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ARTICLE INFO ABSTRACT

Edited by Menghua Wang High complexity and variability in composition of water constituents pose major challenges for development of
algorithms to estimate biogeochemical data products from optical observations over the continuum of diverse

Keywords: aquatic environments. To address these challenges, we examined an adaptive optical approach that accounts for

Ocean optical properties variability in composition of suspended particulate matter. We use the ratio of particulate organic carbon to

Inherent optical properties

. suspended particulate matter concentration, POC/SPM, for optically discriminating water bodies with varying
Remote-sensing reflectance

Marine suspended particles proportions of organic and mineral particles. Through the analysis of field data from the western Arctic seas that

Particulate organic carbon exhibit a broad range of water composition and optical properties, we developed empirical algorithms to esti-

Particulate composition mate SPM and POC/SPM either from the particulate inherent optical properties (IOPs) of seawater, i.e., the
spectral particulate absorption a,(\) or backscattering byp(A) coefficients, or directly from the spectral remote-
sensing reflectance of the ocean, Rys(A). The capability to retrieve POC/SPM from optical measurements was
used to formulate the particle composition-specific algorithms for estimating POC from particulate IOPs or Rys()).
The evaluation of algorithms with the development field dataset demonstrates that the algorithm formulations
accounting for changes in POC/SPM provide significant improvements in POC estimates along the continuum of
optically-complex Arctic waters compared with algorithms that do not account for variations in particulate
composition, such as the current standard POC algorithm used for global satellite applications. The results of
example application of the particle composition-specific algorithm and standard global algorithm to satellite
observations are consistent with comparisons of these algorithms for our field dataset, which supports a
conclusion that the standard algorithm tends to overestimate POC in Arctic waters that exhibit a broad range of
particle composition. Although this study demonstrates the adaptive approach using data from the Arctic region,
it has broader significance and is amenable to further enhancements by including other optically-derivable water
constituent properties. Further validation analyses and efforts are needed towards a unified approach with
improved representation of cause-and-effect relationships between water composition and optical properties to
enable improved optically-based applications across a wide range of water bodies.

1. Introduction aquatic sciences, including the use of in situ optical measurements as
well as satellite and airborne remote sensing observations of the world’s

Improvements in the estimation of biogeochemically important oceans. This challenge arises largely from a complex composition of
constituents and properties of aquatic environments from inherent or optically-significant constituents of seawater and intricate linkages be-
apparent optical properties of water bodies is one of the main pre- tween the optical properties of various in-water constituents and a
requisites to further advance the applications of optical measurements in combination of many physical, biological, chemical, and geological
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processes that control the sources, variability, and fates of the constit-
uents. Currently, new satellite ocean color missions with significantly
enhanced capabilities of optical measurements are in the phase of
preparation for launch, such as NASA’s Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission with high-spectral resolution and polariza-
tion capabilities to be launched in 2024 (Werdell et al., 2019). The
missions such as PACE are expected to result in significant improve-
ments of satellite retrievals of spectral remote-sensing reflectance of the
ocean, Ry5(\), and spectral inherent optical properties (IOPs) of seawater
constituents (where A is light wavelength in vacuum). To unlock the full
potential of these advancements in support of remote sensing science
and applications, novel algorithmic approaches are needed with
improved representation of interactions between light and the highly
complex and variable constituent composition of seawater. One research
area where interactions of light with a complex mix of water constitu-
ents can be described at a higher level of mechanistic detail than in
extant bio-optical or remote-sensing algorithms is associated with the
composition of suspended particulate matter, especially the proportions
of organic and inorganic particles within particulate assemblages.

Because of high level of optical complexity and diversity caused by
variability in concentrations and composition of water constituents, it is
unlikely that a single bio-optical or remote-sensing algorithm, regardless
of its underlying empirical, semi-analytical or analytical approach, can
perform adequately over the continuum of various aquatic environ-
ments. The global algorithms for estimating the concentrations of
chlorophyll-a (Chla) and particulate organic carbon (POC) from satellite
ocean color observations (O’'Reilly et al., 1998; O’Reilly and Werdell,
2019; Stramski et al., 2008; Stramski et al., 2022) were formulated
under the premise of acceptable performance in waters with optical
properties driven primarily by phytoplankton and covarying organic
materials (Gordon and Morel, 1983; Morel and Prieur, 1977). These
global algorithms are applied to diverse water bodies indiscriminately
with respect to composition of seawater constituents, which can yield
large errors in Chla or POC products in various environmental scenarios,
for example high proportion of mineral particles in suspended particu-
late matter (Wozniak and Stramski, 2004). Numerous approaches have
been proposed to address the challenges of optical remote sensing across
diverse environments that exhibit the complexities of water composition
and optical properties (e.g., Matthews, 2011; Odermatt et al., 2012;
Tyler et al., 2016). Many studies have focused on regionally-specific
algorithms whose parameterizations, usually empirical, have been
optimized using regional datasets. Some of these algorithms include the
use of predefined limits to the applicability or a switching scheme with
predefined threshold values applied to the reflectance or water con-
stituent concentrations to broaden the range of applicability across
diverse conditions. Over the last 2 decades the adaptive approaches
based on an optical water type (OWT) classification have emerged as a
prospective framework under which to conduct interpretive analysis
and develop generalized algorithms for applications along the contin-
uum of diverse optical and biogeochemical conditions encompassing
open ocean, coastal, and inland aquatic environments (e.g., Eleveld
et al., 2017; Lahet et al., 2001; Le et al., 2011; Lubac and Loisel, 2007;
Mélin et al., 2011; Mélin and Vantrepotte, 2015; Moore et al., 2001,
2009, 2014; Neil et al., 2019; Reinart et al., 2003; Spyrakos et al., 2018;
Vantrepotte et al., 2012; Ye et al., 2016). The OWT classification
schemes in aquatic remote sensing are commonly based on in situ and/
or satellite reflectance data which serve to differentiate water types in
terms of key features associated with the spectral shape and/or magni-
tude of reflectance. A number of studies support the emerging view that
such optical classification framework for blending the retrievals from
multiple class-specific algorithms has significant potential to improve
the overall accuracy of remote-sensing data products across a wide range
of water bodies and to make progress towards a unified approach for
global applications (e.g., Le et al., 2011; Moore et al., 2014; Neil et al.,
2019; Vantrepotte et al., 2012; Xue et al., 2019).

The variations in ocean color, or more generally the aquatic color,
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captured by remote-sensing reflectance measurements depend on water
IOPs which, in turn, are driven in a complex fashion by concentration
and composition of various particulate and dissolved water constituents
that are highly variable in time and space. In the reflectance-based
classification schemes the optical effects of various types of coexisting
water constituents are not explicitly separable or quantifiable. One
consequential result is that a given reflectance-based class can encom-
pass large variation in composition of water constituents that have
different optical properties, such as large variation in proportions of
organic and mineral suspended particles (Spyrakos et al., 2018; Van-
trepotte et al., 2012). Under such circumstances, the reflectance class-
specific algorithms aimed, for example, at retrieving data products
associated solely with organic particulate matter such as POC or Chla,
can be inadequate within or across environments where the organic vs.
mineral composition of particulate matter varies substantially. There-
fore, there is a need to explore alternative approaches that can differ-
entiate the aquatic environments at a more fundamental level describing
the composition of optically significant water constituents, in particular
the composition of suspended particulate matter (Neukermans et al.,
2016).

The optical effects of particles suspended in water depend, to first
order, on the concentration, composition, and size distribution of par-
ticles (e.g., Jerlov, 1976; Jonasz and Fournier, 2007; Morel, 1973). In
this study we investigate an optically-based approach that addresses
variations in optical effects produced by changes in the composition of
particulate matter, specifically the relative contributions of organic and
mineral particles coexisting in water. These two main categories of
particles have generally quite different refractive index, especially
plankton cells and mineral particles (Aas, 1996). Such differences in
refractive index have major implications to interactions of light with
particles and, hence, to the bulk optical properties of marine particle
assemblages (e.g., Babin et al., 2003a; Bowers and Binding, 2006; Morel,
1973; Twardowski et al., 2001; Stramski and Kiefer, 1991). It has long
been recognized that the ratio POC/SPM, where SPM is the total mass
concentration of suspended particulate matter, can serve as a proxy of
particulate composition which aids in the interpretation of variability in
light scattering properties of seawater (Betzer et al., 1974; Carder et al.,
1974; Feely et al., 1974). Although POC represents a fraction of par-
ticulate organic matter (POM) and there is no single conversion factor
from POC to POM due to some variations in the composition of POM, the
POC/SPM ratio is a useful proxy for characterizing the contribution
of organic particles to SPM. The carbon content of POM is the
structural foundation of particulate organic matter and the variability in
POC/POM is generally constrained within a relatively narrow range
between about 0.4 and 0.55 (Babin et al., 2003a; Feely et al., 1974;
Gordon, 1970; Riley, 1970). In addition, carbon is a major “currency” in
the study of the Earth’s biogeochemical cycles, so direct use of POC has
advantages over POM for research that aims to advance the estimation
of carbon data products from optical algorithms.

In the present study we use POC/SPM as a proxy of particulate
composition but, in general, the question whether POC/SPM or POM/
SPM (or alternatively PIM/SPM where PIM is the mass concentration of
inorganic particulate matter) is chosen as composition-related param-
eter for optical studies can depend on specific or long-term research
goals. Previous studies of different water bodies demonstrated that the
overall variability in particulate IOPs is reduced and the relationships
between the IOPs and particle concentration or particle size metrics are
improved if the analysis is constrained by the compositional parameters
such as POC/SPM or POM/SPM (Loisel et al., 2007; Neukermans et al.,
2012; Reynolds et al., 2016; Snyder et al., 2008; Stavn and Richter,
2008; Stramski et al., 2007; Wozniak et al., 2010; Wozniak et al., 2018;
Wozniak and Meler, 2020). It is also notable that the benefit of POC/
SPM as a relatively simple metric can extend beyond the effects asso-
ciated with varying organic vs. mineral composition. Our previous
analysis of measurements in the western Arctic seas indicated a signif-
icant degree of covariation between POC/SPM and the contributions of
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differently-sized particles to particle size distribution (PSD) (Reynolds
et al., 2016). Specifically, the organic-dominated particle assemblages
(high POC/SPM) exhibited consistently higher proportion of large-sized
particles (for example, > 20 pm in size) compared to mineral-dominated
assemblages (low POC/SPM). Such covariation has the potential to
strengthen the usefulness of POC/SPM metric because PSD is also an
important particle characteristic affecting the optical properties.

The present study has three main objectives: (i) to investigate the
POC/SPM ratio as a proxy of composition of suspended particulate
matter for optically discriminating water bodies dominated by organic
particles, mineral particles, or mixed particle assemblages; (ii) to
formulate algorithms for estimating SPM and the POC/SPM ratio from
optical measurements of particulate IOPs or remote-sensing reflectance
Rys(M), and (iii) to formulate adaptive particle composition-specific al-
gorithms for estimating POC based on optical measurements of partic-
ulate IOPs or R;s(A), which account for variations in POC/SPM. These
objectives are addressed through the analysis of field data collected in
the western Arctic seas exhibiting a broad range of variability in par-
ticulate characteristics and optical properties of seawater. Using this
algorithm development dataset, we also evaluated how well the
different algorithms represent the variability within this dataset. The
validation and performance assessment of the algorithms with inde-
pendent field and satellite data is a separate extensive topic which is
beyond the scope of this study and is expected to be addressed in future
work.

2. Methods
2.1. Study area and data sources

This study is based on measurements made during four oceano-
graphic cruises in the Arctic region encompassing the Chukchi Sea and
the western Beaufort Sea (Fig. 1). The first cruise was in summer 2009
(31 July — 24 August) in the southeastern Beaufort Sea which included
the region of Mackenzie River plume. This was the MALINA (MAckenzie
LIght aNd cArbon) expedition on the CCGS Amundsen (Massicotte et al.,
2021). The next two cruises (HLY1001 and HLY1101) were on the
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Fig. 1. Locations of oceanographic stations where coincident measurements of
optical properties and characteristics of suspended particulate matter were
collected. The data were collected during four cruises as indicated.
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USCGC Healy and took place in summer seasons of 2010 (18 June —16
July) and 2011 (28 June — 24 July) in the Chukchi Sea and western
Beaufort Sea. These two cruises were part of the NASA ICESCAPE (Im-
pacts of Climate on EcoSystems and Chemistry of the Arctic Pacific
Environment) program (Arrigo, 2015) and are referred to as ICESCAPE
cruises. The fourth cruise (MR17-05C) was in late summer 2017 (23
August - 21 September) and also surveyed the region of the Chukchi and
Beaufort Seas. This cruise was on the R/V Mirai as part of the Japanese
Arctic Challenge for Sustainability (ArCS) program (Shiozaki et al.,
2019). This cruise is referred to as ArCS.

