
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 1

AI Service Placement for Multi-Access Edge
Intelligence Systems in 6G

Jiaxin Li, Fuhong Lin, Lei Yang, Senior Member, IEEE, and Daochao Huang

Abstract—This paper studies the artificial intelligent (AI) task deployment problem of a multi-access edge intelligent system in a 6G
network, in which the cloud server broadcasts the AI program to the edge computing nodes. In particular, task nodes can perform
remote processing by offloading AI tasks to cloud servers or other edge computing nodes, or they can perform processing tasks locally.
In order to minimize the total computing time and energy consumption of all task nodes and maximize the inference accuracy of AI
tasks, we jointly optimize the resource allocation and computing offloading decision of each node by solving a mixed-integer non-linear
programming (MINLP) problem. In order to efficiently solve this non-convex problem, we propose an alternating direction multiplier
method (ADMM) based algorithm, which effectively decomposes the problem into easy-to-handle MINLP subproblems. Through the
proposed ADMM-based algorithm, each task node can use local channel state information (CSI) to optimize its calculation mode and
resource allocation, which is more suitable for large-scale networks. The simulation results show that this method is significantly better
than other benchmarks in various network environments, and the computational complexity is relatively low.

Index Terms—Multi-access edge computing, 6G, artificial intelligent, computing offloading.

�

1 INTRODUCTION

1.1 Background

WITH the rapid development of a new generation of
information technology (e.g., big data, artificial intel-

ligence), there are more and more real-time, computational-
ly intensive, and complex computing tasks in the Internet
of Things system. The data growth in the past decade [1]
indicates that 5G will soon be unable to support large-scale
Internet of Things (IoT) applications in the future. Therefore,
6G, as an extension technology of 5G, is considered a more
powerful tool [2] to support millions or even billions of
connected devices with high data rates and low latency. To
enable 6G networks to have AI capabilities, mobile and the
Internet of Things will continue to generate large amounts
of data (e.g., user behavior records, audio and video) that
reside at the edge of the network. Driven by this trend, there
is an urgent need to push the frontier of artificial intelligence
to the edge of the network to fully release the potential of
6G networks.

In addition, massive amounts of data will bring huge
computing pressure to the core of the network cloud, and at
the same time, the data interaction between cloud edges will
also put a huge load on the capacity-constrained fronthaul
link. In order to alleviate the above pressure and meet the
needs of 6G, multi-access edge computing (MEC) [3], [4],

• Jiaxin Li and Fuhong Lin are with the Department of Computer and Com-
munication Engineering, University of Science and Technology Beijing
(USTB), Beijing, 100083, P. R. China.
E-mail: b20200318@xs.ustb.edu.cn, FHLin@ustb.edu.cn
Corresponding author: Fuhong Lin.

• Lei Yang is with the Department of Computer Science and Engineering,
University of Nevada, Reno, NV 89557, USA.
E-mail: leiy@unr.edu.

• Daochao Huang is with National Computer network Emergency Response
Technical Team/Coordination Center of China (CNCERT/CC), Beijing,
100029, P. R. China.
E-mail: huangdc@cert.org.cn

Manuscript received xxx xxx, xxx; revised xxx xxx, xxx.

which is an emerging paradigm and placing services and
computing tasks at the edge of the network. It has been
widely regarded as an indispensable part of the 6G network.
The multi-access edge computing architecture successfully
reduces the transmission delay and bandwidth loss of the
network by offloading storage and computing resources to
the edge of the network, and has been widely recognized by
the academic community.

At the same time, the integration of AI and MEC, namely
edge intelligence (EI) [5], [6], [7], can support edge servers
to perform inference and training of AI models, so that edge
nodes can easily access the AI application. Specifically, the
edge server can use the AI models to handle the computing
offloading of the edge node to reduce the computing delay
and energy consumption of the node [8]. Moreover, the AI
service can be deployed at the edge server or mobile node
to perform computing tasks. The major challenge of multi-
access edge intelligence systems in AI service placement is
the trade-off between network latency, energy consumption,
and inference accuracy. Therefore, the issue of AI service
placement is worthy of attention and study.

