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Al Service Placement for Multi-Access Edge
Intelligence Systems in 6G
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Abstract—This paper studies the artificial intelligent (Al) task deployment problem of a multi-access edge intelligent system in a 6G
network, in which the cloud server broadcasts the Al program to the edge computing nodes. In particular, task nodes can perform
remote processing by offloading Al tasks to cloud servers or other edge computing nodes, or they can perform processing tasks locally.
In order to minimize the total computing time and energy consumption of all task nodes and maximize the inference accuracy of Al
tasks, we jointly optimize the resource allocation and computing offloading decision of each node by solving a mixed-integer non-linear
programming (MINLP) problem. In order to efficiently solve this non-convex problem, we propose an alternating direction multiplier
method (ADMM) based algorithm, which effectively decomposes the problem into easy-to-handle MINLP subproblems. Through the
proposed ADMM-based algorithm, each task node can use local channel state information (CSI) to optimize its calculation mode and
resource allocation, which is more suitable for large-scale networks. The simulation results show that this method is significantly better
than other benchmarks in various network environments, and the computational complexity is relatively low.

Index Terms—Multi-access edge computing, 6G, artificial intelligent, computing offloading.

1 INTRODUCTION

1.1 Background

WITH the rapid development of a new generation of
information technology (e.g., big data, artificial intel-
ligence), there are more and more real-time, computational-
ly intensive, and complex computing tasks in the Internet
of Things system. The data growth in the past decade [1]
indicates that 5G will soon be unable to support large-scale
Internet of Things (IoT) applications in the future. Therefore,
6G, as an extension technology of 5G, is considered a more
powerful tool [2] to support millions or even billions of
connected devices with high data rates and low latency. To
enable 6G networks to have Al capabilities, mobile and the
Internet of Things will continue to generate large amounts
of data (e.g., user behavior records, audio and video) that
reside at the edge of the network. Driven by this trend, there
is an urgent need to push the frontier of artificial intelligence
to the edge of the network to fully release the potential of
6G networks.

In addition, massive amounts of data will bring huge
computing pressure to the core of the network cloud, and at
the same time, the data interaction between cloud edges will
also put a huge load on the capacity-constrained fronthaul
link. In order to alleviate the above pressure and meet the
needs of 6G, multi-access edge computing (MEC) [3], [4],
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which is an emerging paradigm and placing services and
computing tasks at the edge of the network. It has been
widely regarded as an indispensable part of the 6G network.
The multi-access edge computing architecture successfully
reduces the transmission delay and bandwidth loss of the
network by offloading storage and computing resources to
the edge of the network, and has been widely recognized by
the academic community.

At the same time, the integration of Al and MEC, namely
edge intelligence (EI) [5], [6], [7], can support edge servers
to perform inference and training of Al models, so that edge
nodes can easily access the Al application. Specifically, the
edge server can use the Al models to handle the computing
offloading of the edge node to reduce the computing delay
and energy consumption of the node [8]. Moreover, the Al
service can be deployed at the edge server or mobile node
to perform computing tasks. The major challenge of multi-
access edge intelligence systems in Al service placement is
the trade-off between network latency, energy consumption,
and inference accuracy. Therefore, the issue of Al service
placement is worthy of attention and study.

1.2 Related Work

In terms of service placement, X. Zhang et al. in [9] pro-
posed to combine service placement and edge server, and
designed a joint service placement model and edge server
deployment. The goal is to maximize the overall profit of all
edge servers under the constraints of the storage capacity
and computing power of each edge server, the relationship
between edge servers, and the number of edge servers.
In [10], L. Chen et al. studied the layout of collaborative
services in dense small cell networks supported by mobile
edge computing to solve a series of challenges faced by
MEC systems, such as decentralized coordination, spatial
demand coupling, and service heterogeneity. In [11], H.

ermitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERé)ITY OF NEVADA RENO. Downloaded on January 04,2023 at 19:10:25 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3228815

