- 1 In situ deletions reveal regulatory components for expression of an intracellular
- 2 immune receptor gene and its co-expressed genes in Arabidopsis

- 4 Huiyun Yu^{1,2,*}, Leiyun Yang^{2,*}, Zhan Li^{2,*}, Feng Sun¹, Bo Li³, Shengsong Guo²,
- 5 Yong-Fei Wang⁴, Tong Zhou^{1,5} and Jian Hua²

6

- 7 ¹Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu
- 8 Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China; ²School
- 9 of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY
- 10 14853, USA; ³Department of Neurosurgery, Huashan Hospital, Institute for
- 11 Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE
- 12 Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China;
- ⁴National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant
- 14 Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
- 15 ⁵International Rice Research Institute and Jiangsu Academy of Agricultural Sciences
- 16 Joint Laboratory, Nanjing, 210014, Jiangsu Province, China
- 17 * These authors contribute equally to this work.

18

- 19 Authors for Correspondence:
- 20 Jian Hua
- 21 Tel: +1 607 255 5554
- 22 Email: jh299@cornell.edu
- 23 Tong Zhou
- 24 Tel: +86 (025)-84390539
- 25 Email: zhoutong@jaas.ac.cn

- 27 Short title: Regulatory factors of *SNC1* expression and co-expression
- 28 Key words: NLR, SNC1, expression, cis-acting elements, co-expression, Arabidopsis
- 29 thaliana, CRISPR

Abstract

Intracellular immune receptor NLRs are highly regulated transcriptionally and post-transcriptionally for balanced plant defense and growth. NLR genes often exist in gene clusters and are usually co-expressed under various conditions. Despite of intensive studies of regulation of NLR proteins, cis-acting elements for NLR gene induction, repression or co-expression are largely unknown due to a larger than usual cis-region for their expression regulation. Here we used the CRISPR/Cas9 genome editing technology to generate a series of in situ deletions at the endogenous location of a NLR gene *SNC1* residing in the *RPP5* gene cluster. These deletions that made in the wild type and the *SNC1* constitutive expressing autoimmune mutant *bon1* revealed both positive and negative cis-acting elements for *SNC1* expression. Two transcription factors that could bind to these elements were found to have an impact on the expression of *SNC1*. In addition, co-expression of two genes with *SNC1* in the same cluster is found to be mostly dependent on the *SNC1* function. Therefore, *SNC1* expression is under complex local regulation involving multiple cis elements and *SNC1* itself is a critical regulator of gene expression of other NLR genes in the same gene cluster.

Introduction

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Plants have complex innate immune systems for defending themselves against invasions and propagation of a variety of pathogens. Numerous receptors, often hundreds per genome, are used for detecting pathogen and triggering downstream defense responses (Kemmerling et al., 2011; Jacob et al., 2013; Shao et al., 2016). These receptors are divided into two groups: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) receptors (Spoel and Dong, 2012; Cui et al., 2015; Couto and Zipfel, 2016; Yu et al., 2017). PRRs recognize microbial-derived signals in the environment and are often located on plasma membranes, while the NLR recognize pathogen secreted effectors inside the plant cells and are named intracellular immune receptors. The molecules recognized by PRR and NLR are not necessarily distinct (Thomma et al., 2011), and their triggered responses are recently shown to be intertwined (Ngou et al., 2021; Yuan et al., 2021). Plant NLR proteins contain highly conserved central nucleotide binding site (NBS), C-terminal leucine-rich repeats (LRRs), and N-terminal domains (Takken and Goverse, 2012; Ngou et al., 2021). The protein activity of NLR is tightly regulated. Pathogen effectors activate NLR by causing its conformational switch from ADP binding to ATP binding (Qi and Innes, 2013; Burdett et al., 2019). Recent reports indicate that activation of at least three NLR proteins involves oligomerization: ZAR1 (HOPZ-ACTIVATED RESISTANCE 1) (Wan et al., 2019), Roq1 (Recognition of XopQ 1) (Martin et al., 2020) and RPP1 (RECOGNITION OF PERONOSPORA PARASITICA 1) (Ma et al., 2020). Protein stability of NLR is also tightly regulated, as seen in their degradation by E3 ligases (Cheng et al., 2011; Gou et al., 2012). NLR genes are also highly regulated at the transcript level. Most of them are expressed at low levels in the absence of pathogens (Tan et al., 2007). A survey showed that 75 out of the 124 NLR genes in Arabidopsis thaliana (referred as Arabidopsis thereafter) are up-regulated in response to at least one pathogen infection (Mohr et al., 2010). Recent meta-analysis revealed that more than half of the NLR genes in the Arabidopsis Col-0 accession has increased expression after infection with Pseudomonas syringae pv tomato (Pst) DC3000 (Yang et al., 2021). This is thought to enable effective defense response when pathogen is present but not compromise plant growth in the absence of pathogen. Un-controlled high expression of NLR genes is associated with constitutive activation of defense responses; and this autoimmunity has negative impacts on plant growth leading to lesion, dwarfism and even lethality (Gou and Hua, 2012; van Wersch et al., 2016; Wan et al., 2021).

81 How expression of NLR genes is regulated at the transcript level is not well 82 understood compared to their regulation at the protein level. Transposons have been 83 found to impact expression of NLR genes nearby. For example, the PHD (plant 84 homeodomain)-finger protein EDM2 (enhanced downy mildew 2) is a chromatin-85 associated factor controlling expression of the NLR gene RPP7 (RECOGNITION OF PERONOSPORA PARASITICA 7) and its related members (Lai et al., 2020). The NLR 86 87 gene SNC1 (SUPPRESSOR OF NPR1 CONSITUTIVE 1) has been used as a model for 88 dissecting of NLR transcription regulation. It is closely related to and physically linked 89 to another NLR gene RPP4 (Resistance to Peronospora parasitica 4) which confers 90 downy mildew resistance (Van Der Biezen et al., 2002). Like many NLR genes, SNC1 91 is induced by pathogen and salicylic acid (Yang et al., 2021). Similar to half of NLR 92 genes in Arabidopsis, SNC1 is located in a gene cluster (Noel et al., 1999) and has co-93 expression with other NLR genes in the same cluster including RPP4 and SIKIC2 94 (SIDEKICK SNC1 2) (Noel et al., 1999; Yang et al., 2021). SNC1 is upregulated in a 95 few autoimmune mutants and contributes to their autoimmunity (Gou and Hua, 2012). 96 Studies of an autoimmune mutant bon1-1 (bonzai1-1, referred as bon1 hereafter) has 97 yielded a number of transcriptional regulators of the SNC1 gene. BON1 encodes a 98 calcium binding protein and it interacts with calcium pumps ACA10 (Autoinhibited Ca²⁺-ATPase 10) and ACA8 (Autoinhibited Ca²⁺-ATPase 8) to affect cellular calcium 99 signals (Yang et al., 2017). The loss of BON1 function leads to increased expression of 100 101 SNC1 and consequently an increased disease resistance and severe dwarfism (Yang and 102 Hua, 2004). Suppressor and enhancer screens of bon1 related mutants have yielded 103 factors in the upregulation or repression of SNC1 expression. These include histone 104 modification related factors HUB1 (HISTONE MONO-UBIQUITINATION 1), 105 ATRX7 (ARABIDOPSIS TRITHORAX-RELATED 7), HOS15 (HIGH 106 EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15) (Zou et al., 2014; 107 Gou et al., 2017; Yang et al., 2020), chromatin remodeling factor CHR5 108 (CHROMATIN REMODELING 5) (Zou et al., 2017), as well as TCP transcription factors and their interacting protein MOS1 (MODIFIER OF snc1) (Li et al., 2010; Bao 109 110 et al., 2014; Zhang et al., 2018). Co-induction of genes in the same gene cluster with SNC1 was observed in bon1 mutants and appeared to be similarly influenced by CHR5 111 112 and HUB1 (Zou, B et al., 2014; Zou et al., 2017). It has been postulated that co-113 expression could be achieved through regulation of large chromatin structure or RNA 114 silencing mechanisms (Yi and Richards, 2007; Li et al., 2009). Alternatively, genes in