In this study we use a dataset assembled from both in situ mea-
surements and analysis of discrete water samples that were collected in
close proximity to location and time of in situ measurements. The data
were collected over a broad range of environments using a consistent set
of measurement and data processing protocols. The data quality assur-
ance and control processes were integrated into the development of the
final dataset. Portions of this dataset have been described in our previ-
ous studies which address relationships between seawater optical
properties and various concentration-, size-, and composition-related
characteristics of suspended particulate matter (Neukermans et al.,
2016; Reynolds et al., 2016; Reynolds and Stramski, 2019; Runyan et al.,
2020).

Data collected from a total of 139 stations sampled during the four
Arctic cruises are utilized in this study (Fig. 1). The key optical variables
involved in our analysis include two IOPs, namely the spectral partic-
ulate absorption coefficient, a,(A), and the spectral particulate back-
scattering coefficient, by,(M), as well as Ry(A) which belongs to the
category of apparent optical properties (AOPs) and is central to remote
sensing (Mobley, 1994; Preisendorfer, 1961). The key particulate char-
acteristics analyzed in this study are POC and SPM; however, for general
characterization of investigated water bodies we also report on Chla
data. For the analysis of relationships between the particulate charac-
teristics and IOPs, data were collected at near surface depths (~1-5 m)
and a few additional depths. These additional sampling depths were
selected to obtain data for water samples where the maximum of
chlorophyll-a fluorescence, the optical beam attenuation coefficient, or
backscattering coefficient occurred within the water column, and also
close to the bottom (within 3-5 m) at stations located on the shelf.

The final basic dataset in this study consists of 335 matchup mea-
surements of POC, SPM, and a,(A). Out of these 335 measurements,
about 50% represent near-surface samples, specifically 158 between the
sea surface and 5 m depth and additional 8 samples between 5 and 10 m.
Out of the remaining 169 samples, 121 samples were collected between
10 and 50 m, 27 between 50 and 100 m, and 21 between 100 and 300 m.
The deepest depths were sampled at stations located off the shelf. Within
this basic dataset the number of matchup measurements which addi-
tionally include bpp(A) is smaller, for example 294 matchups for
bpp(550), ap(M), POC, and SPM. The dataset that includes measurements
at near-surface depths and larger depths is used in this study for the
analysis of relationships between particulate IOPs and particulate con-
centration and composition characteristics. For the analysis of re-
lationships between R,5(\) and particulate characteristics, only the near-
surface measurements are used. In this case the number of matchup
measurements is 98.

2.2. Bulk measures of particle mass concentration and composition

Immediately upon collection of water samples at discrete depths
from a CTD-Rosette equipped with Niskin bottles, the samples were
prepared and stored on board the ship for post-cruise analysis of the
mass concentrations of dried suspended particulate matter (SPM in units
of mg m~%), particulate organic carbon (POC in mg m~3), and
chlorophyll-a (Chla in mg m~3). A detailed description of the method-
ology of water sample collection and analysis for MALINA and ICE-
SCAPE cruises is provided in Reynolds et al. (2016) and Reynolds and
Stramski (2019). The methodology on the ArCS cruise was essentially
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the same. In summary, filtration volumes to prepare the SPM, POC, and
Chla samples ranged from tens of milliliters to over 10 L. This range
reflects the adjustment of filtration volume dependent on particle con-
centration in water in order to optimize each individual analysis. The
SPM samples were prepared by collection of particles onto pre-rinsed,
pre-combusted, and pre-weighed glass-fiber GF/F filters (25 mm diam-
eter). The SPM values were determined post-cruise using a standard
gravimetric method (Van der Linde, 1998) by measuring the dry mass of
particles with a Mettler-Toledo MT5 microbalance with 1 pg precision.
POC determinations were made using a method consistent with JGOFS
protocols (Intergovernmental Oceanographic Commission, 1994).
Samples were prepared by collecting particles on pre-combusted 25 mm
GE/F filters, followed by drying and storing the sample filters for post-
cruise analysis. The filtered volumes and the associated load of POC-
containing particles on filters were appropriately large to minimize
the contribution of adsorbed dissolved organic carbon compared to POC
(Novak et al., 2018). POC was determined with standard CHN analysis
that involves high temperature combustion of sample filters (Parsons
et al., 1984). The filters were subject to acidification treatment prior to
CHN analysis. Similar analysis was made to determine the background
organic carbon content on unused (blank) pre-combusted filters from
the same lot of filters that were used to prepare samples. The carbon
measurements on sample filters were corrected for the average amount
of background carbon determined from several blank filters. The po-
tential sources of uncertainties in POC determinations are discussed in
Gardner et al. (2003) and IOCCG Protocol Series (2021).

The final data of SPM and POC were usually obtained by averaging
results of duplicate or triplicate samples. The median coefficient of
variation for replicate samples of SPM varied between about 3% and 6%
for samples collected on different cruises. A similar range of 2% to 5%
was measured for replicate samples of POC. During the process of data
quality control, we excluded samples with POC < 20 mg m~> measured
during the MALINA campaign because the reproducibility between the
replicates for these very low POC samples was significantly reduced. In
addition, our final dataset excludes six measurements with POC/SPM
ratio higher than 0.6. Such values of POC/SPM are likely biased high
owing to measurement uncertainties in POC and/or SPM. The POC/SPM
ratio is dimensionless and was determined on a g:g (gram by gram)
basis.

Samples were also collected on 25 mm GF/F filters for phytoplankton
pigment analysis. This analysis was made with High Performance Liquid
Chromatography (HPLC) as described in Ras et al. (2008) or Van Heu-
kelem and Thomas (2001). In this study we report on the concentration
of total chlorophyll-a (Chla) which is a sum of mono- and divinyl
chlorophyll-a, chlorophyllide-a, and the allomeric and epimeric forms of
chlorophyll-a.

2.3. Optical measurements of particulate IOPs and remote-sensing
reflectance

The spectral absorption coefficient of particles, ay(A) (in units of
m_l), was measured on discrete water samples obtained from the CTD-
Rosette deployments. Measurements of spectral backscattering coeffi-
cient of particles, byp(2) (in units of m’l), were collected in situ through
vertical profiling with a submersible instrument package. The method-
ology of these IOP measurements is described in Reynolds et al. (2016)
and Reynolds and Stramski (2019). Here we provide a brief summary.

The determinations of a,(A) were made with a spectrophotometric
filter-pad method using a measurement configuration with samples in-
side the integrating sphere which ensures the highest accuracy of mea-
surements with the filter-pad method (Stramski et al., 2015; Roesler
et al., 2018). The measurements with this method were shown to agree
with the PSICAM (Point-Source Integrating Cavity Absorption Meter)
method that takes measurements on particle suspensions to within 7%
or less in terms of the spectral values of the mean percentage difference
(Kostakis et al., 2021). A dual-beam spectrophotometer (Lambda 18,
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Perkin Elmer) equipped with a 15 cm integrating sphere (Labsphere)
was used. Samples and blank filters were scanned at 1 nm intervals over
the spectral range 300-800 nm (MALINA) or 300-850 nm (ICESCAPE,
ArCS). The ap()) coefficient was calculated following the protocol
described in Roesler et al. (2018) including a correction for the path-
length amplification for inside-sphere configuration of filter-pad method
determined by Stramski et al. (2015).

In situ measurements of backscattering coefficient were made
immediately before or after deployment of CTD-Rosette for collection of
water samples. For MALINA, a multispectral Hydroscat-6 sensor was
paired with two single-wavelength a-peta sensors (HOBI Labs, Inc.) to
yield measurements in 8 spectral bands between 420 and 671 nm. On
the ICESCAPE and ArCS cruises, the backscattering measurements were
made in 11 spectral bands between 394 and 852 nm with two Hydroscat-
6 instruments. For intercomparison and data quality assurance both
instruments were equipped with a common band centered at 550 nm.
The processing of backscattering data and the calculation of both the
spectral backscattering coefficient by(A) and the particulate backscat-
tering coefficient, by,(\) = bp(A\) — bpw(A) where byy()) denotes the
contribution of pure seawater, are described in Reynolds et al. (2016).
For matching with data obtained from discrete water samples, vertical
profile measurements of backscattering were averaged into 0.5 or 1 m
depth bins. Previous analysis of backscattering measurements suggests
that uncertainties are generally from a few percent to about 10 — 15%
and are consistent with the level of agreement observed through com-
parisons of different instruments (including Hydroscat-6) which use
different optical configurations, calibration methods, and data process-
ing methods (Boss et al., 2004; Twardowski et al., 2007). In clear waters
where pure seawater makes large contribution to backscattering, the
bpp(1) determinations can be subject to higher uncertainty (Twardowski
et al., 2007; Stramski et al., 2008).

The spectral remote-sensing reflectance, R5(A), was determined from
in situ radiometric measurements taken shortly after or before de-
ployments of CTD-Rosette and backscattering sensors. Rs()) (sr‘l) is
defined as the ratio of the upwelling (i.e., photons traveling along the
vertical towards zenith) water-leaving radiance, Ly,(), z = 07), to the
surface downward plane irradiance, Eq(), z = 07) = E4()\), where these
quantities are just above the sea surface, i.e., z = 0" (Mobley, 1994). On
the MALINA and ICESCAPE cruises, Lw(A, 2 = 0") and Es(\) were
determined from underwater measurements obtained with in situ
spectral radiometers and extrapolated to values above the sea surface. A
free-falling Compact-Optical Profiling System (Biospherical In-
struments, Inc.) was used on the MALINA cruise (Antoine et al., 2013)
and Profiling Reflectance Radiometer (PRR-800, Biospherical In-
struments, Inc.) was used on the ICESCAPE cruises (Lewis et al., 2016).
Both instruments provided data of underwater vertical profiles of up-
welling radiance L,(), ) and downward plane irradiance E4(A, 2) in 18
spectral bands spanning the ultraviolet (UV), visible (VIS) and near-
infrared (NIR) spectral regions. On the ArCS cruise, a Hyperspectral
Optical Profiler (HyperPro, Satlantic, Inc., now SeaBird Scientific) was
deployed in a surface float configuration, providing high-spectral reso-
lution measurements between 350 and 800 nm at ~3.3 nm intervals for
near-surface Ly(A, 2 = 0.2 m) and above-surface E5(\). The measurements
of L,(A, z= 0.2 m) were extrapolated to above sea surface to obtain Ly, (4,
z = 01). The radiometric measurements, data processing, and subse-
quent determination of R;(\) were generally consistent with recom-
mended protocols (Mueller, 2003; IOCCG Protocol Series, 2019).
Methodological details for obtaining the R,s(1) data used in this study
are also described in Zheng et al. (2014) and Uitz et al. (2015). One
notable detail of data processing for the ArCS cruise is that the extrap-
olation of Ly(2, z = 0.2 m) was supported by depth-resolved measure-
ments taken with an independent Profiling Reflectance Radiometer
PRR-800 (Biospherical Instruments, Inc.). The uncertainty of R;s()) de-
terminations using the methodology involving the underwater mea-
surements of upwelling radiance are generally expected to be of the
order of 5% or less (IOCCG Protocol Series, 2019) although it is notable
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that the determinations in the long-wavelength portion of the spectrum
in clear waters are susceptible to higher uncertainties (Li et al., 2016).

2.4. Statistical formulation and evaluation of algorithms

For the purpose of formulating the empirical algorithms to estimate
particulate characteristics from optical measurements, the model-I
regression analysis is appropriate and was used in the study (Legendre
and Michaud, 1999; Ricker, 1973; Sokal and Rohlf, 1995). The numer-
ical parametrizations of algorithm equations obtained from the regres-
sion analysis are valid for SPM and POC expressed in units of mg m~3,
the inherent optical coefficients in units of m™!, and remote-sensing
reflectance in sr*.