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 2

Zhou considered the delay constraint as well as the uncer-
tain resource requirements of heterogeneous computation
tasks to minimize the energy consumption of the entire
MEC system. They proposed a Q-Learning which is a re-
inforcement learning method to determine the joint policy
of computation offloading and resource allocation. In [12], J.
Xu et al. studied the decision of joint task offloading and
service caching in dense cellular networks supported by
mobile edge computing to minimize computational delay. In
addition to placing service programs on mobile edge servers
[9], [12], mobile nodes can also support local execution of
applications. M. Gao et al. in [13] proposed a computing
offloading scheme that minimizes task processing delay
while managing server load reasonably. Among them, both
the user and the MEC can execute the application, and the
user optimizes the workload to be uninstalled to the MEC
server. Y. Yang et al. in [14] studied the optimization of the
user’s unloaded data ratio and MEC computing resource
allocation under the delay constraint, and minimized the
global energy consumption. However, they all assume that
the required service programs for task computation are
available at edge server and devices. This assumption is
not true in multi-access edge intelligence systems since the
underlying AI models typically require continuous update.
AI model are trained using historical data for optimal re-
sults, and the data in the environment may evolve over
time. Such change of data distribution may lead to reduced
Al inference performance. Therefore, in order to mitigate
model performance degradation, the Al services must be
updated regularly using newly collected data, and the up-
dated Al service program is broadcasted to edge server
or devices for processing tasks. At the same time, in the
real-world Al system, task nodes must have applications to
perform processing tasks, and it takes time for cloud servers
to transmit applications to edge nodes, and the transmission
delay and energy consumption of the system should also be
taken into consideration.

Z.h. Lin in [15] studied the service placement problem in
MEC system, where the access point places the most up-
to-date Al program at user devices to enable local com-
puting/task execution at the user side. To minimize the
total computation time and energy consumption of all users,
they jointly optimizing the service placement and resource
allocation. X. Li in [16] considered an edge intelligence
system where multiple end users collaboratively train an
AI model under the coordination of an edge server, aim-
ing at minimizing the energy consumption and execution
latency of the end users. Similarly, existing studies in MEC
systems mainly focus on reducing service delay and energy
consumption. For multi-access edge intelligence systems in
6G, the inference accuracy of Al services in MEC systems
is also of paramount importance. Our paper studies the Al
service placement, considering not only the time and energy
consumption of the MEC system, but also the inference ac-
curacy, where we consider the heterogeneous requirements
for Al services.

H. Zhou in [17] and [18] develop an effective incen-
tive mechanism to motivate nodes to participate in data
offloading, aiming to maximize the revenue of the service
provider. Specifically, [11] [17] [18] adopt a learning-based
approach to solve the resource allocation problem. In this

© 2022 IEEE. Personal use is

paper, we adopt the ADMM-based algorithm whose compu-
tational complexity and convergence can be theoretically an-
alyzed. In contrast, learning-based optimization algorithms
are mostly heuristic. The ADMM algorithm adopted in this
paper is much more scalable with provable performance
guarantee when the network scale is large.

Moreover, we consider the problem of Churn in commu-
nication networks. Churn refers to that nodes frequently join
or leave the network, and in [19] [20] [32], Churn is defined
as a measure of the dynamic characteristics of the network,
such as the node’s lifetime. Frequent joining or leaving
of nodes may degrade performance of the communication
network. For example, it can consume additional network
bandwidth and increase the delay. Therefore, it is urgent to
consider the survival time of nodes.

1.3 Contributions

In this paper, we focus on the computation time and energy
consumption minimization of the MEC system and the
inference accuracy maximization of Al service, through the
design of Al service placement and binary offloading strat-
egy for resource allocation. In summary, the contribution of
this paper is as follows:

First, this paper designs the Al service placement in
the MEC system, in which cloud server transmits and
places the AI model to mobile edge nodes through
the broadcast channel. Specifically, the task node
which receives the program can offload partial tasks
to the edge computing node or the cloud server for
processing, and the remaining tasks can be processed
locally. We focus on minimizing the energy consump-
tion and computing time of all task nodes, which
are subject to bandwidth, offloading rate, frequency
and other constraints. At the same time, we further
consider the inference accuracy of Al service and the
survival time of nodes.

