data 
Figs. 2e, 3f, 6g–i and 10e,s,l,z). This measure sought to capture unusually large 
deviations in single-trial view angles, which would be indicative of excessive 
turning or rotations.

Distance traveled was measured per trial as the sum of the total x and y 
displacement calculated at each sampling iteration t, as 

√

dX2 + dY2 . Distance 
traveled per trial was then averaged across trials for individual mice and the 
average and s.e.m. across mice was reported throughout (Figs. 1j and 2g and 
Extended Data Figs. 2f, 6d–f and 10f,t,m,aa). Excess travel was defined as the 
fraction of trials with total distance traveled per trial (calculated as above) greater 
than 10% of maze length (o r>330 cm). The average and s.e.m. across mice was 
reported throughout (Extended Data Figs. 2g, 3e, 6d–f and 10g,u,n,bb).

Decoding of choice based on the trial-by-trial x-position (Extended Data 
Fig. 3g,i) or view angle (Extended Data Fig. 3h,j) of mice was carried out by 
performing a binomial logistic regression using the MATLAB function ‘glmfit’. 

In Extended Data Fig. 3g,h, the logistic regression was fit separately for individual 
mice at successive y-positions in each T-maze stem (0–300 cm in 25-cm bins), 
where the trial-by-trial average x-position (or view angle) at each y-position bin 
(calculated as above) was used to generate weights predicting the probability of a 
left or right choice given a particular x-position (or view angle) value. Individual 
mouse fits were weighted according to the proportion of left and right choice 
trials. Fivefold cross-validation (resampled for new folds ten times) was used 
to evaluate prediction accuracy on held-out trials. A choice probability greater 
than or equal to 0.5 was decoded as a right choice, and prediction accuracy for 
individual mice was calculated as the fraction of predicted choices matching actual 
mouse choice, averaged across cross-validation sets. The same approach was used 
in Extended Data Fig. 3i,j, except that the training data were randomly sampled 
across all mice from a single task (50% of total trials, resampled 50 times; training 
data from evidence accumulation, no distractors or permanent cues task). The 
learned weights were then used to predict choice based on held-out x-position (or 
view angle) data from all three tasks, with prediction accuracy calculated as the 
fraction of predicted choices matching actual choice, parsed by individual mice, 
and averaged across cross-validation sets. A package of code for behavioral analysis 
in VR-based T-maze settings is available at https://github.com/BrainCOGS/
behavioralAnalysis/. In addition, all analyses described here can be replicated at 
https://github.com/ssbolkan/BolkanStoneEtAl/.

General statistics and reproducibility. We performed one-way ANOVAs to assess 
effects of the factor task (three levels: evidence accumulation, no distractors or 
permanent cue) on choice accuracy (Fig. 2c), distance traveled (Fig. 1g), average 
y-velocity (0–200 cm; Extended Data Fig. 3b), average x-position (0–200 cm) on left 
or right choice trials (Extended Data Fig. 6c), average view angle (0–200 cm) on left 
or right choice trials (Extended Data Fig. 3d), percentage of trials with excess travel 
(Extended Data Fig. 3e), per-trial standard deviation in view angle (Extended Data 
Fig. 3f), delta (laser on–off) choice bias (Extended Data Fig. 5b–d), delta (laser on–
off) distance traveled (Extended Data Fig. 6d–f, left), delta (laser on–off) percentage 
of trials with excess travel (Extended Data Fig. 6d–f, right), delta (laser on–off) 
per-trial standard deviation in view angle (Extended Data Fig. 6g–i), delta (laser 
on–off) average x-position (0–200 cm; Extended Data Fig. 6j–l, left), and delta (laser 
on–off) average view angle (0–200 cm; Extended Data Fig. 6j–l, right). Post hoc 
comparisons between tasks were made when a main effect of the factor task had a P 
value less than alpha < 0.05/2 to account for multiple-group comparisons (Extended 
Data Fig. 5b–d). One exception to this is Extended Data Fig. 6j–l, where all post 
hoc comparisons were made for laser effects on delta (on–off) x-position and view 
angle (and displayed with corresponding exact P values) to provide greater clarity 
around trend-level effects. We did not assume normality of the data in all post 
hoc comparisons, which used the nonparametric, unpaired, two-tailed Wilcoxon 
rank-sum test. A P value below 0.025 was considered significant to correct for 
multiple comparisons (P = 0.05/2 comparisons per group). Exact P values, degrees 
of freedom, and z-statistics are reported in the text and/or legends.

We performed one-way ANOVAs to assess effects of the factor group  
(three levels: indirect pathway inhibition, direct pathway inhibition or no  
opsin illumination) on delta (laser on–off) y-velocity (Extended Data Fig. 2b), 
delta (laser on–off) x-position (Extended Data Fig. 2c), delta (laser on–off) view 
angle (Extended Data Fig. 2d), delta (laser on–off) per-trial standard deviation 
in view angle (Extended Data Fig. 2e), delta (laser on–off) distance (Extended 
Data Fig. 2f), delta (laser on–off), and delta (laser on–off) percentage of trials 
with excess travel (Extended Data Fig. 2g) and delta (laser on–off) preference 
(that is, time) and speed during the real-time CPP test (Supplementary Fig. 3).

We performed a repeated-measure one-way ANOVA to assess effects of 
the within-subject factor state (three levels: GLM–HMM state 1, 2 or 3) on 
within-session accumulated reward or reward rate before GLM–HMM transition 
(Extended Data Fig. 8c–f), per-trial standard deviation in view angle (Extended 
Data Fig. 10e,s), distance traveled (Extended Data Fig. 10f,t), percentage of 
trials with excess travel (Extended Data Fig. 10g,u), delta (laser on–off) average 
x-position 0–200 cm (Extended Data Fig. 10j,x), delta (laser on–off) average view 
angle 0–200 cm (Extended Data Fig. 10k,y), delta (laser on–off) per-trial standard 
deviation in view angle (Extended Data Fig. 10l,z), delta (laser on–off) distance 
traveled (Extended Data Fig. 10m,aa) and delta (laser on–off) percentage of trials 
with excess travel (Extended Data Fig. 10n,bb). Post hoc comparisons between 
groups were made when a main effect of the factor task had a P value < 0.05. One 
exception is in Extended Data Fig. 6j,k,x,y, where all post hoc comparisons were 
made for laser effects on delta (on–off) x-position and view angle (and displayed 
with corresponding exact P values) to provide greater clarity around trend-level 
effects. We did not assume normality of the data in all post hoc comparisons, 
which used the nonparametric, unpaired, two-tailed Wilcoxon rank-sum test. A P 
value below 0.025 was considered significant to correct for multiple comparisons 
(P = 0.05/2 comparisons per group). Exact P values, degrees of freedom and 
z-statistics are reported in the text and/or legends.

In Fig. 3e,h,k,p, we used the nonparametric, unpaired, two-tailed Wilcoxon 
rank-sum test to assess effects of indirect or direct pathway inhibition versus no 
opsin illumination of brain tissue on delta (laser on–off) choice bias. A P value 
below 0.025 was considered significant to correct for multiple comparisons 
(P = 0.05/2 comparisons per group). Exact P values, degrees of freedom and 
z-statistics are reported in the text and/or legends.
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Related to Fig. 1a–c, Extended Data Fig. 1 and Supplementary Fig. 2, we 
used a paired, two-tailed Wilcoxon signed-rank test on cross-trial average firing 
rates (baseline-pre versus laser-on or laser-on versus laser-post) to determine the 
significance of laser modulation of single-neuron activity. A Bonferroni-corrected 
P value was used to determine significance (P < 0.00083 for 60 indirect pathway 
neurons or P < 0.001 for 50 direct pathway neurons).

All experiments, but not analysis, were conducted blind to experimental 
conditions. All experiments were conducted over multiple cohorts (see 
Supplementary Table 1 for details of individual mouse testing across experiments). 
Individual cohorts consisted of a random selection of test groups (for example, 
DMS indirect and direct pathway inhibition, and DMS no-opsin mice). We 
did not account for cohort effects in our statistical analyses, but no obvious 
cohort-dependent effects were qualitatively observable. No statistical method was 
used to predetermine group sample sizes; rather, animal and trial numbers were 
targeted to match or exceed those from similar studies.