1.2 Related Work

In terms of service placement, X. Zhang et al. in [9] pro-
posed to combine service placement and edge server, and
designed a joint service placement model and edge server
deployment. The goal is to maximize the overall profit of all
edge servers under the constraints of the storage capacity
and computing power of each edge server, the relationship
between edge servers, and the number of edge servers.
In [10], L. Chen et al. studied the layout of collaborative
services in dense small cell networks supported by mobile
edge computing to solve a series of challenges faced by
MEC systems, such as decentralized coordination, spatial
demand coupling, and service heterogeneity. In [11], H.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 2

Zhou considered the delay constraint as well as the uncer-
tain resource requirements of heterogeneous computation
tasks to minimize the energy consumption of the entire
MEC system. They proposed a Q-Learning which is a re-
inforcement learning method to determine the joint policy
of computation offloading and resource allocation. In [12], J.
Xu et al. studied the decision of joint task offloading and
service caching in dense cellular networks supported by
mobile edge computing to minimize computational delay. In
addition to placing service programs on mobile edge servers
[9], [12], mobile nodes can also support local execution of
applications. M. Gao et al. in [13] proposed a computing
offloading scheme that minimizes task processing delay
while managing server load reasonably. Among them, both
the user and the MEC can execute the application, and the
user optimizes the workload to be uninstalled to the MEC
server. Y. Yang et al. in [14] studied the optimization of the
user’s unloaded data ratio and MEC computing resource
allocation under the delay constraint, and minimized the
global energy consumption. However, they all assume that
the required service programs for task computation are
available at edge server and devices. This assumption is
not true in multi-access edge intelligence systems since the
underlying AI models typically require continuous update.
AI model are trained using historical data for optimal re-
sults, and the data in the environment may evolve over
time. Such change of data distribution may lead to reduced
AI inference performance. Therefore, in order to mitigate
model performance degradation, the AI services must be
updated regularly using newly collected data, and the up-
dated AI service program is broadcasted to edge server
or devices for processing tasks. At the same time, in the
real-world AI system, task nodes must have applications to
perform processing tasks, and it takes time for cloud servers
to transmit applications to edge nodes, and the transmission
delay and energy consumption of the system should also be
taken into consideration.

Z.h. Lin in [15] studied the service placement problem in
MEC system, where the access point places the most up-
to-date AI program at user devices to enable local com-
puting/task execution at the user side. To minimize the
total computation time and energy consumption of all users,
they jointly optimizing the service placement and resource
allocation. X. Li in [16] considered an edge intelligence
system where multiple end users collaboratively train an
AI model under the coordination of an edge server, aim-
ing at minimizing the energy consumption and execution
latency of the end users. Similarly, existing studies in MEC
systems mainly focus on reducing service delay and energy
consumption. For multi-access edge intelligence systems in
6G, the inference accuracy of AI services in MEC systems
is also of paramount importance. Our paper studies the AI
service placement, considering not only the time and energy
consumption of the MEC system, but also the inference ac-
curacy, where we consider the heterogeneous requirements
for AI services.

H. Zhou in [17] and [18] develop an effective incen-
tive mechanism to motivate nodes to participate in data
offloading, aiming to maximize the revenue of the service
provider. Specifically, [11] [17] [18] adopt a learning-based
approach to solve the resource allocation problem. In this

paper, we adopt the ADMM-based algorithm whose compu-
tational complexity and convergence can be theoretically an-
alyzed. In contrast, learning-based optimization algorithms
are mostly heuristic. The ADMM algorithm adopted in this
paper is much more scalable with provable performance
guarantee when the network scale is large.

Moreover, we consider the problem of Churn in commu-
nication networks. Churn refers to that nodes frequently join
or leave the network, and in [19] [20] [32], Churn is defined
as a measure of the dynamic characteristics of the network,
such as the node’s lifetime. Frequent joining or leaving
of nodes may degrade performance of the communication
network. For example, it can consume additional network
bandwidth and increase the delay. Therefore, it is urgent to
consider the survival time of nodes.

1.3 Contributions

In this paper, we focus on the computation time and energy
consumption minimization of the MEC system and the
inference accuracy maximization of AI service, through the
design of AI service placement and binary offloading strat-
egy for resource allocation. In summary, the contribution of
this paper is as follows:

First, this paper designs the AI service placement in
the MEC system, in which cloud server transmits and
places the AI model to mobile edge nodes through
the broadcast channel. Specifically, the task node
which receives the program can offload partial tasks
to the edge computing node or the cloud server for
processing, and the remaining tasks can be processed
locally. We focus on minimizing the energy consump-
tion and computing time of all task nodes, which
are subject to bandwidth, offloading rate, frequency
and other constraints. At the same time, we further
consider the inference accuracy of AI service and the
survival time of nodes.
Second, the optimization problem is formulated as
a MINLP problem, which jointly optimizes resource
allocation, computational offloading, and service
placement. In order to solve this problem, we pro-
pose an algorithm based on ADMM, which trans-
forms the MINLP problem into multiple smaller
and easier-to-handle subproblems. Therefore, the to-
tal computational complexity of ADMM-based algo-
rithms increases linearly with the number of nodes,
and it is much more scalable with provable perfor-
mance guarantee when the network scale is large.
Finally, the simulation results show that the pro-
posed algorithm is significantly better than other
benchmarks. At the same time, the proposed method
has lower computational complexity and converges
faster.