Second, the optimization problem is formulated as
a MINLP problem, which jointly optimizes resource
allocation, computational offloading, and service
placement. In order to solve this problem, we pro-
pose an algorithm based on ADMM, which trans-
forms the MINLP problem into multiple smaller
and easier-to-handle subproblems. Therefore, the to-
tal computational complexity of ADMM-based algo-
rithms increases linearly with the number of nodes,
and it is much more scalable with provable perfor-
mance guarantee when the network scale is large.
Finally, the simulation results show that the pro-
posed algorithm is significantly better than other
benchmarks. At the same time, the proposed method
has lower computational complexity and converges
faster.

The rest of this article is organized as follows. Section
2 introduces the system model. Section 3 constructs the
optimization problem of time and energy consumption.
Section 4 proposes a joint optimization algorithm based on
ADMM. In Section 5, simulation results are given and the
performance of the proposed algorithm is discussed. Finally,
the paper is concluded in Section 6.
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Fig. 1: System model

2 SYSTEM MODEL

Consider a cloud server is connected to an access point
with a LAN cable, while cloud services are deployed behind
wireless access points.  task nodes are wirelessly connect-
ed to the access point,and processing task edge computing
nodes with strong computational power, as shown in Fig. 1.
For example, in some exiting works [21] [22], [23], small
cloud infrastructures such as cloudlets can be installed be-
hind wireless access points to bring the computing resources
closer to nodes. Furthermore, in the future 6G networks, the
future wireless scenario is a high-speed network, and the
wireless transmission speed is sufficient to support nodes
for further computing. Assume that each task node has a
certain amount of local data (e.g., images) that needs to
be processed by Al services. The cloud server regularly
updates the Al model and broadcasts it to the edge and task
nodes. The task nodes can use the AI model to process local
data, and can also offload local data to a cloud server or
edge nodes for processing. We assume that the cloud server
broadcasts the Al service program to reduce communication
overhead. Moreover, the problem of service placement is
a task scheduling problem. In our work, the cloud server
first broadcasts the AI model to all nodes, and then the
task nodes choose how to complete the task. One option
is to offload tasks to the edge nodes. Another option is to
offload part of the task to the cloud server. When offloading
Al tasks, we consider heterogeneous task requirements on
inference accuracy as well as latency. The tasks offloaded to
the cloud require higher inference accuracy, while the tasks
offloaded to the edge require lower latency.

We assume a frequency division duplex (FDD) mode of
operation, in which the uplink computing offloading and
downlink program broadcasting are performed on orthogo-
nal frequency bands, denoted as and respectively.
In addition, nodes use frequency division multiple access
(FDMA) to share uplink bandwidth, and task node  ap-
plies ( ) bandwidth. In particular, is
the uplink wireless channel gain between the cloud server
and the node, and is the downlink wireless channel gain
between the cloud server and the node.
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Assume that the cloud server broadcasts  Mbits Al
service program with power , In order to ensure that all
task nodes in decode correctly, according to the worst-
case node in , the cloud server adjusts its rate . It's
given by [24]

— M

where denotes the noise power spectral density and
. Then, the time spent on broad-

casting Al service programs is [25]

- 2

In this paper, we assume that the AI task is image
recognition, where the task of the th user is preprocessed
to a resolution of . Let (in pixels) denote the res-
olution of the new task, where  is the weight and height
of the task after local preprocessing. Then, the total data
volume of the task node  can be expressed as ,
where is the data volume per pixel. The task node offloads

bits to the cloud server for computing, and computes

bits locally. We can get the offloading ratio

according to the local availability of the program.

The number of CPU cycles for computing one bit of task

data is , which is assumed to be the same for all

nodes. Below, we will describe the local computing, cloud
computing and edge computing models in detail.

2.1 Local Computing Mode

For the task node , we denote
cy, and the constraints is
execution time is [26]

as its local CPU frequen-
. Then the local task

®)
and the local task execution energy consumption is [27]

@)
where represents the computing energy efficiency coeffi-
cient.