Bernoulli GLM. Coding of covariates and choice output. We coded the external 
covariates (referred to as inputs in Fig. 4b) and output (the mouse’s choice) on each 
trial as follows:

Δ cues: an integer value from −16 to 16, divided by the standard deviation of 
the Δ cues across all sessions in all mice, representing the standardized difference 
between the number of cues on the right and left sides of the maze.

Laser: a value of 1, −1 or 0 depending on whether optogenetic inhibition was 
on the right hemisphere, left hemisphere or off, respectively.

Previous choice: a value of 1 or −1 if the choice on a previous trial was to the 
right or left, respectively. We set the value to 0 at the start of each session when 
there was an absence of previous choices (for example, for the third trial of a 
session, previous choices 3–6 would be coded as 0).

Previous rewarded choice: a value of 1, −1 or 0 depending on whether the 
previous choice was correct and to the right, correct and to the left or incorrect, 
respectively.

Choice output: a value of 1 or 0 depending on whether the mouse turned right 
or left.

Fitting. We used a Bernoulli GLM, also known as logistic regression, to model 
the binary (right/left) choices of mice as a function of task covariates. This also 
corresponds to a one-state GLM–HMM (Fig. 4 and Extended Data Fig. 7a). 
The model was parameterized by a weight vector (carrying weights for sensory 
evidence, choice and reward history, and DMS inhibition). On each trial t, the 
weights map the external covariates to the probability of each choice yt. The model 
can be written according to equation (4) as:

p (yt = 1 |xt ) =
1

1 + exp (−wTxt)
, (4)

where y=1 indicates a rightward choice, and y=0 indicates a leftward choice. We 
fit the model by penalized maximum likelihood, which involved minimizing the 
negative log-likelihood function plus a squared penalty term on the model weights. 
The log-likelihood function is given by the conditional probability of the choice 
data Y = y1, …, yT  given all the external covariates X = x1, …, xT , considered as a 
function of the model parameters given by equation (5):

log (p (Y|X, w)) =
T
∑

t=1
log (p (yt|xt))

=
T
∑

t=1
yt log (p (yt = 1|xt)) +

T
∑

t=1
(1 − yt) log (1 − p (yt = 1|xt))

(5)

We then minimized the loss function, given by − log p (Y|X, w) + 1
2w

Tw, 
using Python’s ‘scipy.optimize.minimize’. This can be interpreted as a log-posterior 
over the weights, with 12w

Tw representing the negative log of a Gaussian prior 
distribution with mean zero and variance 1, which regularizes by penalizing 
large weight values. A variance of 1 was chosen because the resulting penalty 
was sufficient to resolve cases where the weights would grow unusually large and 
lead to decreases in the log-likelihood during fitting. We computed the posterior 
standard deviation of the fitted GLM weights (shown as error bars in Fig. 4c,d) 
by taking the diagonal elements of the inverse negative Hessian (matrix of second 
derivatives) of the log-posterior at its maximum56,57.

GLM–HMM. Model architecture. To incorporate discrete internal states, we 
used a hidden Markov model (HMM) with a Bernoulli GLM governing the 
decision-making behavior in each state. The model is defined by a transition 
matrix and a vector of GLM weights for each state. The transition matrix contains 
a fixed set of probabilities that govern the probability of changing from a state 
z ∈ {1, …, K} on trial t to any other state on the next trial. We refer to these as 
transition probabilities, which can be abbreviated according to equation (6):

Pij = p (zt+1 = j|zt = i) (6)

Each GLM has a unique set of weights wk that maps the external covariates xt 
(coded as described in ‘Bernoulli GLM’) to the probability of the choice yt for each 

of the k states. These probabilities can be expressed as a modified version of Eq. 
(4), as given by equation (7):

p (yt = 1|xt, zt = j) =
1

1 + exp
(

−wT
j xt

) (7)

where wj is the vector of GLM weights for state j. Note that in this expression, 
the choice probability depends on both the external covariates (inputs) and the 
state via the state-dependent GLM weights29–31. We refer to these as ‘observation 
probabilities’, which can be abbreviated according to equation (8):

ϕij = p (yt = j|xt, zt = i) (8)

Fitting. We fit the GLM–HMM to the data using the expectation–maximization 
(EM) algorithm30. The EM algorithm computes the maximum likelihood 
estimate of the model parameters using an iterative procedure that involves an 
E-step (expectation), in which the posterior distribution of the latent variables is 
calculated, followed by an M-step (maximization), in which the values of the model 
parameters are updated given the posterior distribution of the latents. These steps 
are repeated until the log-likelihood of the model converges on a local optimum57.

The log-likelihood (also referred to as the log marginal likelihood) is obtained 
from the joint probability distribution over the latent states Z = z1, …, zT  and 
the observations Y = y1, …, yT  on each trial given the model parameters θ. 
Marginalizing over the latents, the log-likelihood is computed as the log of the sum 
over states of the marginal probabilities and is written as shown in equation (9):

log (p (Y|X, θ)) = log
(

∑

Z
p(Y,Z|X, θ)

)

(9)

The set of parameters θ governing the model consists of a transition matrix and 
the state-dependent GLM weights, which we described above. We initialized the 
transition matrix by sampling each row from a Dirichlet distribution, with a larger 
concentration parameter over the entries along the diagonal (αii = 5, αij = 1), 
reflecting a slight bias toward self-transitions. For the GLM weights, we reasoned 
that the true values for each state would likely be in approximately the same 
range as the true values for the one-state (GLM) case. Therefore, we initialized 
the per-state GLM weights wk with k ∈ {1, …, K} by first fitting a basic GLM 
(‘Bernoulli GLM’) to find w0. Then, as we didn’t want the initial weights to be the 
same in each state, we initialized wk = w0 + ϵk where ϵ ∼ N (0, 0.2).

The goal of the E-step of the EM algorithm is to compute p(Z|X,Y, θ), the 
posterior probability of the latent states given the observations and the model 
parameters. This can be obtained using a two-stage message passing algorithm 
known as the forward–backward algorithm30. The forward pass, sometimes called 
‘filtering’, finds the normalized conditional probability α̂(zt) for each state z at trial 
t by iteratively computing the following according to equation (10):

α̂(zt) = p(zt|y1:t, x1:t)

=
p(yt|zt ,xt)

p(yt|y1:t−1)

K
∑

k=1
p (zt−1 = k, y1:t−1|x1:t−1) p(zt|zt−1 = k)

= c−1
t ϕzt−1, yt

K
∑

k=1
α̂ (zt−1 = k) Pk, zt

(10)

where ct = p(yt|y1:t−1) is a scale factor ensuring the probabilities over states sum 
to 1, which is computed by summing the unnormalized probabilities. We set the 
prior distribution over states before the first trial, denoted α̂(z0), to be the uniform 
distribution. Note that this is a normalized version of the forward–backward 
algorithm that avoids underflow errors57.

The backward step, also referred to as ‘smoothing’, takes the information from 
the forward pass and works in the reverse direction, carrying the information 
about future states backwards in time to further refine the latent state probabilities. 
Here we find the normalized conditional probability β̂ (zt) for each state z at trial t 
by iteratively computing the following according to equation (11):

β̂ (zt) =
p(yt+1:T|xt+1:T,zt)

p(yt+1:T|y1:t)

= 1
p(yt+1|y1:t)

K
∑

k=1

p(yt+2:T|xt+2:T,zt+1=k)
p(yt+2:T|y1:t+1)

p (yt+1|zt+1 = k, xt+1) p (zt+1 = k|zt)

= c−1
t+1

K
∑

k=1
β̂ (zt+1 = k) ϕk,yt+1

Pzt,k
(11)

where β̂ (zT) = 1.
From these two conditional probabilities, we can calculate the marginal 

posterior probabilities of the latent states given by equation (12):

γ (zt) = p (zt|X, Y, θ) = α̂(zt)β̂(zt) (12)
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which was the goal of the E-step. We can also compute the joint posterior 
distribution of two successive latents, given by equation (13):

ξ(zt, zt+1) = α̂ (zt) β̂ (zt+1) Pzt,zt+1 ϕzt+1 ,yt+1 (13)

which will be important for computing updates in the M-step. Because the 
format of the data included sessions from several different mice over many days, 
we computed the forward–backward pass separately for each session. This ensured 
that the learned transition probabilities would not take into account the effect of 
the last trial of one session on the first trial of the next session.

