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Abstract— In this paper, we examine an important prob-
lem of learning neural networks that certifiably meet certain
specifications on input-output behaviors. Our strategy is to
find an inner approximation of the set of admissible policy
parameters, which is convex in a transformed space. To this
end, we address the key technical challenge of convexifying
the verification condition for neural networks, which is derived
by abstracting the nonlinear specifications and activation func-
tions with quadratic constraints. In particular, we propose a
reparametrization scheme of the original neural network based
on loop transformation, which leads to a convex condition that
can be enforced during learning. This theoretical construction
is validated in an experiment that specifies reachable sets for
different regions of inputs.

I. INTRODUCTION

The advances in deep learning (DL) have impacted many
areas, such as computer vision and natural language pro-
cessing [1]–[3]. However, the use of DL for safety-critical
tasks in the real world is challenged by its opaqueness,
fragility, and vulnerability [4]. For example, an imperceptible
but carefully engineered perturbation in the input can easily
mislead DL systems [5]. Notably, DL models are rarely used
in a standalone manner but as part of a larger pipeline.
Thus, specifications on the model decisions are required
to capture the true constraints on their physical and social
ramifications. These specifications include but are not limited
to safety [6], stability [7], [8], privacy [9], fairness [10],
and interpretability [11]. Up till now, verification of NN has
been primarily focused on adversarial robustness, and can be
divided into exact and inexact approaches. Exact approaches
calculate the NN output set without any approximation,
whereas inexact methods seek to approximate the output
set for computational tractability [12]. Moreover, deriving
guarantees for nonlinear, large-scale, complex policies such
as an NN is a significant technical challenge, and there have
been increasing efforts towards this direction [14]–[16].

The method that we propose for learning NN under
specifications belongs to the large family of convex relax-
ation techniques. We demonstrate that for a specific class
of specification problems, learning can be accomplished by
solving a semidefinite program (SDP). In particular, we note
that the integral quadratic constraint (IQC) framework [18]
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has been applied in post-hoc verification of robustness for
an already trained NN [17]. We address the main challenge
of existing methods, that is the nonconvexity of the learning
condition with respect to the policy parameters, to develop
a computationally efficient procedure.

Contribution: We propose a framework to learn a NN
that satisfies specifications on input-output behavior. We
overcome a major technical hurdle by deriving a convex
condition that can be imposed during the learning process.
The key to our method is to compute a convex inner
approximation to the nonconvex set of admissible policy
parameters. To this end, we characterize the behaviors of
the nonlinear activation and input-output specifications by
quadratic constraints. For convexification, we design a new
reparameterization scheme based on loop transformation [19,
Chap. 4] and S-lemma [20], [13]. The one-to-one correspon-
dence between the transformed parameters and the original
parameters are guaranteed for a two-layer NN. Hence, we can
efficiently learn in the reparameterized space and recover the
original parameters, leading to a NN that certifiably satisfies
the desired properties.

Related work: IQC-based analysis of NN has been ex-
plored in [17] under the verification setting. However, the
corresponding condition is nonconvex in the policy param-
eters, preventing its application in a learning setting. As
neural networks become popular in control tasks, safety and
robustness of NN controlled systems have been examined
in [22]–[25]. It is also possible to concatenate an optimiza-
tion layer to a DNN to satisfy hard output constraints, with
an additional computational cost to solve an optimization
problem every time an output is produced [29]. An approach
for NN verification against convex-relaxable specifications
is proposed in [21], which shares the line of thinking with
the present work to move towards general specifications
(beyond adversarial robustness). In [30], a framework is
designed based on SDP to measure the robustness of an
input-output map defined by NN. These articles [31], [32]
shed lights upon the convexification techniques for training
NN. The present work is inspired by [8], in which the authors
proposed a method to synthesize a NN controller with
stability and safety guarantees through imitation learning. A
recent extension to policy gradient for reinforcement learning
is presented in [22].