2.2 Cloud Computing Mode

Let be the transmit power of task node . Then
the uplink data rate of task node  is [24]
©)
The time it takes to offload the task is [26]
— (6)

The energy consumption it takes to offload the task is [27]

@)

Assume that the cloud server computes the tasks of each
task node with CPU frequency . Then the processing task
time of task node  on the cloud server is [26]

®)
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TABLE 1: Variables list

Definition Notation
The broadcasting rate of cloud server o

The time spent on broadcasting Al service programs to

The local task execution time of task node m tm

The local task execution energy consumption of task node

m E€m
The uplink data rate of task node m Tm
The time spent on offloading the task to the cloud server th
The energy consumption spent on offloading the task

to the cloud server en
The processing task time of task node m on the cloud

server ts,
The transmission data rate of task node m and edge node

k rk
The time spent on offloading the task to the edge node m
k tm
The energy consumption spent on offloading the task

to the edge node k [
The time spent on processing tasks at the edge node k s,

The energy consumption spent on offloading the task to
the edge node k er

The resolution of the task 8o
The summation of the analytics accuracy of the task node
m Am

2.3 Edge Node Computing Mode

For the edge nodes k, the transmission data rate of task node
m and edge node k is [24]

pmgm
WUND

The time which task node m offload the task to the edge
computing node k is [26]

¥ = amWylog, ( ) ,Yme M, 9)

L
£, =12 Y e M, (10)
Tm
The corresponding energy consumption is [27]
L
= pmll, = T2PmIM € M, 11)

m

The time spent on processing tasks at the edge node k is [26]

g oo MmlnC o (12)
Tr
The corresponding energy consumption is [27]
&, = Efity, = Efinm L C,Vm € M. (13)

Actually, the cloud server is much better than the node in
terms of transmission power, and the size of the computing
result is usually much smaller than the size of the input data.
Therefore, the time it takes to download computing results
to nodes from the cloud server and other edge computing
nodes can be ignored [28], [29].

2.4

In multi-access edge intelligence systems, the inference ac-
curacy of tasks is one of the key issues affecting the QoE
of IoT devices. According to the existing work [30], under
the fixed neural network model, the inference accuracy
generally increases with the increase of the input size, but
the computing time and energy consumption of task nodes
will increase due to the increase of offloading data volume.

Inference Accuracy versus Offloading Data Volume

® 2022 |EEE. Personal use is permitted, but r

According to the accuracy model based on actual exper-
iments obtained in [30] and [31], the inference accuracy is
highly dependent on the input size of the DNN model, and
the following monotonic non-decreasing functlon can be
constructed, i.e., f(s2,) = 1 — 1.58¢—6-5x10 *sm . According
to the above function, the larger the input size is, the
better the precision is. Therefore, we model the analytical
accuracy A,, = x(s2,), wherex(sZ)) is a concave function
with respect to the data input size sfn.

In multi-access edge intelligence systems, the Al service
models at edge and cloud are different such that the model
sizes can be different, which would result in different infer-
ence performance. For the model at edge, the inference accu-
racy can be low, but the delay and the energy consumption
of offloading the data to the edge are low. For the model
at cloud, the inference accuracy can be high, but the delay
and the energy consumption would be high due to the long
distance between the nodes and the cloud. In this paper, we
consider the heterogeneous task requirements such that n-
odes may have different requirements on inference accuracy,
delay, and energy consumption.

2.5 Node Lifetime

In this paper, the lifetime of the nodes in the P2P network
is considered, which refers to the time period that the nodes
in the P2P network experience from joining to leaving,
ie., Lifetime = time of leave — time of join. Yao et
al. [32] studied the characteristics of node heterogeneity in
unstructured P2P networks, and calculated the distribution
function H (z) of the residual lifetime of any node in the
system with the session duration and offline duration of a
single node as variables, which is H(z) = (1 + )1 @ The
definitions of these variables are listed in Table I

3 PROBLEM FORMULATION

This paper considers the Al service placement problem with
heterogeneous task requirements in a multi-access edge
intelligence system. According to the task requirements of
each task node, the tasks in each task node can be offloaded
to either cloud or the edge. The tasks offloaded to the cloud
require higher inference accuracy, while the tasks offloaded
to the edge require lower latency.