the same cluster could have similar cis-acting elements (such as an enhancer) and thus enable co-regulation by trans factors.

Despite of the advances in the identification of trans-acting factors, cis-acting elements responsible for *SNC1* regulation are largely unknown. Transgenic study revealed that DNA sequences outside 1.9 kb upstream of the translation start site and 1 kb downstream of the stop codon have repression activity on *SNC1* expression (Li *et al.*, 2010). Reporter gene analysis indicates that the 1.9 kb upstream region contains the regulatory elements of autoimmune induction of *SNC1* but not the distal elements for repressing *SNC1* expression (Li *et al.*, 2010). The dissection of cis-acting elements by the conventional reporter gene study is made difficult by the loss of *SNC1* repression activity from its endogenous region when *SNC1* is presented as a transgene not at its endogenous location.

Here, we dissected transcriptional regulation of NLR gene expression by manipulating the cis elements of the *SNC1* locus in vivo using the CRISPR/Cas9 genome editing technology. A series of DNA fragment deletions were made in both upstream and downstream regions of *SNC1* in the wild-type Arabidopsis plants as well as the autoimmune mutant *bon1*. Some of these deletions were found to decrease or increase expression of the *SNC1* gene. Two transcription factors that could bind to these elements were shown to have an impact on the expression of *SNC1*. In addition, co-expression of *RPP4* and *SIKIC2* with *SNC1* was found to be mostly dependent on *SNC1*. These results indicate that *SNC1* expression is under complex local regulation and *SNC1* itself is a critical regulator of gene expression in the *RPP5* gene cluster.

Materials and Methods

Generation of transgenic plants containing CRISPR/Cas9 constructs

Spacer sequences for guideRNAs (gRNAs) were searched in the region of interest using the website https://www.genome.arizona.edu/crispr/CRISPRsearch.html. Constructs were made according to the system utilizing two gRNAs as described (Xing et al., 2014). In brief, PCR fragment was amplified from pCBC-DT1T2 with two long primers. The purified PCR fragment (T1T2-PCR), together with pHEC401 binary vector, were used for restriction-ligation reactions and transformed to *E. coli* and then *Agrobacterium* strain GV3101. The Arabidopsis wild-type Col-0 plants and the single mutant *bon1* plants were transformed with Agrobacteria containing the CRISPR/Cas9

construct via floral dipping method. Seeds collected from the transformed plants were selected on MS plates containing 25 mg/L hygromycin.

Genomic DNA was extracted from T1 transgenic plants. Gene-specific primers flanking the CRISPR target sites were used to amplify the genomic DNA by PCR and to identify putative deletion mutations. Mutations were verified by sequencing the PCR products from the putative mutants. T2 plants were crossed to Col-0 and *bon1* to obtain Cas9 free plants with homozygous deletion mutations in the F2 generation.

Spacer sequences used in this study and off-target potentials are listed in Table S1. Oligos used for cloning and genotyping are listed in Supporting Information Table S2.

Gene expression analysis

Leaf tissues were collected from 15-day-old plants grown under constant light. Total RNA was extracted with TRIzol reagent (Invitrogen) according to the manufacturer's protocol. The cDNA synthesis was performed by AffinityScript QPCR cDNA synthesis kit (Agilent Technologies). The Real-time quantitative PCR was carried out using the CFX96 real-time PCR system (Bio-Rad) using iQSYBR GREEN SuperMix (Bio-Rad). Relative expression of each gene was normalized to the expression of $ACTIN\ 2$ in the same cDNA sample. The relative expression level was calculated by the $2^{-\Delta\Delta Ct}$ method using the CFX Manager Software, version 1.5 (Bio-Rad). Details of the oligos used for qPCR are in Supplementary Table S1.

Measurement of growth phenotypes

Fresh weight was measured by rosettes from 12-day-old plants grown under constant light condition or 20-day-old plants under the short-day condition (12 hr/12 hr). The dimeter of the rosette was measured using top-view photographs of the plant and defined as the diameter of the smallest circle that covers the whole rosette using ImageJ software. Thirty plants were measured for each genotype/condition.

ChIP-qPCR assay

- 178 Chromatin-immunoprecipitation (ChIP) experiment was performed as described in Lee 179 et al. (2017) and Wang et al. (2021) with minor modifications. The coding sequence of
- 180 LHY1 and bHLH28 was amplified from Col-0 cDNA and genomic DNA, respectively.
- 181 PCR products were cloned into pCR8 vector (Invitrogen, K250020) and then

recombined into pSATN1 vector by LR clonase (Invitrogen, 11791020). The expression vectors were transformed into protoplast prepared from Col-0 seedlings. Primers used for vector construction and qPCR are listed in Table S2.

185186

187

188

189

190

182

183

184

Statistical analysis

Data of gene expression and rosette morphology (weight and diameter) were subjected to a one-way analysis of variance (ANOVA) followed by Duncan's new multiple range test to assess differences between different genotypes. Significance was defined by p value as stated.