The rest of this article is organized as follows. Section
2 introduces the system model. Section 3 constructs the
optimization problem of time and energy consumption.
Section 4 proposes a joint optimization algorithm based on
ADMM. In Section 5, simulation results are given and the
performance of the proposed algorithm is discussed. Finally,
the paper is concluded in Section 6.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 3

Edge Computing Layer

Task Node Layer

k

m

P
ro

g
ra

m
 b

ro
ad

ca
st

in
g

C
o

m
p

u
ti

n
g
 o

ff
lo

ad
in

g
Cloud Server Layer

Fig. 1: System model

2 SYSTEM MODEL

Consider a cloud server is connected to an access point
with a LAN cable, while cloud services are deployed behind
wireless access points. task nodes are wirelessly connect-
ed to the access point, and processing task edge computing
nodes with strong computational power, as shown in Fig. 1.
For example, in some exiting works [21] [22], [23], small
cloud infrastructures such as cloudlets can be installed be-
hind wireless access points to bring the computing resources
closer to nodes. Furthermore, in the future 6G networks, the
future wireless scenario is a high-speed network, and the
wireless transmission speed is sufficient to support nodes
for further computing. Assume that each task node has a
certain amount of local data (e.g., images) that needs to
be processed by AI services. The cloud server regularly
updates the AI model and broadcasts it to the edge and task
nodes. The task nodes can use the AI model to process local
data, and can also offload local data to a cloud server or
edge nodes for processing. We assume that the cloud server
broadcasts the AI service program to reduce communication
overhead. Moreover, the problem of service placement is
a task scheduling problem. In our work, the cloud server
first broadcasts the AI model to all nodes, and then the
task nodes choose how to complete the task. One option
is to offload tasks to the edge nodes. Another option is to
offload part of the task to the cloud server. When offloading
AI tasks, we consider heterogeneous task requirements on
inference accuracy as well as latency. The tasks offloaded to
the cloud require higher inference accuracy, while the tasks
offloaded to the edge require lower latency.

We assume a frequency division duplex (FDD) mode of
operation, in which the uplink computing offloading and
downlink program broadcasting are performed on orthogo-
nal frequency bands, denoted as and respectively.
In addition, nodes use frequency division multiple access
(FDMA) to share uplink bandwidth, and task node ap-
plies () bandwidth. In particular, is
the uplink wireless channel gain between the cloud server
and the node, and is the downlink wireless channel gain
between the cloud server and the node.

Assume that the cloud server broadcasts Mbits AI
service program with power , In order to ensure that all
task nodes in decode correctly, according to the worst-
case node in , the cloud server adjusts its rate . It’s
given by [24]

(1)

where denotes the noise power spectral density and
. Then, the time spent on broad-

casting AI service programs is [25]

(2)

In this paper, we assume that the AI task is image
recognition, where the task of the th user is preprocessed
to a resolution of . Let (in pixels) denote the res-
olution of the new task, where is the weight and height
of the task after local preprocessing. Then, the total data
volume of the task node can be expressed as ,
where is the data volume per pixel. The task node offloads

bits to the cloud server for computing, and computes
bits locally. We can get the offloading ratio

according to the local availability of the program.
The number of CPU cycles for computing one bit of task
data is , which is assumed to be the same for all
nodes. Below, we will describe the local computing, cloud
computing and edge computing models in detail.

2.1 Local Computing Mode

For the task node , we denote as its local CPU frequen-
cy, and the constraints is . Then the local task
execution time is [26]

(3)

and the local task execution energy consumption is [27]

(4)

where represents the computing energy efficiency coeffi-
cient.

2.2 Cloud Computing Mode

Let be the transmit power of task node . Then
the uplink data rate of task node is [24]

(5)

The time it takes to offload the task is [26]

(6)

The energy consumption it takes to offload the task is [27]

(7)

Assume that the cloud server computes the tasks of each
task node with CPU frequency . Then the processing task
time of task node on the cloud server is [26]

(8)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 5

The total computing time of task node is the max-
imum one of the local computing and cloud computing
delays because local computing and cloud computing are
executed in parallel, which given by [33]

(16)

The energy consumption of task node is the sum of
cloud computing, task offloading, and the energy consump-
tion of local computing:

(17)

Case 2:

The entire task of node is processed by itself and edge
nodes, and the local computing delay is

(18)

The computing delay of other edge computing node is

(19)

The total computing time of node is given by [33]

(20)

The energy consumption of task node is the task
offloading, energy consumption of local computing and
edge node computing:

(21)

For edge computing nodes , we also consider the sur-
vival time of edge nodes . According to [20], the residual
lifetime of any surviving edge node in the system obeys
Pareto lifetimes, so the distribution function is given by