The rest of the paper is organized as follows. Section II
describes the problem setup. Section III briefly reviews
results for verification of a fixed NN. The main method to
obtain a convex learning condition is presented in Section IV.
Section V validates the approach in a reachability setup for
different regions of inputs. Section VI concludes the paper
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with some future directions.
Notation: We denote Sn, Sn+, Sn++ as the sets of n × n

symmetric, positive semi-definite and positive definite ma-
trices, respectively. For any matrix A ∈ Sn , the inequality
A � 0 and A � 0 indicates positive semi-definiteness and
positive definiteness, respectively.

II. PROBLEM FORMULATION

A. Problem statement

We consider specifications on outputs in relation to inputs
that vary across instances. Formally, we define a multi-layer
feed-forward neural network (NN) mapping Ψ(·; θ) : X → Y
parameterized by a weight vector θ ∈ Rnθ . Sets X ⊆ Rnx
and Y ⊆ Rny are respectively the sets wherein NN inputs
and outputs can lie. We also define an m-way specification
F : X × Y → Rm, and its associated specification set
S(x) := {y ∈ Rny : F (x, y) ≤ 0}. Our aim is to find a
parameter θ such that

Ψ(x; θ) ∈ S(x), ∀x ∈ X . (1)

To simplify notation, we henceforth omit the dependence
of Ψ on θ. Note that the admissible set Θ := {θ ∈ Rnθ :
(1) is satisfied} is nonconvex in general due to the nonlinear-
ity of Ψ and specifications F . The above formulation can in-
corporate a family of problems in machine learning and con-
trol, such as fairness [10], adversarial robustness [17], [21];
and reachability analysis [17], [26]. Granted that searching
within the nonconvex admissible set Θ is intractable, our
strategy is to compute a convex inner approximation. To this
end, we propose a semidefinite convexification approach to
specify the convex set.

B. Isolating NN nonlinearities

The input-output mapping of a feed-forward NN with l
layers can be described by the recursive equations:

x0 = x

xk+1 = φk(W kxk + bk), k = 0, 1, . . . , l − 1

Ψ(x) = W lxl + bl
(2)

where x ∈ X is the NN input; W k ∈ Rnk+1×nk and bk ∈
Rnk+1 are the weight matrix and bias vector of the (k+1)-th
layer, respectively; and n =

∑l
k=1 nk neurons. The mapping

φk applies a nonlinear scalar activation function ψ : R→ R
on each one of the entries of its vector argument W kxk+bk.
The mapping can be defined as:

φk(x) = [ψ(x1) ψ(x2) . . . ψ(xnk)]>. (3)

Common choices for the scalar activation function include
the hyperbolic tangent tanh, the sigmoid, and the rectified
linear unit (ReLU). The NN output Ψ(x) is application-
dependent. For example, in classification, Ψ(x) is the logit
input to a softmax function; in feedback control, Ψ(x) is the
control to the plant at state x.

To facilitate subsequent derivations, let us isolate the
nonlinear and linear components of a NN as in [8], [17]. Let
vk = W kxk + bk denote the input to the activation function

at layer k+ 1. Then, the NN defined in (2) can be rewritten
as [

vφ
Ψ(x)

]
= N

[
x
xφ

]
+

[
bφ
bl

]
(4)

xφ = φ(vφ) (5)

where

vφ =

[
v0

.

.

.
vl−1

]
, xφ =

[
x1

.

.

.
xl

]
, bφ =

[
b0

.

.

.
bl−1

]
, φ(vφ) =

[
φ0(v0)

.

.

.
φl−1(vl−1)

]
.

Matrix N depends on the NN weights and can be partitioned
as follows:

N =


W 0

0
...

0 . . . 0 0 0
W 1 . . . 0 0 0

... . . .
... W l−1 0

0 0 . . . 0 0 W l


=

[
Nvx Nvx1

NΨx NΨx1

]
.

III. SPECIFICATION ANALYSIS FOR A FIXED NN

We now briefly review the analysis conducted in [17]
based on the framework of quadratic constraints. For this
section, the NN parameters are assumed already learned and
fixed.

A. Input set

We focus on the type of input sets that can be characterized
as follows [17], [26].