In this paper, we aim to optimize computing time, en-
ergy cost (TE) and inference accuracy. We first discuss the
two computing modes: 1) joint cloud and local computing,
and 2) joint edge and local computing. The computing mode
selection is recorded as a binary vector by,. If by, = 1, the
cloud server is selected for joint computing with the task
nodes; if b, = 0, the edge nodes and the task nodes are
selected for joint computing.

e« Casel:

The entire task of node m is processed by itself and the
cloud server, and the local computing delay is

tf,lnzto-l—tmzﬁ-i-w, (14)
To fm
Cloud computing latency is
t =1 8 = NmLm + nmLmC’ (15)
Tm fD
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The total computing time of task node  is the max-
imum one of the local computing and cloud computing
delays because local computing and cloud computing are
executed in parallel, which given by [33]

(16)

The energy consumption of task node  is the sum of
cloud computing, task offloading, and the energy consump-
tion of local computing:

17)

Case 2:

The entire task of node  is processed by itself and edge
nodes, and the local computing delay is

- (18)

The computing delay of other edge computing node is

- (19)

The total computing time of node  is given by [33]
(20)
The energy consumption of task node is the task

offloading, energy consumption of local computing and
edge node computing:

21

For edge computing nodes , we also consider the sur-
vival time of edge nodes . According to [20], the residual
lifetime of any surviving edge node in the system obeys
Pareto lifetimes, so the distribution function is given by

(22)

From the above discussion, it can be seen that the total
computing time of task node is

(23)
The total energy consumption of task node  is

(24)
The summation of the analytics accuracy of the task node
is

(25)

Next, we define the performance metric TE as the weighted
sum of computing time and energy consumption

, Where and
weighting factors that satisfy

are the
. The objective
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function can be viewed as a weighted sum method for
general multi-objective optimization problems. As stated
in Proposition 3.9 in [36], in the case of positive weights,
minimizing P1 can effectively solve the multi-objective op-
timization problem. Furthermore, the weights themselves
reflect the relative importance (preference) between energy
consumption, latency, and precision accuracy. For example,
when the battery power of the task node is low, and the
user only cares about the energy consumption, the node can
set . In recent some exiting work [34] [35], such
weighted sum methods have been widely used. We mainly
use joint optimization computing mode selection ,
computing of offload ratio , local CPU frequency
and the

resolution of the task to minimize the total TE
and maximize the total analytics accuracy of the task. By
introducing auxiliary variables

, uplink bandwidth allocation

and 7
is formulated as:

, the problem

(26a)

(26b)
(26¢)
(26d)

(26e)

(26f)

(26g)

(26h)

(261)

(26j)
(26K)

(261)

where (26b) represents the offloading ratio constraints, (26¢)
represents local CPU frequency constraints. (26d) and (26e)
are restrictions on bandwidth allocation.(26j)-(26k) are the
constraints on the auxiliary variables and . (26])
represents the minimum analytics accuracy requirement
constraints.

Problem (P1) is non-convex because the objective func-
tion and constraints are both non-convex. However, we
can observe that given, (P1) is jointly convex for

. Therefore, we can use CVX [37] which are
convex optimization tools to get the optimal solution
. In order to obtain the optimal value
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,wecanlistall the  possible which is one of the
most direct methods, and then find a pair of minimum target
values on the feasible space of which can use a
multi-dimensional search. However, the multi-dimensional
search method is computationally infeasible, because even
if  is small, for example, , the search space is very
large, not to mention the exhaustive search for the optimal

, and its computational complexity increases exponential-
ly with the increase of

Proposition 1. The problem of Al service placement (P1) is NP-
hard.

Proof. We first briefly describe the capable facility location
problem (CFLP) [38] (A comparison of heuristics and relax-
ations for the capacitated plant location problem) which is
a well-known NP-hard problem. Then we reduce the CFLP
to the problem P1 and show that the problem P1 is also
NP-hard.

Description of CFLP. In the capable facility location prob-
lem, we suppose that there are  facilities and  customers.
Let to represent the needs of customer , each customer
can divide its needs into multiple parts which are sent
to different facilities for production; at the same time, we
assume that each facilities has a production capacity
which is the maximum amount of product that can be
produced by facilities . In order to minimize the sum of
the opening cost and the assignment cost and meet the total
demand assigned to a facility must not exceed its capacity.
We wish to choose: (i) which of the facilities to open and
(ii) the assignment of customers to facilities.