(22)

From the above discussion, it can be seen that the total
computing time of task node is

(23)

The total energy consumption of task node is

(24)

The summation of the analytics accuracy of the task node
is

(25)

Next, we define the performance metric TE as the weighted
sum of computing time and energy consumption

, where and are the
weighting factors that satisfy . The objective

function can be viewed as a weighted sum method for
general multi-objective optimization problems. As stated
in Proposition 3.9 in [36], in the case of positive weights,
minimizing P1 can effectively solve the multi-objective op-
timization problem. Furthermore, the weights themselves
reflect the relative importance (preference) between energy
consumption, latency, and precision accuracy. For example,
when the battery power of the task node is low, and the
user only cares about the energy consumption, the node can
set . In recent some exiting work [34] [35], such
weighted sum methods have been widely used. We mainly
use joint optimization computing mode selection ,
computing of offload ratio , local CPU frequency

, uplink bandwidth allocation and the
resolution of the task to minimize the total TE
and maximize the total analytics accuracy of the task. By
introducing auxiliary variables
and , , the problem
is formulated as:

(26a)

(26b)
(26c)
(26d)

(26e)

(26f)

(26g)

(26h)

(26i)

(26j)

(26k)

(26l)

where (26b) represents the offloading ratio constraints, (26c)
represents local CPU frequency constraints. (26d) and (26e)
are restrictions on bandwidth allocation.(26j)-(26k) are the
constraints on the auxiliary variables and . (26l)
represents the minimum analytics accuracy requirement
constraints.

Problem (P1) is non-convex because the objective func-
tion and constraints are both non-convex. However, we
can observe that given, (P1) is jointly convex for

. Therefore, we can use CVX [37] which are
convex optimization tools to get the optimal solution

. In order to obtain the optimal value

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 6

, we can list all the possible which is one of the
most direct methods, and then find a pair of minimum target
values on the feasible space of which can use a
multi-dimensional search. However, the multi-dimensional
search method is computationally infeasible, because even
if is small, for example, , the search space is very
large, not to mention the exhaustive search for the optimal

, and its computational complexity increases exponential-
ly with the increase of .

Proposition 1. The problem of AI service placement (P1) is NP-
hard.

Proof. We first briefly describe the capable facility location
problem (CFLP) [38] (A comparison of heuristics and relax-
ations for the capacitated plant location problem) which is
a well-known NP-hard problem. Then we reduce the CFLP
to the problem P1 and show that the problem P1 is also
NP-hard.

Description of CFLP. In the capable facility location prob-
lem, we suppose that there are facilities and customers.
Let to represent the needs of customer , each customer
can divide its needs into multiple parts which are sent
to different facilities for production; at the same time, we
assume that each facilities has a production capacity ,
which is the maximum amount of product that can be
produced by facilities . In order to minimize the sum of
the opening cost and the assignment cost and meet the total
demand assigned to a facility must not exceed its capacity.
We wish to choose: (i) which of the facilities to open and
(ii) the assignment of customers to facilities.

Reducing CFLP to P1. By treating each instance of CFLP
as a special case of problem P1, we can reduce CFLP to
problem P1.

The consumer with demand in CFLP is mapped
to the node with computing demand in problem
P1.
The opened facility with production capacity
in CFLP is mapped to the cloud server with node
lifetime limit in problem P1.
The opening cost of facilities in CFLP is mapped to
the cost of computing time in problem P1.
The cost of shipping products in CFLP is mapped to
the total energy cost in problem P1.

Hence, the NP-hard problem CFLP can be reduced to prob-
lem P1. Thus, problem P1 is NP-hard.

4 ADMM-BASED JOINT OPTIMIZATION AL-

GORITHM

4.1 Reformulation of (P1)

In this section, an ADMM-based algorithm [39] is proposed
to solve (P1). The main thought is to decompose (P1) into

parallel easier-to-handle and smaller MINLP problems.
As shown in (1) and (2), the downloading time is decided
by the choice of task nodes , which is . Then can be

equivalently used as the optimization variable of (P1), and
then add the following constraints on (P2):

(27)

We can observe that and are coupled under
constraints (27) and (26e). In order to decompose (P1), we
introduce artificial variables and reformulate (P1) as:

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)
(28g)

where

and

(29)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 7

Besides,

(30)

where

(31)

Now we can use ADMM [39] to effectively decompose
(28). By introducing multipliers under constraint (28f), the
augmented Lagrangian of (28) can be expressed as:

where , and ,
and is a fixed step size. Correspondingly, the dual
function is

(32)

and the dual problem is

(33)