The M-step of the EM algorithm takes the newly computed posterior 
probabilities over the latents and uses them to update the values of the model 
parameters (Eqs. (6)–(8)) by maximizing the expression for P and w. Because 
the transition probabilities are fixed, we can compute their updates using the 
closed-form solution given by equation (14):

Pjk =

∑T
t=2 ξ(zt,j, zt+1,k)

∑K
l=1

∑T
t=2 ξ(zt,j, zt+1,l)

(14)

This closed-form update can be derived by applying the appropriate Lagrange 
multipliers to the complete-data log-likelihood function57.

Maximization for w involves minimizing the negative of the log-likelihood 
function, weighted by the marginal posterior probabilities of the latent states,  
plus a squared penalty term on the model weights. This penalty can be interpreted 
as the negative log of a Gaussian prior with mean zero and variance 1, which 
regularizes by penalizing large weight values. The resulting loss function is given  
by equation (15):

L(w) =

T
∑

t=1

K
∑

k=1

γ(zt = k) log (p (yt|xt, zt = k)) − 1
2
wT
kwk (15)

which we optimized using numerical optimization and the L-BFGS-B 
algorithm as previously described (see ‘Bernoulli GLM’).

Both E- and M-steps of the EM algorithm are guaranteed to increase the 
log-posterior. We alternated E- and M-steps until the difference between the 
log-posteriors over ten iterations was smaller than a given tolerance (tol = 1 × 10−3). 
Because the EM algorithm only guarantees that the log-likelihood will converge 
upon a local optimum57, we fit the model 20 times using different initializations 
of the weights and transition matrix and verified that the top four or more fits all 
converged on the same solution (meaning that the weights for each fit were the 
same within a tolerance of ±0.05) to confirm that the algorithm had indeed found 
the global optimum. After determining the best fit, we computed the posterior 
standard deviation of the fitted GLM weights (shown as error bars in Fig. 6a,b 
and Extended Data Fig. 7d–f) by computing the inverse Hessian of the optimized 
log-posterior using Python’s autograd package.

Model selection. In Extended Data Fig. 7a, we performed cross-validation on the 
data from both the indirect and direct pathway inhibition groups, which revealed 
that three to five latent states were sufficient to reach a plateau in likelihood. To 
obtain a test set, we selected ~20% of sessions from the data to hold out from 
model fitting. Test sessions were chosen by randomly selecting an approximately 
equal number of sessions from each of the 13 mice in either group. Constraining 
the held-out data in this way ensured that the cross-validation results were not 
affected by possible individual differences across mice. We then calculated the 
log-likelihood of the test data after fitting the model under parameterizations of 
1–5 states to the remaining ~80% of sessions. We express the log-likelihood in bps, 
defined according to equation (16):

Lbps = l · L̂ − L̂0
T · log(2)

(16)

where l is the average session length, T is the number of trials in the test set and 
L̂0 is the log-likelihood of the test-set data under the bias-only Bernoulli GLM. To 
obtain the bias term b we computed the following given by equation (17):

b =
T(right)

T (right) + T(left) (17)

where T(side) is the number of trials in the test set in which the mice turned in 
that direction. For all cross-validation results presented in the paper, we report 
the averaged Lbps from five different test sets. We followed the same procedure as 
above in Extended Data Fig. 7c, selecting the optimal number of previous choices 
using a three-state GLM–HMM under parameterizations of 1–8 previous choices 
while holding the number of all other external inputs (Δ cues, laser, bias and 
previous rewarded choice) constant. In Extended Data Fig. 7b, we simulated data 
from the inferred parameters (see ‘Simulating data’) for a two-state GLM–HMM 
fit to the real data for the indirect pathway inhibition group. We then performed 
cross-validation as described above on both the full simulated dataset (‘all data’) 
and for a small subset (‘5% of data’). We chose to simulate from the two-state model 

to differentiate the simulation from the real data and to demonstrate the results for 
an arbitrary choice in the true number of states.

Testing. In Fig. 5c, we compared the performance of the GLM–HMM to the GLM 
by calculating the log-likelihood of the test sets of individual mice. To do so, we 
held out data and fitted the model across all animals using the same procedure 
described above. However, we then split the test set by mouse (thus creating 13 
different test sets) and calculated the log-likelihood for each individual animal, 
thus expressing the log-likelihood in units of mouse bits per session (mbps) given 
by equation (18):

Lmbps = l · L̂m − L̂0m
Tm · log(2)

(18)

Here, L̂m is the optimized log-likelihood of the model in question (either 
the GLM or three-state GLM–HMM) for a single mouse. Similarly, L̂0m is the 
optimized log-likelihood under the bias-only Bernoulli GLM and Tm is the total 
number of trials for that mouse. We then repeated the procedure for five test sets 
and took the average of the results for each mouse.

In Fig. 5d, we evaluated the prediction accuracy of the GLM for each animal 
by taking the same training and test sets that we used to find the log-likelihoods 
and using Eq. (2) to calculate the probability of turning right on each trial. We then 
compared this probability to the mouse’s actual choice on that trial, labeling the 
trial as correct if the model predicted a 50% or greater probability of turning in the 
direction of the mouse’s true choice. We then calculated the prediction accuracy 
for each mouse as the number of correct trials divided by the total number of 
trials for that mouse. To evaluate the prediction accuracy of the GLM–HMM for 
each animal, we computed p(yt|x1:t−1, y1:t−1), or the predictive distribution for 
trial t of the test set using the observations from trials 1 to t − 1. This arises from 
averaging over the state probabilities given previous choice data to get a prediction 
for a particular trial. That is, we ran the forward pass (see ‘Fitting’) to obtain the 
state probabilities p(zt|x1:t−1, y1:t−1), computed the initial choice probabilities 
p(yt|xt, zt) using Eqs. (7) and (8), and then calculated the predictive distribution 
according to equation (19):

p (yt|x1:t−1, y1:t−1) =

K
∑

k=1

p (yt|xt, zt = k) p (zt = k|x1:t−1, y1:t−1) (19)

We then ran this forward over all the trials in the test set for each mouse. 
Finally, we computed the prediction accuracy using the same method described for 
the GLM prediction accuracy.

State assignments. To determine the most likely state on each trial (Figs. 6c–i  
and 7g,j and Extended Data Figs. 7g,h, 8 and 10 and Supplementary Fig. 4), we 
assigned each trial to the state with maximum marginal probability given the 
inputs and choice data, as computed by the forward–backward algorithm given  
by equation (20):

st = argmax
z

(p (zt|X,Y, θ)) (20)

Simulating data. For the analyses in Fig. 6e,f and Extended Data Figs. 7 and 9, we 
evaluated the ability of the three-state GLM–HMM to predict choices and state 
transitions that matched the animals’ actual behavior in each state. Regarding 
the covariates for the simulation, we kept the evidence (Δ cues) and optogenetic 
inhibition from the real data but populated the trial history covariates using 
simulated previous choices. To simulate choices on each trial, we first computed 
the observation probabilities (Eqs. (7) and (8)) using x′t (the external covariates) 
and wk (the learned weights from the model fitted to real data). The state k on 
each trial was randomly chosen from a distribution given by the learned transition 
probabilities Pzt+1 ,zt from the model fitted to real data. We then randomly 
generated choices y′t from the distribution of observation probabilities. Repeating 
this process for each trial to obtain x′1:T  and y′1:T , we fit the model to the simulated 
data using the same procedure described previously (see ‘Fitting’) to obtain 
the posterior probability over states. For Fig. 6e,f and Extended Data Fig. 7, we 
computed the psychometric curves for each state using these posterior probabilities 
and the simulated choices (see ‘Psychometric curve fitting’).