Reducing CFLP to P1. By treating each instance of CFLP
as a special case of problem P1, we can reduce CFLP to
problem P1.

The consumer
to the node
P1.

The opened facility =~ with production capacity

in CFLP is mapped to the cloud server with node
lifetime limit  in problem P1.

The opening cost of facilities in CFLP is mapped to
the cost of computing time in problem P1.

The cost of shipping products in CFLP is mapped to
the total energy cost in problem P1.

with demand  in CFLP is mapped
with computing demand in problem

Hence, the NP-hard problem CFLP can be reduced to prob-
lem P1. Thus, problem P1 is NP-hard. O

4 ADMM-BASED JOINT OPTIMIZATION AL-
GORITHM

4.1 Reformulation of (P1)

In this section, an ADMM-based algorithm [39] is proposed
to solve (P1). The main thought is to decompose (P1) into

parallel easier-to-handle and smaller MINLP problems.
As shown in (1) and (2), the downloading time is decided
by the choice of task nodes , which is . Then can be

© 2022 IEEE. Personal use is

equivalently used as the optimization variable of (P1), and
then add the following constraints on (P2):

(27)

We can observe that and are coupled under
constraints (27) and (26e). In order to decompose (P1), we
introduce artificial variables  and  reformulate (P1) as:

(28a)

(28b)

(28¢)

(28d)

(28e)

(28f)
(28g)

where

and

(29)
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Besides,

(30) E—
where

(31) _

Now we can use ADMM [39] to effectively decompose e
(28). By introducing multipliers under constraint (28f), the
augmented Lagrangian of (28) can be expressed as:

(35)
- where
where , and ,
and is a fixed step size. Correspondingly, the dual
function is - - (36)
For and , (35) can be equivalent to
(32)
and the dual problem is
- - (37)
(33)
and
4.2 ADMM Iterative Processing
The ADMM algorithm [39] solves the dual problem (29) by
iteratively updating , ,and .We denote the values in the - (38)
th iteration as . Then, in the th iteration, . . )
the variables are updated in the following order: Since variable and variable are cou-

pled, subproblems (37) and (38) are non-convex. However,

Step 1: Solving problem (33) by updating the lo- 8&iven the subproblem is a strictly convex problem

cal variables  which using one-dimensional search and is easy to solve. Therefore, a simple one-dimensional
method [40] in the th iteration. search method can be used, such as the golden section

search [40], which can find the optimal value and the
corresponding optimal value . Finally,
we can choose or to make the target
value in (33) smaller as , the corresponding optimal
solution is . By solving
suproblems, the optimal solution of (32) is obtained as
We notice that (34) can be decomposed into  parallel . Given the
subproblems, and each subproblem is solved: accuracy parameter , the golden section search method

requires — iterations to solve each subproblem (37)

we update the local variables  which is given by

(34)

and (38) respectively. We assumed that the complexity of
solving each subproblem (35) is and is proportional to
the number of subproblems, thus the overall computational
complexity of Step 1 is . Moreover, the  subprob-
lems are solved in parallel, and the computational time of
step 1 remains unchanged during parallel computing.

. . © 2022 |IEEE. Personal use isgermitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 04,2023 at 19:10:25 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3228815

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 8

Step 2: Solving problem (33) by updating the global

variables which using bisection search method [41]
in the th iteration.
After obtaining , we update the global variable as:

(39)

According to the definition of in (31),
must be kept as optimal. Therefore, we can equivalently
express (39) as the following convex optimization problem:

(40)
Then, the closed form of the optimal value can be
directly obtained as:

(41)
where . Then we denote the Lagrangian
multiplier ~ which the constraint is , We can
get the optimal closed form of  as:

(42)

Since  is non-increase with , we can get the optimal

by performing a bisection search over , where
is a large enough value until is satisfied, and
then compare the result with the condition of , which

the condition that . The specific algorithm can
refer to [41]. Thus, the computational complexity of step 2
to solve (40) is . Moreover, under given Lagrangian
multiplier , we can get for the nodes in parallel, so
the computational time of step 2 remains unchanged when
performing parallel computing.