Definition 3.1 (Quadratic Constraints): Let X be a
nonempty set and P ⊂ Snx+1 be the set of all symmetric
(but possibly indefinite matrices) P such that the following
quadratic constraint (QC) holds for all x ∈ X :[

x
1

]>
P

[
x
1

]
≥ 0. (6)

Then, we say that X satisfies the QC defined by P .
Remark 1: By definition, set P is a convex cone as for any

P1, P2 ∈ P , we have c1P1 + c2P2 ∈ P for any c1, c2 ∈ R+.
Thus, we can over-approximate X with the intersection of

possibly infinite number of sets:

X ⊆
⋂
P∈P

{
x ∈ Rnx :

[
x
1

]>
P

[
x
1

]
≥ 0

}
(7)

Our focus here is on ellipsoidal input sets X =
{x ∈ Rnx : ‖Ax+ b‖2 ≤ 1} with A ∈ Snx and b ∈ Rnx ,
which satisfies QC with

PX =

{
λ

[
−ATA AT b
−bTA 1− bT b

]
, λ ≥ 0

}
. (8)

Other types of sets such as polytopes, hyper-rectangles, and
zonotopes can be also incorporated as in [17], [26].
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B. Specification set

The desirable properties to be verified are formulated as
a specification set S(x) in the output space of the NN.
However checking the condition Ψ(x) ∈ S(x) for all x ∈ X
is a challenging task as it requires an exact computation of
the non-convex set of outputs. Instead, our goal is to find
a non-conservative over-approximation to the output set and
verify the safety properties with respect to the new set. We
assume the safety set is represented by the intersection of
finitely many quadratic inequalities as

S(x) =
m⋂
i=1

y ∈ Rny :

xy
1

> Si
xy

1

 ≤ 0

 (9)

where matrices Si ∈ Snx+ny+1 are given. For instance,
if the output set is specified by an ellipsoid as S(x) =
{y ∈ Rny : ‖Cy + d‖2 ≤ 1, y = Ψ(x)}, with C ∈ Sny and
d ∈ Rny , then we can choose

S =

0 0 0
0 C>C C>d
0 d>C d>d− 1

 . (10)

C. Abstraction of activation functions

One of the challenges in the analysis of NN is the com-
position of nonlinear activation functions. By exploiting the
common patterns of activation functions, a viable approach
is to employ sector bounds [8], [17]. We begin with a formal
definition.

Definition 3.2 (QC for functions): Let φ : Rn → Rn and
suppose Q ⊂ S2n+1 is the set of all symmetric indefinite
matrices Q such that the following inequality holds for all
x ∈ Rn:  x

φ(x)
1

>Q
 x
φ(x)

1

 ≤ 0. (11)

Then, we say that φ satisfies the QC defined by Q.
The derivation of quadratic constraints is function specific

yet there are certain heuristics that can be utilized discussed
below.

Definition 3.3: Given α ≤ β, function ψ : R→ R lies in
sector [α, β] if

(ψ(x)− αx)(βx− ψ(x)) ≥ 0, ∀x ∈ R.
The interpretation of sector [α, β] is that y = ψ(x) lies

in the region formed by lines y = αx and y = βx passing
through origin (see Fig. 1).

Local sector constraints can also be defined for vector-
valued functions φ : Rnφ → Rnφ . These local sectors can
be concatenated in the form of vectors αφ, βφ ∈ Rnφ .

Lemma 3.4 ( [8]): Let αφ, βφ, x, x̄ ∈ Rnφ be given with
αφ ≤ βφ. And φ satisfies the local sector [αφ, βφ] coordinate-
wise for all x ∈ [x, x̄]. If µ ∈ Rnφ with µ ≥ 0 then:[

x
φ(x)

]> [
−2AφBφM (Aφ +Bφ)M
(Aφ +Bφ)M −2M

] [
x

φ(x)

]
≥ 0 (12)

where Aφ = diag(αφ), Bφ = diag(βφ), and M = diag(µ).

Fig. 1. Illustration of sector bounds for nonlinearity with α ≤ ψ(x)
x

≤ β.

D. Admissibility analysis of NN

Based on QC abstractions and S-procedure, the following
result provides the admissibility condition of a fixed NN [17].

