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A B S T R A C T   

High complexity and variability in composition of water constituents pose major challenges for development of 
algorithms to estimate biogeochemical data products from optical observations over the continuum of diverse 
aquatic environments. To address these challenges, we examined an adaptive optical approach that accounts for 
variability in composition of suspended particulate matter. We use the ratio of particulate organic carbon to 
suspended particulate matter concentration, POC/SPM, for optically discriminating water bodies with varying 
proportions of organic and mineral particles. Through the analysis of field data from the western Arctic seas that 
exhibit a broad range of water composition and optical properties, we developed empirical algorithms to esti
mate SPM and POC/SPM either from the particulate inherent optical properties (IOPs) of seawater, i.e., the 
spectral particulate absorption ap(λ) or backscattering bbp(λ) coefficients, or directly from the spectral remote- 
sensing reflectance of the ocean, Rrs(λ). The capability to retrieve POC/SPM from optical measurements was 
used to formulate the particle composition-specific algorithms for estimating POC from particulate IOPs or Rrs(λ). 
The evaluation of algorithms with the development field dataset demonstrates that the algorithm formulations 
accounting for changes in POC/SPM provide significant improvements in POC estimates along the continuum of 
optically-complex Arctic waters compared with algorithms that do not account for variations in particulate 
composition, such as the current standard POC algorithm used for global satellite applications. The results of 
example application of the particle composition-specific algorithm and standard global algorithm to satellite 
observations are consistent with comparisons of these algorithms for our field dataset, which supports a 
conclusion that the standard algorithm tends to overestimate POC in Arctic waters that exhibit a broad range of 
particle composition. Although this study demonstrates the adaptive approach using data from the Arctic region, 
it has broader significance and is amenable to further enhancements by including other optically-derivable water 
constituent properties. Further validation analyses and efforts are needed towards a unified approach with 
improved representation of cause-and-effect relationships between water composition and optical properties to 
enable improved optically-based applications across a wide range of water bodies.   

1. Introduction 

Improvements in the estimation of biogeochemically important 
constituents and properties of aquatic environments from inherent or 
apparent optical properties of water bodies is one of the main pre
requisites to further advance the applications of optical measurements in 

aquatic sciences, including the use of in situ optical measurements as 
well as satellite and airborne remote sensing observations of the world’s 
oceans. This challenge arises largely from a complex composition of 
optically-significant constituents of seawater and intricate linkages be
tween the optical properties of various in-water constituents and a 
combination of many physical, biological, chemical, and geological 
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processes that control the sources, variability, and fates of the constit
uents. Currently, new satellite ocean color missions with significantly 
enhanced capabilities of optical measurements are in the phase of 
preparation for launch, such as NASA’s Plankton, Aerosol, Cloud, ocean 
Ecosystem (PACE) mission with high-spectral resolution and polariza
tion capabilities to be launched in 2024 (Werdell et al., 2019). The 
missions such as PACE are expected to result in significant improve
ments of satellite retrievals of spectral remote-sensing reflectance of the 
ocean, Rrs(λ), and spectral inherent optical properties (IOPs) of seawater 
constituents (where λ is light wavelength in vacuum). To unlock the full 
potential of these advancements in support of remote sensing science 
and applications, novel algorithmic approaches are needed with 
improved representation of interactions between light and the highly 
complex and variable constituent composition of seawater. One research 
area where interactions of light with a complex mix of water constitu
ents can be described at a higher level of mechanistic detail than in 
extant bio-optical or remote-sensing algorithms is associated with the 
composition of suspended particulate matter, especially the proportions 
of organic and inorganic particles within particulate assemblages. 

Because of high level of optical complexity and diversity caused by 
variability in concentrations and composition of water constituents, it is 
unlikely that a single bio-optical or remote-sensing algorithm, regardless 
of its underlying empirical, semi-analytical or analytical approach, can 
perform adequately over the continuum of various aquatic environ
ments. The global algorithms for estimating the concentrations of 
chlorophyll-a (Chla) and particulate organic carbon (POC) from satellite 
ocean color observations (O’Reilly et al., 1998; O’Reilly and Werdell, 
2019; Stramski et al., 2008; Stramski et al., 2022) were formulated 
under the premise of acceptable performance in waters with optical 
properties driven primarily by phytoplankton and covarying organic 
materials (Gordon and Morel, 1983; Morel and Prieur, 1977). These 
global algorithms are applied to diverse water bodies indiscriminately 
with respect to composition of seawater constituents, which can yield 
large errors in Chla or POC products in various environmental scenarios, 
for example high proportion of mineral particles in suspended particu
late matter (Woźniak and Stramski, 2004). Numerous approaches have 
been proposed to address the challenges of optical remote sensing across 
diverse environments that exhibit the complexities of water composition 
and optical properties (e.g., Matthews, 2011; Odermatt et al., 2012; 
Tyler et al., 2016). Many studies have focused on regionally-specific 
algorithms whose parameterizations, usually empirical, have been 
optimized using regional datasets. Some of these algorithms include the 
use of predefined limits to the applicability or a switching scheme with 
predefined threshold values applied to the reflectance or water con
stituent concentrations to broaden the range of applicability across 
diverse conditions. Over the last 2 decades the adaptive approaches 
based on an optical water type (OWT) classification have emerged as a 
prospective framework under which to conduct interpretive analysis 
and develop generalized algorithms for applications along the contin
uum of diverse optical and biogeochemical conditions encompassing 
open ocean, coastal, and inland aquatic environments (e.g., Eleveld 
et al., 2017; Lahet et al., 2001; Le et al., 2011; Lubac and Loisel, 2007; 
Mélin et al., 2011; Mélin and Vantrepotte, 2015; Moore et al., 2001, 
2009, 2014; Neil et al., 2019; Reinart et al., 2003; Spyrakos et al., 2018; 
Vantrepotte et al., 2012; Ye et al., 2016). The OWT classification 
schemes in aquatic remote sensing are commonly based on in situ and/ 
or satellite reflectance data which serve to differentiate water types in 
terms of key features associated with the spectral shape and/or magni
tude of reflectance. A number of studies support the emerging view that 
such optical classification framework for blending the retrievals from 
multiple class-specific algorithms has significant potential to improve 
the overall accuracy of remote-sensing data products across a wide range 
of water bodies and to make progress towards a unified approach for 
global applications (e.g., Le et al., 2011; Moore et al., 2014; Neil et al., 
2019; Vantrepotte et al., 2012; Xue et al., 2019). 

The variations in ocean color, or more generally the aquatic color, 

captured by remote-sensing reflectance measurements depend on water 
IOPs which, in turn, are driven in a complex fashion by concentration 
and composition of various particulate and dissolved water constituents 
that are highly variable in time and space. In the reflectance-based 
classification schemes the optical effects of various types of coexisting 
water constituents are not explicitly separable or quantifiable. One 
consequential result is that a given reflectance-based class can encom
pass large variation in composition of water constituents that have 
different optical properties, such as large variation in proportions of 
organic and mineral suspended particles (Spyrakos et al., 2018; Van
trepotte et al., 2012). Under such circumstances, the reflectance class- 
specific algorithms aimed, for example, at retrieving data products 
associated solely with organic particulate matter such as POC or Chla, 
can be inadequate within or across environments where the organic vs. 
mineral composition of particulate matter varies substantially. There
fore, there is a need to explore alternative approaches that can differ
entiate the aquatic environments at a more fundamental level describing 
the composition of optically significant water constituents, in particular 
the composition of suspended particulate matter (Neukermans et al., 
2016). 

The optical effects of particles suspended in water depend, to first 
order, on the concentration, composition, and size distribution of par
ticles (e.g., Jerlov, 1976; Jonasz and Fournier, 2007; Morel, 1973). In 
this study we investigate an optically-based approach that addresses 
variations in optical effects produced by changes in the composition of 
particulate matter, specifically the relative contributions of organic and 
mineral particles coexisting in water. These two main categories of 
particles have generally quite different refractive index, especially 
plankton cells and mineral particles (Aas, 1996). Such differences in 
refractive index have major implications to interactions of light with 
particles and, hence, to the bulk optical properties of marine particle 
assemblages (e.g., Babin et al., 2003a; Bowers and Binding, 2006; Morel, 
1973; Twardowski et al., 2001; Stramski and Kiefer, 1991). It has long 
been recognized that the ratio POC/SPM, where SPM is the total mass 
concentration of suspended particulate matter, can serve as a proxy of 
particulate composition which aids in the interpretation of variability in 
light scattering properties of seawater (Betzer et al., 1974; Carder et al., 
1974; Feely et al., 1974). Although POC represents a fraction of par
ticulate organic matter (POM) and there is no single conversion factor 
from POC to POM due to some variations in the composition of POM, the 
POC/SPM ratio is a useful proxy for characterizing the contribution 
of organic particles to SPM. The carbon content of POM is the 
structural foundation of particulate organic matter and the variability in 
POC/POM is generally constrained within a relatively narrow range 
between about 0.4 and 0.55 (Babin et al., 2003a; Feely et al., 1974; 
Gordon, 1970; Riley, 1970). In addition, carbon is a major “currency” in 
the study of the Earth’s biogeochemical cycles, so direct use of POC has 
advantages over POM for research that aims to advance the estimation 
of carbon data products from optical algorithms. 