Model comparisons. For the two alternative model comparisons with restricted 
transition probabilities (Fig. 7k–m), we fit the three-state GLM–HMM using 
the same general procedure as described above. However, in the case where we 
disallowed transitions during a session (Fig. 7k), we fixed the transition matrix 
to the identity matrix and only fit the state-dependent GLM weights. In the 
case where we disallowed transitions in and out of state 2 (Fig. 7l), we derived a 
constrained M-step that forced the transition probabilities for state 2 to 0. In detail, 
the constrained M-step involved zeroing out the transition probabilities associated 
with state 2 and then renormalizing so the rows of the transition matrix summed to 
1. Note that the three sessions that appear to still allow transitions in and/or out of 
state 2 for mice inhibited in the direct pathway of the DMS (Fig. 7l, right) were due 
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to rare cases where the model had high uncertainty about the state, and the most 
probable state flipped between state 2 and another state at some point during the 
session. In Fig. 7m, solid curves denote the average log-likelihood for five different 
test sets. Held-out data for test sets were selected as a random 20% of sessions, 
using an approximately equal number of sessions for each mouse.

Fluorescence in situ hybridization and stereological quantification. In situ 
hybridization (Supplementary Fig. 1) was performed using the RNAscope 
Multiplex Fluorescent Assay (ACD, no. 323110) with the following probes: 
Mm-Drd1a (406491), Mm-Drd2-C2 (406501-C2, 1:50 dilution in C1 solution) 
and Cre-01-C3 (474001-C3, 1:50 dilution in C1 solution). Likely due to lower 
expression of Cre mRNA in D1R-Cre and A2a-Cre mice, we did not detect 
unambiguous Cre fluorescence signal in these lines. We therefore relied on 
Cre-dependent viral expression of AAV5-DIO-EYFP to report Cre+ neurons 
alongside Drd1a and Drd2 probes in sections from two D1R-Cre and two A2R-Cre 
mice, but used all three probes in sections from two D2R-Cre mice. In D1R-Cre 
and A2R-Cre mice, the Drd1a and Drd2 probes were fluorescently linked to 
TSA Plus Cy-3 and TSA Plus Cy-5, respectively (Perkin Elmer). In D2R-cre 
mice, Drd1a, Drd2 and Cre probes were linked to TSA Plus Cy-3, TSA Plus 
Fluorescein or TSA Plus Cy-5, respectively. All fluorophores were reconstituted in 
dimethylsulfoxide according to Perkin Elmer instructions and diluted 1:1,200 in 
TSA buffer included in the RNAscope kit. After in situ hybridization, slides were 
coverslipped using Fluoromount-G containing DAPI (SouthernBiotech).

We then obtained ×20 confocal z-stacks from the DMS, NAcCore and NAcShell 
in all lines and manually quantified specificity, penetrance and D1R+/D2R+ overlap 
using LASX software (Leica). Specificity was determined as the percentage of the 
following: GFP+ neurons coexpressing Drd1 in D1R-Cre mice (DMS, n = 5 sections, 
193 cells; NAcCore, n = 5 sections, 298 cells; NAcShell, n = 5 sections, 363 cells), 
GFP+ neurons coexpressing Drd2 in A2A-Cre mice (DMS, n = 4 sections, 144 cells; 
NAcCore, n = 4 sections, 326 cells; NAcShell, n = 4 sections, 312 cells) or Cre+ neurons 
coexpressing Drd2 in D2R-Cre mice (DMS, n = 5 sections, 1,302 cells; NAcCore, n = 5 
sections, 1,104 cells; NAcShell, n = 5 sections, 1,187 cells). Penetrance was determined 
as the percentage of Drd2+ neurons coexpressing Cre in D2R-Cre mice (DMS, n = 5 
sections, 1,269 cells; NAcCore, n = 5 sections, 1,055 cells; NAcShell, n = 5 sections, 
1,144 cells). We did not assess penetrance in D1R-Cre or A2a-Cre lines because our 
Cre-dependent viral reporter did not fully penetrate all Cre+ neurons. Quantification 
of D1R+/D2R+ overlap in striatal regions was carried out on two D2R-Cre mice and/
or two D1R-tdTomato mice and measured as both the percentage of D1R+ neurons 
that were D2R+ (DMS, n = 10 sections, 2,423 cells; NAcCore, n = 10 sections, 2,196 
cells; NAcShell, n = 10 sections, 2,220 cells) and the percentage of D2R+ neurons 
that were D1R+ (DMS, n = 5 sections, 868 cells; NAcCore, n = 5 sections, 834 cells; 
NAcShell, n = 5 sections, 874 cells).

Histology. Mice were anesthetized with a 0.05-ml injection of Euthasol 
intraperitoneally and transcardially perfused with 1× PBS, followed by fixation 
with 4% paraformaldehyde (PFA). Whole brains with intact fiber-optic implants 
were post-fixed in 4% PFA for 1–3 d, followed by brain dissection and another 
24 h of post-fixation in PFA. For optogenetic experiments, brains were then 
transferred to PBS for coronal sectioning (50 µm) on a vibratome. Viral expression 
and fiber-optic placements were assessed under slide-scanning (NanoZoomer, 
Hamamatsu) or single slide (Leica) epifluorescent microscopes (Supplementary 
Fig. 6). For FISH experiments, post-fixation dissected brains were transferred 
through a sucrose gradient: 10% sucrose in PBS for 6–8 h, 20% sucrose in PBS 
overnight and 30% sucrose in PBS overnight. Coronal sections (18 µm) containing 
the DMS and NAc were made using a cryostat, mounted without coverslips on 
Superfrost plus slides (Fisher), and stored at −80° before the FISH protocol. After 
the FISH protocol, tile-scanning and cellular resolution images of coverslipped 
slides were acquired using a confocal microscope (Leica TCS SP8).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available on figshare at 
https://doi.org/10.6084/m9.figshare.17299142.v1.