Theorem 3.1: Consider a two-layer NN Ψ : Rnx → Rny
described by (2), with nonlinear activation function sector
bounded as in (12). Consider the matrix inequality

MX (P ) +MY(S) +MΨ(Q) � 0 (13)

where

MX (P ) =

[
In0

0 0
0 0 1

]>
P

[
In0

0 0
0 0 1

]
MΨ(Q) =

[
?
]>[ −2AφBφM (Aφ + Bφ)M

(Aφ + Bφ)M −2M

] [W 0 0 b0

0 In1 0
0 0 1

]

MY(S) =

In0
0 0

0 W 1> 0

0 b1
>

1

S
In0

0 0
0 W 1 b1

0 0 1


If (13) is feasible for (P,Q, S), then Ψ(x) ∈ S(x) for all
x ∈ X .

The above theorem implies that for a given NN, if (13)
holds, then we can certify the admissibility. However, it is
seldom the case that an NN learned with an unconstrained
approach satisfies the specified constraints. To reliably learn
an admissible NN, it seems straightforward to impose the
specifications as constraints. Nevertheless, the analysis con-
dition (13) is nonconvex with respect to both NN weights
and multipliers (P,Q, S), thus rendering the problem com-
putationally intractable to solve.

IV. CONVEXIFIED LEARNING UNDER SPECIFICATIONS

The key idea is to reparametrize the NN such that the con-
dition becomes convex in a transformed space. To streamline
the presentation, we derive our results for a two-layer NN
with l = 1 hidden layer, that is Ψ(x) = W 1φ(W 0x+b0)+b1.
In this case, equation (2) can be rewritten as[

v0

Ψ(x)

]
= N

[
x
x1

]
+

[
b0

b1

]
(14)

x1 = φ(v0), (15)

where matrix N depends on the weights as

N =

[
Nvx Nvx1

NΨx NΨx1

]
=

[
W 0 0
0 W 1

]
. (16)
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A. Loop transformation

Loop transformation is a standard linear fractional trans-
formation manipulation in the control literature [8]. Through
loop transformation, we obtain a new representation that con-
vexifies the learning condition without imposing restrictions
on sector bounds αφ and βφ of the activation function. In
particular, loop transformation normalizes the nonlinearity φ̃
to lie in the sector [−1nφ×1, 1nφ×1]. Thereby x̃1 = φ̃(v0)
satisfies the quadratic constraint[

v0

x̃1

]> [
M 0
0 −M

] [
v0

x̃1

]
≥ 0, ∀v0 ∈ [v, v̄] (17)

where M = diag(µ). The input to N is transformed by the
algebraic equation

x1 =
Bφ −Aφ

2
x̃1 +

Bφ +Aφ
2

v0 (18)

Substituting (18) in (14), we get

v0 = Nvxx+Nvx1

(
Bφ −Aφ

2
x̃1 +

Aφ +Bφ
2

v0

)
+ b0

(19)

Ψ(x) = NΨxx+NΨx1

(
Bφ −Aφ

2
x̃1 +

Aφ +Bφ
2

v0

)
+ b1.

(20)
By solving (19), we obtain the expression for v0,

v0 = (I − C2)
−1
Nvxx+ (I − C2)

−1
C1x̃

1 + (I − C2)
−1
b0

(21)
Substituting v0 in (20) yields

Ψ(x) =
(
NΨx + C4 (I − C2)

−1
Nvx

)
x+ C4 (I − C2)

−1
b0

+
(
C3 + C4 (I − C2)

−1
C1

)
x̃1 + b1,

(22)

with

C1 = Nvx1

Bφ −Aφ
2

, C2 = Nvx1

Bφ +Aφ
2

,

C3 = NΨx1

Bφ −Aφ
2

, C4 = NΨx1

Bφ +Aφ
2

.