191192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Results

Generation of in situ deletion series in the SNC1 locus by CRISPR-Cas9 method

To identify regulatory cis-acting elements for the expression of SNC1, we generated a series of deletions in the SNC1 locus by the two-target design CRISPR/Cas9 system (Xing et al., 2014). A total of 14 PAMs (protospacer-adjacent motifs) were identified in the regions of 2 kb upstream of the translation initiation site and 4 kb downstream of stop codon (Fig. 1). A pair of guide RNAs (gRNAs) containing specific spacer sequences for targeting were used for generating deletions between two PAM sites, and 15 two-target CRISPR constructs were transformed to the wild-type Col-0 (referred as wild type from now on) as well as the bon1 mutant. Deletion of DNA fragments between two PAM sites were detected by PCR using primers flanking the two PAM sites in the T1 transgenic plants. A total of 10 constructs yielded expected deletion events, and at least 6 independent deletion lines were identified for each of these 10 constructs in the wild type and *bon1* background combined (Fig. 1b). Because fewer lines were generated in bon1 due to its lower transformation efficiency, and deletion mutants generated in the wild type was crossed with bon1 to generate additional deletion mutants in bon1. More than 4 lines of the same type of deletion as determined by PCR in each of the wild type or bon1 were randomly chosen and they exhibited a similar morphological phenotype to each other. Together with the predicted low to medium off-target potentials of these spacers (Table S1), this indicates that the alteration of the phenotype was caused by the intended deletion mutation but not the off-target mutations. One line per deletion type in wild type or bon1 was brought into Cas9-free and homozygous for deletion mutations by backcross and selection from the

F2 generation. These lines were sequenced to determine the precise deletion positions (Fig. 1b) and were used for subsequent molecular analysis.

In total, 8 types of deletion mutations were obtained in the upstream region of *SNC1* and 2 types of deletion mutations were obtained in the downstream region of *SNC1* in each of the wild type and the *bon1* mutant (Fig. 1b). Among these, C1 and C7 deletions removed the transcriptional start sites (TSS) of *SNC1*, C2 was 5' to TSS, C3 was 5' next to C2, and C4 was 5' next to C3. C5 was a larger deletion that consisted of C4, C6 and part of C3. C8, originally thought to be homozygous for the large deletion between two target sites because of the uniform phenotype in its progeny, turned out to be a heterozygous for two mutant alleles. The C8 allele contained a large deletion between the two target sites as intended, and the C8' allele contained one 9 bp deletion at the first target site and a 1 bp insertion at the second target site. For downstream deletion mutations, C9 was 3' to the end of the 3'UTR of *SNC1*, and C10 was 3' to C9 and covered the whole coding sequence of *AT4G16880* that encodes a leucine-rich repeat (LRR) family protein.

Deletions of the transcription initiation site abolished expression of SNC1

We first analyzed *C1* and *C7* mutants with deletions that spanned the transcription initiation site in the wild-type and the *bon1* background. Neither of the mutants in the wild-type background exhibited any visible difference from the wild type grown under constant light (Fig. 2a, Fig. S1). However, the double mutants *C7 bon1* and *C1 bon1* had large rosette and flat leaves in contrast to *bon1* which had small and crinkled leaves under constant light (Fig. 2a). The fresh weights of the two double mutants were also higher compared to the *bon1* mutant, to a wild-type level under both constant light (Fig. S1). Under short days, a similar suppression effect of C7 and C1 mutations on *bon1* defects was also observed (Fig. S2). This suggests that autoimmune defect of *bon1* was suppressed by these two mutations.

We further analyzed the expression of *SNC1* in the single mutants of *C7* and *C1* and their respective double mutants with *bon1*. In *C7* and *C1* mutants, the transcript of *SNC1* was reduced compared to that in the wild type as detected by qRT-PCR (Fig. 2b). Consistent with prior reports, *SNC1* was up-regulated in the *bon1* mutant compared with the wild type (Fig. 2b). Both *C7* and *C1* mutations reduced the expression of *SNC1* in *bon1* to the level of the wild type (Fig. 2b). Therefore, the C1 and C7 deletions wiped out the expression of *SNC1*, as expected from the removing the TTS of a gene.

Consistent with previous findings that *SNC1* function is important for autoimmunity in *bon1*, abolishing *SNC1* expression reverted the autoimmune phenotype of *bon1*. This also indicates that in situ deletions is feasible for finding important cis-acting elements of gene expression.

Deletions in the upstream region have different effects on SNC1 expression

Mutants of six deletions that resided in the upstream region of *SNC1* were analyzed. None of these mutations, *C2*, *C3*, *C4*, *C5*, *C6* and *C8*, affected the growth phenotype of the wild type (Fig. 3a, b, c). However, they exhibited suppression, enhancement, or no effect on the growth of *bon1* (Fig. 3a, b, c). Similar effects of those mutations were observed in the Col-0 and *bon1* under short days (Fig. S2).

The double mutants *C3bon1* and *C4bon1* had a similar morphological phenotype to *bon1* (Fig. 3a), suggesting little effect of these mutations on *bon1*. This was supported by a quantification of rosette area and fresh weight (Fig. S1). Expression levels of *SNC1* in the *C3* and *C4* single mutants and their respective *bon1* double mutants were similar as those in the wild type and *bon1* respectively (Fig. 3d). This indicates that deletions of C3 and C4 have little effect on the *SNC1* expression.

The double mutants *C2bon1* and *C5bon1* had a closer to wild-type morphology compared to *bon1* (Fig. 3b). The two double mutants were both significantly larger than *bon1* as shown by their rosette sizes and fresh weights (Fig. S1). qRT-PCR revealed that *SNC1* expression was significantly lower in the *C2bon1* and *C5bon1* double mutants than in the *bon1* mutant (Fig. 3e). Interestingly, *SNC1* expression was also reduced in the *C2* and *C5* single mutants compared to the wild type (Fig. 3e).

The double mutants *C8bon1* and *C6bon1* showed smaller size and more severe growth defects compared to *bon1*, with *C6bon1* showing a stronger growth defect (Fig. 3c). This was supported by a quantification of rosette size and fresh weight of the double mutants (Fig. S1). qRT-PCR revealed that *SNC1* transcript was higher in the *C8bon1* and even higher in *C6bon1* double mutants than *bon1* (Fig. 3f). *SNC1* also had an increased expression in the single *C8* mutant compared to the wild type, while it had a similar level in the single *C6* mutant compared to the wild type (Fig. 3f).

Therefore, C2 deletion greatly reduces *SNC1* expression in wild type and *bon1*, C5 deletion greatly reduces *SNC1* expression in *bon1*, C8 mutation (C8, C8' or C8 C8') moderately enhances *SNC1* expression in wild type and *bon1*, while C6 deletion greatly enhances *SNC1* expression in *bon1*.

Two deletions in the downstream region have opposite effects on SNC1 expression

Two deletions 3' to the 3' UTR of *SNC1* were analyzed for their effects on autoimmunity and *SNC1* expression. These two single deletion mutants *C9* and *C10* showed no obvious morphological difference from the wild type (Fig. 4a). The *C9 bon1* double mutant displayed a larger rosette size while *C10bon1* displayed a smaller size compared to the *bon1* mutant (Fig. 4a). Quantification of rosette size and fresh weight supported these effects (Fig. S1). The *C9* and *C10* mutations had a similar effect under the short day and the long day conditions (Fig. S2). Correlated with the growth phenotypes, *SNC1* expression was lower in the *C9bon1* mutant but was higher in the *C10bon1* mutant compared to *bon1* (Fig. 4b). Interestingly, *SNC1* expression was lower in the *C9* mutant but higher in the *C10* single mutants compared to the wild type (Fig. 4b). These results suggest that C9 is a positive cis-acting element and C10 is a negative cis-acting element for *SNC1* in both the wild type and *bon1*.