4.2 ADMM Iterative Processing

The ADMM algorithm [39] solves the dual problem (29) by
iteratively updating , , and . We denote the values in the
th iteration as . Then, in the th iteration,

the variables are updated in the following order:

Step 1: Solving problem (33) by updating the lo-
cal variables which using one-dimensional search
method [40] in the th iteration.

we update the local variables which is given by

(34)

We notice that (34) can be decomposed into parallel
subproblems, and each subproblem is solved:

(35)

where

(36)

For and , (35) can be equivalent to

(37)

and

(38)

Since variable and variable are cou-
pled, subproblems (37) and (38) are non-convex. However,
given , the subproblem is a strictly convex problem
and is easy to solve. Therefore, a simple one-dimensional
search method can be used, such as the golden section
search [40], which can find the optimal value and the
corresponding optimal value . Finally,
we can choose or to make the target
value in (33) smaller as , the corresponding optimal
solution is . By solving
suproblems, the optimal solution of (32) is obtained as

. Given the
accuracy parameter , the golden section search method
requires iterations to solve each subproblem (37)
and (38) respectively. We assumed that the complexity of
solving each subproblem (35) is and is proportional to
the number of subproblems, thus the overall computational
complexity of Step 1 is . Moreover, the subprob-
lems are solved in parallel, and the computational time of
step 1 remains unchanged during parallel computing.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 8

Step 2: Solving problem (33) by updating the global
variables which using bisection search method [41]
in the th iteration.

After obtaining , we update the global variable as:

(39)

According to the definition of in (31),
must be kept as optimal. Therefore, we can equivalently
express (39) as the following convex optimization problem:

(40)

Then, the closed form of the optimal value can be
directly obtained as:

(41)

where . Then we denote the Lagrangian
multiplier which the constraint is , we can
get the optimal closed form of as:

(42)

Since is non-increase with , we can get the optimal
by performing a bisection search over , where

is a large enough value until is satisfied, and
then compare the result with the condition of , which
the condition that . The specific algorithm can
refer to [41]. Thus, the computational complexity of step 2
to solve (40) is . Moreover, under given Lagrangian
multiplier , we can get for the nodes in parallel, so
the computational time of step 2 remains unchanged when
performing parallel computing.

Step 3: Solving problem (33) by updating the multi-
pliers in the th iteration.

After obtaining the variable , it’s should
be considered the variable to maximize , which can be
updated the multiplier as

(43)

Obviously, the computational complexity of step 3 is also
. Similarly, we update (43) in parallel for nodes, the

computational time of step 3 also remains unchanged when
performing parallel computing.

In short, we perform the three continuous steps until
the preset stop conditions are met. Generally, the stopping
conditions is determined by two thresholds: absolute toler-
ance and relative tolerance

. Algorithm 1 gives the pseu-
do code based on ADMM algorithm (P1). The dual problem
(33) is convex at , so the convergence of the
algorithm is guaranteed. In addition, the convergence of
the ADMM-based algorithm is not sensitive to the choice
of step size [42], we set without loss of generality.
The complexity of an ADMM iteration is because the
complexity of each of the three steps is respectively.
Moreover, during parallel computing, the computational
time of the above three steps remain unchanged, thus the
computational time of one ADMM iteration remains un-
changed and the complexity increases linearly with .

Algorithm 1 ADMM-Based Algorithm

1: Initialize ; ; ;
; ; ;

2: Repeat
3: for each node do
4: Update local variables

by solving
(34);

5: end for
6: Update global variables by solving (39);
7: Update multipliers by solving (42);
8: ;
9: Until

and ;
10: return as an approximate solution to

(P1).

5 SIMULATION RESULTS

This section evaluate the performance of the proposed al-
gorithm through numerical simulations. In the simulations,
it is supposed that the uplink and downlink bandwidth as

, and the noise power spectral density
is . It is assumed that the average
channel gain follows to the free-space path loss model

, where the antenna gain is
, the carrier frequency is , and the

distance from node to the cloud is . The downlink
channel gain follows the Rayleigh fading channel model

, where is an independent exponential random
variable with unit mean. For the sake of briefness, it is
assumed that the downlink and uplink downlink channel
gains of the nodes are equal. Assuming that the distance be-
tween nodes and cloud server is equal and m. In
order not to lose generality, it is assumed that the weighting
factors of all nodes are the same. Pareto parameter ,

, . The part of simulation parameters are
summarized in Table II. For performance comparison, the
following three representative benchmarks are be consid-
ered [43]:

1) Cloud only: all the nodes offload their tasks to the
cloud, .

2) Node only: all the nodes perform computations lo-
cally, .

3) Edge nodes only: all the nodes offload their tasks to
the edge node, and .

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 10

Fig. 5: Total TE versus the distance between Cloud and Node

Fig. 6: Total TE versus the computing energy efficiency
coefficient

is lower than the node-only and the edge-only computing
scheme.