In the present study we use POC/SPM as a proxy of particulate 
composition but, in general, the question whether POC/SPM or POM/ 
SPM (or alternatively PIM/SPM where PIM is the mass concentration of 
inorganic particulate matter) is chosen as composition-related param
eter for optical studies can depend on specific or long-term research 
goals. Previous studies of different water bodies demonstrated that the 
overall variability in particulate IOPs is reduced and the relationships 
between the IOPs and particle concentration or particle size metrics are 
improved if the analysis is constrained by the compositional parameters 
such as POC/SPM or POM/SPM (Loisel et al., 2007; Neukermans et al., 
2012; Reynolds et al., 2016; Snyder et al., 2008; Stavn and Richter, 
2008; Stramski et al., 2007; Woźniak et al., 2010; Woźniak et al., 2018; 
Woźniak and Meler, 2020). It is also notable that the benefit of POC/ 
SPM as a relatively simple metric can extend beyond the effects asso
ciated with varying organic vs. mineral composition. Our previous 
analysis of measurements in the western Arctic seas indicated a signif
icant degree of covariation between POC/SPM and the contributions of 
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differently-sized particles to particle size distribution (PSD) (Reynolds 
et al., 2016). Specifically, the organic-dominated particle assemblages 
(high POC/SPM) exhibited consistently higher proportion of large-sized 
particles (for example, > 20 μm in size) compared to mineral-dominated 
assemblages (low POC/SPM). Such covariation has the potential to 
strengthen the usefulness of POC/SPM metric because PSD is also an 
important particle characteristic affecting the optical properties. 

The present study has three main objectives: (i) to investigate the 
POC/SPM ratio as a proxy of composition of suspended particulate 
matter for optically discriminating water bodies dominated by organic 
particles, mineral particles, or mixed particle assemblages; (ii) to 
formulate algorithms for estimating SPM and the POC/SPM ratio from 
optical measurements of particulate IOPs or remote-sensing reflectance 
Rrs(λ), and (iii) to formulate adaptive particle composition-specific al
gorithms for estimating POC based on optical measurements of partic
ulate IOPs or Rrs(λ), which account for variations in POC/SPM. These 
objectives are addressed through the analysis of field data collected in 
the western Arctic seas exhibiting a broad range of variability in par
ticulate characteristics and optical properties of seawater. Using this 
algorithm development dataset, we also evaluated how well the 
different algorithms represent the variability within this dataset. The 
validation and performance assessment of the algorithms with inde
pendent field and satellite data is a separate extensive topic which is 
beyond the scope of this study and is expected to be addressed in future 
work. 

2. Methods 

2.1. Study area and data sources 

This study is based on measurements made during four oceano
graphic cruises in the Arctic region encompassing the Chukchi Sea and 
the western Beaufort Sea (Fig. 1). The first cruise was in summer 2009 
(31 July – 24 August) in the southeastern Beaufort Sea which included 
the region of Mackenzie River plume. This was the MALINA (MAckenzie 
LIght aNd cArbon) expedition on the CCGS Amundsen (Massicotte et al., 
2021). The next two cruises (HLY1001 and HLY1101) were on the 

USCGC Healy and took place in summer seasons of 2010 (18 June −16 
July) and 2011 (28 June – 24 July) in the Chukchi Sea and western 
Beaufort Sea. These two cruises were part of the NASA ICESCAPE (Im
pacts of Climate on EcoSystems and Chemistry of the Arctic Pacific 
Environment) program (Arrigo, 2015) and are referred to as ICESCAPE 
cruises. The fourth cruise (MR17-05C) was in late summer 2017 (23 
August – 21 September) and also surveyed the region of the Chukchi and 
Beaufort Seas. This cruise was on the R/V Mirai as part of the Japanese 
Arctic Challenge for Sustainability (ArCS) program (Shiozaki et al., 
2019). This cruise is referred to as ArCS. 

In this study we use a dataset assembled from both in situ mea
surements and analysis of discrete water samples that were collected in 
close proximity to location and time of in situ measurements. The data 
were collected over a broad range of environments using a consistent set 
of measurement and data processing protocols. The data quality assur
ance and control processes were integrated into the development of the 
final dataset. Portions of this dataset have been described in our previ
ous studies which address relationships between seawater optical 
properties and various concentration-, size-, and composition-related 
characteristics of suspended particulate matter (Neukermans et al., 
2016; Reynolds et al., 2016; Reynolds and Stramski, 2019; Runyan et al., 
2020). 

Data collected from a total of 139 stations sampled during the four 
Arctic cruises are utilized in this study (Fig. 1). The key optical variables 
involved in our analysis include two IOPs, namely the spectral partic
ulate absorption coefficient, ap(λ), and the spectral particulate back
scattering coefficient, bbp(λ), as well as Rrs(λ) which belongs to the 
category of apparent optical properties (AOPs) and is central to remote 
sensing (Mobley, 1994; Preisendorfer, 1961). The key particulate char
acteristics analyzed in this study are POC and SPM; however, for general 
characterization of investigated water bodies we also report on Chla 
data. For the analysis of relationships between the particulate charac
teristics and IOPs, data were collected at near surface depths (~1–5 m) 
and a few additional depths. These additional sampling depths were 
selected to obtain data for water samples where the maximum of 
chlorophyll-a fluorescence, the optical beam attenuation coefficient, or 
backscattering coefficient occurred within the water column, and also 
close to the bottom (within 3–5 m) at stations located on the shelf. 

The final basic dataset in this study consists of 335 matchup mea
surements of POC, SPM, and ap(λ). Out of these 335 measurements, 
about 50% represent near-surface samples, specifically 158 between the 
sea surface and 5 m depth and additional 8 samples between 5 and 10 m. 
Out of the remaining 169 samples, 121 samples were collected between 
10 and 50 m, 27 between 50 and 100 m, and 21 between 100 and 300 m. 
The deepest depths were sampled at stations located off the shelf. Within 
this basic dataset the number of matchup measurements which addi
tionally include bbp(λ) is smaller, for example 294 matchups for 
bbp(550), ap(λ), POC, and SPM. The dataset that includes measurements 
at near-surface depths and larger depths is used in this study for the 
analysis of relationships between particulate IOPs and particulate con
centration and composition characteristics. For the analysis of re
lationships between Rrs(λ) and particulate characteristics, only the near- 
surface measurements are used. In this case the number of matchup 
measurements is 98. 

2.2. Bulk measures of particle mass concentration and composition 

Immediately upon collection of water samples at discrete depths 
from a CTD-Rosette equipped with Niskin bottles, the samples were 
prepared and stored on board the ship for post-cruise analysis of the 
mass concentrations of dried suspended particulate matter (SPM in units 
of mg m−3), particulate organic carbon (POC in mg m−3), and 
chlorophyll-a (Chla in mg m−3). A detailed description of the method
ology of water sample collection and analysis for MALINA and ICE
SCAPE cruises is provided in Reynolds et al. (2016) and Reynolds and 
Stramski (2019). The methodology on the ArCS cruise was essentially 

Fig. 1. Locations of oceanographic stations where coincident measurements of 
optical properties and characteristics of suspended particulate matter were 
collected. The data were collected during four cruises as indicated. 
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the same. In summary, filtration volumes to prepare the SPM, POC, and 
Chla samples ranged from tens of milliliters to over 10 L. This range 
reflects the adjustment of filtration volume dependent on particle con
centration in water in order to optimize each individual analysis. The 
SPM samples were prepared by collection of particles onto pre-rinsed, 
pre-combusted, and pre-weighed glass-fiber GF/F filters (25 mm diam
eter). The SPM values were determined post-cruise using a standard 
gravimetric method (Van der Linde, 1998) by measuring the dry mass of 
particles with a Mettler-Toledo MT5 microbalance with 1 μg precision. 
POC determinations were made using a method consistent with JGOFS 
protocols (Intergovernmental Oceanographic Commission, 1994). 
Samples were prepared by collecting particles on pre-combusted 25 mm 
GF/F filters, followed by drying and storing the sample filters for post- 
cruise analysis. The filtered volumes and the associated load of POC- 
containing particles on filters were appropriately large to minimize 
the contribution of adsorbed dissolved organic carbon compared to POC 
(Novak et al., 2018). POC was determined with standard CHN analysis 
that involves high temperature combustion of sample filters (Parsons 
et al., 1984). The filters were subject to acidification treatment prior to 
CHN analysis. Similar analysis was made to determine the background 
organic carbon content on unused (blank) pre-combusted filters from 
the same lot of filters that were used to prepare samples. The carbon 
measurements on sample filters were corrected for the average amount 
of background carbon determined from several blank filters. The po
tential sources of uncertainties in POC determinations are discussed in 
Gardner et al. (2003) and IOCCG Protocol Series (2021). 