Functions of two adjacent genes do not contribute to SNC1 expression regulation

Because deletions of C1, C3, C4, C5, C6, and C8 resided in the gene AT4G16892 and the C10 deletion removed the coding sequence of AT4G16880, their impact on SNC1 expression could result from the loss of the function of the two genes or the cis-acting elements of SNC1. To differentiate these two senarios, we obtained the best possible loss of function mutants of these two genes available from the Arabidopsis Resource Center (Fig. 5a). The WiscDsLox504D04 mutant line had a T-DNA insetion in the last exon of AT4G16892, while the SALK 112108 had an insertion in the second exon of the gene AT4G16890 (Fig. 5a). qRT-PCR analysis revealed that no expression of these two genes were detected in their respective mutants (Fig. 5b). Together with the insertion in exons, this data indicates that these two genes have lost their protein function if any in their respective mutants. These two mutants did not exhibit any significant morphological difference from the wild type (Fig. 5c). Double mutants between bon1 and each of the mutants of AT4G16880 and AT4G16892 were generated by crossing. No morphological difference was observed among bon1 and two bon1 double mutants (Fig. 5c), indicating that functional disruption of the two genes is not the cause of the altered *SNC1* expression in these deletion mutants.

RPP4 and SIKIC2 exhibited a similar expression pattern with SNC1 in the deletion mutants in bon1

We analyzed expression of RPP4 and SIKIC2 in the deletion mutants to assess the effect of cis-acting elements of SNC1 on other NLR genes in the same gene cluster. These two genes were chosen because they have relatively high expression among NLR genes in the cluster and therefore their expression can be more easily determined. RPP4 is the next NLR gene at the 3' end of SNC1 and SIKIC2 is several NLR genes away at the 5' of SNC1 in the cluster. Both RPP4 and SIKIC2 had a higher expression in the bon1 mutant than in the wild type (Fig. 6a). Similar to SNC1, RPP4 had a lower expression in each of the C5bon1, C1bon1, C7bon1, C2bon1, and C9bon1 double mutants than in bon1 (Fig. 6a). Also similar to SNC1, it had a higher expression in C8bon1, C6bon1, and C10bon1 double mutants than in bon1 (Fig. 6b). Therefore, the effects of deletions of these cis-acting elements were the same for RPP4 and SNC1. These deletions also had an impact on the expression of SIKIC2 in bon1 similar to the expression of SNC1 (Fig. 6a). Interestingly, the C3 and C4 deletions that did not significantly affect SNC1 expression did not affect the expression of RPP4 or SIKIC2 in the bon1 mutant either. The only exception is a higher expression of RPP4 in C4 bon1 compared to bon1 while SNC1 was expressed at a comparable level in C4bon1 and bon1.

The impact of these deletions on the expression of *RPP4* and *SIKIC2* was also examined in the *BON1* wild-type background. The two deletions (C8 and C10) that increased expression of *SNC1* also increased expression of *RPP4* and *SIKIC2* (Fig. 6b). For deletions that reduced *SNC1* expression in the wild type, the effects on *RPP4* and *SIKIC2* were complex. *RPP4* had a reduced expression in the mutants of *C1*, *C7*, *C5* and *C9*, but increased level in the *C2* mutant (Fig. 6b). *SIKIC2* had a reduced or similar expression level in the *C1* and *C5* mutants but a higher level in the *C7*, *C2*, and *C9* mutants (Fig. 6b). Therefore, in the wild-type background, deletions that reduce *SNC1* expression reduced expression of *RPP4* and *SIKIC2* for *C1* and *C5*; reduced *RPP4* but increased *SIKIC2* for *C7* and *C9*; and increased *RPP4* and *SIKIC2* for *C2*. However, the expression of these genes in the wild type was very low, and the expression difference, if any, was less than 2 folds. Additional biological repeats are needed to verify expression in the wild-type background.

The high expression correlation of *SNC1* with *RPP4* and *SIKIC2* in the deletion mutants of the *SNC1* region suggests that the *SNC1* expression level might determine the expression of the other two NLR genes. The other hypothesis that these elements all have a long-distance effect on the expression of distant genes seems to be less likely. To further test the hypothesis that the *SNC1* gene function rather than the cis-DNA element has a major function in co-expression, we compared the effect of loss of function mutations of *pad4* and *snc1* on the expression of *RPP4* and *SIKC2*. In both *bon1pad4* and *bon1 snc1-11* double mutants, expression of both *RPP4* and *SIKIC2* were reduced from a high level in *bon1* to the wild-type level (Fig. 7b-c). Interestingly, the expression of *RPP4* was reduced by both mutations while *SICK2* was reduced by only the *snc1-11* mutation in the *BON1* wild-type background (Fig. 7b-c). This indicates that the effect of *SNC1* has an effect as great as if not greater than *PAD4* in the regulation of *RPP4* and *SIKIC2* expression.

Loss of LHY or bHLH28 function reduces expression of SNC1

Because the deletions in the 1.5 kb 5' of the transcription initiation site affect *SNC1* expression, we looked for transcription factors that might bind to this region and promote *SNC1* expression. An early study has identified binding sites of 527 of transcription factors across genome by DAP-seq (O'Malley *et al.*, 2016), and therefore we searched this data set for proteins that have significant bindings to this region. A number of transcription factors including several bHLH (basic helix-loop-helix) factors were identified in the C2 and C5 regions where positive cis-acting elements reside. We assessed the function of two of these proteins, LHY1 (LATE ELONGATED HYPOCOTYL 1) and bHLH28, in the regulation of *SNC1* gene expression. These two proteins had the highest binding signal among bHLH proteins at C2 and C5 regions respectively (Fig. 8a).

We isolated a T-DNA insertion mutant for each of the *LHY* and *bHLH28* genes. These two mutants were loss of function mutants because they had T-DNA inserted in the coding region and no expression of these genes was detected in their respective mutants (Fig. S3). These two mutations were each introduced to *bon1* by crossing. The double mutants *bhlh28 bon1* and *lhy1 bon1* were both larger in size compared to the *bon1* single mutant (Fig. 8b), indicating a partial suppression of the *bon1* defect.

We further analyzed the expression of *SNC1* in the single mutants of *bhlh28* and *lhy1* as well as their respective double mutants with *bon1*. *SNC1* was expressed at a

similar level in the single mutants and the wild type as detected by qRT-PCR (Fig. 8c). However, the expression of *SNC1* in both *bhlh28bon1* and *lhy1bon1* was significantly lower than that in *bon1* with the *lhy1* mutation having a larger impact than the *bhlh28* mutation (Fig. 8c). Therefore, *bHLH28* and *LHY1* both promote expression of *SNC1* in the *bon1* mutant.