The goodness-of-fit of regression models was evaluated using several
statistical parameters characterizing the degree of agreement between
the algorithm-derived and measured values from the algorithm devel-
opment datasets (Table 1). The validation of algorithms with indepen-
dent field datasets and satellite-in situ matchup datasets is beyond the
scope of this study. Such validation analyses are desirable and expected
to be conducted in future studies.

Typically, when examining a relationship between the particulate
and optical variables underlying any specific algorithm considered in
this study, we tested several candidate algorithm formulas involving
different light wavelengths. The regression model that best described the
measured data was selected based on a comparative analysis of various
statistical indicators. The algorithms that provide the best fit to
measured data have MdR close to 1 and low values (the closer to zero the
better) of MdB, MdAPD, MdSA, and RMSD. We note that similar to
MdAAPD, the median symmetric accuracy MdSA can be interpreted as a
median percentage error but, unlike MdAPD, it does not penalize over-
and underprediction differently (Morley, 2016; Morley et al., 2018, note
that in these articles the median symmetric accuracy is denoted by ¢). In
addition, the Pearson correlation coefficient, R, and the linear regression
between the algorithm-derived and measured data were determined. In
this case a model-II linear regression analysis based on the reduced
major axis method was applied (Bellacicco et al., 2019; Kermack and
Haldane, 1950; Ricker, 1973). For the variables of POC and SPM the
model-II regression analysis and calculations of R were made on log;o-
transformed data. In the analysis of algorithm-derived vs. measured
values of POC/SPM, the ordinary (untransformed) data were used.

A pair-wise comparison analysis of candidate regression models
(Seegers et al., 2018) was also conducted to support the selection of final
regression model representing a given relationship. For each pair of
compared algorithms, this analysis involved the calculation of differ-
ences between the algorithm-derived and measured values for each
observation. The algorithm with most wins (i.e., higher number of
smallest differences) was considered superior. While the calculations of

Table 1
Statistical metrics used in characterization of the goodness-of-fit of algorithmic
formulas.

Symbol  Description

N Number of samples (data)

YiXi Algorithm-derived value y and measured value x for sample i of N

Sand I Slope and intercept obtained from model-II linear regression of log(y;) on

log(x;) or from model-II linear regression of y;on x;. S =1 and I =
0 correspond to perfect agreement.

R Pearson’s product moment correlation coefficient between algorithm-
derived and measured variables or between log-transformed variables
used in model-II linear regression

MdB Median bias; median value of (y; — x)

MdR Median ratio of (y; / x;)

MdAPD  Median absolute percentage difference, median value of 100 x [|(y; — x)/ xi|]

MdSA Median symmetric accuracy in percent, 100 x [10™ediant/log0/xdI1 _ 1]
05

RMSD Root mean square deviation, [(1/N) Zfil (i — Xi)z}

% wins Percentage wins in pairwise comparisons of y; and x; from multiple models
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parameters shown in Table 1 characterize the aggregate statistics based
on the entire algorithm development dataset, it is also important to
examine the regression models in terms of potential presence of bias at
different ranges of the variable under consideration. For this purpose,
we examined the patterns of the difference between the algorithm-
derived and measured data across the whole range of measured
values, which is similar to the Bland-Altman analysis (Altman and Bland,
1983; Bland and Altman, 1983). Overall, the consideration of statistical
indicators listed in Table 1, results from pair-wise comparisons, and
Bland-Altman-like plots provided a basis for selecting the final algorithm
formulas presented in this study. In subsequent sections we present re-
sults for the final algorithms.

2.5. Design and structure of particle composition-specific algorithms

Flowcharts depicting the operational structure of particle
composition-specific algorithms for estimating POC from the particulate
IOPs or from remote-sensing reflectance are shown in Figs. 2 and 3,
respectively. These figures also indicate the algorithm equations which
are presented in subsequent sections of the paper. The IOP-based algo-
rithms require input data of spectral ap(A) and bpp(A), and the
reflectance-based algorithms require input of spectral R;s(A). Both al-
gorithm categories include two different methods for estimating POC,
referred to as the Method-1 and Method-2 algorithms. Conceptually, the
Method-1 IOP-based algorithms are similar to the Method-1 Rs-based
algorithms. Likewise, the Method-2 IOP-based algorithms are concep-
tually similar to the Method-2 R;s-based algorithms.

The Method-1 algorithms consists of three main components. First,
the SPM algorithm is used to estimate SPM from the input optical data.
Second, the POC/SPM algorithm is used to estimate POC/SPM from the
input optical data. In the final third step of Method-1 algorithms, POC is
determined as a product of algorithm-derived SPM and POC/SPM. Thus,
the POC derived from Method 1 accounts for changes in POC/SPM
without prior classification of input optical data into particle-
composition classes.

In contrast, the Method-2 algorithms do not use the SPM algorithm
but require the classification of input optical data into particle-
composition classes prior to estimation of POC. First, the POC/SPM al-
gorithm is used to estimate POC/SPM from input optical data in the
same way as in Method-1. The algorithm-derived POC/SPM values are
then sorted into three classes referred to as mineral-dominated with
POC/SPM < 0.12, organic-dominated with POC/SPM > 0.28, and mixed
with POC/SPM between 0.12 and 0.28. The determination of boundary
values of 0.12 and 0.28 is described in Section 2.6. The optical data that
are used as input to POC/SPM algorithm are also assigned to particle-
composition classes as each algorithm-derived value of POC/SPM has
its corresponding optical data. The final component of the Method-2
algorithms is calculation of POC using the algorithm formulas specific
to each particle-composition class. Thus, the POC derived from Method-
2 accounts for changes in POC/SPM through the use of the composition
class-specific POC algorithms.

Fig. 2 also shows that each of the two methods of the IOP-based al-
gorithms has additionally two options for determining POC. In the
Method-1 algorithm the two options are associated with two separate
SPM algorithms, one based on a,()) and the other on bypp(A). In the
Method-2 algorithm the two options are associated with two different
sets of composition class-specific POC algorithms, one set based on a,())
and the other on by,(1). These options will be referred to as a,-based and
byp-based.

Finally, it is notable that the algorithms were formulated using the
input optical data at relatively few light wavelengths which are indi-
cated in Figs. 2 and 3. The IOP-based algorithms require a, at two
wavelengths and by, at one wavelength as these three spectral IOPs are
used in the POC/SPM algorithm. The Method-1 Rys-based algorithm
requires R at three wavelengths and the Method-2 algorithm five
wavelengths. The wavelengths of R, depicted in Fig. 3 correspond to
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IOP-based Method-1 algorithms

a,() Dy

! !

SPM = f[a,(570)] SPM = f[b,,(550)]
Eq.(1) Eq.(2)

a,(h) and by, (1)

!

POC/SPM = f[a,(440), a,(570), by,(550)]
Eq.3)

Composition-specific algorithm
POC = SPM x (POC/SPM)

Composition-specific algorithm
POC = SPM x (POC/SPM)
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IOP-based Method-2 algorithms

a,(h) and by (1)

}

POC/SPM = f[a,(440), a,(570), by,(550)]
Eq.3)

A

Classification of a,(}) and b,,(}) data
using three composition-specific classes
defined by POC/SPM boundaries between
the mineral (min) and mixed (mix) classes
and the mixed and organic (org) classes

! !

Composition-specific algorithms
POC,,;, =/[a,(440)] Eq.(4a)
POC,;, = f[a,(440)] Eq.(4b)
POC,,, =/ [a,(440)] Eq.(4c)

Composition-specific algorithms
POC,,;, =/ [by,(550)] Eq.(5a)
POC,;, =/[b,,(550)] Eq.(5b)
POC,,, =/[b,,(550)]  Eq.(5¢)

org

Fig. 2. Flowcharts of IOP-based Method-1 algorithms (left panel) and IOP-based Method-2 algorithms (right panel) for estimating POC. The symbol f indicates a

functional relationship described by a given equation in text.

R, -based Method-1 algorithm

RN

!

SPM,,,, =/ [R(490), R ((555)]
SP Mhigh =/[R(670)]
Egs.(8a), (8b), (9a), (9b)

R

|

POC/SPM = £[R_(490), R (555), R.(670)]
Eq.(10)

R, -based Method-2 algorithm

Rrs()")

|

POC/SPM = f[R (490), R (555), R.(670)]
Eq.(10)

|

Classification of R (A) data using three
composition-specific classes defined by
POC/SPM  boundaries between the
mineral (min) and mixed (mix) classes
and the mixed and organic (org) classes

!

y

Composition-specific algorithm
POC = SPM x (POC/SPM)

where MBR is the maximum value selected from reflectance band ratios,

Composition-specific algorithm

POC,,;,, =/[MBR] Eq.(12a)
POC,,;, =f[MBR] Eq.(12b)
POCnrg =f[MBR] Eq( 1 2C)

R.(440)/R (555), R,(490)/R (555), and R, (510)/R,(555)

Fig. 3. Flowcharts of R,s-based Method-1 algorithm (left panel) and R,s-based Method-2 algorithm (right panel) for estimating POC. The symbol f indicates a
functional relationship described by a given equation in text. The light wavelengths associated with remote-sensing reflectance R,s correspond to nominal wave-

lengths of SeaWiFS spectral bands.

spectral bands of SeaWiFS (Sea-viewing Wide Field-of-View Sensor)
satellite ocean color sensor. However, we also formulated analogous Rys-
based algorithms for spectral bands available on other satellite ocean
color sensors which include MODIS (Moderate Resolution Imaging
Spectroradiometer on Aqua and Terra satellite missions), VIIRS-SNPP
(Visible Infrared Imaging Radiometer Suite on Suomi National Polar-
Orbiting Partnership mission), VIIRS-NOAA-20 (VIIRS on NOAA-20

satellite which also has been referred to as JPSS-1 for Joint Polar Sat-
ellite System mission), MERIS (MEdium Resolution Imaging Spectrom-
eter on Envisat mission), and OLCI (Ocean and Land Colour Instrument
on Sentinel-3 mission). For brevity, in the paper we present the R.s-based
algorithms for the spectral bands of SeaWiFS. The algorithms for other
sensors are provided in Supplementary Material.
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2.6. Selecting the boundaries of particulate composition classes

As described above, the Method-2 composition-specific algorithms
involve partitioning of input optical data into three particle-composition
classes defined by POC/SPM and referred to as mineral-dominated,
mixed, and organic-dominated. This approach is generally consistent
with the study of Wozniak et al. (2010), in which the mineral-dominated
class was defined as POC/SPM < 0.06, the organic-dominated class as
POC/SPM > 0.25, and the mixed class with the POC/SPM between 0.06
and 0.25. In that study these specific criteria provided a useful means of
classifying particle assemblages and interpreting associated optical
measurements in near-shore waters of Southern California, and were
then also used in other studies (Reynolds et al., 2016; Tran et al., 2019;
Vantrepotte et al., 2012).

In the present study, we performed a correlation analysis between
POC and the particulate IOPs, ap(}) and byp(A) at different light wave-
lengths from the visible spectral region, to optimize the selection of two
boundary values of POC/SPM between the composition classes, specif-
ically the (POC/SPM); boundary between the mineral-dominated and
mixed classes and the (POC/SPM), boundary between the mixed and
organic-dominated classes. The relationships between POC and these
I0Ps were found particularly suitable for this analysis because changes
in POC/SPM produced consistent data patterns in POC vs. ap(A) and POC
vs. bpp(A), which is presented in more detail in Section 3.2.

By varying (POC/SPM); from 0.04 to 0.19 and (POC/SPM) from 0.2
to 0.4, both with an increment of 0.01, we created 336 scenarios of
compositional partitions, each having a different pair of boundary
values of (POC/SPM); and (POC/SPM),. In this analysis we considered
data of a,(A) at seven wavelengths (420, 440, 480, 510, 555, 640 and
675 nm) and byp(A) at six wavelengths (420, 442, 470, 510, 550, and
640 nm) to cover a broad portion of visible spectral region. Given the
number of compositional partitioning scenarios and light wavelengths,
we initially created 2352 compositionally-characterized datasets for the
correlation analysis between POC and ap(A). In these compositionally-
characterized datasets, each pair of POC and a, measurements was
classified as either mineral-dominated [if POC/SPM < (POC/SPM)],
mixed [if (POC/SPM); < POC/SPM < (POC/SPM),], or organic-
dominated [if POC/SPM > (POC/SPM),] according to the specific pair
of boundaries (POC/SPM); and (POC/SPM), associated with a given
dataset. Similarly, 2016 compositionally-characterized datasets were
initially created for the analysis of POC and by,(1).