After applying the loop transformation, the new representa-
tion of the NN is equivalent to[

v0

Ψ(x)

]
= Ñ

[
x
x̃1

]
+

[
b̃0

b̃1

]
(23)

x̃1 = φ̃(v0). (24)

where b̃0 = (I − C2)
−1
b0, b̃1 = C2 (I − C2)

−1
b0 + b1, and

Ñ =

[
(I − C2)

−1
Nvx (I − C2)

−1
C1

NΨx + C4 (I − C2)
−1
Nvx C3 + C4 (I − C2)

−1
C1

]
:=

[
Ñvx Ñvx1

ÑΨx ÑΨx1

]
(25)

It can be seen that Ñ is in general a nonlinear function of N .
To solve the equation, an ADMM algorithm is developed in

[8]. Also, it is important to note that Ñ depends indirectly on
N through the sector bounds (Aφ, Bφ). Specifically, suppose
both N and the state bounds are given. Then Ñ is constructed
by: (i) propagating the bounds on x through NN to compute
bounds v, v̄ on the activation inputs, (ii) compute local sector
bounds Aφ, Bφ consistent with the activation bounds, and
(iii) performing steps to compute Ñ from (N,Aφ, Bφ).
Hereafter we treat Ñ as decision variable instead of N (i.e.,
Ñ is the reparametrization of N ).

B. Admissibility condition after loop transformation

Now we analyze the admissibilty of NN after loop trans-
formation. Consider input and output sets to be ellipsoids.
Based on the new representation of NN, the matrix inequality
in (13) can be rewritten as

M̃X + M̃Ψ + M̃Y � 0, (26)

with

M̃X =

[
In0 0
0 0
0 1

] [
−λA>A −λA>b
−λb>A λ(1− b>b)

] [In0 0
0 0
0 1

]>
(27)

M̃Ψ =
[
?
]> M 0 0

0 −M 0
0 0 0

Ñvx Ñvx1 b̃0

0 In1 0
0 0 1

 (28)

M̃Y = [?]
>

[
0 0 0
0 C>C C>d
0 d>C d>d− 1

][
In0 0 0

ÑΨx ÑΨx1 b̃1

0 0 1

]
(29)

By substituting (27)–(29) in (26), and after simplification,
we obtain:[

?

]> [
M 0
0 Iy

] [
Ñvx Ñvx1 b̃0

CÑΨx CÑΨx1 Cb̃1 + d

]

−

λA>A 0 λA>b
0 M 0

λb>A 0 λ(b>b− 1) + 1

 � 0.

(30)

Applying Schur complements yields an equivalent condition:
λA>A 0 λA>b Ñ>vx Ñ>ΨxC

>

0 M 0 Ñ>vx1 Ñ>Ψx1C
>

λb>A 0 λ(b>b− 1) + 1 b̃0> b̃1>C> + d>

Ñvx Ñvx1 b̃0 M−1 0

CÑΨx CÑΨx1 Cb̃1 + d 0 Iny

 � 0

(31)

The inequality in (31) is linear in NN weights and bias
vectors, but still nonconvex in M . Now multiply (31) from
the left and right by diag

([
Inx 0

0 M−1

]
, I1+n1+ny

)
to get

the required convex condition
λA>A 0 λA>b Ñ>vx Ñ>ΨxC

>

0 Q1 0 L>1 L>2 C
>

λb>A 0 λ(b>b− 1) + 1 b̃0 b̃1>C> + d>

Ñvx L1 b̃0 Q1 0n1×ny
CÑΨx CL2 Cb̃1 + d 0ny×n1 Iny

 � 0

(32)

where Q1 = (M)−1 � 0, L1 = Ñvx1Q1, and L2 =
ÑΨx1Q1. Now the above constraint (32) is convex in the
decision variables Q1, λ, L1, L2, Ñvx, ÑΨx, b̃

0, and b̃1. As
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a result, we can efficiently search over the admissible NN
parameters by imposing this condition during learning.

C. Algorithm
The learning procedure involves finding a feasible solution

to the LMI condition (32), and recovering the NN parameters
from the numerical solutions. It evolves as follows:

1. Formulate and abstract the provided input-output spec-
ifications according to Sections III-A and III-B.

2. Numerically solve for a feasible solution (L1, L2, Q1)
to the LMI (32).

3. If a feasible solution is found successfully, compute the
NN weights by solving (25).

If a feasible solution is found in step 2, then by Theorem
4.1, the corresponding NN recovered in step 3 certifiably
meets the input-output specifications. Nevertheless, infea-
sibility of (32) in general does not imply the emptiness
of the admissible set—a limitation due to the potential
conservativeness of convex relaxation approaches.