To verify the direct binding of LHY1 and bHLH28 proteins at the *SNC1* promoter observed in the DAP-seq, we performed additional ChIP-qPCR analysis using transient expression of LHY1-GFP and bHLH28-GFP fusion proteins in protoplasts prepared from wild type Col-0 seedlings. We chose "A" site and "B" site at *SNC1* promoter region for detecting the direct binding of LHY1 and bHLH28, respectively (Fig. 8a). A region 'N' at *SNC1* gene body without any binding signals of the two proteins in the DAP-seq database was included in the analysis as a control. Both LHY1-GFP and bHLH28-GFP fusion proteins were localized in the nucleus as expected when expressed in Arabidopsis protoplasts (Fig. S3c). Enrichment of LHY1 and bHLH28 binding (antibody versus no antibody) was observed at the A and B site, respectively, in two independent biological repeats, while no binding was observed in the control site N for either of the proteins (Fig. 8d). These data further support that LHY1 and bHLH28 promote *SNC1* transcription in *bon1* mutant by directly binding to the *SNC1* promoter region.

Discussion

Here we report the use of genome editing tool to directly assess the impact of cis-acting elements in the regulation of a NLR gene *SNC1*. We identified several potential cis DNA elements at the *SNC1* locus that have either positive or negative impact on *SNC1* gene expression. Furthermore, we identified two transcription factors that could bind to the *SNC1* region and impact the expression of *SNC1*. In addition, the impact of deletion of these elements around the *SNC1* gene is analyzed on the expression of two *SNC1*-coexpressed NLR genes in the same gene cluster. Coinduction of these three genes in *bon1* is largely dependent on the function of *SNC1*, suggesting a co-regulation mechanism via *SNC1*. This study thus enhances our understanding of the complex transcriptional regulation of the NLR gene *SNC1* and emphasizes an important role of *SNC1* in expression regulation of other NLR genes.

The identification of cis-acting elements has been traditionally done by transgene approach, that is, the regulatory elements are assayed as a transgene. This approach, although very effective in most cases, has its limitations. One is that random integration could potentially bring in enhancer or repressors at the transgene integration site to impact transgene expression. The other is the difficulty in determining the size of the fragment that encompasses all regulatory elements for gene expression. Sometimes, a larger region of the DNA sequence (such as heterochromatin region) might be needed for gene expression regulation (Brumos *et al.*, 2020).

Genome editing makes it possible to modify sequence elements in situ for identifying cis-acting elements important for transcriptional regulation. These on-site modifications preserve all other factors such as transacting factors, chromatin structures and distal cis-acting elements as identical as possible to their native status. Genome editing has been widely used for editing gene function, but not yet for cis-element identification. Here we used two-target scheme of CRISPR/Cas9 technology to create 10 in situ genomic DNA deletions of 179 bp to 2500 bp with medium size of 750 bp (Fig. 1b). A large region of several kb can therefore be covered by several deletions for assessing boundaries of cis-acting elements of any genes. Small deletions can also be made to assess the function of refined elements in gene expression regulation. Indeed, this technology has been used in refine the expression of tomato yield genes (Rodríguez-Leal *et al.*, 2017).

However, the CRISPR/Cas9 system used in this study has limitations due to the availability of PAM sites. It is not possible to generate deletions at specific sites for refined deletions. With the development of new and modified CRISPR systems, more targeted editing including deletions can be made, which will enable the identification of more refined elements and ultimately to single base pair precision.

Cis-acting elements for SNC1 expression

We have identified several potential positive and negative cis-acting elements for the expression of *SNC1* (Fig. 9). The impact of the deletions or insertion (as in one of the C8 mutations) most likely results from a loss of binding sites for a trans-acting factor (such as a transcriptional activator or repressor), but it may also result from an altered proximity of another trans-acting factor binding site with TSS or a change of local chromatin structure. If we apply the simplest hypothesis (that all cis-acting elements function only as trans-acting factor binding sites and the cis-acting elements

work independently of each other) to the deletion defined elements, we can propose a mosaic pattern with positive, negative, and neutral elements spanning the upstream region of *SNC1* as well as one positive element and one negative element in the downstream of *SNC1*. This simplified view could be tested by more refined deletion mutants in the locus. Alternative models could be proposed where the deletion might cause chromatin structure change but not necessarily the loss of transcription factor binding sites. New chromatin structure might form and/or distal trans-acting factors might gain new protein interactions with large deletions. This can be tested by analyzing features of chromatin in the mutants.

In sum, this study has identified C2 and part of C5 in the upstream region and C9 in the downstream region as potential positive cis-acting elements for both basal and induced *SNC1* expression (Fig. 9). Part of C8 in the upstream region and C10 in the downstream region are likely responsible for basal and induced *SNC1* expression while C6 is likely a negative cis-acting element of induced *SNC1* expression in *bon1* (Fig. 9). The distinction between *bon1*-induced expression only and constitutive (both basal and *bon1* induced) is not very strict, because C2, C5, and C8 deletions have a slightly larger effect in *bon1* than in wild type. Generation of additional deletions with smaller sizes will reveal a more precise picture of the cis-acting elements.

Two transcription factors affect SNC1 expression

We identified two transcription factors that impact *SNC1* expression. These two proteins directly bind to the *SNC1* region in vivo in the ChIP-qPCR experiment (Fig. 8d), and the expression of *SNC1* in *bon1* is reduced by the loss of their function (Fig. 8c). These data suggest that they are direct transcription factors of *SNC1* that binds to the cis-acting elements of the *SNC1* and affects its transcription. Nevertheless, the identification of these two potential factors opened new windows for investigating regulation of NLR gene expression. The first transcription factor identified is a circadian clock gene *LHY* that is involved in feedback loop for clock activity regulation (Alabadí *et al.*, 2001). Besides its crucial function in circadian regulation, the *lhy* mutants were shown to affect resistance to both bacterial and oomycete pathogens (Zhang *et al.*, 2013). The regulation of *SNC1* expression by *LHY* suggests that NLR gene regulation could contribute to the role of *LHY* in defense response regulation. The second factor identified for SNC1 expression is the *bHLH28* gene. Also named as MYC5, it binds to JAZ promoters and has overlapping functions with MYC2, MYC3

and MYC4 to control some of the early JA-responsive genes (Song *et al.*, 2017). The *myc5* mutant was shown to be more susceptible to necrotrophic pathogen but more resistant to bacterial pathogen *Pst* DC3000 likely through stomatal defense (Song *et al.*, 2017). Here we find that the *bhlh28* mutation reduces the expression of *SNC1*, which would likely result in reduced disease resistance. Therefore, *bHLH28* may have different target genes that impact defense responses in different processes.