To ensure a reasonable minimum sample size for correlation analysis
we then disregarded the compositionally-characterized datasets which
did not have at least 30 data pairs of POC and a;, or POC and by, in each
compositional class. Next, for each compositionally-characterized
dataset satisfying the above criteria, we calculated the Pearson corre-
lation coefficient, R, between the log-transformed values of POC and a
given IOP (i.e., a, or by, at specific A) for each of the three compositional
classes. An average value of these three coefficients was assumed to
represent a correlational score, R;, for a given compositionally-
characterized dataset. By inspecting all compositionally-characterized
datasets the initial cumulative scores were then calculated for each
unique pair of boundary values of (POC/SPM); and (POC/SPM), by
summing the corresponding values of R;. In the next step, the pairs of
(POC/SPM); and (POC/SPM), values were decoupled in a sense that the
final cumulative correlational score, R, for any given boundary value
was obtained by summing the initial cumulative scores involving this
boundary value. Finally, based on the highest R, the optimal bound-
aries to delineate the three compositional classes were selected as (POC/
SPM); = 0.12 and (POC/SPM), = 0.28. We recall that this correlation
analysis was performed separately for the compositionally-
characterized datasets of POC and ap()) and the compositionally-
characterized datasets of POC and by,(A). It is remarkable that both
analyses pointed to essentially the same optimal values of 0.11 or 0.12
for (POC/SPM); and 0.27 or 0.28 for (POC/SPM)5.

Remote Sensing of Environment 286 (2023) 113360

3. Results and discussion

3.1. Concentration and composition characteristics of suspended
particulate matter

The measures of pigment and particle mass concentration exhibit a
broad range of variation in our field dataset that includes both the near-
surface and subsurface measurements at depths extending to 300 m
(Table 2). Specifically, Chla ranges from <0.01 to over 30 mg m™~>. The
range for POC is between about 7 and 1750 mg m > and for SPM from
about 20 to 20,000 mg m3. Using the Shapiro-Wilk test (Royston, 1995;
Shapiro and Wilk, 1965), we determined that the probability distribu-
tions of POC and SPM show no substantial deviation from a log-normal
distribution. The Chla distribution differs significantly from both the
log-normal and normal distributions. Given a significant positive
skewness of the distributions, the mean values are much greater than
median values (Table 2).

The values of POC/SPM ratio vary from about 0.01 to 0.6 which
covers approximately the full range that can be expected for this par-
ticulate compositional metric in natural waters (Table 2). This result
indicates that the particle assemblages ranged from totally dominated
by mineral particles (the lowest POC/SPM) to totally organic-dominated
(the highest POC/SPM). The mean and median values of POC/SPM are
nearly identical (0.255 and 0.25, respectively) but the data still exhibit a
positive skewness (0.2) and are neither normally nor log-normally
distributed. The examined samples are also characterized by a wide
range of POC/Chla and Chla/SPM ratios (Table 2). The range of Chla/
SPM is indicative of particle assemblages with highly variable contri-
bution of phytoplankton.

Overall, the large variability in the characteristics shown in Table 2
represents diverse scenarios of both the particle concentration and
composition metrics in the western Arctic seas, which range from very
clear to very turbid waters with highly variable composition in terms of
varying proportions of mineral, organic, phytoplankton, and non-
phytoplankton particles. We recall that the dataset that includes mea-
surements at near-surface depths and larger depths is used in this study
for the analysis of relationships between particulate IOPs and particulate
concentration and composition characteristics. The subset of near-
surface data, which is used in this study for the analysis of Rs-based
algorithms, is also characterized by a similarly wide range of particulate
characteristics (Table 2).

3.2. IOP-based algorithms

3.2.1. SPM algorithms

The particle concentration generally exerts the first-order causal ef-
fect on IOPs of seawater. Fig. 4 illustrates data of mass concentration of
suspended particulate matter, SPM, plotted as a function of particulate
absorption, a,()), and particulate backscattering, byp()), coefficients at
example light wavelengths from the blue, green, and red spectral re-
gions. Each data point in this figure is color coded according to a
continuous scale of POC/SPM values. This provides insights into the
question of potential effect of the composition of particulate matter
expressed in terms of POC/SPM on the relationships between SPM and
particulate IOPs.

Fig. 4 demonstrates that data points corresponding to different
values of POC/SPM across the entire range of POC/SPM largely overlap
and do not form separate patterns for mineral-dominated, organic-
dominated, and mixed particulate assemblages. This result suggests that
these particulate IOPs can provide fairly robust optical proxies for
estimating SPM regardless of varying proportions of organic and mineral
particles. As a result of regression analysis of several candidate functions
to fit the data of SPM vs. IOPs at different wavelengths, we provide the
formulas which best describe our datasets of SPM vs. ap()) (Fig. 4b) and
SPM vs. bpp() (Fig. 4e):
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Table 2
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Summary of characteristics of marine suspended particles in the Arctic dataset. N is the number of samples. The median, minimum, and maximum sampling depths for
the entire dataset of concurrent SPM and POC determinations are 11.5 m, 0 m, and 300 m, respectively. For the entire dataset that includes Chla these depths are 5 m, 0
m, and 300 m. The values in parenthesis represent a subset of the entire dataset which corresponds only to near-surface measurements.

SPM POC POC/SPM Chla POC/Chla Chla/SPM
(mgm™3) (mgm~3) (g:9) (mg m™?) (g:9) (g:8)
N 335 335 335 271 271 271
(98) (98) (98) 97 97) 97
Mean 1235.79 203.68 0.255 2.19 415.55 1.86 1073
(1309.54) (182.74) (0.307) (1.52) (450.65) (1.40 1073
Median 602.49 125.75 0.250 0.44 254.22 8291074
(365.33) (125.68) (0.322) (0.30) (411.60) (7.78 107"
Minimum 23.52 6.99 0.0136 0.004 8.39 2741075
(43.60) (20.35) (0.0146) (0.025) (32.24) (4.0410°%)
Maximum 20,617.0 1745.92 0.583 3276 4249.36 3.00 102
(20,617.0) (1022.13) (0.583) (18.10) (1431.03) (0.99 1072
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Fig. 4. The relationships between the concentration of suspended particulate matter, SPM, and the inherent optical properties (IOPs) of suspended particles, spe-
cifically the particulate absorption coefficient, ap, at light wavelengths X of (a) 440 nm, (b) 570 m, (c) 675 nm, as well as particulate backscattering coefficient, by, at
wavelengths of (d) 442 nm, (e) 550 nm, and (f) 640 nm. Data points are color coded according to a continuum of values of particulate composition parameter, POC/
SPM, as indicated in the color scale bar. The number of data (N) is also displayed. The best-fit regression functions representing the algorithms for estimating SPM
from a,(570) and by,p(550) are also shown as black lines in (b) and (e), respectively (see Section 3.2.1 for details). These regression functions represent the best fit to

all data irrespective of the particulate composition parameter POC/SPM.

SPM = 10(4,37698+0.90646 Ag) (1)

where Ag = log[a,(570)] and

SPM — 10(4.41 139+0.49663 B —0.08396 BGZ) 2

where Bg = log[bp,p(550)], the subscript “G” indicates the wavelength in
the green spectral region, and log is the logarithm to base 10.

The statistical indicators describing the deviations between SPM
derived from these equations and the measured SPM indicate that these
algorithms provide reasonably good estimates of SPM for the algorithm
development dataset (Fig. 5). For example, for SPM derived from
a,(570) the median ratio of predicted to measured values (MdR) is 0.98,
and the median absolute percent difference (MdAPD) is 27.5%. Similar
statistics of MdR = 1.02 and MdAPD = 24.9% were obtained for the

bpp(550)-based algorithm. The MdR values indicate that an aggregate
bias is very small (within 2%). We also note that the particulate IOPs
measured in other spectral regions can still provide reasonably good
proxies for SPM but, for our dataset, are generally not as good as those
from the green spectral region. For example, compared to
SPM vs. a,(570) shown in Fig. 4b, the data points of SPM vs. a,(675) in
Fig. 4c are significantly more scattered.

3.2.2. Effect of particulate composition on the relationship between POC
and IOPs

In contrast to results for SPM shown in Fig. 4, the relationships be-
tween POC and particulate IOPs show a clear tendency for large and
fairly systematic separation of data points driven by varying POC/SPM
(Fig. 6). Specifically, Fig. 6 shows that for any given POC the values of
ap(M) or bpp(2) tend to increase with a decrease in POC/SPM. This trend
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particulate absorption coefficient, a,(570),
as a predictor variable (Eq. (1)). (b) Same as
(a) but for the IOP-based algorithm utilizing
the particulate backscattering coefficient,
bpp(550), as a predictor variable (Eq. (2)).
For illustrative purposes, data points depic-
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Fig. 6. The relationships between the concentration of particulate organic carbon, POC, and the inherent optical properties (IOPs) of suspended particles, specifically
the particulate absorption coefficient, ay, at light wavelengths A of (a) 440 nm, (b) 570 m, (c) 675 nm, as well as particulate backscattering coefficient, by, at
wavelengths of (d) 442 nm, (e) 550 nm, and (f) 640 nm. Data points are color coded according to a continuum of values of particulate composition parameter, POC/
SPM, as indicated in the color scale bar. The best-fit regression functions representing the particle-composition class-specific algorithms for estimating POC from
a,(440) and by,(550) are also shown in (a) and (e), respectively. The blue, green, and orange lines represent these best-fit functions for organic-dominated, mixed,
and mineral-dominated classes of suspended particulate matter, respectively (equations are included in Section 3.2.4). For comparison, the best-fit regression
functions for all data irrespective of particulate composition parameter, POC/SPM, are shown as black lines in (a) and (e). The corresponding equations are: POC =

10(28604540.51201 41-0.07870 A4* ) a1 POC — 10(3-33506+0.53153 Bo) yhere A, — log[a,(440)] and Bg = log[byy(550)].

is readily explainable because a given value of POC represents approx- particulate IOP (or vice versa) can differ by more than one order of
imately a given pool of organic particles, so an increase in the absorption magnitude. Such large differences have been previously demonstrated
and backscattering coefficients is expected with more inorganic particles with field data, for example in studies of concurrently collected mea-
(lower POC/SPM) present within the total particulate assemblage that surements of POC and by,,(2) in different regions of the Southern Ocean
contains a given pool of organic particles. Based on theoretical grounds (Allison et al., 2010; Stramski et al., 1999) and the Pacific and Atlantic
governing the interactions of light with particles that have diverse Oceans (Balch et al., 2010; Cetinic et al., 2012; Stramski et al., 2008), as
physical and chemical properties (Jonasz and Fournier, 2007; Wozniak well as in our earlier analyses of the Arctic data (Reynolds et al., 2016).
and Dera, 2007) it is not surprising that POC values at any given value of The present results from the Arctic dataset shown in Fig. 6 provide
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further evidence for such large variability associated with changes in
characteristics of marine particulate assemblages. These results have
also important cautionary implications for estimating POC from by,(A)
across diverse aquatic environments (in a sense of both the geographic
location and in the vertical within the water column) using the re-
lationships that do not account for the effect of varying particulate
composition. This caution is especially important in view of increased
use of in situ measurements of by, as a proxy of POC from a global
network of Biogeochemical-Argo (BGC-Argo) profiling floats (Claustre
et al., 2020; Haéntjens et al., 2017; Johnson et al., 2017; Koestner et al.,
2022) as well as the use of by, data product obtained from active (lidar)
optical remote sensing (Behrenfeld et al., 2013; Lu et al., 2021).

Importantly, Fig. 6 suggests that while POC cannot be predicted
reliably across diverse water bodies from particulate IOPs using single
relationships that are indiscriminate in terms of particulate composition,
improved predictions can be achieved if the effect of varying POC/SPM
is accounted for in the algorithms. As described in Section 2.5, the
Method-1 and Method-2 algorithms are designed to account for the ef-
fects of varying POC/SPM and specific details of such IOPs-based algo-
rithms are presented in subsequent sections.