In Fig. 8, it describes the computational complexity of the
proposed ADMM-based algorithm. Here, we set ,

, and then plot the average number of it-
erations of Algorithm 1 when the number of nodes
changes. Interestingly, we observe that the ADMM-based
method has an almost constant number of iterations under
different within the consideration range, that is, . In
addition, since the computational complexity of one ADMM
iteration is , the overall computational complexity
of the ADMM-based method is also . Therefore, the
application of ADMM-based algorithm in the large-scale
Internet of Things where the network scale dominates the
overall complexity is effective.

Fig. 9 shows the impact of on the computing time
and energy consumption of different algorithms. When
increases, the MEC system emphasizes the impact of com-
putation time on performance. As a result, the ADMM-
based algorithm trades the energy consumption for the
computing time. This simulation result also shows that, as
compared to the baseline algorithm, the algorithm reaches
the minimum TE when the weights change.

6 CONCLUSION

This paper studies the task deployment problem under the
multi-user mobile edge intelligent system, in which the
cloud server broadcasts the AI program to the edge com-
puting node. In particular, task nodes can perform remote
processing by offloading tasks to cloud servers or other edge
computing nodes, or perform processing tasks locally. In
order to pursue the minimum total computing time and

Fig. 7: Total TE versus the computing energy efficiency
coefficient

Fig. 8: Average iterative number of algorithm 1 versus the
number of nodes

energy consumption of all task nodes, a MINLP problem is
proposed by jointly optimizing the resource allocation and
computing offloading decision of each node. After that, we
designed an algorithm based on ADMM to solve the non-
convexity problem, which effectively decomposes the prob-
lem into easier-to-handle MINLP subproblems. Through
the proposed ADMM-based algorithm, each task node can
optimize its calculation mode and resource allocation, which
is more suitable for large-scale networks. The simulation
results show that this method is significantly better than
other representative benchmark methods in various net-
work environments. At the same time, the computational
complexity is relatively low, and it is suitable for large-scale
networks.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation Project of P. R. China (No. 61931001), NSF under
Grants IIS-1838024, CNS-1950485, and OIA-2148788.

REFERENCES

[1] G. Liu et al., “Vision, requirements and network architecture of 6G
mobile network beyond 2030,” China Communications, vol. 17, no. 9,
pp. 92-104, Sept. 2020.

[2] X. Tang et al., “Computing power network: The architecture of con-
vergence of computing and networking towards 6G requirement,”
China Communications, vol. 18, no. 2, pp. 175-185, Feb. 2021.

[3] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, “Mobile edge
computing: a survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450-
465, Feb. 2018.

[4] M. Muniswamaiah, T. Agerwala and C. C. Tappert, “A survey on
cloudlets, mobile edge, and fog computing,” IEEE Access, vol. 5, pp.
9348-9358, May. 2017.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 11

Fig. 9: Total TE versus

[5] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar and A. Y. Zomaya,
“Edge intelligence: the confluence of edge computing and artificial
intelligence,” IEEE Internet Things J., vol. 7, no. 8, pp.7457-7469,
Aug. 2020.

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, “Edge
intelligence: paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762,
Aug. 2019.

[7] K. Jiang, C. Sun, H. Zhou, X. Li, M. Dong and V. C. M. Leung,
“Intelligence-Empowered Mobile Edge Computing: Framework,
Issues, Implementation, and Outlook,” IEEE Network, vol. 35, no.
5, pp. 74-82, 2021.

[8] H. Hu and C. Jiang, “Edge intelligence: challenges and opportu-
nities,” 2020 International Conference on Computer, Information and
Telecommunication Systems (CITS), vol. 6, pp. 1-5, Oct. 2020.

[9] X. Zhang, Z. Li, C. Lai and J. Zhang, “Joint edge server placement
and service placement in mobile edge computing,” IEEE Internet
Things J., pp. 1-1, Nov. 2021.

[10] L. Chen, C. Shen, P. Zhou and J. Xu, “Collaborative Service
Placement for Edge Computing in Dense Small Cell Networks,”
IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 377-390, Feb. 2021.

[11] H. Zhou, K. Jiang, X. Liu, X. Li and V. C. M. Leung, “Deep Re-
inforcement Learning for Energy-Efficient Computation Offloading
in Mobile-Edge Computing,” IEEE Internet Things J.,vol. 9, no. 2,
pp. 1517-1530, Jan. 2022.

[12] J. Xu, L. Chen and P. Zhou, “Joint Service Caching and Task
Offloading for Mobile Edge Computing in Dense Networks,” IEEE
INFOCOM 2018 - IEEE Conf. on Computer Commun., pp. 207-215,
2018.