The final data of SPM and POC were usually obtained by averaging 
results of duplicate or triplicate samples. The median coefficient of 
variation for replicate samples of SPM varied between about 3% and 6% 
for samples collected on different cruises. A similar range of 2% to 5% 
was measured for replicate samples of POC. During the process of data 
quality control, we excluded samples with POC < 20 mg m−3 measured 
during the MALINA campaign because the reproducibility between the 
replicates for these very low POC samples was significantly reduced. In 
addition, our final dataset excludes six measurements with POC/SPM 
ratio higher than 0.6. Such values of POC/SPM are likely biased high 
owing to measurement uncertainties in POC and/or SPM. The POC/SPM 
ratio is dimensionless and was determined on a g:g (gram by gram) 
basis. 

Samples were also collected on 25 mm GF/F filters for phytoplankton 
pigment analysis. This analysis was made with High Performance Liquid 
Chromatography (HPLC) as described in Ras et al. (2008) or Van Heu
kelem and Thomas (2001). In this study we report on the concentration 
of total chlorophyll-a (Chla) which is a sum of mono- and divinyl 
chlorophyll-a, chlorophyllide-a, and the allomeric and epimeric forms of 
chlorophyll-a. 

2.3. Optical measurements of particulate IOPs and remote-sensing 
reflectance 

The spectral absorption coefficient of particles, ap(λ) (in units of 
m−1), was measured on discrete water samples obtained from the CTD- 
Rosette deployments. Measurements of spectral backscattering coeffi
cient of particles, bbp(λ) (in units of m−1), were collected in situ through 
vertical profiling with a submersible instrument package. The method
ology of these IOP measurements is described in Reynolds et al. (2016) 
and Reynolds and Stramski (2019). Here we provide a brief summary. 

The determinations of ap(λ) were made with a spectrophotometric 
filter-pad method using a measurement configuration with samples in
side the integrating sphere which ensures the highest accuracy of mea
surements with the filter-pad method (Stramski et al., 2015; Roesler 
et al., 2018). The measurements with this method were shown to agree 
with the PSICAM (Point-Source Integrating Cavity Absorption Meter) 
method that takes measurements on particle suspensions to within 7% 
or less in terms of the spectral values of the mean percentage difference 
(Kostakis et al., 2021). A dual-beam spectrophotometer (Lambda 18, 

Perkin Elmer) equipped with a 15 cm integrating sphere (Labsphere) 
was used. Samples and blank filters were scanned at 1 nm intervals over 
the spectral range 300–800 nm (MALINA) or 300–850 nm (ICESCAPE, 
ArCS). The ap(λ) coefficient was calculated following the protocol 
described in Roesler et al. (2018) including a correction for the path
length amplification for inside-sphere configuration of filter-pad method 
determined by Stramski et al. (2015). 

In situ measurements of backscattering coefficient were made 
immediately before or after deployment of CTD-Rosette for collection of 
water samples. For MALINA, a multispectral Hydroscat-6 sensor was 
paired with two single-wavelength a-βeta sensors (HOBI Labs, Inc.) to 
yield measurements in 8 spectral bands between 420 and 671 nm. On 
the ICESCAPE and ArCS cruises, the backscattering measurements were 
made in 11 spectral bands between 394 and 852 nm with two Hydroscat- 
6 instruments. For intercomparison and data quality assurance both 
instruments were equipped with a common band centered at 550 nm. 
The processing of backscattering data and the calculation of both the 
spectral backscattering coefficient bb(λ) and the particulate backscat
tering coefficient, bbp(λ) = bb(λ) − bbw(λ) where bbw(λ) denotes the 
contribution of pure seawater, are described in Reynolds et al. (2016). 
For matching with data obtained from discrete water samples, vertical 
profile measurements of backscattering were averaged into 0.5 or 1 m 
depth bins. Previous analysis of backscattering measurements suggests 
that uncertainties are generally from a few percent to about 10 – 15% 
and are consistent with the level of agreement observed through com
parisons of different instruments (including Hydroscat-6) which use 
different optical configurations, calibration methods, and data process
ing methods (Boss et al., 2004; Twardowski et al., 2007). In clear waters 
where pure seawater makes large contribution to backscattering, the 
bbp(λ) determinations can be subject to higher uncertainty (Twardowski 
et al., 2007; Stramski et al., 2008). 

The spectral remote-sensing reflectance, Rrs(λ), was determined from 
in situ radiometric measurements taken shortly after or before de
ployments of CTD-Rosette and backscattering sensors. Rrs(λ) (sr−1) is 
defined as the ratio of the upwelling (i.e., photons traveling along the 
vertical towards zenith) water-leaving radiance, Lw(λ, z = 0+), to the 
surface downward plane irradiance, Ed(λ, z = 0+) ≡ Es(λ), where these 
quantities are just above the sea surface, i.e., z = 0+ (Mobley, 1994). On 
the MALINA and ICESCAPE cruises, Lw(λ, z = 0+) and Es(λ) were 
determined from underwater measurements obtained with in situ 
spectral radiometers and extrapolated to values above the sea surface. A 
free-falling Compact-Optical Profiling System (Biospherical In
struments, Inc.) was used on the MALINA cruise (Antoine et al., 2013) 
and Profiling Reflectance Radiometer (PRR-800, Biospherical In
struments, Inc.) was used on the ICESCAPE cruises (Lewis et al., 2016). 
Both instruments provided data of underwater vertical profiles of up
welling radiance Lu(λ, z) and downward plane irradiance Ed(λ, z) in 18 
spectral bands spanning the ultraviolet (UV), visible (VIS) and near- 
infrared (NIR) spectral regions. On the ArCS cruise, a Hyperspectral 
Optical Profiler (HyperPro, Satlantic, Inc., now SeaBird Scientific) was 
deployed in a surface float configuration, providing high-spectral reso
lution measurements between 350 and 800 nm at ~3.3 nm intervals for 
near-surface Lu(λ, z = 0.2 m) and above-surface Es(λ). The measurements 
of Lu(λ, z = 0.2 m) were extrapolated to above sea surface to obtain Lw(λ, 
z = 0+). The radiometric measurements, data processing, and subse
quent determination of Rrs(λ) were generally consistent with recom
mended protocols (Mueller, 2003; IOCCG Protocol Series, 2019). 
Methodological details for obtaining the Rrs(λ) data used in this study 
are also described in Zheng et al. (2014) and Uitz et al. (2015). One 
notable detail of data processing for the ArCS cruise is that the extrap
olation of Lu(λ, z = 0.2 m) was supported by depth-resolved measure
ments taken with an independent Profiling Reflectance Radiometer 
PRR-800 (Biospherical Instruments, Inc.). The uncertainty of Rrs(λ) de
terminations using the methodology involving the underwater mea
surements of upwelling radiance are generally expected to be of the 
order of 5% or less (IOCCG Protocol Series, 2019) although it is notable 
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that the determinations in the long-wavelength portion of the spectrum 
in clear waters are susceptible to higher uncertainties (Li et al., 2016). 

2.4. Statistical formulation and evaluation of algorithms 

For the purpose of formulating the empirical algorithms to estimate 
particulate characteristics from optical measurements, the model-I 
regression analysis is appropriate and was used in the study (Legendre 
and Michaud, 1999; Ricker, 1973; Sokal and Rohlf, 1995). The numer
ical parametrizations of algorithm equations obtained from the regres
sion analysis are valid for SPM and POC expressed in units of mg m−3, 
the inherent optical coefficients in units of m−1, and remote-sensing 
reflectance in sr−1. 

The goodness-of-fit of regression models was evaluated using several 
statistical parameters characterizing the degree of agreement between 
the algorithm-derived and measured values from the algorithm devel
opment datasets (Table 1). The validation of algorithms with indepen
dent field datasets and satellite-in situ matchup datasets is beyond the 
scope of this study. Such validation analyses are desirable and expected 
to be conducted in future studies. 

Typically, when examining a relationship between the particulate 
and optical variables underlying any specific algorithm considered in 
this study, we tested several candidate algorithm formulas involving 
different light wavelengths. The regression model that best described the 
measured data was selected based on a comparative analysis of various 
statistical indicators. The algorithms that provide the best fit to 
measured data have MdR close to 1 and low values (the closer to zero the 
better) of MdB, MdAPD, MdSA, and RMSD. We note that similar to 
MdAPD, the median symmetric accuracy MdSA can be interpreted as a 
median percentage error but, unlike MdAPD, it does not penalize over- 
and underprediction differently (Morley, 2016; Morley et al., 2018, note 
that in these articles the median symmetric accuracy is denoted by ζ). In 
addition, the Pearson correlation coefficient, R, and the linear regression 
between the algorithm-derived and measured data were determined. In 
this case a model-II linear regression analysis based on the reduced 
major axis method was applied (Bellacicco et al., 2019; Kermack and 
Haldane, 1950; Ricker, 1973). For the variables of POC and SPM the 
model-II regression analysis and calculations of R were made on log10- 
transformed data. In the analysis of algorithm-derived vs. measured 
values of POC/SPM, the ordinary (untransformed) data were used. 