3.2.3. POC/SPM algorithm

While considering the formulation of an IOP-based algorithm for
estimating the POC/SPM ratio, it is instructive to examine to what extent
the mineral-dominated, mixed, and organic-dominated particle
composition classes differ in terms of spectral shapes of a,(A) and byp(1).
The spectral shapes of ap(A) exhibit large variability within each
compositional class although the class-specific average shapes clearly
differ from one another (Fig. S1, Supplementary Material). The range of
variability within each compositional class, and significant overlap be-
tween the classes, indicate that the spectral shapes of a,()) are unlikely
to provide an efficient means for estimating POC/SPM or to discriminate
between the mineral-dominated, mixed, and organic-dominated classes.
Similar conclusions were drawn from the analysis of spectral shapes of
bbp(M.

In order to formulate an empirical algorithm for estimating POC/
SPM from IOPs, we tested several formulations including the use of band
ratio of a,(675)/a,(570) which was previously proposed as a proxy for
POC/SPM on the basis of analysis of near-shore seawater samples from
Southern California (Wozniak et al., 2010). For our Arctic dataset,
however, this band ratio does not serve as the best predictor of POC/
SPM. Among several tested formulations, a multiple regression model
involving two IOP predictors, a,(570)/a,(440) and by,(550), provided
the most satisfactory estimation of POC/SPM from IOPs. The a,(570)/
ap(440) ratio serves to reinforce the differences between the mineral-
and organic-dominated particulate assemblages. As POC/SPM changes,
the spectral shape of a,(A) in these spectral regions changes in opposite
direction, making the green-to-blue band ratio highly sensitive to par-
ticulate composition. The second IOP predictor, by,(550), acts as a proxy
for magnitude of SPM. The graphs of POC/SPM data plotted as a func-
tion of a,(570)/ap(440) and byy(550) are included in Supplementary
Material (Fig. S2).

The IOP-based algorithm for estimating POC/SPM as obtained from
multiple regression analysis is:

POC

— 10(~3:46591-4.50415 Acp—0.81967 B~1.21707 Ac Bg)

SPM ®

where Agp = log[a,(570)/a,(440)]1, Bg = log[byp(550)1, N = 294, and
the subscripts “G” and “B” indicate the wavelengths in the green and
blue spectral regions, respectively.

Fig. 7 shows the POC/SPM values predicted from Eq. (3) plotted
versus measured POC/SPM. The parameters representing the aggregate
statistics for the examined dataset of 294 measurements indicate that
this IOP-based algorithm provides an overall good estimation of POC/
SPM within our algorithm development dataset (Fig. 7). For example,
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Fig. 7. Scatter plot comparing the algorithm-derived POC/SPM with measured
POC/SPM for the IOP-based algorithm expressed by Eq. (3). The data points
depicted as solid circles located within the grey shaded areas indicate that the
algorithm-derived POC/SPM is correctly classified into one of the three particle-
composition classes, i.e., the mineral-dominated, mixed, or organic-dominated
class. The data points depicted as cross-marks outside the grey shaded areas
indicate incorrect classification. The calculations of correlation coefficient R
and model-II linear regression fit (black solid line) were made using the ordi-
nary (untransformed) POC/SPM data. The 1:1 line (dashed line) and several
statistical parameters are also shown. All data (i.e., both solid circles and cross-
marks) were included in this analysis.

MdR is 0.96 and MdAPD is 20.67%.

As described in Section 2.5 and Fig. 2, the algorithm-derived POC/
SPM is used directly in the estimation of POC from the Method-1 algo-
rithms. In the Method-2 algorithms, the algorithm-derived POC/SPM is
used to partition the data into three particle-composition classes;
mineral-dominated, mixed, and organic-dominated. This classification
is a prerequisite to development of particle-composition class-specific
algorithms for estimating POC from the Method-2 algorithms.

Fig. 7 depicting data of algorithm-derived vs. measured POC/SPM
illustrates explicitly which specific data of POC/SPM derived from Eq.
(3) were properly classified into one of the compositional classes and
which data were misclassified. The successful classification naturally
corresponds to situations in which both the algorithm-derived and
measured values of POC/SPM belong to the same compositional class.
Specifically, when both values of POC/SPM are less or equal to 0.12 the
algorithm yields successful classification into the mineral-dominated
class or when both values are greater or equal to 0.28 there is a suc-
cessful classification into the organic-dominated class. If both values are
between these two boundaries, a successful classification into the mixed
class is obtained. However, there are also situations in which the dif-
ference between the algorithm-derived and measured POC/SPM is small
but these values are on both sides of boundary between the classes, i.e.,
either on both sides of 0.12 or 0.28. It is reasonable to consider such
cases as successful classification rather than misclassification. For this
purpose, we defined a margin of tolerance for the difference between the
algorithm-derived and measured POC/SPM around the class boundaries.
Specifically, we assumed that the classification is still successful if both
POC/SPM values are on different sides of the boundary value and differ
by <0.03 from one another. In Fig. 7 the three grey shaded squares
including the transition areas between the squares around the class
boundaries comprise the POC/SPM data that were successfully classi-
fied. The misclassified data points fall outside these grey areas.

Results of compositional classification with the IOP-based algorithm
(Eq. (3)) are summarized in Table 3. The percent rate of total successful
classifications (success rate SR) is quite high, 77.9%. The highest rate of
successful classifications is obtained consistently for mineral-dominated
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Table 3
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Results of classification into the three particle-composition classes, i.e., the mineral-dominated, mixed, and organic-dominated classes, using the POC/SPM values
derived from the IOP-based algorithm (left-hand side of the table, see Eq. (3) for the algorithm formula) and the R,s-based algorithm (the right-hand side of the table,
see Eq. (8) for the algorithm formula). The analysis of each POC/SPM algorithm is based on different number of samples (N) as indicated. The results of classification
based on POC/SPM measurements serve as a reference against which the algorithm-derived classifications are compared. Each result of algorithm-derived classifi-
cation includes the number of samples assigned by the algorithm to a given class followed by the percent value that describes either the rate of successful classification
or the rate of failed classification. The results of successful classification are highlighted in bold font.

IOP-based algorithm (N = 294)

Ris-based algorithm (N = 98)

Classification based on measurements

Classification based on measurements

Mineral Mixed Organic Mineral Mixed Organic
N=59 N =100 N =135 N=11 N=28 N =59
Algorithm-derived classification Mineral 48; 81.4% 7;7.0% 0; 0% 9; 81.8% 0; 0% 0; 0%
Mixed 10; 16.9% 68; 68.0% 22;16.3% 2;18.2% 18; 64.3% 10; 16.9%
Organic 1;1.7% 25; 25.0% 113; 83.7% 0; 0% 10; 35.7% 49; 83.1%

Total successful classifications

N = 229; 77.9%

Total successful classifications
N =765 77.6%

and organic-dominated particle assemblages. For these classes the suc-
cess rates are above 80%. The misclassifications of mineral-dominated
or organic-dominated assemblages are nearly always categorized as
mixed particulate assemblages, which also indicates that the probability
of classifying mineral-dominated sample as organic-dominated sample
or vice versa is nearly zero. Perhaps not surprisingly, the success rate of
classifications of mixed assemblages is lower, 68%. Most of misclassified
mixed assemblages are classified as organic-dominated.

Overall, these results demonstrate that the IOP-based algorithm (Eq.
(3)) has an excellent discriminatory power to distinguish between the
mineral-dominated and organic-dominated particle assemblages. The
discriminatory power is also very good for distinguishing the mineral-
dominated from mixed assemblages. The discrimination between the
mixed and organic-dominated assemblages is more challenging
although the successful classification rate into the mixed class is still
quite high, nearly 70%.

3.2.4. Particle composition-specific algorithms for estimation of POC

As described in Section 2.5 (Fig. 2), we present two methods for
estimation of POC from IOP-based algorithms that account for variation
in POC/SPM. In the Method-1 algorithm, POC is determined from IOPs
in a straightforward manner as a product of algorithm-derived SPM (i.e.,
either from Eq. (1) or Eq. (2)) and the algorithm-derived POC/SPM (Eq.
(3)). In the Method-2 algorithm, the POC/SPM algorithm (Eq. (3)) is first
used to classify the IOP measurements into one of the three particle-
composition classes, and then POC is obtained from the class-specific
algorithm formulas using the classified IOPs as input.

The regression analysis applied to subsets of data satisfying the POC/
SPM criteria of the three composition classes, resulted in the following
particle-composition class-specific algorithms for estimating POC from
a,(440):

POC,;, = 10(2.567] 1+0.34418 A —0.17652 ABZ) (4a)
POC,,;, = 10(3.256944.44096 Ag+0.56494 Ag?+0.15640 Ag?) (4b)
POC,, = 10(3:33249+0.86245 Ap) (4¢)

where Ap = log[a,(440)] and N is 69, 122, and 144, respectively. The
class-specific formulas for estimating POC from by,,(550) are:

1 o 2
POC,,;, = 1 0(2.67067 0.20268 BG—0.07476 Bg?) (5a)
4+ 2 3
POC,;, = 10(4.39222 2.15850 Bg+0.62190 BG>+0.09367 Bg® ) (5b)
POC,, = 10(5.11638+1.27574 Bg+0.05029 Bg?) (5¢)

where Bg = log[bpp(550)] and N is 59, 100, and 135, respectively. The

subscripts “min”, “mix”, and “org” indicate that POC is estimated from
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class-specific formulas representative of mineral-dominated, mixed, and
organic-dominated particulate classes, respectively. Note that the pre-
sented formulas involve different degrees of polynomial functions. From
the analysis of several candidate formulas, we selected the functions of
lowest degree beyond which there was no further improvement in
goodness-of-fit statistics. The best-fit functions described by Egs. (4) and
(5) are plotted in Fig. 6a and e for the POC algorithms which use a;(440)
and byy(550), respectively. We found that the use of a,(440) and
bpp(550) for estimating POC provides generally similar or better
goodness-of-fit statistics than the particulate IOPs at other wavelengths.
The use of ay(440) and by,(550) in the class-specific algorithms is ad-
vantageous because these two spectral IOPs are also involved in the
POC/SPM algorithm (see Eq. (3)).

Comparisons of the algorithm-derived with measured values of POC
presented in Figs. 8 and 9 provide a means to evaluate how well the
different versions of IOP-based algorithms represent the main trends and
variability of POC measurements within the algorithm development
dataset. Fig. 8a and b illustrate such evaluation of ay-based Method-1
and Method-2 algorithms, respectively. We recall that these algo-
rithms are referred to as a,-based because SPM is estimated from a,(570)
in the Method-1 algorithm (Eq. (1)), and the class-specific formulas use
ap(440) in the Method-2 algorithm (Eq. (4)). We recall, however, that
the backscattering coefficient is also used in aj,-based algorithms (both
Method-1 and Method-2) because the estimation of POC/SPM requires
the input of by,(550) in addition to a,(440) (Eq. (3)). As shown in Fig. 8a
and b and the statistical parameters included therein, the Method-1 and
Method-2 algorithms offer similar performance based on the analysis of
the algorithm development dataset. Both algorithms represent well the
main trend of POC within most of the POC dynamic range. The excep-
tions are observed at the lowest and highest POC where the algorithms
tend to overestimate and underestimate POC, respectively. Overall,
given a broad range of particulate composition in the dataset, the
aggregate statistical metrics for both Method-1 and Method-2 particle
composition-specific algorithms are reasonably good, for example
MAAPD is below 30%.

Fig. 8c provides an important comparative result because it dem-
onstrates the extent to which the estimation of POC deteriorates when
POC is calculated from a single general formula obtained by fitting the
regression function to all data of POC vs. a,(440) shown in Fig. 6a
regardless of variations in POC/SPM (note that this general fit and
corresponding formula are included in Fig. 6). Compared with Fig. 8a
and b, Fig. 8c exhibits inferior statistical parameters, especially in terms
of worsening RMSD, MdAPD, and MdSA. In addition, the deviations
between the linear fit and the 1:1 line indicates that the general algo-
rithm has stronger tendency for bias in estimated POC at both ends of
POC range (Fig. 8c) compared with the particle composition-specific
algorithms (Fig. 8a and b). Overall, the results in Fig. 8a, b, and ¢
demonstrate the potential for significant improvements of POC
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estimation from both the Method-1 and Method-2 particle composition-
specific algorithms compared to general algorithm that does not account
for variations in POC/SPM.