Understanding of transcriptional control of NLR genes have large implications in generating disease resistance crop plants. Introducing multiple NLR genes (sometimes in a gene cluster) is an effective way to achieve broad spectrum and durable disease resistance (Monteiro and Nishimura, 2018; Van de Weyer *et al.*, 2019). As a higher than wild-type expression of NLR genes as transgenes is a common phenomenon, it is important to understand their transcriptional regulation to prevent autoimmunity in the process of transferring NLR genes. This study reveals complex regulation of NLR gene expression through cis-acting elements and demonstrates of the use of genome editing for cis-element identification. The refinement of cis-acting elements through genome editing techniques and a further understanding of expression of genes in a gene cluster which will have significant implication in generating disease resistant plants using NLR genes.

Co-expression of NLR genes in the RPP5 gene cluster

Co-expression has been observed for NLR genes in the Col-0 *RPP5* gene cluster including *SNC1*, *RPP4* and *SIKIC2* (Yi and Richards, 2007; Dong *et al.*, 2018). Here we found that increased expression of *RPP4* and *SIKIC2* is dependent on increased expression of *SNC1* (Fig. 6), because C2 and C5 deletions that abolished *SNC1* expression also reduced expression of *RPP4* and *SIKIC2* while C6 and C10 deletions that increased *SNC1* expression also increased expression of *RPP4* and *SIKIC2* in the *bon1* background. In addition, deletions C8 and C10 that increased *SNC1* expression in wild-type background also increased expression of *RPP4* and *SIKIC2* (Fig. 6). Therefore, *SNC1* upregulation due to local cis-element changes is sufficient to induce higher expression of *RPP4* and *SIKIC2*. The dependence of *RPP4* and *SIKIC2* expression on the *SNC1* expression level is further supported by their dependence on the *SNC1* function. The loss of *SNC1* function reduced the higher expression of these two genes in *bon1* to the wild-type level (Fig. 7) and its effect is similar to that of the

loss of function of *PAD4*. Together, they indicate that *SNC1* function is critical for the co-induction of NLR genes in the *RPP5* cluster.

In addition to the function of regulating other NLR genesSNC1 also has a feedback regulation on its own expression (Yang and Hua, 2004). It is possible that a higher expression of SNC1 triggers accumulation of SA, production of trans factors or change of chromatin structures which feed forward on the expression of itself and other NLR genes (Fig. 10a). Alternatively, SNC1 protein accumulation itself is responsible for the upregulation of RPP4 and SIKIC2 (Fig. 10b). SNC1 is capable to physically interact with transcriptional regulators TPR protein (Zhu et al., 2010), suggesting a direct function in transcriptional regulation. We do not have evidence to distinguish between these two possibilities yet. The reduced basal SNC1 expression correlates in general with a decreased RPP4 expression but often does not correlate with the expression of SIKIC2 (Fig. 6). This suggests that basal SIKIC2 expression is not dependent on SNC1 but RPP4 might be. Whether or not basal expression of SNC1 affects basal SA or other signaling molecules is yet to be determined.

Data availability

Data are included in the manuscript or in supplemental materials.

Author Contribution

JH conceived the project, JH and TZ supervised the project, HY, LY, ZL, BL, SG, FS, and YW conducted the experiments, HY and JH analyzed the data and wrote the manuscript with inputs from all authors.

Acknowledgement

We would like to acknowledge technical assistance by Jiapei Yan and Zhixue Wang. This study is supported by grants of National Science Foundation of USA to J. H. (IOS-1946174), National Natural Science Foundation of China (31761143012) and TA CR-JSTD Bilateral Co-funding R&D Project (BZ2020024) grant to T. Z., and Postdoctoral Research Foundation of Jiangsu Province Award to H. Y. The authors have no conflict of interest to declare.

Figure Legends

Figure 1. Deletion mutants generated by CRISPR-Cas9 editing.

- a. Diagram of the SNC1 region and positions of deletions. The gene AT4G16892 is in
- 554 the 5' upstream of SNC1 and the gene ATG16880 is in the 3' of the SNC1. Target sites
- of CRISPR-Cas9 are shown as gray vertical lines. Horizontal lines indicate deleted
- regions, and the name of deletions are showed as from C1 to C10. "*" indicates
- mutations in C8'. Gray boxes are coding regions. TSS, transcription start site.
- b. Information of deletion mutant lines generated in Col-0 and *bon1*. Listed in the table
- is the name, starting point, ending point and length of deletions as well as the number
- of mutant lines generated in the wild type and bon1.

562

- Figure 2. Removing transcription initiation site abolishes expression of SNC1.
- 563 (a) Growth phenotypes of C1 and C7 deletion mutants in the wild type and bon1. (b)
- Relative SNC1 expression in the C1 and C7 deletion mutants in bon1 and the wild-type
- 565 Col-0 assayed by qRT-PCR. Actin was used as a reference gene and relative expression
- is compared to that of Col-0. Shown are average of three biological repeats and error
- bars indicate standard deviations. Different letters indicate statistically significant
- differences between genotypes by one-way analysis of variance (ANOVA) (p<0.05)..

569570

- Figure 3. Effect of deletions in the upstream region on SNC1 expression.
- 571 (a, b, c) Growth phenotypes of deletion mutants of C3 and C4 (a), C2 and C5 (b), C6
- and C8 (c) in the wild-type Col-0 and bon1. A representative line is shown here. (d, e,
- 573 f) Relative SNC1 expression in deletion mutants of C3 and C4 (d), C2 and C5 (e), as
- well as C6 and C8 (f) in bon1 and the wild type assayed by qRT-PCR. Shown are
- average of three biological repeats and error bars indicate standard deviations (SDs).
- 576 Different letters indicate statistically significant differences between genotypes by one-
- 577 way analysis of variance (ANOVA) (p<0.05)...

578579

- Figure 4. Effect of deletions in the downstream region on SNC1 expression.
- 580 (a) Growth phenotypes of C9 and C10 deletion mutants in the wild type and bon1. (b)
- Relative SNC1 expression in the C9 and C10 deletion mutants in bon1 and the wild-
- 582 type Col-0 assayed by qRT-PCR. Actin was used as a reference gene and expression
- levels was compared to the Col-0. Values are means of three biological repeats and
- error bars indicate standard deviations. Different letters indicate statistically significant
- differences between genotypes by one-way analysis of variance (ANOVA) (p < 0.05)...

- Figure 5. Impact of loss of function of two adjacent genes on SNC1 expression.
- 588 (a) Diagram of the gene structure of At4g16892 and At4g16880 and the T-DNA
- insertion sites of the mutants. (b) The qPCR analysis of At4g16892 and At4g16880
- transcript level in wild type Col-0 and their respective T-DNA insertion mutants.
- 591 ACTIN2 was used as an internal control. "*" indicate statistically significant
- differences between genotypes (p < 0.05, student's t test). (c) Growth phenotype of
- double mutants of *BON1* with each of two genes.