Code availability
Code for general use applications of GLM–HMM analyses developed in this study, 
including all applications to the present dataset, are available on GitHub at https://
github.com/irisstone/glmhmm/. Code to analyze data and regenerate all other plots 
in this study is publicly available at https://github.com/ssbolkan/BolkanStoneEtAl.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Optogenetic inhibition of DMS pathways is effective, generating little post-inhibitory rebound, nor excitation during the 
inhibition period. (a) Schematic of viral delivery of AAV5-eF1a-DIO-NpHR to the dorsomedial striatum (DMS) of A2a-Cre or D1R-Cre mice.  
(b,i) Schematic of electrophysiological recording and laser delivery (532-nm, 5-mW) to the DMS in awake, head-fixed mice ambulating on a running 
wheel. (b,ii) Example recording electrode tracks and cre-dependent NpHR expression in an A2a-Cre mouse targeting the indirect pathway of the DMS. 
(b,iii) As in b,ii but in a D1R-Cre mouse targeting the DMS direct pathway. (b,iv) Schematic of silicon optrode recording tip, including tapered optical fiber 
coupled to a 32-channel silicon probe. (c) Two example peristimulus time histograms (PSTH) (top) and raster plots of trial-by-trial spike times (bottom) 
from single neurons recorded from the DMS of an A2a-Cre mouse. Inset at top displays average spike waveform (black) and 100 randomly sampled spike 
waveforms (grey) for each neuron. A trial consisted of 5-s without laser (pre, −5 to 0-s), 5-s of 532-nm light (5-mW) delivery (on, 0 to 5-s), followed by 
a 10-s ITI (40 trials per recording site). The first 2-s following laser offset (post, 5-7-s) was used to assess post-inhibitory effects. (d) Left: Histogram of 
change in average firing rate (on-pre, Hz) for all neurons (n = 60) recorded from the DMS of A2a-Cre mice (n = 3). Colors indicate non-significant (black, 
n = 38 neurons), significantly decreased (red, n = 18 neurons) or increased (green, n = 4 neurons) changes in firing rate determined via paired, two-tailed 
signrank comparison of average across-trial baseline (pre) or laser (on) firing rates. A Bonferroni-corrected significance threshold was used to account 
for multiple neuron comparisons (p < 0.00083, or p = 0.05/60 neuron comparisons). Right: same as left but for change in firing rate (post-pre, Hz): non-
significant (n = 55 neurons), significantly decreased (n = 4) or increased (n = 1). Insets display pie-chart summaries of the proportion of non-significant 
(black unfilled), significantly decreased (red) or increased (green) neurons. (e) Left: Mean  ±1 s.e.m. z-scored firing rate across all non-significantly 
modulated on vs pre (black, n = 38) or significantly decreased on vs pre (red, n = 18) neurons recorded from A2a-Cre mice. Right: same as left but for all 
non-significantly modulated post vs pre (black, n = 55) or significantly decreased post vs pre (red, n = 4) neurons. (f) Same as c but for example neurons 
recorded from the DMS of D1R-Cre mice. (g) Same as d but for all neurons (n = 50) recorded from the DMS of D1R-Cre mice (n = 2). Left (on-pre): non-
significant (n = 27), significantly decreased (n = 21), or increased (n = 2). Right (post-pre): non-significant (n = 46), significantly decreased (n = 2) or 
increased (n = 2). A Bonferroni-corrected significance threshold was used to account for multiple neuron comparisons (p < 0.001, or p = 0.05/50 neuron 
comparisons). (h) same as e but for neurons recorded from the DMS of D1R-Cre mice.
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Extended Data Fig. 2 | Non-significant motor effects of DMS pathway inhibition compared to non-opsin expressing controls during virtual corridor 
navigation. (a) Schematic of virtual corridor and unilateral delivery of 532-nm light (5-mW) restricted to 0-200 cm. (b) Difference in average y-velocity 
(cm/s) during laser on and off trials (on-off) for mice receiving indirect (n = 7 mice, n = 1,712 laser off and n = 1,288 laser on trials) or direct (n = 6 
mice, n = 1,088 laser off and n = 757 laser on trials) pathway inhibition of the DMS, or DMS illumination alone (no opsin; n = 5 mice, n = 1,178 laser off 
and n = 827 laser on trials). p-value denotes significance of one-way ANOVA of group on delta y-velocity (p = 0.98, F2,13 = 0.02). (c) Same as b but for 
difference in x-position (cm, on-off) contralateral to the laser hemisphere (p = 0.60, F2,13 = 0.53). (d) Same as c but for difference in view angle (deg, 
on-off) contralateral to the laser hemisphere (p = 0.20, F2,13 = 1.90). (e) Same as c but for difference in mean standard deviation in view angle (deg, on-off). 
The mean of the standard deviation in view angles sampled in 5-cm steps from 0-300 cm were calculated per trial, and then averaged across all laser off 
(or on) trials for a mouse (p = 0.94, F2,16 = 0.06). Indirect: n = 7 mice, n = 2,109 laser off and n = 1,574 laser on trials; direct: n = 6 mice, n = 1,330 laser off 
and n = 930 laser on trials; no opsin: n = 6 mice, n = 1,688 laser off and n = 1,199 laser on trials). (f) As in e but for difference in total distance travelled 
(cm, on-off) to complete a trial (p = 0.93, F2,16 = 0.08). (g) As in e but for the difference in percentage of trials with excess travel (defined as >10% of 
corridor length to reward, or >330 cm) (p = 0.76, F2,18 = 0.28). Throughout solid black lines indicate mean ±1 s.e.m. across mice and transparent ‘x’ denote 
individual mouse mean throughout.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Similar motor performance across three virtual reality T-mazes. Schematic of three virtual reality (VR)-based T-mazes that differ 
in task requirements. (b) Average y-velocity (cm/s) of mice during the cue region (0-200 cm) of the accumulation of evidence task (black, n = 32 mice, 
n = 52,381 trials), no distractors (ctrl #1) task (magenta: n = 32 mice, 56,783 trials), or permanent cues (ctrl #2) task (cyan: n = 20 mice, n = 27,870 trials). 
Solid bars denote mean ±1 s.e.m. across mice while transparent ‘x’ denotes individual mouse mean. p-value denotes one-way ANOVA of task on y-velocity 
(p = 0.51, F2,80 = 0.67). (c) Same as b but for average x-position (cm) during the cue region (0-200 cm) on left and right choice trials. p-value denotes one-
way ANOVA of task on x-position (left choice: p = 0.50, F2,80 = 0.70; right choice: p = 0.37, F2,80 = 1.0). (d) Same as b but for average view angle (degrees) 
during the cue region (0-200 cm) on left and right choice trials (left choice: p = 0.53, F2,80 = 0.64; right choice: p = 0.70, F2,80 = 0.37). (e) As in b but for 
average percent of trials with excess travel (defined as travel >10% of maze stem, or >330 cm). Accumulation of evidence: n = 32 mice, n = 53,833 trials; 
control #2 (no distractors): n = 32 mice, n = 60,074 trials; control #2 (permanent cues): n = 20 mice, n = 29,192 trials. p-value denotes one-way ANOVA 
of task on excess travel (p = 0.06, F2,81 = 2.9). (f) As in b but for mean standard deviation in view angle (degrees) per trial (n as in e). p-value denotes one-
way ANOVA of task on view angle deviation (p = 0.07, F2,81 = 2.8). (g) Average accuracy of decoding left/right choice based on the trial-by-trial x-position 
(cm) of mice as a function of y-position in the maze (0-300 cm in 25-cm bins). Training and test trial sets were selected within individual mice (80% train, 
5-fold cross-validation, re-sampled 10 times). Left: Each ‘x’ depicts decoding accuracy at each y-position bin for individual mice performing the evidence 
accumulation (black), no distractors (ctrl #1, magenta), or permanent cues (ctrl #2, cyan) tasks. Right: Group mean and ±1 s.e.m. across mice for each 
task (n as in b). (h) Same as f but for average accuracy of decoding left/right choice based on the trial-by-trial view angle (degrees) of mice (n as in b). 
(i) Average accuracy of decoding left/right choice based on the trial-by-trial x-position (cm) of mice as a function of y-position in the maze (0-300 cm 
in 25-cm bins). Training trial sets were randomly selected across all mice (50% total trials, re-sampled 50 times) performing either the accumulation of 
evidence (left, AoE, black), no distractors (middle, ctrl#1, magenta), or permanent cues (right, ctrl#2, cyan) tasks. Testing trial sets were the 50% of held-