A pair-wise comparison analysis of candidate regression models 
(Seegers et al., 2018) was also conducted to support the selection of final 
regression model representing a given relationship. For each pair of 
compared algorithms, this analysis involved the calculation of differ
ences between the algorithm-derived and measured values for each 
observation. The algorithm with most wins (i.e., higher number of 
smallest differences) was considered superior. While the calculations of 

parameters shown in Table 1 characterize the aggregate statistics based 
on the entire algorithm development dataset, it is also important to 
examine the regression models in terms of potential presence of bias at 
different ranges of the variable under consideration. For this purpose, 
we examined the patterns of the difference between the algorithm- 
derived and measured data across the whole range of measured 
values, which is similar to the Bland-Altman analysis (Altman and Bland, 
1983; Bland and Altman, 1983). Overall, the consideration of statistical 
indicators listed in Table 1, results from pair-wise comparisons, and 
Bland-Altman-like plots provided a basis for selecting the final algorithm 
formulas presented in this study. In subsequent sections we present re
sults for the final algorithms. 

2.5. Design and structure of particle composition-specific algorithms 

Flowcharts depicting the operational structure of particle 
composition-specific algorithms for estimating POC from the particulate 
IOPs or from remote-sensing reflectance are shown in Figs. 2 and 3, 
respectively. These figures also indicate the algorithm equations which 
are presented in subsequent sections of the paper. The IOP-based algo
rithms require input data of spectral ap(λ) and bbp(λ), and the 
reflectance-based algorithms require input of spectral Rrs(λ). Both al
gorithm categories include two different methods for estimating POC, 
referred to as the Method-1 and Method-2 algorithms. Conceptually, the 
Method-1 IOP-based algorithms are similar to the Method-1 Rrs-based 
algorithms. Likewise, the Method-2 IOP-based algorithms are concep
tually similar to the Method-2 Rrs-based algorithms. 

The Method-1 algorithms consists of three main components. First, 
the SPM algorithm is used to estimate SPM from the input optical data. 
Second, the POC/SPM algorithm is used to estimate POC/SPM from the 
input optical data. In the final third step of Method-1 algorithms, POC is 
determined as a product of algorithm-derived SPM and POC/SPM. Thus, 
the POC derived from Method 1 accounts for changes in POC/SPM 
without prior classification of input optical data into particle- 
composition classes. 

In contrast, the Method-2 algorithms do not use the SPM algorithm 
but require the classification of input optical data into particle- 
composition classes prior to estimation of POC. First, the POC/SPM al
gorithm is used to estimate POC/SPM from input optical data in the 
same way as in Method-1. The algorithm-derived POC/SPM values are 
then sorted into three classes referred to as mineral-dominated with 
POC/SPM ≤ 0.12, organic-dominated with POC/SPM ≥ 0.28, and mixed 
with POC/SPM between 0.12 and 0.28. The determination of boundary 
values of 0.12 and 0.28 is described in Section 2.6. The optical data that 
are used as input to POC/SPM algorithm are also assigned to particle- 
composition classes as each algorithm-derived value of POC/SPM has 
its corresponding optical data. The final component of the Method-2 
algorithms is calculation of POC using the algorithm formulas specific 
to each particle-composition class. Thus, the POC derived from Method- 
2 accounts for changes in POC/SPM through the use of the composition 
class-specific POC algorithms. 

Fig. 2 also shows that each of the two methods of the IOP-based al
gorithms has additionally two options for determining POC. In the 
Method-1 algorithm the two options are associated with two separate 
SPM algorithms, one based on ap(λ) and the other on bbp(λ). In the 
Method-2 algorithm the two options are associated with two different 
sets of composition class-specific POC algorithms, one set based on ap(λ) 
and the other on bbp(λ). These options will be referred to as ap-based and 
bbp-based. 

Finally, it is notable that the algorithms were formulated using the 
input optical data at relatively few light wavelengths which are indi
cated in Figs. 2 and 3. The IOP-based algorithms require ap at two 
wavelengths and bbp at one wavelength as these three spectral IOPs are 
used in the POC/SPM algorithm. The Method-1 Rrs-based algorithm 
requires Rrs at three wavelengths and the Method-2 algorithm five 
wavelengths. The wavelengths of Rrs depicted in Fig. 3 correspond to 

Table 1 
Statistical metrics used in characterization of the goodness-of-fit of algorithmic 
formulas.  

Symbol Description 

N Number of samples (data) 
yi,xi Algorithm-derived value y and measured value x for sample i of N 
S and I Slope and intercept obtained from model-II linear regression of log(yi) on 

log(xi) or from model-II linear regression of yi on xi. S = 1 and I =
0 correspond to perfect agreement. 

R Pearson’s product moment correlation coefficient between algorithm- 
derived and measured variables or between log-transformed variables 
used in model-II linear regression 

MdB Median bias; median value of (yi − xi) 
MdR Median ratio of (yi / xi) 
MdAPD Median absolute percentage difference, median value of 100 × [|(yi − xi)/ xi|] 
MdSA Median symmetric accuracy in percent, 100 × [10median[|log(yi/xi)|] – 1] 

RMSD Root mean square deviation, 
[
(1/N)

∑N
i=1

(
yi − xi

)2
]0.5 

% wins Percentage wins in pairwise comparisons of yi and xi from multiple models  
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spectral bands of SeaWiFS (Sea-viewing Wide Field-of-View Sensor) 
satellite ocean color sensor. However, we also formulated analogous Rrs- 
based algorithms for spectral bands available on other satellite ocean 
color sensors which include MODIS (Moderate Resolution Imaging 
Spectroradiometer on Aqua and Terra satellite missions), VIIRS-SNPP 
(Visible Infrared Imaging Radiometer Suite on Suomi National Polar- 
Orbiting Partnership mission), VIIRS-NOAA-20 (VIIRS on NOAA-20 

satellite which also has been referred to as JPSS-1 for Joint Polar Sat
ellite System mission), MERIS (MEdium Resolution Imaging Spectrom
eter on Envisat mission), and OLCI (Ocean and Land Colour Instrument 
on Sentinel-3 mission). For brevity, in the paper we present the Rrs-based 
algorithms for the spectral bands of SeaWiFS. The algorithms for other 
sensors are provided in Supplementary Material. 

Fig. 2. Flowcharts of IOP-based Method-1 algorithms (left panel) and IOP-based Method-2 algorithms (right panel) for estimating POC. The symbol f indicates a 
functional relationship described by a given equation in text. 

Fig. 3. Flowcharts of Rrs-based Method-1 algorithm (left panel) and Rrs-based Method-2 algorithm (right panel) for estimating POC. The symbol f indicates a 
functional relationship described by a given equation in text. The light wavelengths associated with remote-sensing reflectance Rrs correspond to nominal wave
lengths of SeaWiFS spectral bands. 
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2.6. Selecting the boundaries of particulate composition classes 

As described above, the Method-2 composition-specific algorithms 
involve partitioning of input optical data into three particle-composition 
classes defined by POC/SPM and referred to as mineral-dominated, 
mixed, and organic-dominated. This approach is generally consistent 
with the study of Woźniak et al. (2010), in which the mineral-dominated 
class was defined as POC/SPM ≤ 0.06, the organic-dominated class as 
POC/SPM ≥ 0.25, and the mixed class with the POC/SPM between 0.06 
and 0.25. In that study these specific criteria provided a useful means of 
classifying particle assemblages and interpreting associated optical 
measurements in near-shore waters of Southern California, and were 
then also used in other studies (Reynolds et al., 2016; Tran et al., 2019; 
Vantrepotte et al., 2012). 

In the present study, we performed a correlation analysis between 
POC and the particulate IOPs, ap(λ) and bbp(λ) at different light wave
lengths from the visible spectral region, to optimize the selection of two 
boundary values of POC/SPM between the composition classes, specif
ically the (POC/SPM)1 boundary between the mineral-dominated and 
mixed classes and the (POC/SPM)2 boundary between the mixed and 
organic-dominated classes. The relationships between POC and these 
IOPs were found particularly suitable for this analysis because changes 
in POC/SPM produced consistent data patterns in POC vs. ap(λ) and POC 
vs. bbp(λ), which is presented in more detail in Section 3.2. 