595

- Figure 6. Expression of *RPP4* and *SIKIC2* in the deletion mutants.
- Relative expression of SNC1, RPP4, and SIKIC2 in 10 deletion mutants in bon1 (a) and
- 597 wild type (b). Actin was used as a reference gene and shown are expression relative to
- that in the wild type (set as 1) for each of the three genes. Values are means of three
- 599 biological repeats, and error bars indicate standard deviations. Different letters indicate
- different levels of expression among different genotypes for SNC1 (without '), RPP4
- (with ') and SIKIC2 (with ') at p<0.05 by one-way analysis of variance (ANOVA).
- Blue, red, and yellow ovals indicate reduced, increased and same expression in the
- deletion mutants compared to their corresponding wild-type Col-0.

604

- Fig 7. Expression of SNC1, RPP4 and SIKIC2 in the snc1 and pad4 mutants.
- Relative expression of SNC1 (a), RPP4 (b), and SIKIC2 (c) in pad4 and snc1-11 mutants
- in the BON1 wild-type and mutant background. Actin was used as a reference gene and
- shown are expression relative to that in the wild type (set as 1) for each of the three
- 609 genes. Values are means of three biological repeats, and error bars indicate standard
- deviations. Different letters indicate different levels of expression among different
- genotypes at p < 0.05 by one-way analysis of variance (ANOVA).

- Figure 8. Function of *LHY1* and *bHLH28* in *SNC1* expression regulation.
- 614 (a) Binding of two transcriptional factors LHY1 and bHLH28 in the SNC1 locus from
- DAP-seq database. This is a redrawn from the browser image. Binding is shown by
- 616 colored blocks with height represent the level of binding detected. (b) Growth
- phenotype of the mutants *bhlh28* and *lhy1* in the wild type or *bon1*. Plants were grown
- under 16h/8h light at 22°C. (c) Relative SNC1 expression in the bhlh28 and lhy1 single
- mutants and double mutants with bon1 assayed by qRT-PCR. Actin was used as a
- reference gene and expression levels was compared to the Col-0. Shown are average of

621	three biological repeats and error bars indicate standard deviations. Different letters
622	indicate statistically significant differences between genotypes (p<0.05, student's t test)
623	(d) ChIP-qPCR analyses of LHY1-GFP and bHLH28-GFP to the SNC1 promoter
624	region. The binding of LHY1-GFP and bHLH28-GFP was detected at "A" site and "B"
625	site (depicted in a), respectively. Data of two independent biological replicates were
626	shown. "N" site (depicted in a) is a region at the SNC1 gene body with no binding signal
627	detected for LHY1 or bHLH28 in the DAP-seq database. "GFP" are samples incubated
628	with anti-GFP antibody and "NoAb" are samples without anti-GFP antibody. Different
629	letters indicate statistically significant differences between genotypes by one-way
630	analysis of variance (ANOVA) (p <0.05).
631	
632	Figure 9. Diagram of putative cis-acting elements and transcription factors at the
633	SNC1 locus.
634	Diagram of the genomic region of the SNC1 gene. Color lines below the genomic
635	diagram depict deletions used in this study. Color blocks above the SNC1 locus diagram
636	depict putative positive and negative cis-acting elements. Ovals represent the two
637	transcription factors that potentially bind to the region. Red indicates a negative effect
638	of the element on SNC1 expression (its deletion increases SNC1 expression) and blue
639	indicates a positive effect on SNC1 expression.
640	
641	Figure 10. Potential mechanisms for co-induction of NLR genes in the RPP5 gene
642	cluster.
643	Shown is the diagram of the RPP5 cluster that consists of SNC1, RPP4, SIKIC2 and
644	additional NLR genes. Expression of RPP4 and SICK2 and potentially other NLR genes
645	in the cluster are increased when SNC1 expression or function are induced. SNC1 may
646	mediates the induction of other NLR genes through SA accumulation, trans-factors or
647	chromatin structure changes (a) or through direct regulation on other NLR genes (b).
648	SNC1 itself is under a feedback amplification regulation. Arrows indicate positive
649	regulation.
650	
651	

Supplemental information

- Supple fig 1. Growth phenotypes of deletion mutants grown under constant light.
- Supple fig 2. Growth phenotypes of deletion mutants grown under short day.

- Supple fig 3. Characterization of *LHY1* and *bHLH28* genes.
- Table S1. List of spacer sequences and their off-target potential.
- Table S2. List of oligos used for genotyping, cloning and qPCR.

- **Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. 2001.** Reciprocal regulation 660 between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. *Science* **293**(5531): 880-883.
- **Bao Z, Zhang N, Hua J. 2014.** Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. *Nat Commun* **5**(1): 1-10.
- Brumos J, Zhao C, Gong Y, Soriano D, Patel AP, Perez-Amador MA, Stepanova AN, Alonso JM. 2020. An improved recombineering toolset for plants. *Plant Cell* 32(1): 100-122.
 - Burdett H, Bentham AR, Williams SJ, Dodds PN, Anderson PA, Banfield MJ, Kobe B. 2019. The plant "Resistosome": Structural insights into immune signaling. *Cell host & microbe* 26(2): 193-201.
 - Cheng YT, Li Y, Huang S, Huang Y, Dong X, Zhang Y, Li X. 2011. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. *Proc Natl Acad Sci U S A* 108(35): 14694-14699.
 - **Couto D, Zipfel C. 2016.** Regulation of pattern recognition receptor signalling in plants. *Nat Rev Immunol* **16**(9): 537.
 - **Cui H, Tsuda K, Parker JE. 2015.** Effector-triggered immunity: from pathogen perception to robust defense. *Ann Rev of Plant Bio* **66**: 487-511.
 - Dong OX, Ao K, Xu F, Johnson KC, Wu Y, Li L, Xia S, Liu Y, Huang Y, Rodriguez E. 2018. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. *Nat Plants* **4**(9): 699-710.
 - **Gou M, Hua J. 2012.** Complex regulation of an R gene SNC1 revealed by auto-immune mutants. *Plant Signal Behav* **7**(2): 213-216.
 - **Gou M, Huang Q, Qian W, Zhang Z, Jia Z, Hua J. 2017.** Sumoylation E3 ligase SIZ1 modulates plant immunity partly through the immune receptor gene SNC1 in Arabidopsis. *MPMI* **30**(4): 334-342.
 - **Gou M, Shi Z, Zhu Y, Bao Z, Wang G, Hua J. 2012.** The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. *Plant J* **69**(3): 411-420.
 - **Jacob F, Vernaldi S, Maekawa T. 2013.** Evolution and conservation of plant NLR functions. *Front Immunol* **4**: 297.
 - Kemmerling B, Halter T, Mazzotta S, Mosher S, Nürnberger T. 2011. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. *Front Plant Sci* 2: 88.
 - Lai Y, Lu XM, Daron J, Pan S, Wang J, Wang W, Tsuchiya T, Holub E, McDowell JM, Slotkin RK. 2020. The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. *PLoS Genetics* 16(9): e1008993.
 - **Li Y, Pennington BO, Hua J. 2009.** Multiple R-like genes are negatively regulated by BON1 and BON3 in Arabidopsis. *MPMI* **22**(7): 840-848.
 - **Li Y, Tessaro M, Li X, Zhang Y. 2010.** Regulation of the Expression of Plant Resistance gene SNC1 by a Protein with a Conserved BAT2 Domain. *Plant Physiol.* **153**(3):1425-1434
 - Lee JH, Jin S, Kim W and Ahn JH. 2017. A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in Arabidopsis mesophyll protoplasts. *Plant Methods*, **13**(1): 1-12.
 - Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, Logemann E, Yu D, Wang J, Jirschitzka J. 2020. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. *Science* **370**(6521).
- 705 Martin R, Qi T, Zhang H, Liu F, King M, Toth C, Nogales E, Staskawicz BJ. 2020. Structure of 706 the activated Roq1 resistosome directly recognizing the pathogen effector XopQ. 707 Science 370(6521). :eabd9993