out trials in the task used for training, or all trials in the alternate tasks. Top: Each ‘x’ depicts average decoding accuracy across all training/tests sets at 
each y-position bin for individual mice performing the evidence accumulation (black), no distractors (ctrl #1, magenta), or permanent cues (ctrl #2, cyan) 
tasks. Right: Group mean and ±1 s.e.m. across mice for each task (n as in a). (j) Same as I but for average accuracy of decoding left/right choice based on 
the trial-by-trial view angle (degrees) of mice (n as in b).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Effects of pathway-specific DMS and NAc inhibition on psychometric performance across virtual reality tasks. (a) Schematic 
of unilateral indirect pathway DMS inhibition with choice defined ipsilateral or contralateral to the hemisphere receiving 532-nm laser illumination. 
(b) Schematic of three virtual reality based decision-making tasks (left: accumulation of evidence; middle: control #1, no distractors; right: control #2, 
permanent cues) and laser illumination restricted to the cue region (0-200 cm). (c) Percent of contralateral choice trials as a function of the difference 
in sensory cues (contralateral-ipsilateral) binned in increments of 5 from −15 to 15. Transparent lines indicate individual mouse mean during laser off 
(grey) and on (green) trials for mice receiving indirect-pathway DMS inhibition during the evidence accumulation (black, left), no distractors (magenta, 
ctrl#1, middle), or permanent cues (cyan, ctrl#2, right). Thick lines indicate mean ±1 s.e.m. across mice at each evidence bin during laser off (black) and 
on (green) trials. (d) Same as a but for mice receiving unilateral direct pathway DMS inhibition. (e) same as b. (f) Same as c but for mice receiving direct 
pathway DMS inhibition. (g) Same as a but for mice receiving unilateral DMS illumination in the absence of NpHR (no opsin). (h) Same as b. (i) same as c 
but for mice receiving unilateral DMS illumination in the absence of NpHR (no opsin). (j) Schematic of unilateral inhibition of NAc indirect (left) or direct 
(middle) pathway, or NAc illumination in the absence of NpHR (no opsin). (k) Schematic of accumulation of evidence task and delivery of 532-nm light 
during the cue region (0-200 cm). (l) As in c but for psychometric comparison between groups receiving NAc indirect or direct pathway inhibition, or NAc 
illumination in the absence of NpHR (no opsin).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Effects of pathway-specific DMS inhibition on choice are larger in the most demanding task, and stronger than effects of 
pathway-specific NAc inhibition. (a) Schematic of three virtual reality based decision-making tasks (left: accumulation of evidence; middle: control #1, no 
distractors; right: control #2, permanent cues). (b) Schematic of unilateral indirect pathway DMS inhibition with choice defined ipsilateral or contralateral 
to the hemisphere receiving 532-nm laser illumination (top). Difference in choice bias (%, contralateral - ipsilateral) between laser on and off trials (on-
off) in mice performing the accumulation of evidence (AoE, black), no distractors (ctrl #1, magenta), or permanent cues (ctrl #2, cyan) tasks. p-value 
denotes one-way ANOVA of task on delta (on-off) choice bias (p = 1.0 ×10−5, F2,22 = 20.2). Post-hoc comparisons reflect unpaired, two-tailed Wilcoxon 
ranksum tests on delta (on-off) choice bias (AoE, n = 11, vs ctrl #1, n = 7: p = 8.0 ×10−4, z = 3.4; AoE vs ctrl #2, n = 7: p = 0.001, z = 3.3). (c) Same as b but 
for direct pathway DMS inhibition. p-value denotes one-way ANOVA of task on delta (on-off) choice bias (p = 0.001, F2,23 = 9.4). Post-hoc comparisons 
reflect two-tailed, unpaired Wilcoxon ranksum tests (AoE, n = 10, vs ctrl #1, n = 9: p = 0.002, z = −3.0; AoE vs ctrl #2, n = 7: p = 0.005, z = −2.8). (d) 
Same as b but for DMS illumination in the absence of NpHR (no opsin). p-value denotes one-way ANOVA of task on delta (on-off) choice bias (p = 0.09, 
F2,16 = 2.8). Post-hoc comparisons reflect two-tailed, unpaired Wilcoxon ranksum tests (AoE, n = 11, vs ctrl #1, n = 4: p = 0.65, z = 0.46; AoE vs ctrl #2, n = 6: 
p = 0.06, z = 1.8). (e) Schema of evidence accumulation task (left), unilateral inhibition of indirect pathway in the DMS (middle left) or NAc (middle right), 
and delta (on-off) choice bias in mice receiving indirect pathway DMS (n = 11) or NAc (n = 9) inhibition (right). Statistical comparison reflects two-tailed, 
unpaired Wilcoxon ranksum test (DMS vs NAc: p = 2.6 ×10−4, z = 3.6). (f) Same as e but for direct pathway DMS (n = 10) or NAc (n = 10) inhibition. 
Statistical comparison reflects two-tailed, unpaired Wilcoxon ranksum test (DMS vs NAc: p = 1.8 × 10−4, z = −3.7). Throughout solid bars denote mean ±1 
s.e.m. across mice and transparent ‘x’ denote individual mouse means.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Inhibition of DMS pathways has limited impact on motor performance across VR-based decision-making tasks. (a) Mean ±1 
s.e.m.. y-velocity (cm/s) as a function of y-position (0- 300 cm in 25 cm bins) during laser off (black) or laser on (green) trials across mice receiving DMS 
indirect pathway inhibition during the evidence accumulation (left: n = 11 mice, n = 16,935 laser off and n = 3,390 laser on trials), no distractors (middle, 
ctrl #1: n = 7 mice, n = 13,706 laser off and n = 3,288 laser on trials) or permanent cues (right, ctrl #2: n = 6 mice, n = 4,033 laser off and n = 929 laser on 
trials). (b) Same as a but for mice receiving direct pathway inhibition during the evidence accumulation (left: n = 10 mice, n = 14,030 laser off and n = 3,103 
laser on trials), no distractors (middle, ctrl #2: n = 8 mice, n = 14,647 laser off and n = 3,682 laser on trials) or permanent cues (right, ctrl #3: n = 7 mice, 
n = 6,061 laser off and n = 1,494 laser on trials) tasks. (c) Same as a but for mice receiving DMS illumination in the absence of NpHR (no opsin) during 
the evidence accumulation (left: n = 11 mice, n = 21,422 laser off and n = 5,113 laser on trials), no distractors (middle, ctrl #1: n = 4 mice, n = 3,654 laser 
off and n = 901 laser on trials), or permanent cues (right, ctrl #2: n = 4 mice, n = 3,975 laser off and n = 923 laser on trials) tasks. (d) Mean ±1 s.e.m. in 
delta (on-off) distance (cm) traveled (left) and delta (on-off) trials (%) with excess travel greater than 10% of maze stem (or > 330 cm) (right) in mice 
receiving indirect pathway inhibition during the evidence accumulation (black, n = 11 mice, n = 22,090 laser off and n = 4,378 laser on trials), no distractors 
(magenta, n = 7 mice, n = 14,826 laser off and n = 3,591 laser on trials), or permanent cues (n = 6 mice, n = 4,447 laser off and n = 1050 laser on trials) 
tasks. p-value denotes one-way ANOVA of task on delta (on-off) distance (p = 0.45, F2,22 = 0.81) or excess travel (p = 0.52, F2,22 = 0.66). (e) Same as  
d but for delta (on-off) distance (cm) traveled (left) or delta percent trials with excess travel (right) in mice receiving direct pathway inhibition during 
the evidence accumulation (black, n = 10 mice, n = 20,914 laser off and n = 4,721 laser on trials), no distractors (magenta, n = 9 mice, n = 15,778 laser off 
and n = 3,992 laser on trials), or permanent cues (n = 7 mice, n = 6,430 laser off and n = 1,591 laser on trials) tasks. p-value denotes one-way ANOVA of 
task on delta (on-off) distance (p = 0.13, F2,23 = 2.2) or excess travel (p = 0.50, F2,23 = 0.71). (f) Same as d but for delta (on-off) in distance (cm) traveled 
(left) or percent trials with excess travel (right) in mice receiving DMS illumination in the absence of NpHR (no opsin) during the evidence accumulation 
(black, n = 11 mice, n = 28,557 laser off and n = 6,772 laser on trials), no distractors (magenta, n = 5 mice, n = 4,118 laser off and n = 1,002 laser on trials), 
or permanent cues (n = 6 mice, n = 4,360 laser off and n = 1,038 laser on trials) tasks. p-value denotes one-way ANOVA of task on delta (on-off) distance 
(p = 0.06, F2,19 = 3.3) or excess travel (p = 0.23, F2,19 = 1.6). (g) Same as d but for delta (on-off) in per-trial standard deviation in view angle in mice receiving 
DMS indirect pathway inhibition across tasks (p = 0.34, F2,22 = 1.1, n as in d). (h) Same as g but for mice receiving DMS direct pathway inhibition across 