By varying (POC/SPM)1 from 0.04 to 0.19 and (POC/SPM)2 from 0.2 
to 0.4, both with an increment of 0.01, we created 336 scenarios of 
compositional partitions, each having a different pair of boundary 
values of (POC/SPM)1 and (POC/SPM)2. In this analysis we considered 
data of ap(λ) at seven wavelengths (420, 440, 480, 510, 555, 640 and 
675 nm) and bbp(λ) at six wavelengths (420, 442, 470, 510, 550, and 
640 nm) to cover a broad portion of visible spectral region. Given the 
number of compositional partitioning scenarios and light wavelengths, 
we initially created 2352 compositionally-characterized datasets for the 
correlation analysis between POC and ap(λ). In these compositionally- 
characterized datasets, each pair of POC and ap measurements was 
classified as either mineral-dominated [if POC/SPM ≤ (POC/SPM)1], 
mixed [if (POC/SPM)1 < POC/SPM < (POC/SPM)2], or organic- 
dominated [if POC/SPM ≥ (POC/SPM)2] according to the specific pair 
of boundaries (POC/SPM)1 and (POC/SPM)2 associated with a given 
dataset. Similarly, 2016 compositionally-characterized datasets were 
initially created for the analysis of POC and bbp(λ). 

To ensure a reasonable minimum sample size for correlation analysis 
we then disregarded the compositionally-characterized datasets which 
did not have at least 30 data pairs of POC and ap or POC and bbp in each 
compositional class. Next, for each compositionally-characterized 
dataset satisfying the above criteria, we calculated the Pearson corre
lation coefficient, R, between the log-transformed values of POC and a 
given IOP (i.e., ap or bbp at specific λ) for each of the three compositional 
classes. An average value of these three coefficients was assumed to 
represent a correlational score, Rs, for a given compositionally- 
characterized dataset. By inspecting all compositionally-characterized 
datasets the initial cumulative scores were then calculated for each 
unique pair of boundary values of (POC/SPM)1 and (POC/SPM)2 by 
summing the corresponding values of Rs. In the next step, the pairs of 
(POC/SPM)1 and (POC/SPM)2 values were decoupled in a sense that the 
final cumulative correlational score, Rcs, for any given boundary value 
was obtained by summing the initial cumulative scores involving this 
boundary value. Finally, based on the highest Rcs, the optimal bound
aries to delineate the three compositional classes were selected as (POC/ 
SPM)1 = 0.12 and (POC/SPM)2 = 0.28. We recall that this correlation 
analysis was performed separately for the compositionally- 
characterized datasets of POC and ap(λ) and the compositionally- 
characterized datasets of POC and bbp(λ). It is remarkable that both 
analyses pointed to essentially the same optimal values of 0.11 or 0.12 
for (POC/SPM)1 and 0.27 or 0.28 for (POC/SPM)2. 

3. Results and discussion 

3.1. Concentration and composition characteristics of suspended 
particulate matter 

The measures of pigment and particle mass concentration exhibit a 
broad range of variation in our field dataset that includes both the near- 
surface and subsurface measurements at depths extending to 300 m 
(Table 2). Specifically, Chla ranges from <0.01 to over 30 mg m−3. The 
range for POC is between about 7 and 1750 mg m−3 and for SPM from 
about 20 to 20,000 mg m−3. Using the Shapiro-Wilk test (Royston, 1995; 
Shapiro and Wilk, 1965), we determined that the probability distribu
tions of POC and SPM show no substantial deviation from a log-normal 
distribution. The Chla distribution differs significantly from both the 
log-normal and normal distributions. Given a significant positive 
skewness of the distributions, the mean values are much greater than 
median values (Table 2). 

The values of POC/SPM ratio vary from about 0.01 to 0.6 which 
covers approximately the full range that can be expected for this par
ticulate compositional metric in natural waters (Table 2). This result 
indicates that the particle assemblages ranged from totally dominated 
by mineral particles (the lowest POC/SPM) to totally organic-dominated 
(the highest POC/SPM). The mean and median values of POC/SPM are 
nearly identical (0.255 and 0.25, respectively) but the data still exhibit a 
positive skewness (0.2) and are neither normally nor log-normally 
distributed. The examined samples are also characterized by a wide 
range of POC/Chla and Chla/SPM ratios (Table 2). The range of Chla/ 
SPM is indicative of particle assemblages with highly variable contri
bution of phytoplankton. 

Overall, the large variability in the characteristics shown in Table 2 
represents diverse scenarios of both the particle concentration and 
composition metrics in the western Arctic seas, which range from very 
clear to very turbid waters with highly variable composition in terms of 
varying proportions of mineral, organic, phytoplankton, and non- 
phytoplankton particles. We recall that the dataset that includes mea
surements at near-surface depths and larger depths is used in this study 
for the analysis of relationships between particulate IOPs and particulate 
concentration and composition characteristics. The subset of near- 
surface data, which is used in this study for the analysis of Rrs-based 
algorithms, is also characterized by a similarly wide range of particulate 
characteristics (Table 2). 

3.2. IOP-based algorithms 

3.2.1. SPM algorithms 
The particle concentration generally exerts the first-order causal ef

fect on IOPs of seawater. Fig. 4 illustrates data of mass concentration of 
suspended particulate matter, SPM, plotted as a function of particulate 
absorption, ap(λ), and particulate backscattering, bbp(λ), coefficients at 
example light wavelengths from the blue, green, and red spectral re
gions. Each data point in this figure is color coded according to a 
continuous scale of POC/SPM values. This provides insights into the 
question of potential effect of the composition of particulate matter 
expressed in terms of POC/SPM on the relationships between SPM and 
particulate IOPs. 

Fig. 4 demonstrates that data points corresponding to different 
values of POC/SPM across the entire range of POC/SPM largely overlap 
and do not form separate patterns for mineral-dominated, organic- 
dominated, and mixed particulate assemblages. This result suggests that 
these particulate IOPs can provide fairly robust optical proxies for 
estimating SPM regardless of varying proportions of organic and mineral 
particles. As a result of regression analysis of several candidate functions 
to fit the data of SPM vs. IOPs at different wavelengths, we provide the 
formulas which best describe our datasets of SPM vs. ap(λ) (Fig. 4b) and 
SPM vs. bbp(λ) (Fig. 4e): 
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SPM = 10(4.37698+0.90646 AG) (1)  

where AG = log[ap(570)] and 

SPM = 10(4.41139+0.49663 BG−0.08396 BG
2) (2)  

where BG = log[bbp(550)], the subscript “G” indicates the wavelength in 
the green spectral region, and log is the logarithm to base 10. 

The statistical indicators describing the deviations between SPM 
derived from these equations and the measured SPM indicate that these 
algorithms provide reasonably good estimates of SPM for the algorithm 
development dataset (Fig. 5). For example, for SPM derived from 
ap(570) the median ratio of predicted to measured values (MdR) is 0.98, 
and the median absolute percent difference (MdAPD) is 27.5%. Similar 
statistics of MdR = 1.02 and MdAPD = 24.9% were obtained for the 

bbp(550)-based algorithm. The MdR values indicate that an aggregate 
bias is very small (within 2%). We also note that the particulate IOPs 
measured in other spectral regions can still provide reasonably good 
proxies for SPM but, for our dataset, are generally not as good as those 
from the green spectral region. For example, compared to 
SPM vs. ap(570) shown in Fig. 4b, the data points of SPM vs. ap(675) in 
Fig. 4c are significantly more scattered. 

3.2.2. Effect of particulate composition on the relationship between POC 
and IOPs 

In contrast to results for SPM shown in Fig. 4, the relationships be
tween POC and particulate IOPs show a clear tendency for large and 
fairly systematic separation of data points driven by varying POC/SPM 
(Fig. 6). Specifically, Fig. 6 shows that for any given POC the values of 
ap(λ) or bbp(λ) tend to increase with a decrease in POC/SPM. This trend 

Table 2 
Summary of characteristics of marine suspended particles in the Arctic dataset. N is the number of samples. The median, minimum, and maximum sampling depths for 
the entire dataset of concurrent SPM and POC determinations are 11.5 m, 0 m, and 300 m, respectively. For the entire dataset that includes Chla these depths are 5 m, 0 
m, and 300 m. The values in parenthesis represent a subset of the entire dataset which corresponds only to near-surface measurements.   