- 708 Mohr TJ, Mammarella ND, Hoff T, Woffenden BJ, Jelesko JG, McDowell JM. 2010. The 709 Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. *MPMI* 23(10): 1303-1315.
- **Monteiro F, Nishimura MT. 2018.** Structural, Functional, and Genomic Diversity of Plant NLR 712 Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. *Annu Rev Phytopathol* **56**: 243-267.

- **Ngou BPM, Ahn H-K, Ding P, Jones JD. 2021.** Mutual potentiation of plant immunity by cell-surface and intracellular receptors. *Nature* **592**(7852): 110-115.
- Noel L, Moores TL, van Der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JD. 1999.

 Pronounced intraspecific haplotype divergence at the *RPP5* complex disease resistance locus of Arabidopsis. *Plant Cell* 11(11): 2099-2112.
- O'Malley RC, Huang S-SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. *Cell* 165(5): 1280-1292.
- **Qi D, Innes RW. 2013.** Recent advances in plant NLR structure, function, localization, and signaling. *Front Immunol* **4**: Article 348.
- Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017. Engineering quantitative trait variation for crop improvement by genome editing. *Cell* 171(2): 470-480. e478.
- Shao Z-Q, Xue J-Y, Wu P, Zhang Y-M, Wu Y, Hang Y-Y, Wang B, Chen J-Q. 2016. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. *Plant Physiol* 170(4): 2095-2109.
- **Song S, Huang H, Wang J, Liu B, Qi T, Xie D. 2017.** MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. *Plant Cell Physiol* **58**(10): 1752-1763.
- **Spoel SH, Dong X. 2012.** How do plants achieve immunity? Defence without specialized immune cells. *Nat Rev Immunol* **12**(2): 89-100.
- **Takken FL, Goverse A. 2012.** How to build a pathogen detector: structural basis of NB-LRR function. *Curr Opin Plant Biol* **15**(4): 375-384.
- Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW. 2007. Global expression analysis of nucleotide binding site-leucine rich repeatencoding and related genes in Arabidopsis. *BMC Plant Biol* **7**(1): 1-20.
- **Thomma BP, Nürnberger T, Joosten MH. 2011.** Of PAMPs and effectors: the blurred PTI-ETI dichotomy. *Plant Cell* **23**(1): 4-15.
- Van de Weyer A-L, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JD, Dangl JL, Weigel D, Bemm F. 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. *Cell* 178(5): 1260-1272.
- Van Der Biezen EA, Freddie CT, Kahn K, Parker¶ JE, Jones JD. 2002. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR NB LRR genes and confers downy mildew resistance through multiple signalling components. *Plant J* 29(4): 439-451.
- van Wersch R, Li X, Zhang Y. 2016. Mighty dwarfs: Arabidopsis autoimmune mutants and their usages in genetic dissection of plant immunity. *Front Plant Sci* **7**: 1717.
- Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung E-H, Nishimura EO, DiAntonio A, Milbrandt J, Dangl JL. 2019. TIR domains of plant immune receptors are NAD+cleaving enzymes that promote cell death. *Science* 365(6455): 799-803.
- Wan WL, Kim ST, Castel B, Charoennit N, Chae E. 2021. Genetics of autoimmunity in plants: an evolutionary genetics perspective. *New Phytol* 229(3): 1215-1233.
- 756 Wang Z, Yang L, Wu D, Zhang N, Hua J. 2021. Polymorphisms in cis-elements confer SAUR26 757 gene expression differences for thermo-response natural variation in Arabidopsis. *New Phytol* **229** (5): 2751-2764.

- 759 Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. *BMC Plant Biol* 14(1): 1-12.
- 762 Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. *BMC Plant Biol* 14: 327.

- Yang DL, Shi Z, Bao Y, Yan J, Yang Z, Yu H, Li Y, Gou M, Wang S, Zou B, et al. 2017. Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. *Plant Physiol* 175(1): 424-437.
- Yang L, Chen X, Wang Z, Sun Q, Hong A, Zhang A, Zhong X, Hua J. 2020. HOS15 and HDA9 negatively regulate immunity through histone deacetylation of intracellular immune receptor NLR genes in Arabidopsis. *New Phytol* 226(2): 507-522.
- Yang L, Wang Z, Hua J. 2021. A Meta-Analysis Reveals Opposite Effects of Biotic and Abiotic Stresses on Transcript Levels of Arabidopsis Intracellular Immune Receptor Genes. *Front Plant Sci* 12: 625729.
- Yang S, Hua J. 2004. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. *Plant Cell* 16(4): 1060-1071.
- Yi H, Richards EJ. 2007. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. *Plant Cell* 19(9): 2929-2939.
- Yu X, Feng B, He P, Shan L. 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. *Annu Rev Phytopathol* 55: 109-137.
- Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. *Nature* 592: 105-109.
- Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM. 2013. Crosstalk between the circadian clock and innate immunity in Arabidopsis. *PLoS Pathog* 9(6): e1003370.
- **Zhang N, Wang Z, Bao Z, Yang L, Wu D, Shu X, Hua J. 2018.** MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle in Arabidopsis. *Plant J* **93**(1): 66-78.
- Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, Li X, Zhang Y. 2010. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. *Proceedings of the National Academy of Sciences* 107(31): 13960-13965.
- Zou B, Sun Q, Zhang W, Ding Y, Yang DL, Shi Z, Hua J. 2017. The Arabidopsis Chromatin-Remodeling Factor CHR5 Regulates Plant Immune Responses and Nucleosome Occupancy. *Plant Cell Physiol* 58(12): 2202-2216.
- **Zou B, Yang DL, Shi Z, Dong H, Hua J. 2014.** Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis. *Plant Physiol* **165**(1): 309-318.
- **Zou BH, Yang DL, Shi ZY, Dong HS, Hua J. 2014.** Monoubiquitination of Histone 2B at the 798 Disease Resistance Gene Locus Regulates Its Expression and Impacts Immune 799 Responses in Arabidopsis. *Plant Physiol* **165**(1): 309-318.