tasks (p = 0.27, F2,23 = 1.4, n as in e). (i) Same as g but for mice receiving DMS illumination (no opsin) in the absence of NpHR (p = 0.03, F2,19 = 4.3, n as 
in f). (j) Delta (on-off) x-position (cm) (left) or view angle (degrees) (right) during the cue region (0-200 cm) in mice receiving DMS indirect pathway 
inhibition during the accumulation of evidence (black), no distractors (control #1, magenta), or permanent cues (control #2, cyan) tasks (n as in a). One-
way ANOVA of task on delta (on-off) x-position (p = 0.01, F2,22 = 5.6). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on delta (on-off) x-position 
(AoE v control #1: p = 0.2, z = 1.3; AoE v control #2: p = 0.004, z = 2.9; control #1 v control #2: p = 0.13, z = 1.5). One-way ANOVA of task on delta (on-off) 
view angle (p = 0.14, F2,22 = 2.2). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on delta (on-off) view angle (AoE v control #1: p = 0.58, z = 0.5; 
AoE v control #2: p = 0.24, z = 1.78; control #1 v control #2: p = 0.52, z = 0.6). (k) Same as j but for mice receiving DMS direct pathway inhibition (n as 
in b). One-way ANOVA of task on delta (on-off) x-position (p = 0.08, F2,23 = 2.8). Post-hoc, two-tailed unpaired Wilcoxon ranksum test on delta (on-off) 
x-position (AoE v control #1: p = 0.13, z = −1.5; AoE v control #2: p = 0.1, z = −1.6; control #1 v control #2: p = 0.46, z = −0.7). One-way ANOVA of task 
on delta (on-off) view angle (p = 0.02, F2,23 = 3.6). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on delta (on-off) view angle (AoE v control #1: 
p = 0.21, z = −1.3; AoE v control #2: p = 0.03, z = −2.1; control #1 v control #2: p = 0.24, z = −1.6). (l) Same as j but for mice receiving DMS illumination 
in the absence of NpHR (no opsin, n as in c). One-way ANOVA of task on delta (on-off) x-position (p = 0.24, F2,18 = 1.54). Post-hoc, two-tailed, unpaired 
Wilcoxon ranksum test on delta (on-off) x-position (AoE v control #1: p = 0.21, z = −1.24; AoE v control #2: p = 0.51, z = 0.06; control #1 v control #2: 
p = 0.04, z = 2.0). One-way ANOVA of task on delta (on-off) view angle (p = 0.23, F2,18 = 1.56). Post-hoc, two-tailed, unpaired Wilcoxon ranksum test on 
delta (on-off) view angle (AoE v control #1: p = 0.84, z = 0.19; AoE v control #2: p = 0.20, z = 1.2; control #1 v control #2: p = 0.24, z = 1.7). Throughout solid 
bars denote mean ±1 s.e.m. and transparent ‘x’ indicates individual mouse mean.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Model selection and control data analyses for the GLM-HMM. (a) Comparison of the log-likelihood of the data using GLM-HMMs 
with different numbers of states for mice inhibited in the DMS direct pathway (dark gray), or indirect pathway (light gray), and mice without DMS opsin 
(black). All values are relative to the log-likelihood of the standard GLM (1-state GLM-HMM). Values are calculated in bits per session (see Methods). 
Solid curves denote mean  ±s.e.m. of five different test sets. Held-out data for test sets was selected as a random 20% of sessions, using an approximately 
equal number of sessions for each mouse. (b) Same as a but with different numbers of previous choice covariates using a three-state GLM-HMM. (c) 
Comparison of the log-likelihood of simulated data using GLM-HMMs with different numbers of states. Data was simulated from a two-state GLM-HMM 
that had been fit to data for mice inhibited in the indirect pathway of the DMS and then cross-validation performed either on the entire simulated dataset 
(~54000 trials, left) or a subset of 5% of the data (2600 trials, right). All values are relative to the log-likelihood of a GLM (one-state GLM-HMM). Values 
are calculated in bits per session (see Methods). Solid curves denote the average of five different test sets. Held-out data for test sets was selected as a 
random 20% of sessions. Performing cross validation on a small subset of the data serves to demonstrate that the log-likelihood does in fact decrease 
as the model starts to overfit. This is difficult to see with large datasets where overfitting is less of a concern and therefore the log-likelihood begins to 
flatten rather than decrease. (d) Fitted GLM weights for the four-state GLM-HMM using aggregated data from all mice inhibited in the indirect pathway 
of the DMS. Error bars denote (±1) posterior standard deviation for each weight. The magnitude of the weight represents the relative importance of that 
covariate in predicting choice, whereas the sign of the weight indicates the side bias. (e) Same as d but for mice inhibited in the DMS direct pathway.  
(f) GLM weights fitted to a concatenated dataset consisting of the indirect, direct, and control (no opsin) groups. Solid lines on the left connect covariates 
that are shared across groups. Horizontal marks on the right denote laser weights, which were learned separately for each group. Error bars denote (±1) 
posterior standard deviation of each weight. (g) Percent of contralateral choice based on the difference in contralateral versus ipsilateral cues in each trial 
for mice in the control (no opsin) group. To compute psychometric functions, trials were assigned to each state by taking the maximum of the model’s 
posterior state probabilities on each trial. Error bars denote ±1 s.e.m. for light-off (solid) and light-on (dotted) trials. Solid curves denote logistic fits to 
the concatenated data across mice for light-off (solid) and light-on (dotted) trials. (h) Same as f but for data simulated from the model fit to mice in the 
control group (see Methods).
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Extended Data Fig. 8 | GLM-HMM state 3 is associated with indicators of task disengagement. (a) The mean posterior probability of each state over the 
first and last 50 trials of a session, averaged across all sessions for mice inhibited in the indirect pathway of the DMS (n = 271 sessions). (b) Same as a but 
for mice receiving DMS direct pathway inhibition (n = 266 sessions). (c) Mean  ±s.e.m. of the cumulative reward received in a session prior to transitions 
into state 1 (n = 142), state 2 (n = 85), or state 3 (n = 237) in the indirect pathway group. One-way ANOVA of transition state on cumulative reward 
(p = 1.0 ×10−6; F2,460 = 14.2). Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1 vs 2: p = 0.96, z = −0.03; state 2 vs 3: 
p = 0, z = −3.6; state 1 vs 3: p = 0, z = −4.5). (d) Mean ±s.e.m. of the reward rate (uL/min) in a session prior to transitions into each state for the indirect 
pathway group. Reward rate was calculated as the sum of reward received from the start of the session up to the transition trial divided by the sum of the 
duration of all trials from the start of the session up to the transition trial. One-way ANOVA of transition state on reward rate (p = 4.1 ×10−14; F2,460 = 32.9). 
Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1 vs 2: p = 0.55, z = −0.6; state 2 vs 3: p = 0, z = −4.9; state 1 vs 3: 
p = 0, z = −7.4). (e) Same as c but for the direct pathway group (state 1: n = 140; state 2: n = 29; state 3: n = 159). One-way ANOVA of transition state on 
cumulative reward (p = 0.14; F2,325 = 1.99). Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1 vs 2: p = 0.35, z = −0.9; 
state 2 vs 3: p = 0.78, z = −0.27; state 1 vs 3: p = 0.08, z = −1.74). (f) Same as d but for the direct pathway group. One-way ANOVA of transition state on 
reward rate (p = 8.7 ×10−10; F2,325 = 22.6). Unpaired, two-tailed Wilcoxon ranksum comparison between transition types (state 1 vs 2: p = 0.49, z = 0.69; 
state 2 vs 3: p = 0.0, z = −4.2; state 1 vs 3: p = 0.0, z = −5.9). (g) The mean posterior probability of each state aligned  ±25 trials to trials in which reward 
was received for the indirect pathway group. (h) Same as g but state probability aligned to trials with excess travel (defined as 10% greater than the maze 
stem, or 330 cm). (i) Same as g but for the direct pathway group. (j) Same as h but for the direct pathway group.
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Extended Data Fig. 9 | Model simulations recapitulate transition and state characteristics of real data. (a) Transition probabilities of the model fit to 
data from mice inhibited in the DMS indirect pathway (black) and from five simulated datasets generated from the model fit to mice inhibited in the 