SPM 
(mg m−3) 

POC 
(mg m−3) 

POC/SPM 
(g:g) 

Chla 
(mg m−3) 

POC/Chla 
(g:g) 

Chla/SPM 
(g:g) 

N 335 
(98) 

335 
(98) 

335 
(98) 

271 
(97) 

271 
(97) 

271 
(97) 

Mean 1235.79 
(1309.54) 

203.68 
(182.74) 

0.255 
(0.307) 

2.19 
(1.52) 

415.55 
(450.65) 

1.86 10−3 

(1.40 10−3) 
Median 602.49 

(365.33) 
125.75 
(125.68) 

0.250 
(0.322) 

0.44 
(0.30) 

254.22 
(411.60) 

8.29 10−4 

(7.78 10−4) 
Minimum 23.52 

(43.60) 
6.99 
(20.35) 

0.0136 
(0.0146) 

0.004 
(0.025) 

8.39 
(32.24) 

2.74 10−5 

(4.04 10−5) 
Maximum 20,617.0 

(20,617.0) 
1745.92 
(1022.13) 

0.583 
(0.583) 

32.76 
(18.10) 

4249.36 
(1431.03) 

3.00 10−2 

(0.99 10−2)  

Fig. 4. The relationships between the concentration of suspended particulate matter, SPM, and the inherent optical properties (IOPs) of suspended particles, spe
cifically the particulate absorption coefficient, ap, at light wavelengths λ of (a) 440 nm, (b) 570 m, (c) 675 nm, as well as particulate backscattering coefficient, bbp, at 
wavelengths of (d) 442 nm, (e) 550 nm, and (f) 640 nm. Data points are color coded according to a continuum of values of particulate composition parameter, POC/ 
SPM, as indicated in the color scale bar. The number of data (N) is also displayed. The best-fit regression functions representing the algorithms for estimating SPM 
from ap(570) and bbp(550) are also shown as black lines in (b) and (e), respectively (see Section 3.2.1 for details). These regression functions represent the best fit to 
all data irrespective of the particulate composition parameter POC/SPM. 
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is readily explainable because a given value of POC represents approx
imately a given pool of organic particles, so an increase in the absorption 
and backscattering coefficients is expected with more inorganic particles 
(lower POC/SPM) present within the total particulate assemblage that 
contains a given pool of organic particles. Based on theoretical grounds 
governing the interactions of light with particles that have diverse 
physical and chemical properties (Jonasz and Fournier, 2007; Woźniak 
and Dera, 2007) it is not surprising that POC values at any given value of 

particulate IOP (or vice versa) can differ by more than one order of 
magnitude. Such large differences have been previously demonstrated 
with field data, for example in studies of concurrently collected mea
surements of POC and bbp(λ) in different regions of the Southern Ocean 
(Allison et al., 2010; Stramski et al., 1999) and the Pacific and Atlantic 
Oceans (Balch et al., 2010; Cetinić et al., 2012; Stramski et al., 2008), as 
well as in our earlier analyses of the Arctic data (Reynolds et al., 2016). 
The present results from the Arctic dataset shown in Fig. 6 provide 

Fig. 5. (a) Scatter plots comparing the 
algorithm-derived SPM with measured SPM 
for the IOP-based algorithm utilizing the 
particulate absorption coefficient, ap(570), 
as a predictor variable (Eq. (1)). (b) Same as 
(a) but for the IOP-based algorithm utilizing 
the particulate backscattering coefficient, 
bbp(550), as a predictor variable (Eq. (2)). 
For illustrative purposes, data points depic
ted as blue open circles, green cross-marks, 
and orange triangles represent the organic- 
dominated, mixed, and mineral-dominated 
classes of suspended particulate matter, 
respectively. The log-transformed data were 
used to calculate the correlation coefficient 
R and model-II linear regression fit (black 
solid line). The 1:1 line (dashed line) and 
several statistical parameters (see Section 
2.4 and Table 1 for details) are also shown.   

Fig. 6. The relationships between the concentration of particulate organic carbon, POC, and the inherent optical properties (IOPs) of suspended particles, specifically 
the particulate absorption coefficient, ap, at light wavelengths λ of (a) 440 nm, (b) 570 m, (c) 675 nm, as well as particulate backscattering coefficient, bbp, at 
wavelengths of (d) 442 nm, (e) 550 nm, and (f) 640 nm. Data points are color coded according to a continuum of values of particulate composition parameter, POC/ 
SPM, as indicated in the color scale bar. The best-fit regression functions representing the particle-composition class-specific algorithms for estimating POC from 
ap(440) and bbp(550) are also shown in (a) and (e), respectively. The blue, green, and orange lines represent these best-fit functions for organic-dominated, mixed, 
and mineral-dominated classes of suspended particulate matter, respectively (equations are included in Section 3.2.4). For comparison, the best-fit regression 
functions for all data irrespective of particulate composition parameter, POC/SPM, are shown as black lines in (a) and (e). The corresponding equations are: POC =

10(2.86045+0.51201 AB−0.07870 AB
2 ) and POC = 10(3.33506+0.53153 BG) where AB = log[ap(440)] and BG = log[bbp(550)]. 
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further evidence for such large variability associated with changes in 
characteristics of marine particulate assemblages. These results have 
also important cautionary implications for estimating POC from bbp(λ) 
across diverse aquatic environments (in a sense of both the geographic 
location and in the vertical within the water column) using the re
lationships that do not account for the effect of varying particulate 
composition. This caution is especially important in view of increased 
use of in situ measurements of bbp as a proxy of POC from a global 
network of Biogeochemical-Argo (BGC-Argo) profiling floats (Claustre 
et al., 2020; Haëntjens et al., 2017; Johnson et al., 2017; Koestner et al., 
2022) as well as the use of bbp data product obtained from active (lidar) 
optical remote sensing (Behrenfeld et al., 2013; Lu et al., 2021). 

Importantly, Fig. 6 suggests that while POC cannot be predicted 
reliably across diverse water bodies from particulate IOPs using single 
relationships that are indiscriminate in terms of particulate composition, 
improved predictions can be achieved if the effect of varying POC/SPM 
is accounted for in the algorithms. As described in Section 2.5, the 
Method-1 and Method-2 algorithms are designed to account for the ef
fects of varying POC/SPM and specific details of such IOPs-based algo
rithms are presented in subsequent sections. 

3.2.3. POC/SPM algorithm 
While considering the formulation of an IOP-based algorithm for 

estimating the POC/SPM ratio, it is instructive to examine to what extent 
the mineral-dominated, mixed, and organic-dominated particle 
composition classes differ in terms of spectral shapes of ap(λ) and bbp(λ). 
The spectral shapes of ap(λ) exhibit large variability within each 
compositional class although the class-specific average shapes clearly 
differ from one another (Fig. S1, Supplementary Material). The range of 
variability within each compositional class, and significant overlap be
tween the classes, indicate that the spectral shapes of ap(λ) are unlikely 
to provide an efficient means for estimating POC/SPM or to discriminate 
between the mineral-dominated, mixed, and organic-dominated classes. 
Similar conclusions were drawn from the analysis of spectral shapes of 
bbp(λ). 

In order to formulate an empirical algorithm for estimating POC/ 
SPM from IOPs, we tested several formulations including the use of band 
ratio of ap(675)/ap(570) which was previously proposed as a proxy for 
POC/SPM on the basis of analysis of near-shore seawater samples from 
Southern California (Woźniak et al., 2010). For our Arctic dataset, 
however, this band ratio does not serve as the best predictor of POC/ 
SPM. Among several tested formulations, a multiple regression model 
involving two IOP predictors, ap(570)/ap(440) and bbp(550), provided 
the most satisfactory estimation of POC/SPM from IOPs. The ap(570)/ 
ap(440) ratio serves to reinforce the differences between the mineral- 
and organic-dominated particulate assemblages. As POC/SPM changes, 
the spectral shape of ap(λ) in these spectral regions changes in opposite 
direction, making the green-to-blue band ratio highly sensitive to par
ticulate composition. The second IOP predictor, bbp(550), acts as a proxy 
for magnitude of SPM. The graphs of POC/SPM data plotted as a func
tion of ap(570)/ap(440) and bbp(550) are included in Supplementary 
Material (Fig. S2). 

The IOP-based algorithm for estimating POC/SPM as obtained from 
multiple regression analysis is: 

POC
SPM

= 10(−3.46591−4.50415 AGB−0.81967 BG−1.21707 AGB BG) (3)  

where AGB = log[ap(570)/ap(440)], BG = log[bbp(550)], N = 294, and 
the subscripts “G” and “B” indicate the wavelengths in the green and 
blue spectral regions, respectively. 

Fig. 7 shows the POC/SPM values predicted from Eq. (3) plotted 
versus measured POC/SPM. The parameters representing the aggregate 
statistics for the examined dataset of 294 measurements indicate that 
this IOP-based algorithm provides an overall good estimation of POC/ 
SPM within our algorithm development dataset (Fig. 7). For example, 

MdR is 0.96 and MdAPD is 20.67%. 
As described in Section 2.5 and Fig. 2, the algorithm-derived POC/ 

SPM is used directly in the estimation of POC from the Method-1 algo
rithms. In the Method-2 algorithms, the algorithm-derived POC/SPM is 
used to partition the data into three particle-composition classes; 
mineral-dominated, mixed, and organic-dominated. This classification 
is a prerequisite to development of particle-composition class-specific 
algorithms for estimating POC from the Method-2 algorithms. 