Fig. 8d is intended for comparison with Fig. 8b to provide additional
insight into performance of the Method-2 algorithm that involves the
classification of data into the three particle-composition classes.
Whereas Fig. 8b represents the actual operational scenario of Method-2
algorithm that relies totally on input data of optical measurements,
Fig. 8d shows results in which the classification of input data entering
the class-specific formulas for estimating POC (Egs. (4a), (4b), (4c)) was
made using the measured values of POC/SPM rather than algorithm-
derived POC/SPM from Eq. (3). Thus, the results in Fig. 8d are free of
misclassification errors which affect to a certain degree the operational
performance of Method-2 algorithm. As expected, the statistical pa-
rameters in Fig. 8d are somewhat improved compared to Fig. 8b, espe-
cially RMSD, MdSA, and the closeness of the linear fit to the 1:1 line at
low and high POC values. Although the results in Fig. 8d were obtained
by skipping the optically-based estimation of POC/SPM (i.e., assuming
that this parameter is known a priori) and thus do not represent the full
optically-based operational scenario of Method-2 algorithm, they pro-
vide additional support for the concept of class-specific algorithms.

Analogous to Fig. 8, results for the byp-based POC algorithms are
depicted in Fig. 9. The main conclusions from the analysis of by,-based
algorithms are qualitatively consistent with those for the a,-based al-
gorithms. However, the statistics for the bypy-based algorithms are
generally inferior compared with the statistics for the ap-based algo-
rithms, which is especially evident when the RMSD values are
compared.

12

Measured POC [mg m'3]

It is important to note that although the proposed IOP-based
approach has no immediate applicability in conjunction with passive
remote sensing of ocean color or active lidar-based optical remote
sensing, it does have the potential for such applications in the future.
Significant research efforts have been and continue to be devoted to
algorithms for IOP retrieval from satellite observations of ocean reflec-
tance (Jorge et al., 2021; Lee et al., 2002; Loisel et al., 2018; Loisel and
Stramski, 2000; Werdell et al., 2013). While by,p(A) has been among the
IOPs retrieved from ocean reflectance obtained from both passive and
active optical remote sensing (Behrenfeld et al., 2013; Werdell et al.,
2018), the retrievals of a,(A) have not yet been demonstrated and vali-
dated. Nevertheless, this capability appears attainable, especially with
further advances in models that aim at partitioning the total absorption
coefficient of seawater, which is derivable from ocean reflectance, into
particulate and non-particulate absorption components (Stramski et al.,
2019; Zhang et al., 2015; Zheng and Stramski, 2013). Such advances can
provide a foundation for future implementation of the IOP-based
approach for estimating POC/SPM and POC from optical remote
sensing observations.

3.3. Reflectance-based algorithms

Linking the characteristics of particulate assemblages such as SPM,
POC/SPM, and POC to particulate IOPs (as described in Section 3.2) has
robust mechanistic basis in a sense that all variables involved in the
examined relationships pertain strictly to particles suspended in water.
In the context of optical remote sensing, the most common approach to
estimate the particulate characteristics has been to use direct empirical
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relationships between the spectral remote-sensing reflectance, Rys(A),
and particulate characteristics of interest. Apart from the fact that R5(A)
is an AOP rather than IOP, this approach is limited from a mechanistic
standpoint because, in addition to suspended particles, chromophoric
dissolved organic matter (CDOM) can contribute significantly to vari-
ability in R;s(A). These effects are typically most pronounced in the UV
and short-wavelength portion of the visible spectrum where the CDOM

Remote Sensing of Environment 286 (2023) 113360

Fig. 9. Scatter plots comparing the
algorithm-derived POC with measured POC
for different variants of backscattering-based
algorithms: (a) Method-1 particle
composition-specific algorithm utilizing Eq.
(2) and Eq. (3) for calculating POC, (b)
Method-2 particle composition-specific al-
gorithm utilizing Eq. (3) for POC/SPM-based
classification and Eq. (5a), (5b), (5¢) for
calculating POC from class-specific for-
mulas, (c) general best-fit regression func-
tion utilizing by,,(550) as a predictor variable
irrespective of POC/SPM (see black line in
Fig. 6e), and (d) similar to (b) but POC/SPM-
based classification was made using the
measured values of POC/SPM instead of Eq.
(3). For illustrative purposes, data points
depicted as blue open circles, green cross-
marks, and orange triangles represent the
organic-dominated, mixed, and mineral-
dominated classes of suspended particulate
matter, respectively. The log-transformed
data were used to calculate the correlation
coefficient R and model-II linear regression
fit (black solid line). The 1:1 line (dashed
line) and several statistical parameters are
also shown.

absorption coefficient, ag()), makes large or dominant contribution to
light absorption (Babin et al., 2003b; Nelson and Siegel, 2013). It is thus
instructive to inspect the patterns of variability in concurrent mea-
surements of ag()) and particle concentration metrics for the surface
samples from our Arctic dataset (Fig. 10). Specifically, we show the
scatter plots of ay(412)/POC and ag(412)/Chla as a function of SPM,
which illustrate the patterns in CDOM absorption relative to POC or Chla
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Fig. 10. (a) The ratio of the CDOM absorp-
tion coefficient at 412 nm to POC, a4(412)/
POC, as a function of SPM. (b) Same as (a)
but for the ratio ag(412)/Chla. Only data for
near-surface samples which were used in the
development of R,s-based algorithms are
presented (N = 96 for ag(412)/POC and N =
95 for ag(412)/Chla). For illustrative pur-
poses, data points depicted as blue open
circles, green cross-marks, and orange tri-
angles represent the organic-dominated,
mixed, and mineral-dominated classes of
suspended particulate matter, respectively.
The dashed horizontal lines depict the
values of a4(412)/POC = 0.00077 mz/mg
and a4(412)/Chla = 0.581 mz/mg. These
values represent the upper boundary of data
included in recent assembly of global POC
algorithm development dataset intended to
be representative primarily of open-ocean
pelagic environments (Stramski et al.,
2022).
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as the particle concentration in water varies. We note that the two ratios,
ag(412)/POC and ag(412)/Chla, were recently included in the set of
criteria for assembling a global field dataset in support of development
of global POC algorithms for different satellite ocean color sensors
(Stramski et al., 2022). In this recent study, only data with ay(412)/POGC
< 0.00077 m%*/mg C and ag(412)/Chla <0.581 m?/mg Chla were
included in the global algorithm development dataset that was intended
to be representative primarily of open-ocean pelagic environments. In
the present Arctic dataset, the data are both below and above these
threshold values (Fig. 10), which indicates a much broader range of
variability in CDOM absorption relative to particulate characteristics
than typically observed in ocean pelagic environments. In addition,
Fig. 10 shows that the Arctic waters with organic-dominated particulate
assemblages, and to large degree also waters with mixed particulate
assemblages, exhibit a clear trend of decreasing CDOM absorption
relative to POC and Chla as the particle concentration SPM increases. No
such trend is observed for waters with mineral-dominated particulate
assemblages.

In the following Sections 3.3.1, 3.3.2 and 3.3.3 we describe the
analysis of the Arctic dataset to formulate algorithms for estimating
SPM, POC/SPM, and POC from R, (\A) measured in spectral bands
available on SeaWiFS satellite ocean color sensor. Analogous algorithms
based on sensor-specific spectral bands available on other satellite sen-
sors (i.e., MODIS, VIIRS, MERIS, and OLCI) are described in Supple-
mentary Material.

3.3.1. SPM algorithms

The algorithms for estimating SPM in surface waters of aquatic en-
vironments from measurements of R;s(\) using spectral bands in the VIS
and NIR spectral regions have been extensively explored in the past
(e.g., Doxaran et al., 2002, 2012; Nechad et al., 2010; Siswanto et al.,
2011; Han et al., 2016; Wei et al., 2021). Several studies demonstrated
that the relationships between SPM and R.s(A\) measured at a single
waveband or combination of wavebands from the red and NIR spectral
regions can provide a relatively simple and effective algorithm
(e.g., Hu et al., 2004; Miller and McKee, 2004; Ouillon et al., 2008;
Nechad et al., 2010; Ondrusek et al., 2012; Han et al., 2016; Novoa et al.,
2017). We determined that a third-degree polynomial function between
the log-transformed variables of SPM and Ry in the red spectral band
provides good representation of the Arctic dataset over the entire range
of measured SPM from about 20 to over 20,000 mg m~° (Fig. 11a, grey
line). Although this single formula provides a good fit to our field data
over the entire range of SPM and the use of the red band minimizes
CDOM effects, the performance of such algorithm with satellite obser-
vations is expected to decline with a decrease in particle concentration
as Ry in the red spectral region becomes very low. As shown in Fig. 11a,
Ry5(670) is generally less than about 0.001 st~ when SPM is <2000 mg
m~2 and decreases to values below 0.0001 sr™! in very clear waters
where SPM can be <100 mg m~>. Another potential challenge in the
context of algorithm application to satellite observations in clear waters
is that satellite-derived Ry in the red spectral region may be subject to
significant relative bias (Bisson et al., 2021).

To circumvent these potential limitations, we formulated the hybrid
SPM algorithm which consists of two empirical formulas based on the
Arctic dataset. Specifically, at low R;5(670) < 0.0008 st! corresponding
to SPM approximately <2000 mg m > (for convenience referred to as
low SPM waters), the algorithm for estimating SPMo, is based on the
green-to-blue band ratio of reflectance. For Rs(670) > 0.0012 st !
corresponding to higher SPM (referred to as high SPM waters), our
hybrid algorithm for estimating SPMp;gh uses the single red band. The
best-fit regression functions for SeaWiFS bands are:

SPMyy = 10[2.93073“,80878 Rp—0.87138 (RG,B)l} (6a)

SPMs = 10[6,57007+1.56050 Rr+0.13979 (Re)” |
high =

(6b)
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where Rg/p = 10g[Rs(G)/Rys(B)], Rr = log[Rs(R)], and Rys(B), Rys(G)
and Ry5(R) are measured in the blue (B), green (G), and red (R) spectral
bands. For SeaWiFS, these bands are centered at 490, 555, and 670 nm,
respectively. The formula for SPMj,,, represents the best-fit to data
which satisfied the condition Rs(R) < 0.0012 sl (N = 87, Fig. 11b).
The formula for SPMy;gn was obtained using data with Ry5(R) > 0.0008
st (N=16, Fig. 11a, solid black line). We note that within this range of
Rys(R), the SPMpjg, function in Eq. (6b) is consistent with the third-
degree polynomial function that was fitted to the entire dataset
(Fig. 11a, grey line). A weighting approach is applied to both formulas of
thelhybrid algorithm in the transition range 0.0008 < R;5(R) < 0.0012
st

SPM = w SPM,oy, + (1-w) SPMyjgn (7a)
_ 7 [Rs(R)-0.0008 |
w=05+0.5 cos( 0.0004 (7b)

where the argument of the cosine function is expressed in radians. The
weighting function w decreases from 1 to 0 with an increase in Ry(R)
from 0.0008 to 0.0012 sr— ', and ensures a smooth transition near the
boundaries of the transition region. A similar approach for SPM algo-
rithm using such boundaries within the dynamic range of reflectance
was recently proposed by Wei et al. (2021).

The SPM hybrid algorithm described by Egs. (6) and (7) provides
generally good agreement between the algorithm-derived and measured
SPM, for example MdR is 0.96 and MdAPD is 20.66% (Fig. 11c). Similar
SPM algorithms for the MODIS, VIIRS, MERIS, and OLCI sensors utilize
the reflectances R s(B), Rys(G), and Ris(R) at sensor-specific spectral
bands closest to those on SeaWiFS (Table S1, Supplementary Material).
The associated statistical parameters characterizing the goodness-of-fit
of sensor-specific SPM algorithms are given in Table S2 (Supplemen-
tary Material).