D. Multi-layer neural network
The extension to a multi-layer NN is straightforward.

Define x = [x0, x1, . . . , xl], where l ≥ 1 is the number of
hidden layers, and xk = Ekx for k = 0, . . . , l, where Ek is
the entry selector matrix. Also, denote

A =


W 0 0 0 . . . 0 0
0 W 1 0 . . . 0 0
. . W 2 . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 . . . W l−1 0



B =


0 In1 0 . . . 0 0
. . In2 . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 . . . 0 Inl

, b =


b0

b1

.

.

.
bl−1


The following result provides a convex condition for learning
a multi-layer NN under specifications.

Theorem 4.1: Consider a multi-layer NN Ψ : Rnx → Rny
described by (2), with nonlinear activation function sector
bounded as in (12). Consider the matrix inequality

M̃X (P ) + M̃Y(S) + M̃Ψ(Q) � 0 (33)

where

M̃X (P ) =

[
E0 0
0 1

]>
P

[
E0 0
0 1

]

M̃Ψ(Q) =

Ã b̃
B 0
0 1

>Q
Ã b̃
B 0
0 1


M̃Y(S) =

 E0 0

W̃ lTEl b̃l

0 1

> S
 E0 0

W̃ lTEl b̃l

0 1

 .
If (33) is feasible for (P,Q, S), then Ψ(x) ∈ S(x) for all
x ∈ X . Here (Ã, b̃) are transformed weights matrix and bias
vector, obtained by the procedure explained in Section IV-A.

Fig. 2. NN mapping with 10 hidden neurons.

Fig. 3. NN mapping with 5 neurons.

V. NUMERICAL EXPERIMENTS

To validate the proposed method, we considered a reacha-
bility problem. For a given input set, the specification dictates
that the NN output should lie within a set. Our task is to
learn a set of NN weights and bias vectors satisfying such
requirement. We implemented our algorithm in MATLAB
and solved the LMI condition with SDPT3 [27]. For the first
experiment, we considered two pairs of ellipsoids of the same
size as the input-output sets to learn a NN with dimensions
nx = 2 and ny = 2 with n1 = 10 hidden neurons. The input
and output sets are shown in Fig. 2 (note that our method
works in a wide range of positions and we only showcase
one of typical examples here). To test the admissibility of the
learned NN, we randomly generated 500 points in the input
sets and propagated them through the NN. As expected, all
the output points lied within the desired output sets.

To “stress test” the proposed method, we conducted an-
other experiment where we considered 3 pairs of input-output
sets, but reduced the number of hidden neurons to 5. We
also changed the sizes of input/output sets. A successful
attempt is shown in Fig. 3. In general, as we increased the
number of hidden layers, we observed a higher likelihood
of finding a feasible solution, which is aligned with the
universal approximation theorem [28]. Further quantification
of the representation capacity informed by our admissibility
condition is an interesting topic for future research.
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VI. CONCLUSION AND FUTURE DIRECTIONS

We address the challenge of learning NNs that certifiably
satisfy input-output specifications. To tractably search for
admissible weights, we derive a convex inner approxima-
tion to the nonconvex set of all admissible parameters.
By abstracting the nonlinear specifications and activation
functions with QCs, and applying the technique of loop
transformation, we are able to derive a convex condition for
a multi-layer NN that can be solved via SDP. The theoretical
construction is verified by numerical experiments for a
reachability-type problem. Building on the present work,
there are several directions that we are currently pursuing,
including (i) addressing more general forms of specifications,
including those that can be approximated by QCs and those
with internal dynamics; (ii) extending the theory to address
convolutional neural networks, which have wide applications
in extracting temporal and spatial correlations within data;
and (iii) deriving learning-theoretic guarantees for a sample-
based approach to solving problems with a large number
of input-output specifications (that would otherwise been
challenging to solve within a single SDP).
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