Fig. 7 depicting data of algorithm-derived vs. measured POC/SPM 
illustrates explicitly which specific data of POC/SPM derived from Eq. 
(3) were properly classified into one of the compositional classes and 
which data were misclassified. The successful classification naturally 
corresponds to situations in which both the algorithm-derived and 
measured values of POC/SPM belong to the same compositional class. 
Specifically, when both values of POC/SPM are less or equal to 0.12 the 
algorithm yields successful classification into the mineral-dominated 
class or when both values are greater or equal to 0.28 there is a suc
cessful classification into the organic-dominated class. If both values are 
between these two boundaries, a successful classification into the mixed 
class is obtained. However, there are also situations in which the dif
ference between the algorithm-derived and measured POC/SPM is small 
but these values are on both sides of boundary between the classes, i.e., 
either on both sides of 0.12 or 0.28. It is reasonable to consider such 
cases as successful classification rather than misclassification. For this 
purpose, we defined a margin of tolerance for the difference between the 
algorithm-derived and measured POC/SPM around the class boundaries. 
Specifically, we assumed that the classification is still successful if both 
POC/SPM values are on different sides of the boundary value and differ 
by ≤0.03 from one another. In Fig. 7 the three grey shaded squares 
including the transition areas between the squares around the class 
boundaries comprise the POC/SPM data that were successfully classi
fied. The misclassified data points fall outside these grey areas. 

Results of compositional classification with the IOP-based algorithm 
(Eq. (3)) are summarized in Table 3. The percent rate of total successful 
classifications (success rate SR) is quite high, 77.9%. The highest rate of 
successful classifications is obtained consistently for mineral-dominated 

Fig. 7. Scatter plot comparing the algorithm-derived POC/SPM with measured 
POC/SPM for the IOP-based algorithm expressed by Eq. (3). The data points 
depicted as solid circles located within the grey shaded areas indicate that the 
algorithm-derived POC/SPM is correctly classified into one of the three particle- 
composition classes, i.e., the mineral-dominated, mixed, or organic-dominated 
class. The data points depicted as cross-marks outside the grey shaded areas 
indicate incorrect classification. The calculations of correlation coefficient R 
and model-II linear regression fit (black solid line) were made using the ordi
nary (untransformed) POC/SPM data. The 1:1 line (dashed line) and several 
statistical parameters are also shown. All data (i.e., both solid circles and cross- 
marks) were included in this analysis. 
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and organic-dominated particle assemblages. For these classes the suc
cess rates are above 80%. The misclassifications of mineral-dominated 
or organic-dominated assemblages are nearly always categorized as 
mixed particulate assemblages, which also indicates that the probability 
of classifying mineral-dominated sample as organic-dominated sample 
or vice versa is nearly zero. Perhaps not surprisingly, the success rate of 
classifications of mixed assemblages is lower, 68%. Most of misclassified 
mixed assemblages are classified as organic-dominated. 

Overall, these results demonstrate that the IOP-based algorithm (Eq. 
(3)) has an excellent discriminatory power to distinguish between the 
mineral-dominated and organic-dominated particle assemblages. The 
discriminatory power is also very good for distinguishing the mineral- 
dominated from mixed assemblages. The discrimination between the 
mixed and organic-dominated assemblages is more challenging 
although the successful classification rate into the mixed class is still 
quite high, nearly 70%. 

3.2.4. Particle composition-specific algorithms for estimation of POC 
As described in Section 2.5 (Fig. 2), we present two methods for 

estimation of POC from IOP-based algorithms that account for variation 
in POC/SPM. In the Method-1 algorithm, POC is determined from IOPs 
in a straightforward manner as a product of algorithm-derived SPM (i.e., 
either from Eq. (1) or Eq. (2)) and the algorithm-derived POC/SPM (Eq. 
(3)). In the Method-2 algorithm, the POC/SPM algorithm (Eq. (3)) is first 
used to classify the IOP measurements into one of the three particle- 
composition classes, and then POC is obtained from the class-specific 
algorithm formulas using the classified IOPs as input. 

The regression analysis applied to subsets of data satisfying the POC/ 
SPM criteria of the three composition classes, resulted in the following 
particle-composition class-specific algorithms for estimating POC from 
ap(440): 

POCmin = 10(2.56711+0.34418 AB−0.17652 AB
2) (4a)  

POCmix = 10(3.25694+1.44096 AB+0.56494 AB
2+0.15640 AB

3) (4b)  

POCorg = 10(3.33249+0.86245 AB) (4c)  

where AB = log[ap(440)] and N is 69, 122, and 144, respectively. The 
class-specific formulas for estimating POC from bbp(550) are: 

POCmin = 10(2.67067+0.20268 BG−0.07476 BG
2) (5a)  

POCmix = 10(4.89222+2.15850 BG+0.62190 BG
2+0.09367 BG

3) (5b)  

POCorg = 10(5.11638+1.27574 BG+0.05029 BG
2) (5c)  

where BG = log[bbp(550)] and N is 59, 100, and 135, respectively. The 
subscripts “min”, “mix”, and “org” indicate that POC is estimated from 

class-specific formulas representative of mineral-dominated, mixed, and 
organic-dominated particulate classes, respectively. Note that the pre
sented formulas involve different degrees of polynomial functions. From 
the analysis of several candidate formulas, we selected the functions of 
lowest degree beyond which there was no further improvement in 
goodness-of-fit statistics. The best-fit functions described by Eqs. (4) and 
(5) are plotted in Fig. 6a and e for the POC algorithms which use ap(440) 
and bbp(550), respectively. We found that the use of ap(440) and 
bbp(550) for estimating POC provides generally similar or better 
goodness-of-fit statistics than the particulate IOPs at other wavelengths. 
The use of ap(440) and bbp(550) in the class-specific algorithms is ad
vantageous because these two spectral IOPs are also involved in the 
POC/SPM algorithm (see Eq. (3)). 

Comparisons of the algorithm-derived with measured values of POC 
presented in Figs. 8 and 9 provide a means to evaluate how well the 
different versions of IOP-based algorithms represent the main trends and 
variability of POC measurements within the algorithm development 
dataset. Fig. 8a and b illustrate such evaluation of ap-based Method-1 
and Method-2 algorithms, respectively. We recall that these algo
rithms are referred to as ap-based because SPM is estimated from ap(570) 
in the Method-1 algorithm (Eq. (1)), and the class-specific formulas use 
ap(440) in the Method-2 algorithm (Eq. (4)). We recall, however, that 
the backscattering coefficient is also used in ap-based algorithms (both 
Method-1 and Method-2) because the estimation of POC/SPM requires 
the input of bbp(550) in addition to ap(440) (Eq. (3)). As shown in Fig. 8a 
and b and the statistical parameters included therein, the Method-1 and 
Method-2 algorithms offer similar performance based on the analysis of 
the algorithm development dataset. Both algorithms represent well the 
main trend of POC within most of the POC dynamic range. The excep
tions are observed at the lowest and highest POC where the algorithms 
tend to overestimate and underestimate POC, respectively. Overall, 
given a broad range of particulate composition in the dataset, the 
aggregate statistical metrics for both Method-1 and Method-2 particle 
composition-specific algorithms are reasonably good, for example 
MdAPD is below 30%. 

Fig. 8c provides an important comparative result because it dem
onstrates the extent to which the estimation of POC deteriorates when 
POC is calculated from a single general formula obtained by fitting the 
regression function to all data of POC vs. ap(440) shown in Fig. 6a 
regardless of variations in POC/SPM (note that this general fit and 
corresponding formula are included in Fig. 6). Compared with Fig. 8a 
and b, Fig. 8c exhibits inferior statistical parameters, especially in terms 
of worsening RMSD, MdAPD, and MdSA. In addition, the deviations 
between the linear fit and the 1:1 line indicates that the general algo
rithm has stronger tendency for bias in estimated POC at both ends of 
POC range (Fig. 8c) compared with the particle composition-specific 
algorithms (Fig. 8a and b). Overall, the results in Fig. 8a, b, and c 
demonstrate the potential for significant improvements of POC 

Table 3 
Results of classification into the three particle-composition classes, i.e., the mineral-dominated, mixed, and organic-dominated classes, using the POC/SPM values 
derived from the IOP-based algorithm (left-hand side of the table, see Eq. (3) for the algorithm formula) and the Rrs-based algorithm (the right-hand side of the table, 
see Eq. (8) for the algorithm formula). The analysis of each POC/SPM algorithm is based on different number of samples (N) as indicated. The results of classification 
based on POC/SPM measurements serve as a reference against which the algorithm-derived classifications are compared. Each result of algorithm-derived classifi
cation includes the number of samples assigned by the algorithm to a given class followed by the percent value that describes either the rate of successful classification 
or the rate of failed classification. The results of successful classification are highlighted in bold font.    