[13] M. Gao et al., “Computation Offloading with Instantaneous Load
Billing for Mobile Edge Computing,” IEEE Trans. on Services Com-
put., pp. 1-1, May. 2020.

[14] Y. Yang, Y. Hu and M. C. Gursoy, “Deep Reinforcement Learning
and Optimization Based Green Mobile Edge Computing,” 2021
IEEE 18th Annual Consumer Communications & Networking Conference
(CCNC), pp. 1-2, 2021.

[15] Z. Lin, S. Bi and Y. -J. A. Zhang, “Optimizing AI Service Placement
and Resource Allocation in Mobile Edge Intelligence Systems,”
IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7257-7271, Nov.
2021.

[16] X. Li, S. Bi and H. Wang, “Optimizing Resource Allocation for
Joint AI Model Training and Task Inference in Edge Intelligence
Systems,” IEEE Wireless Communications Letters,vol. 10, no. 3, pp.
532-536, Mar. 2021.

[17] H. Zhou, T. Wu, H. Zhang and J. Wu, “Incentive-Driven Deep
Reinforcement Learning for Content Caching and D2D Offloading,”
EEE Journal on Selected Areas in Communications,vvol. 39, no. 8, pp.
2445-2460, Aug. 2021.

[18] H. Zhou, X. Chen, S. He, J. Chen and J. Wu, “DRAIM: A Novel
Delay-Constraint and Reverse Auction-Based Incentive Mechanism
for WiFi Offloading,” IEEE Journal on Selected Areas in Communica-
tions,vol. 38, no. 4, pp. 711-722, Apr. 2020.

[19] D. Leonard, Z. Yao, V. Rai and D. Loguinov, “On Lifetime-Based
Node Failure and Stochastic Resilience of Decentralized Peer-to-
Peer Networks,” IEEE/ACM Transactions on Networking,vol. 15, no.
3, pp. 644-656, June 2007.

[20] Z. Yao, X. Wang, D. Leonard and D. Loguinov, “On Node Isolation
Under Churn in Unstructured P2P Networks with Heavy-Tailed

Lifetimes,” IEEE INFOCOM 2007 - 26th IEEE International Conference
on Computer Communications, pp. 2126-2134, 2007.

[21] M. Chen, S. Guo, K. Liu, X.Liao and B. Xiao, “Robust Computation
Offloading and Resource Scheduling in Cloudlet-Based Mobile
Cloud Computing,” IEEE Transactions on Mobile Computing, vol. 20,
no. 5, pp. 2025-2040, 2021.

[22] S. Yang, F. Li, M. Shen, X. Chen, X. Fu and Y. Wang, “Cloudlet
Placement and Task Allocation in Mobile Edge Computing,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 5853-5863, 2019.

[23] H. Chen, D. Zhao, Q. Chen and R. Chai, “Joint Computation
Offloading and Radio Resource Allocations in Small-Cell Wireless
Cellular Networks,” IEEE Transactions on Green Communications and
Networking, vol. 4, no. 3, pp. 745-758,, 2020.

[24] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu and X. Wang, “Multi-
Task Offloading Strategy Optimization based on Directed Acyclic
Graphs for Edge Computing,” IEEE Internet Things J., pp. 1-1, Sept.
2021.

[25] G. Peng, H. Wu, H. Wu and K. Wolter, “Constrained Multiobjective
Optimization for IoT-Enabled Computation Offloading in Collabo-
rative Edge and Cloud Computing,” IEEE Internet Things J.,vol. 8,
no. 17, pp. 13723-13736, Sept. 2021.

[26] L. Lei, H. Xu, X. Xiong, K. Zheng and W. Xiang, ”Joint Compu-
tation Offloading and Multiuser Scheduling Using Approximate
Dynamic Programming in NB-IoT Edge Computing System,” IEEE
Internet Things J., vol. 6, no. 3, pp. 5345-5362, Jun. 2019.

[27] S. Hu and G. Li, “Dynamic Request Scheduling Optimization in
Mobile Edge Computing for IoT Applications,” IEEE Internet Things
J.,vol. 7, no. 2, pp. 1426-1437, Feb. 2020.

[28] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581-2593, Nov. 2020.

[29] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing
systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784-
1797, Mar. 2018.

[30] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network
orchestrator for mobile augmented reality,” IEEE INFOCOM 2018,
pp. 756-764, 2018.

[31] W. Sun, J. Liu, and Y. Yue, “AI-enhanced offloading in edge
computing: When machine learning meets industrial IoT,” IEEE
Netw., vol. 33, no. 5, pp. 68-74, 2019.