DMS indirect pathway (gray), shown separately for diagonal (left) and off-diagonal (right) probabilities. (b) Same as a but for mice inhibited in the direct 
pathway of the DMS. (c) The posterior probability of each state over the first and last 50 trials of a session, averaged across all sessions for mice inhibited 
in the indirect pathway of the DMS (n = 271). Dark lines denote average for real data (same as Fig. 7E) and faded lines indicate averages for each of the 
five simulations. (d) Same as c but for mice inhibited in the direct pathway of the DMS (dark lines are the same as shown in Fig. 7 F). (e) Dwell times 
showing the average consecutive number of trials that mice inhibited in the DMS indirect pathway spent in each state for real data (left; range 39-86 trials, 
average session length 202 trials, same as shown in Fig. 7g) and one simulated dataset (right; range 60–71 trials, average session length 202 trials). Black 
dots show averages for individual mice (n = 13). We removed the last run in each session (including any run that lasted the entire session length) from the 
analysis, as the termination of the session prematurely truncated the length of those runs. (f) Same as e but without removing the last run in each session 
for real data (left; range 51–118 trials, average session length 202 trials) and one simulated dataset (right; range 65–93 trials, average session length 202 
trials). (g) Same as e but for mice inhibited in the direct pathway of the DMS for real data (left; range 52–59 trials, average session length 185 trials, 
same as shown in Fig. 7g) and one simulated dataset (right; range 61–66 trials, average session length 185 trials). Black dots show averages for individual 
mice (n = 13). (h) Same as g but without removing the last run in each session for real data (left; 67–89 trials, average session length 185 trials) and one 
simulated dataset (right; range 74–110 trials, average session length 185 trials).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of motor performance across GLM-HMM states with and without pathway-specific DMS inhibition. (a) Schematic 
denoting analysis of motor performance across GLM-HMM states on laser off trials only (panels b-g) in mice unilaterally coupled to a fiberoptic for 
indirect pathway inhibition. (b) Average y-velocity (cm/s) during laser off trials as a function of y-position in the maze (0-300 cm in 25-cm bins) in 
indirect pathway mice across GLM-HMM states (state 1, blue: n = 13,394 trials; state 2, yellow: n = 13,570 trials; state 3, red: n = 16,982 trials). (c) As in 
b but for average x-position (cm) on ipsilateral or contralateral choice trials (n as in b). (d) As in c but for average view angle (degrees) on ipsilateral and 
contralateral choice trials (n as in b). (e) Mean per-trial standard deviation in view angle during laser off trials across GLM-HMM states (state 1, blue: 
n = 13,854 trials; state 2, yellow: n = 14,201 trials; state 3, red: n = 18,258 trials). p-value denotes one-way repeated measures ANOVA of state on view 
angle deviation (p = 0.06, F2,24 = 3.2). (f) As in e but for average distance traveled (cm) per trial. p-value denotes one-way repeated measures ANOVA 
of state on distance (p = 0.02, F2,24 = 5.0, n as in e). (g) As in e but for average percent of trials with excess travel. p-value denotes one-way repeated 
measures ANOVA of state on excess travel (p = 0.0004, F2,24 = 10.9, n as in e). (h) Schematic denoting analysis of effects of indirect pathway DMS 
inhibition on motor performance across GLM-HMM states in i-n. (i) As in b but for average y-velocity on laser off (black) or laser on (green) trials across 
GLM-HMM states (n of laser off trials as in b-g, n of laser on trials: state 1, blue: n = 2,302 trials; state 2, yellow: n = 1,858 trials; state 3, red: n = 3,005 
trials). (j) As in c but for delta (on-off) x-position (cm) during the cue region (0-200 cm) across GLM-HMM states in mice with indirect pathway 
inhibition. p-value denotes one-way repeated measures ANOVA of state on delta x-position (p = 3.2×10−4, F2,24 = 11.4, n as in i). Post-hoc comparisons 
reflect two-tailed, paired Willcoxon signed rank tests between states (state 1 vs state 3: p = 0.07, z = 1.7; state 1 vs state 2: p = 0.006, z = 2.7; state 2 vs 
state 3: p = 0.03, z = 2.4). (k) As in j but for delta (on-off) view angle (degrees). p-value denotes one-way repeated measures ANOVA of state on delta 
view angle (p = 1.2×10−5, F2,26 = 18.7, n as in i). Post-hoc comparisons reflect two-tailed, paired Willcoxon signed rank tests between states (state 1 vs state 
3: p = 0.009, z = 2.6; state 1 vs state 2: p = 0.001, z = −3.18; state 2 vs state 3: p = 0.002, z = −3.1). (l) Same as e but for delta (on-off) mean per-trial view 
angle standard deviation across GLM-HMM states in mice with indirect pathway inhibition (n of laser off trials as in e-g, n of laser on trials: state 1, blue: 
n = 2,887 trials; state 2, yellow: n = 2,713 trials; state 3, red: n = 2,970 trials). p-value denotes one-way repeated measures ANOVA of state on delta view 
angle deviation (p = 0.97, F2,24 = 0.03, n as in l). (m) Same as f but for delta (on-off) in mean per-trial distance (cm) traveled across GLM-HMM states with 
indirect pathway inhibition (p = 0.68, F2,24 = 0.38, n as in l). (n) Same as g but for delta (on-off) in percent of trials with excess travel across GLM-HMM 
states with direct pathway inhibition (p = 0.08, F2,24 = 2.8, n as in l). (o) As in a but schematic denoting analysis of motor performance across GLM-HMM 
states on laser off trials only in mice unilaterally coupled to a fiberoptic for direct pathway inhibition in p-u. (p) As in b but for y-velocity (cm/s) on laser 
off trials across GLM-HMM states in direct pathway mice (state 1, blue: n = 12,294 laser off and n = 2,302 laser on trials; state 2, yellow: n = 9,201 laser 
off and n = 1,858 laser on trials; state 3, red: n = 16,239 laser off and n = 3,005 laser on trials). (q) As in c but x-position (cm) for direct pathway mice (n 
as in p). (r) As in d but for view angle (degrees) for direct pathway mice (n as in p). (s) As in e but for mean per-trial view angle standard deviation across 
GLM-HMM states in direct pathway mice (state 1, blue: n = 13,403 laser off and n = 2,508 laser on trials; state 2, yellow: n = 9,555 laser off and n = 1,969 
laser on trials; state 3, red: n = 18,292 laser off and n = 3,450 laser on trials). p-value denotes one-way repeated measures ANOVA of state on per-trial 
view angle standard deviation (p = 0.12, F2,24 = 2.3). (t) As in f but for distance (cm) in direct pathway mice (p = 0.1, F2,24 = 2.5). (u) As in g but for percent 
trials with excess travel in direct pathway mice (p = 0.14, F2,24 = 2.1). (v) As in h but schematic denoting analysis of effects of direct pathway DMS inhibition 
on motor performance across GLM-HMM states in w-bb. (w) As in i but for the mean y-velocity (cm/s) on laser on (green) and off (black) trials across 
GLM-HMM states in direct pathway mice. (x) As in j but for the delta (on-off) x-position (cm) across GLM-HMM states in direct pathway mice. p-value 
denotes one-way repeated measures ANOVA of state on delta x-position (p = 7.9×10−5, F2,24 = 14.9). Posthoc comparisons reflect two-tailed, paired 
Willcoxon signed rank tests between states (state 1 vs state 3: p = 0.06, z = 1.8; state 1 vs state 2: p = 0.005, z = 2.8; state 2 vs state 3: p = 0.005, z = 2.8). 
(y) As in k but for delta (on-off) view angle (degrees) across GLM-HMM states in direct pathway mice. p-value denotes one-way repeated measures 
ANOVA of state on delta view angle (p = 2.6×10−4, F2,24 = 12.3). Posthoc comparisons reflect two-tailed, paired Willcoxon signed rank tests between states 
(state 1 vs state 3: p = 0.03, z = 2.3; state 1 vs state 2: p = 0.003, z = 2.98; state 2 vs state 3: p = 0.03, z = 2.1). (z) As in l but for delta (on-off) mean per-
trial view angle standard deviation (degrees) in direct pathway mice (p = 0.40, F2,24 = 0.94, n as in s-u). (aa) as in m but for delta (on-off) in mean distance 
(cm) traveled in direct pathway mice (p = 0.43, F2,24 = 0.89). (bb) as in n but for delta (on-off) in percent trials with excess travel in direct pathway mice 
(p = 0.90, F2,24 = 0.1). Throughout solid colored bars denote mean ±1 s.e.m. while transparent grey lines reflect individual mouse mean.
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