3.3.2. POC/SPM algorithms

In the Arctic dataset the spectral shapes of R;s(\) exhibit significant
overlap between the particle-composition classes although the average
spectral shape for mineral-dominated class is clearly different from the
organic-dominated and mixed classes (Fig. S3, Supplementary Material).
The organic-dominated and mixed classes, however, show no significant
difference in average spectral shape of Rys(\). This result indicates po-
tential limitations of the optical water type classification based on the
spectral shape of R.5(A) to differentiate water bodies that differ in terms
of particulate composition parameterized with POC/SPM.

In order to formulate the Rys-based algorithm for estimating POC/
SPM we examined the concurrent POC/SPM and R.s(\) measurements
and found that a multiple regression model involving three reflectance
predictors spanning the spectral range from the blue through the red
bands provides a reasonably good algorithm. The best-fit algorithm
formula utilizing the blue, green and red bands of SeaWiFsS is:

POC _ 10(—3.58449—].1)8487 R—0.52062 Rg RG+0.43186 Ry Rg)

where R = 10g[Rs(490)]1, Rg = log[R;s(555)1, Rg = log[R;s(670)]1, and
N = 98. Similar POC/SPM algorithms for the MODIS, VIIRS, MERIS, and
OLCI sensors are presented in Table S3 (Supplementary Material). Also,
the data of POC/SPM plotted as a function of R;5(490), R;s(555), and
Ry5(670) are shown in Fig. S4 (Supplementary Material).

Fig. 12 shows that POC/SPM derived from Eq. (8) agrees generally
well with measured POC/SPM, for example MdR is virtually 1 and
MdAAPD is 21.65%. As the estimation of POC/SPM from this R s-based
algorithm provides a means to classify the particulate assemblages into
the three particle-composition classes, Fig. 12 also illustrates which
specific data of algorithm-derived POC/SPM were properly classified
and which data were misclassified. The same criteria for successful
classification were applied as described in Section 3.2.3 in relation to the
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Fig. 11. (a) The relationship between SPM and remote-sensing reflectance in the
red spectral band, R,s(670). The solid black line is the best-fit regression function
representing the SPMp;g, component of the hybrid algorithm for estimating SPM
from remote-sensing reflectance (Eq. (6b)). For comparison, the grey line is the
best-fit regression function over the entire range of data. This function is:
1og(SPM) = a + b log[R(670)] + ¢ log[R.(670)1*> + d log[R.(670)]°> where
a = 8.71184, b = 4.47426, ¢ = 1.42229, and d = 0.18204. (b) The relationship
between SPM and the spectral band ratio of remote-sensing reflectance,
R.s(555)/R5(490). The solid black line is the best-fit regression function repre-
senting the SPMj,,, component of the hybrid algorithm for estimating SPM from
remote-sensing reflectance (Eq. (6a)). (c) Scatter plot comparing SPM derived
from the hybrid algorithm (Egs. (6a), (6b), (7a), (7b)) with measured SPM. The
log-transformed data were used to calculate the correlation coefficient R and
model-II linear regression fit (black solid line). The 1:1 line (dashed line) and
several statistical parameters are also shown in (c). Only data for near-surface
samples (N = 98) used in the development of Ry-based algorithms are pre-
sented in this figure and, for illustrative purposes, data points depicted as blue
open circles, green cross-marks, and orange triangles represent the organic-
dominated, mixed, and mineral-dominated classes of suspended particulate
matter, respectively. The presented regression functions in (a) and (b) represent
the best fit to all data irrespective of the particulate composition parameter
I:OC/SPM.

IOP-based algorithm. The results of compositional classification of the
Rys-based algorithm are summarized in Table 3 which also shows similar
results for the IOP-based algorithm discussed in Section 3.2.3. Although
the size of the development dataset of R s-based algorithm is much
smaller than that for IOP-based algorithm (i.e., N = 98 vs. N = 294), the
patterns of successful classification and misclassifications are similar for
both types of algorithms. For example, the rate of total successful clas-
sifications is essentially the same and quite high, i.e., 77.6% for the R-
based algorithm vs. 77.9% for the IOP-based algorithm. Also, the highest
rates of successful classifications (>>80%) are obtained for mineral-
dominated and organic-dominated particulate assemblages and the
misclassifications of mineral-dominated or organic-dominated assem-
blages are always categorized as mixed assemblages. The success rate of
classifications of mixed particle assemblages is somewhat lower for the
Rys-based algorithm (64.3%) than the IOP-based algorithm (68%) and
most of misclassified mixed assemblages are classified as organic-
dominated.

Overall, the Rs-based algorithm for estimating POC/SPM (Eq. (8))
has an excellent discriminatory power to distinguish between the
mineral-dominated and organic-dominated particle assemblages. The
algorithm also distinguishes well the mineral-dominated from mixed
assemblages. The discrimination between the mixed and organic-
dominated assemblages is not as good but the successful classification
rates into the mixed class are still nearly 65%. The statistical parameters
characterizing the goodness-of-fit and success rate of classification of
other ocean color sensor-specific Ry-based algorithms for estimating
POC/SPM are given in Table S4 (Supplementary Material).

3.3.3. Particle composition-specific algorithms for estimation of POC

Similar to IOP-based algorithms, we present two methods for esti-
mation of POC from Rys-based algorithms that account for variation in
POC/SPM (see Section 2.5 and Fig. 3). In the Method-1 algorithm, POC
is determined from Ry in a straightforward manner as a product of
algorithm-derived SPM (Egs. (6) and (7)) and the algorithm-derived
POC/SPM (Eq. (8)). The goodness-of-fit parameters for ocean color
sensor-specific Method-1 POC algorithms as obtained from the analysis
of algorithm-derived vs. measured POC, are given in Table S5 (Supple-
mentary Material). In the Method-2 algorithm, the POC/SPM algorithm
(Eq. (8)) is first used to classify the R,; measurements into the particle-
composition classes, and then POC is obtained from the class-specific
algorithm formulas using the classified R;s data as input.

Fig. 13a depicts the Arctic data of POC vs. MBR (maximum band
ratio) where MBR is the highest value selected from the three reflectance
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Fig. 12. Scatter plot comparing the algorithm-derived POC/SPM with
measured POC/SPM for the R,s-based algorithm expressed by Eq. (8). The data
points depicted as solid circles located within the grey shaded areas indicate
that the algorithm-derived POC/SPM is correctly classified into one of the three
particulate compositional classes, i.e., the mineral-dominated, mixed, or
organic-dominated class. The data points depicted as cross-marks indicate
incorrect classification. The calculations of correlation coefficient R and model-
II linear regression fit (black solid line) were made using the ordinary (un-
transformed) POC/SPM data. The 1:1 line (dashed line) and several statistical
parameters are also shown. All data (i.e., both solid circles and cross-marks)
were included in this analysis.

band ratios which are R(443)/R;s(555), R;s(490)/R.s(555), and
R5(510)/R5(555) for SeaWiFS. The presented data are color coded ac-
cording to assignment to one of the three particle-composition classes
which suggests that the relationship between POC and MBR can be
improved when data classified into organic-dominated and mixed par-
ticulate assemblages are analyzed separately. Importantly, these two
classes of data cover a broad dynamic range in POC and MBR and are
quite well separated from each other with organic-dominated assem-
blages exhibiting generally higher POC at any given value of MBR. The
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relationship for the mineral-dominated class is inherently weaker and
more difficult to establish because POC-bearing particles represent only
a small fraction of the whole particulate assemblage that affects MBR. In
our analysis, this difficulty is exacerbated by a small number of matchup
measurements of POC and R,s(\) for the mineral-dominated class and a
relatively small dynamic range of these data in the Arctic dataset.
Nevertheless, we determined the best-fit regression function for the
mineral-dominated class in addition to the best-fitting regression models
for the organic-dominated and mixed classes. The formulas of these Rys-
based particle-composition class-specific algorithms are:

Pocorg — 10[2.57147—2.25381 log(MBR) | (9a)
POC,, — 10/2-19029-178080 log(MBR)| (9b)
POCmin — 10[2,27703—0.84220 log(MBR) | (9(:)

where the number of observations is 59, 28, and 11 for the organic-
dominated (org), mixed (mix), and mineral-dominated (min) classes,
and MBR is based on SeaWiFS bands as indicated above. In this analysis
of composition-specific subsets of data, we found no statistical justifi-
cation for using higher degree polynomials than the first-degree poly-
nomial. The best-fit functions corresponding to Egs. (9a), (9b), and (9¢c)
are depicted in Fig. 13a. Analogous class-specific algorithms for esti-
mating POC from Rys(A) for other ocean color sensors and associated
goodness-of-fit statistical parameters are presented in Table S6 and S7
(Supplementary Material).

For comparison, Fig. 13a also includes the best-fit function (black
solid line) to all data regardless of POC/SPM. Many data points deviate
greatly from this function indicating that such indiscriminate approach
has high uncertainty and can often produce large errors when applied
across wide range of particulate compositions. However, because one of
our motivations to develop and demonstrate the particle composition-
specific algorithms in this study is to stimulate further advancements
of this approach towards its broader applicability across diverse envi-
ronments beyond specific regional limits, it is of more interest for
comparative analysis to illustrate how the current standard global POC
algorithm performs with our Arctic data that covers a broad range of
particulate compositions. To this end, Fig. 13b depicts our field data of
POC vs. R5(443)/R.5(555) along with the line representing the current
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R,5(443)/R5(555). The data points representing measurements are compared with

all data irrespective of particulate compo-
sition parameter, POC/SPM, is shown in
black line. The corresponding equation is:

(b) The relationship between POC and remote-sensing reflectance band ratio,

current standard global POC algorithm (black line) used by NASA OBPG. The

equation of the standard algorithm is: POC = 203.2 [Rys(443)/R.(555)1719%4 (Stramski et al., 2008). Only data for near-surface samples (N = 98) used in the

development of R,s-based algorithms are presented in this figure.
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standard global POC algorithm used by NASA Ocean Biology Processing
Group (OBPG) to generate the satellite-derived POC product from the
reflectance band ratio R;s(443)/R;s(555) which was available on Sea-
WIFS (Stramski et al., 2008; NASA Ocean Color Web https://oceancolor.
gsfc.nasa.gov/atbd/poc/). Similar global algorithms based on the blue-
to-green reflectance band ratio are used by NASA OBPG for other sat-
ellite sensors. By design such global algorithms are intended primarily
for use in open-ocean pelagic environments where surface waters are
typically dominated by phytoplankton and co-varying organic matter
(Stramski et al., 2008, 2022). Nevertheless, these algorithms are
routinely applied to generate the global POC product indiscriminately
across various water bodies encompassing large variation in particulate
composition. Fig. 13b shows that the standard algorithm does not
adequately represent the variability in the relationship between POC
and reflectance observed in our field dataset that covers a wide dynamic
range of particulate concentration and composition.

By comparing the algorithm-derived with measured POC, Fig. 14
illustrates the evaluation of particle composition-specific algorithms for
estimating POC from R;s(\) using our algorithm development dataset.
The comparison of the Method-1 algorithm (Fig. 14a) and the Method-2
algorithm (Fig. 14b) indicates similar performance with the MdR, MdB,
MdAPD, and MdSA statistical parameters marginally better for the
Method-2 algorithm and other statistics (R, S, I, RMSD) marginally
better for the Method-1 algorithm. Importantly, the results in Fig. 14a,b
demonstrate a superiority of composition-specific algorithms formu-
lated with both Method-1 and Method-2 over the standard global POC
algorithm (Fig. 14c). For example, while the RMSD and MdAPD values
for the standard global algorithm are about 194 mg m™> and 63.2%

Measured POC [mg m? ]
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Fig. 14. Scatter plots comparing the
algorithm-derived POC with measured POC
for different variants of R.c-based algo-
rithms: (a) Method-1 particle composition-
specific algorithm utilizing Eq. (6a), (6b),
(7a), (7b), and (8) for calculating POC, (b)
Method-2 particle composition-specific al-
gorithm utilizing Eq. (8) for POC/SPM-based
classification and Eq. (9a), (9b), (9¢) for
calculating POC from class-specific for-
mulas, (c¢) standard global POC algorithm
(black line Fig. 13b), and (d) similar to (b)
but POC/SPM-based classification was made
using the measured values of POC/SPM
instead of Eq. (8). For illustrative purposes,
data points depicted as blue open circles,
green cross-marks, and orange triangles
represent the organic-dominated, mixed,
and mineral-dominated classes of suspended
particulate matter, respectively. The log-
transformed data were used to calculate
the correlation coefficient R and model-II
linear regression fit (black solid line). The
1:1 line (dashed line) and several statistical
parameters are also shown.

respectively (Fig. 14c), these statistics decrease about two-fold for the
Method-1 (Fig. 14a) and Method-2 (Fig. 14b) algorithms. In addition,
the standard global algorithm tends to produce significant positive bias
across a broad range of POC with an aggregate measure of bias MdR =
1.63. In contrast, the Method-1 and Method-2 algorithms do not produce
significant biasing effects. This comparison, while demonstrating the
known limitations of standard global algorithms for indiscriminate ap-
plications across diverse water bodies, supports the potential for
improved performance of particle composition-specific algorithms. In
addition, we note that the regression function fitted to all data regardless
of POC/SPM (Fig. 13a, solid black line) also yields inferior statistics
compared to the particle composition-specific algorithms. For example,
the analysis of POC derived from this indiscriminate best-fit function vs.
measured POC yielded RMSD of 132 mg m=3 8§ =08andI= 041,
where the latter two parameters are indicative of significant positive and
negative biases within the ranges of low and high POC, respectively.