Step 3: Solving problem (33) by updating the multi-
pliers in the th iteration.

, it’s should
, which can be

After obtaining the variable
be considered the variable to maximize
updated the multiplier as

(43)

Obviously, the computational complexity of step 3 is also

. Similarly, we update (43) in parallel for ~ nodes, the

computational time of step 3 also remains unchanged when
performing parallel computing.

In short, we perform the three continuous steps until
the preset stop conditions are met. Generally, the stopping
conditions is determined by two thresholds: absolute toler-
ance and relative tolerance

© 2022 IEEE. Personal use is

. Algorithm 1 gives the pseu-
do code based on ADMM algorithm (P1). The dual problem
(33) is convex at , so the convergence of the
algorithm is guaranteed. In addition, the convergence of
the ADMM-based algorithm is not sensitive to the choice
of step size [42], we set without loss of generality.
The complexity of an ADMM iteration is because the
complexity of each of the three steps is respectively.
Moreover, during parallel computing, the computational
time of the above three steps remain unchanged, thus the
computational time of one ADMM iteration remains un-
changed and the complexity increases linearly with

Algorithm 1 ADMM-Based Algorithm

1: Initialize ; ; ;
2: Repeat
3:  for each node do
4: Update local variables
by solving
(34);
5:  end for
6:  Update global variables by solving (39);
7. Update multipliers by solving (42);
8: ;
9: Until
and ;
10: return as an approximate solution to
(P1).

5 SIMULATION RESULTS

This section evaluate the performance of the proposed al-
gorithm through numerical simulations. In the simulations,
it is supposed that the uplink and downlink bandwidth as
, and the noise power spectral density
is . It is assumed that the average
channel gain follows to the free-space path loss model
, where the antenna gain is
, the carrier frequency is , and the
distance from node  to the cloud is . The downlink
channel gain  follows the Rayleigh fading channel model
, where is an independent exponential random
variable with unit mean. For the sake of briefness, it is
assumed that the downlink and uplink downlink channel
gains of the nodes are equal. Assuming that the distance be-
tweennodes and cloud server is equal and m. In
order not to lose generality, it is assumed that the weighting
factors of all nodes are the same. Pareto parameter ,
. The part of simulation parameters are
summanzed in Table II. For performance comparison, the
following three representative benchmarks are be consid-
ered [43]:

1) Cloud only: all the nodes offload their tasks to the

cloud,

2) Node only: all the nodes perform computations lo-
cally, .

3) Edge nodes only: all the nodes offload their tasks to
the edge node, and

ermitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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TABLE 2: Simulation parameter setting

Parameters Notation Value
Weighting factors of node m ,u.i =p 0.1
Weighting factors of node m ,u.fn =1—p 09
The number of CPU cycles C 1000
CPU frequency of cloud fo 10GHz
The computing energy
efficiency coefficient £ 10 28
The power of cloud Po 1w
The transmit power of node m  pm 0.1W
The local CPU frequency fm 1GH=z
The remaining edge nodes k 3
The input size of node m Sm 400*400
The data volume per pixel o 32
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Fig. 2: The convergence performance of the proposed
ADMM-based algorithm

4) Centralized offloading scheme (COS): Using the
interior-point method to solve problem (26), which
can find the optimal computation offloading deci-
sions of task nodes [44].

The convergence performance of the ADMM-based algo-
rithm proposed in this paper and COS is shown in Figure
2. Here, the number of task nodes is set to 2. We observe
that the ADMM-based algorithm gradually decreases in the
first 6 iterations, and reaches a stable state after 7 itera-
tions, showing that the algorithm based on ADMM-based
proposed converges faster. In addition, the total energy
consumption of the algorithm after convergence is close to
COS, indicating that the algorithm can achieve relatively
good performance after multiple distributed iterations.