[32] Z. Yao, D. Leonard, X. Wang and D. Loguinov, “Modeling Het-
erogeneous User Churn and Local Resilience of Unstructured P2P
Networks,” Proceedings of the 2006 IEEE International Conference on
Network Protocols, pp. 32-41, 2006.

[33] B. Lin, X. Lin, S. Zhang, H. Wang and S. Bi, “Computation Task
Scheduling and Offloading Optimization for Collaborative Mobile
Edge Computing,” 2020 IEEE 26th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 728-734, 2020.

[34] Q. Wei, Z. Zhou and X. Chen, “DRL-Based Energy-Efficient Trajec-
tory Planning, Computation Offloading, and Charging Scheduling
in UAV-MEC Network,” 2022 IEEE/CIC International Conference on
Communications in China (ICCC), pp. 1056-1061, 2022.

[35] H. Ma, P. Huang, Z. Zhou, X. Zhang and X. Chen, “GreenEdge:
Joint Green Energy Scheduling and Dynamic Task Offloading in
Multi-Tier Edge Computing Systems,” IEEE Transactions on Vehicu-
lar Technology, vol. 71, no. 4, pp. 4322-4335, 2022.

[36] M. Ehrgott, Multicriteria Optimization, New York, NY, USA:
Springer, 2006.

[37] M. Grant and S. Boyd, “CVX: Matlab software for disciplined con-
vex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[38] G. Cornuéjols, G. Nemhauser, and L. Wolsey, “The uncapicitated
facility location problem,” Cornell University Operations Research and
Industrial Engineering, 1983.

[39] G. Zhang and R. Heusdens, “Bi-alternating direction method
of multipliers over graphs,” 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3571-3575, 2015.

[40] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge,U.K.: Cambridge Univ. Press, 2004.

[41] Z. Lin, S. Bi and Y. -J. A. Zhang,“Optimizing AI Service Placement
and Resource Allocation in Mobile Edge Intelligence Systems,”
IEEE Trans. Wireless Commun., vol. 20,no. 11, pp. 7257-7271, Nov.
2021.

[42] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson,“Optimal
parameter selection for the alternating direction method of multi-

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 12

pliers (ADMM): Quadratic problems,” IEEE Trans. Autom. Control,
vol. 60,no. 3, pp. 644C658, Mar. 2015.

[43] X. Li, S. Bi and H. Wang, “Optimizing Resource Allocation for
Joint AI Model Training and Task Inference in Edge Intelligence
Systems,” IEEE Wireless Communications Letters, vol. 10,no. 3, pp.
532-536, March 2021.

[44] C. Chi, W. Li, and C. Lin, Convex optimization for signal pro-
cessing and communications: From fundamentals to applications. Boca
Raton,FL, CRC Press, Feb. 2017.

Jiaxin Li received the M.S. degree from the
School of Computer and Information Technolo-
gy, Beijing Jiaotong University, Beijing, China, in
2020. She is currently pursuing the Ph.D. de-
gree with Department of Computer and Com-
munication Engineering, University of Science
and Technology Beijing, Beijing, P. R. China. Her
current research interests include multi-access
Edge computing and artificial intelligence.

Fuhong Lin received his M.S. degree and Ph.D.
degree from Beijing Jiaotong University, Beijing,
P. R. China, in 2006 and 2010, respectively, both
in Electronics Engineering. Now he is a profes-
sor in Department of Computer and Communi-
cation Engineering, University of Science and
Technology Beijing, P. R. China. His research
interests include Edge/Fog Computing, Network
Security, and AI. His two papers won “Top 100
most Cited Chinese Papers Published in Inter-
national Journals” in 2015 and 2016. He won

“Provincial and Ministry Science and Technology Progress Award 2” in
2017, 2019 and 2021.

Lei Yang (Senior Member, IEEE) is an associate
professor with the Department of Computer Sci-
ence and Engineering at University of Nevada,
Reno. He received his Ph.D. degree from the
School of Electrical Computer and Energy En-
gineering, Arizona State University, Tempe, in
2012 and was a postdoctoral scholar at Prince-
ton University and an assistant research profes-
sor with the School of Electrical Computer and
Energy Engineering, Arizona State University.
His research interests include big data analytics,

AI/ML for cyber-physical systems, edge intelligence in IoT and 5G, data
privacy and security. His research was featured in National Science
Foundation Science360 News. His papers have won the Best Paper
Award Runner-Up award at IEEE INFOCOM 2014 and the Best Paper
Award at IEEE PES General Meeting 2022. He serves as the Associate
Editor of the IEEE Transactions on Wireless Communications.

Daochao Huang received the Ph.D. degree
from Beijing Jiaotong University, Beijing, P. R.
China, 2013, in Electronic Engineering. His re-
search interests include data center networking,
software defined network, joint/edge computing
and network security.