Fig. 14d is provided for comparison with the Method-2 algorithm in
Fig. 14b. The results in Fig. 14d were obtained with the compositional
class assignment of Rs(A) input to the class-specific formulas, i.e., the
MBR input to Egs. (9a), (9b), (9¢) is based on measured POC/SPM rather
than the algorithm-derived POC/SPM from Eq. (8). Thus, in contrast to
the operational Method-2 algorithm shown in Fig. 14b which is subject
to some misclassifications associated with the use of POC/SPM algo-
rithm, the results in Fig. 14d are free of misclassification errors. Thus,
the statistics in Fig. 14d are better than in Fig. 14b.
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Fig. 15. (a) SPM derived from the

SPM MODIS-specific algorithm (Egs. Sla,
(mg/m?) S1b and Table S1 in Supplementary
10000 Material). (b) POC/SPM derived from

the MODIS-specific algorithm (Eq. S2
and Table S3 in Supplementary Mate-
rial). (¢) POC derived from the MODIS-
specific algorithm that uses Method-1
algorithm approach to account for the
composition of particulate suspended

2000

difference

/% 0 300 km

[E—

1000 matter. Specifically, POC was calcu-

lated as a product of algorithm-derived

500 SPM shown in panel (a) and the

algorithm-derived POC/SPM shown in

panel (b). (d) Relative difference in

100 percent between POC derived from the

POC/SPM Method-1 particle composition-specific
0.35

algorithm shown in panel (c) and POC
derived from the standard global POC
algorithm used by NASA OBPG for
processing MODIS-Aqua imagery. This
difference was calculated as 100 x
[Pocmethud-l - Pocstandard]/POCstandard-
These results represent the 10-year
average data for the months of June
and September over the period
2012-2021 obtained from daily satel-

POC/SPM

-0.12

lite ocean color observations with
L oo0s MODIS-Aqua of the Beaufort Sea, the
POC Chukchi Sea, and the northern Bering
(mg/md) Sea (the latitude and longitude bound-

aries of the illustrated region are
57°-75° N; 125°-180° W). The white
areas indicate the lack of valid satellite
data, for example associated with sea
ice cover in the northern part of the
region.

-200

100

POC

. 0 300km

POC
difference
(%)

difference

0 300 km

A\ —

3.4. Demonstration of application to satellite observations

Fig. 15 demonstrates the operational applicability of Rys-based al-
gorithms for estimating SPM (Fig. 15a), POC/SPM (Fig. 15b), as well as
POC using the Method-1 particle composition-specific algorithm
(Fig. 15c¢) from satellite observations in the Arctic region encompassing
the Beaufort Sea, the Chukchi Sea, and the northern portion of the
Bering Sea. The results represent the 10-year average data for the
months of June and September obtained from daily satellite observa-
tions with MODIS-Aqua over the period 2012-2021. These maps reveal
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several salient features in the decadal averages of monthly characteris-
tics of particulate assemblages in this Arctic region. For example, the
elevated SPM observed around the coast of Alaska (Fig. 15a) is generally
associated with relatively low POC/SPM indicative of significant or
dominant contribution of mineral particles to SPM (Fig. 15b). The
feature of elevated SPM and low POC/SPM produced by discharge of
Mackenzie River has larger northward extent in the spring-to-summer
transition period (June) than the summer-to-autumn transition period
(September).

The northern part of the investigated region located south of the sea
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ice cover includes surface waters with the lowest SPM (often <200 mg
m~3; Fig. 15a) and lowest POC (<20 mg m~; Fig. 15¢). Interestingly,
the POC/SPM retrievals indicate that these very clear waters can have
low POC/SPM and thus be dominated by mineral particles (Fig. 15b). It
is conceivable that this feature, which is especially well-pronounced in
the June image of POC/SPM, may be related to release of particles from
retreating sea ice. However, it must be noted that when SPM and POC
are very low the retrievals of POC/SPM are susceptible to potential in-
crease in relative error. It is also notable that whereas the POC/SPM
maps reveal essentially no presence, or only minor presence, of distinct
areas with clear dominance of organic particles (POC/SPM > 0.28) in
the Chukchi and Beaufort Seas, large portions of this region have in-
termediate values of POC/SPM characteristic of mixed particulate as-
semblages (Fig. 15b). This lack of distinct areas with high POC/SPM may
be largely related to the decadal scale of averaging the satellite obser-
vations. The POC maps derived from the particle composition-specific
algorithm show generally elevated levels of POC in coastal waters
(Fig. 15c). Another notable feature is the presence of extensive areas
north and south of the Bering Strait which have higher POC in
September than in June.

For comparison, Fig. 15d shows the relative difference in percent
between POC derived from the Method-1 particle composition-specific
algorithm and the current MODIS-specific standard global algorithm
used by NASA OBPG. This difference was calculated as 100 x
[POCpethod-1 — POCstandard]l/POCstandard- The largest differences are
generally observed in the northern portion of the region where POC
retrieved from the particle-composition algorithm can be tens of per-
centage points lower relative to the standard POC product. In other areas
including the waters adjacent to the Alaskan coast the differences are
also significant. For the entire investigated region, the median difference
in June is —37.4% and the 25th and 75th percentiles are —49.8% and
—23.1%, respectively. In September these metrics of difference are
—46.3%, —69.6%, and —33.1%, respectively. These results are most
likely indicative of a tendency of POC overestimation by the standard
global algorithm because it does not account for variations in the
composition of suspended particulate matter. Such tendency to over-
estimate POC by the standard algorithm is consistent with the analysis of
this algorithm with our algorithm development dataset as shown in
Figs. 13b and 14c.

We have also generated the POC maps similar to those shown in
Fig. 15c¢ but using the Method-2 particle-composition class-specific al-
gorithm. This result is shown in Fig. S5 (Supplementary Material). The
spatial patterns of POC retrieved with the Method-1 and Method-2 al-
gorithms are highly consistent. Given the differences in the design of the
Method-1 and Method-2 algorithms, the POC estimates from these al-
gorithms are expected to exhibit some differences which are also illus-
trated in Fig. S5. These results indicate, however, that the satellite-based
retrievals of POC using the Method-1 and Method-2 algorithms are
generally in good agreement to within +10 to 30%.

4. Summary and future perspectives

High complexity and variability in the composition of seawater
constituents within the global ocean pose major challenges for the
development of unified algorithm approaches for estimation of POC and
other biogeochemically important constituents from optical observa-
tions across a continuum of diverse aquatic environments. To address
these challenges, in this study we present an adaptive optical algorithm
approach for estimating POC which accounts for variability in the
composition of suspended particulate matter. We use the ratio of POC/
SPM as a proxy for particulate composition to optically differentiate
water bodies with varying proportions of organic and mineral particles.
Using field data from the western Arctic seas that exhibit a broad range
of water composition and optical properties, we developed empirical
algorithms to estimate SPM and POC/SPM either from the particulate
inherent optical properties (IOPs) of seawater (i.e., the spectral
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absorption a,()) and backscattering by, (A) coefficients) or directly from
the spectral remote-sensing reflectance of the ocean, Rs(A). The optical
algorithms to retrieve POC/SPM enabled formulation of particle
composition-specific algorithms for estimating POC either from partic-
ulate IOPs or from R;(A). In each of these two algorithm categories we
formulated the particle composition-specific algorithms to estimate POC
from two methods. In the Method-1 algorithms POC is determined from
the algorithm-derived SPM and POC/SPM. In the Method-2 algorithms
POC is determined from particle composition class-specific formulas
following POC/SPM-based classification of input optical data into one of
the three particle-composition classes, i.e., organic-dominated, mineral-
dominated, and mixed. In the category of Rys-based algorithms a suite of
satellite sensor-specific algorithms was formulated which are applicable
to observations with several past and current satellite ocean color
missions.

The analysis of field data showed significant improvements in POC
estimates from particle composition-specific algorithms in optically-
complex Arctic waters compared with algorithms that do not account
for variations in particulate composition, especially the current standard
POC algorithm used for global satellite applications. We also demon-
strated the example application of the R;s-based algorithms to satellite
ocean color observations in the Arctic region. Although our study uses
data from the Arctic region, the underlying concept of adaptive algo-
rithms based on optically-derivable characteristics of water constituents
is not intended to be limited to specific regions but rather is expected to
be more broadly applicable. Also, while the present study demonstrates
the adaptive optical algorithms relying on the use of POC/SPV, the
prospect of incorporation of additional water-constituent properties
related, for example, to particle size distribution and CDOM has the
potential to further improve the adaptive approach in terms of ac-
counting for optical variability caused by water constituents across
diverse environments.

Although the algorithms for estimating chlorophyll-a concentration
(Chla) are outside the scope of this study, it is noteworthy that the
particle composition-specific approach could be also useful to improve
Chla retrievals from optical algorithms. This expectation is supported by
our Arctic data of Chla plotted versus particulate IOPs in Fig. 16 which
show qualitatively similar patterns to those for POC vs. IOPs in Fig. 6.
Unsurprisingly, the data points in Fig. 16 are spread widely because
chlorophyll-a is essentially found only in phytoplankton which coexist
with many types of organic and inorganic particles suspended in water
and multiple characteristics of phytoplankton and all other types of
particles affect the relationships between Chla and particulate IOPs.
However, Fig. 16 also shows that the observed data spread is largely
associated with changes in particulate composition parameterized by
POC/SPM. 1t is seen, for example, that samples dominated by organic
particles with high values of POC/SPM exhibit relatively tight re-
lationships, especially between Chla and a,()) (Fig. 16a,b,c). As POC/
SPM decreases with decreasing contribution of organic particles, these
relationships weaken.

Whereas the demonstrated capability to estimate POC/SPM from
optical measurements provided a mechanistically-based framework for
particle composition-specific algorithms to estimate POC, it is also
noteworthy that POC/SPM can itself be a useful product for biogeo-
chemical studies, for example, when investigating the role of mineral
particles as ballast that enhances the export flux of POC from the surface
layer to deep ocean, stimulation of primary productivity by aeolian
input of iron-rich dust, or organic matter incorporation into sediments
(e.g., Armstrong et al., 2001; Le Moigne et al., 2014; Schartau et al.,
2019; Van der Jagt et al., 2018). In addition, the R ;-derived POC/SPM
can provide a useful quality flag for current standard global products of
POC and Chla derived from satellite ocean color missions, especially in
waters dominated by mineral particles (i.e., low POC/SPM) where these
standard products can be subject to gross error.

In closing, this study demonstrates that differentiation of water
bodies based on particulate composition proxy of POC/SPM provides a
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Fig. 16. As Fig. 6 but for the relationships between the concentration of chlorophyll-a, Chla, and the IOPs of suspended particles.

promising adaptive framework for optical algorithms with improved
performance along the continuum of water bodies exhibiting large
variability in particulate composition and optical properties. This sup-
ports a need for further evaluation of presented algorithms with inde-
pendent field and satellite data from various regions to assess the
performance and uncertainties under different application and envi-
ronmental scenarios as well as explore further refinements and ad-
vancements in the adaptive algorithm approach that accounts for
variability in cause-and-effect relationships between water-constituent
properties and optical properties.
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