In Fig. 3, we set the following parameters, the path loss
exponent is d. = 3.5, the remaining edge computing nodes
K = 3, and the distance between the node and the remain-
ing edge nodes is dp, x = 200 + 10 (|m — k|). We compared
the TE performance achieved by different schemes when
the program size S changes. We observe that the proposed
TE performance based on the ADMM method is lower than
the other three benchmarks. This shows the benefits of joint
optimization of service placement, computational offload-
ing, and resource allocation for all nodes. Except that the
program size S has no effect on the total TE of the cloud-only
and edge node-only computing solution, the total TE of all
solutions increases as S increases. This is because task nodes
in the cloud-only and edge-only computing solutions do
not need to download business programs and need offload
all tasks to cloud and edge nodes. In addition, we observe
that when S becomes larger, the proposed method tends
to cloud computing. This shows that nodes tend to offload

® 2022 |EEE. Personal use is permitted, but r
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Fig. 3: Total TE versus the program size S
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Fig. 4: Total TE versus the number of nodes M

computing tasks when the cost of downloading programs
is greater than the benefit of local computing or when the
offloading delay is low.

In Fig. 4, we set d. = 3.5, § = 8 Mbits. We show the
TE performance of different schemes when the node m is
from 2 to 10. We observe that as m increases, the total TE
increases, and the total TE achieved by the proposed algo-
rithm is getting lower and lower than the three benchmarks.
This is because in these three benchmarks, as m increases,
the uplink/downlink bandwidth which allocates each node
becomes smaller, and each tasks node needs more time to
offload computing tasks and download programs from the
edge servers.

In Fig. 5, we set d. = 3.5, § = 32 Mbits. We show the
TE of different schemes when the distance d,,, between the
cloud server and the node changes. We observe that as the
distance increases, the TE also increases, and the ADMM-
based scheme is lower than the three benchmark schemes
mentioned. This is because, as the distance becomes larger,
the node needs more time to download the application,
which consumes more energy.

Fig. 6 shows the relationship between TE and the
computing energy efficiency coefficient, where d, = 3.5,
S = 32 Mbits. We observe that the proposed algorithm
TE increases with the increase of the energy efficiency co-
efficient. This is because as the energy efficiency coefficient
increases, the energy consumption of our local calculation-
s also increases. Among them, the cloud-only computing
solution does not change energy efficiency, which can be
derived from the previous formula. We also noticed that
the node-only and the edge node-only computing scheme
increases with the increase in energy efficiency, which can
be observed in Figure 7, and the algorithm we proposed
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is lower than the node-only and the edge-only computing
scheme.

In Fig. 8, it describes the computational complexity of the
proposed ADMM-based algorithm. Here, we set ,

, and then plot the average number of it-
erations of Algorithm 1 when the number of nodes
changes. Interestingly, we observe that the ADMM-based
method has an almost constant number of iterations under
different  within the consideration range, that is, .In
addition, since the computational complexity of one ADMM
iteration is , the overall computational complexity
of the ADMM-based method is also . Therefore, the
application of ADMM-based algorithm in the large-scale
Internet of Things where the network scale dominates the
overall complexity is effective.

Fig. 9 shows the impact of on the computing time
and energy consumption of different algorithms. When
increases, the MEC system emphasizes the impact of com-
putation time on performance. As a result, the ADMM-
based algorithm trades the energy consumption for the
computing time. This simulation result also shows that, as
compared to the baseline algorithm, the algorithm reaches
the minimum TE when the weights change.

6 CONCLUSION

This paper studies the task deployment problem under the
multi-user mobile edge intelligent system, in which the
cloud server broadcasts the Al program to the edge com-
puting node. In particular, task nodes can perform remote
processing by offloading tasks to cloud servers or other edge
computing nodes, or perform processing tasks locally. In
order to pursue the minimum total computing time and
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energy consumption of all task nodes, a MINLP problem is
proposed by jointly optimizing the resource allocation and
computing offloading decision of each node. After that, we
designed an algorithm based on ADMM to solve the non-
convexity problem, which effectively decomposes the prob-
lem into easier-to-handle MINLP subproblems. Through
the proposed ADMM-based algorithm, each task node can
optimize its calculation mode and resource allocation, which
is more suitable for large-scale networks. The simulation
results show that this method is significantly better than
other representative benchmark methods in various net-
work environments. At the same time, the computational
complexity is relatively low, and it is suitable for large-scale
networks.
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