IOP-based algorithm (N = 294) Rrs-based algorithm (N = 98)   

Classification based on measurements Classification based on measurements   

Mineral 
N = 59 

Mixed 
N = 100 

Organic 
N = 135 

Mineral 
N = 11 

Mixed 
N = 28 

Organic 
N = 59 

Algorithm-derived classification Mineral 48; 81.4% 7; 7.0% 0; 0% 9; 81.8% 0; 0% 0; 0% 
Mixed 10; 16.9% 68; 68.0% 22; 16.3% 2; 18.2% 18; 64.3% 10; 16.9% 
Organic 1; 1.7% 25; 25.0% 113; 83.7% 0; 0% 10; 35.7% 49; 83.1%  

Total successful classifications 
N = 229; 77.9% 

Total successful classifications 
N = 76; 77.6%  
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estimation from both the Method-1 and Method-2 particle composition- 
specific algorithms compared to general algorithm that does not account 
for variations in POC/SPM. 

Fig. 8d is intended for comparison with Fig. 8b to provide additional 
insight into performance of the Method-2 algorithm that involves the 
classification of data into the three particle-composition classes. 
Whereas Fig. 8b represents the actual operational scenario of Method-2 
algorithm that relies totally on input data of optical measurements, 
Fig. 8d shows results in which the classification of input data entering 
the class-specific formulas for estimating POC (Eqs. (4a), (4b), (4c)) was 
made using the measured values of POC/SPM rather than algorithm- 
derived POC/SPM from Eq. (3). Thus, the results in Fig. 8d are free of 
misclassification errors which affect to a certain degree the operational 
performance of Method-2 algorithm. As expected, the statistical pa
rameters in Fig. 8d are somewhat improved compared to Fig. 8b, espe
cially RMSD, MdSA, and the closeness of the linear fit to the 1:1 line at 
low and high POC values. Although the results in Fig. 8d were obtained 
by skipping the optically-based estimation of POC/SPM (i.e., assuming 
that this parameter is known a priori) and thus do not represent the full 
optically-based operational scenario of Method-2 algorithm, they pro
vide additional support for the concept of class-specific algorithms. 

Analogous to Fig. 8, results for the bbp-based POC algorithms are 
depicted in Fig. 9. The main conclusions from the analysis of bbp-based 
algorithms are qualitatively consistent with those for the ap-based al
gorithms. However, the statistics for the bbp-based algorithms are 
generally inferior compared with the statistics for the ap-based algo
rithms, which is especially evident when the RMSD values are 
compared. 

It is important to note that although the proposed IOP-based 
approach has no immediate applicability in conjunction with passive 
remote sensing of ocean color or active lidar-based optical remote 
sensing, it does have the potential for such applications in the future. 
Significant research efforts have been and continue to be devoted to 
algorithms for IOP retrieval from satellite observations of ocean reflec
tance (Jorge et al., 2021; Lee et al., 2002; Loisel et al., 2018; Loisel and 
Stramski, 2000; Werdell et al., 2013). While bbp(λ) has been among the 
IOPs retrieved from ocean reflectance obtained from both passive and 
active optical remote sensing (Behrenfeld et al., 2013; Werdell et al., 
2018), the retrievals of ap(λ) have not yet been demonstrated and vali
dated. Nevertheless, this capability appears attainable, especially with 
further advances in models that aim at partitioning the total absorption 
coefficient of seawater, which is derivable from ocean reflectance, into 
particulate and non-particulate absorption components (Stramski et al., 
2019; Zhang et al., 2015; Zheng and Stramski, 2013). Such advances can 
provide a foundation for future implementation of the IOP-based 
approach for estimating POC/SPM and POC from optical remote 
sensing observations. 

3.3. Reflectance-based algorithms 

Linking the characteristics of particulate assemblages such as SPM, 
POC/SPM, and POC to particulate IOPs (as described in Section 3.2) has 
robust mechanistic basis in a sense that all variables involved in the 
examined relationships pertain strictly to particles suspended in water. 
In the context of optical remote sensing, the most common approach to 
estimate the particulate characteristics has been to use direct empirical 

Fig. 8. Scatter plots comparing the 
algorithm-derived POC with measured POC 
for different variants of absorption-based 
algorithms: (a) Method-1 particle 
composition-specific algorithm utilizing Eq. 
(1) and Eq. (3) for calculating POC, (b) 
Method-2 particle composition-specific al
gorithm utilizing Eq. (3) for POC/SPM-based 
classification and Eq. (4a), (4b), (4c) for 
calculating POC from class-specific for
mulas, (c) general best-fit regression func
tion utilizing ap(440) as a predictor variable 
irrespective of POC/SPM (see black line in 
Fig. 6a), and (d) similar to (b) but POC/SPM- 
based classification was made using the 
measured values of POC/SPM instead of Eq. 
(3). For illustrative purposes, data points 
depicted as blue open circles, green cross- 
marks, and orange triangles represent the 
organic-dominated, mixed, and mineral- 
dominated classes of suspended particulate 
matter, respectively. The log-transformed 
data were used to calculate the correlation 
coefficient R and model-II linear regression 
fit (black solid line). The 1:1 line (dashed 
line) and several statistical parameters are 
also shown.   
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relationships between the spectral remote-sensing reflectance, Rrs(λ), 
and particulate characteristics of interest. Apart from the fact that Rrs(λ) 
is an AOP rather than IOP, this approach is limited from a mechanistic 
standpoint because, in addition to suspended particles, chromophoric 
dissolved organic matter (CDOM) can contribute significantly to vari
ability in Rrs(λ). These effects are typically most pronounced in the UV 
and short-wavelength portion of the visible spectrum where the CDOM 

absorption coefficient, ag(λ), makes large or dominant contribution to 
light absorption (Babin et al., 2003b; Nelson and Siegel, 2013). It is thus 
instructive to inspect the patterns of variability in concurrent mea
surements of ag(λ) and particle concentration metrics for the surface 
samples from our Arctic dataset (Fig. 10). Specifically, we show the 
scatter plots of ag(412)/POC and ag(412)/Chla as a function of SPM, 
which illustrate the patterns in CDOM absorption relative to POC or Chla 

Fig. 9. Scatter plots comparing the 
algorithm-derived POC with measured POC 
for different variants of backscattering-based 
algorithms: (a) Method-1 particle 
composition-specific algorithm utilizing Eq. 
(2) and Eq. (3) for calculating POC, (b) 
Method-2 particle composition-specific al
gorithm utilizing Eq. (3) for POC/SPM-based 
classification and Eq. (5a), (5b), (5c) for 
calculating POC from class-specific for
mulas, (c) general best-fit regression func
tion utilizing bbp(550) as a predictor variable 
irrespective of POC/SPM (see black line in 
Fig. 6e), and (d) similar to (b) but POC/SPM- 
based classification was made using the 
measured values of POC/SPM instead of Eq. 
(3). For illustrative purposes, data points 
depicted as blue open circles, green cross- 
marks, and orange triangles represent the 
organic-dominated, mixed, and mineral- 
dominated classes of suspended particulate 
matter, respectively. The log-transformed 
data were used to calculate the correlation 
coefficient R and model-II linear regression 
fit (black solid line). The 1:1 line (dashed 
line) and several statistical parameters are 
also shown.   

Fig. 10. (a) The ratio of the CDOM absorp
tion coefficient at 412 nm to POC, ag(412)/ 
POC, as a function of SPM. (b) Same as (a) 
but for the ratio ag(412)/Chla. Only data for 
near-surface samples which were used in the 
development of Rrs-based algorithms are 
presented (N = 96 for ag(412)/POC and N =
95 for ag(412)/Chla). For illustrative pur
poses, data points depicted as blue open 
circles, green cross-marks, and orange tri
angles represent the organic-dominated, 
mixed, and mineral-dominated classes of 
suspended particulate matter, respectively. 
The dashed horizontal lines depict the 
values of ag(412)/POC = 0.00077 m2/mg 
and ag(412)/Chla = 0.581 m2/mg. These 
values represent the upper boundary of data 
included in recent assembly of global POC 
algorithm development dataset intended to 
be representative primarily of open-ocean 
pelagic environments (Stramski et al., 
2022).   
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as the particle concentration in water varies. We note that the two ratios, 
ag(412)/POC and ag(412)/Chla, were recently included in the set of 
criteria for assembling a global field dataset in support of development 
of global POC algorithms for different satellite ocean color sensors 
(Stramski et al., 2022). In this recent study, only data with ag(412)/POC 
≤ 0.00077 m2/mg C and ag(412)/Chla ≤0.581 m2/mg Chla were 
included in the global algorithm development dataset that was intended 
to be representative primarily of open-ocean pelagic environments. In 
the present Arctic dataset, the data are both below and above these 
threshold values (Fig. 10), which indicates a much broader range of 
variability in CDOM absorption relative to particulate characteristics 
than typically observed in ocean pelagic environments. In addition, 
Fig. 10 shows that the Arctic waters with organic-dominated particulate 
assemblages, and to large degree also waters with mixed particulate 
assemblages, exhibit a clear trend of decreasing CDOM absorption 
relative to POC and Chla as the particle concentration SPM increases. No 
such trend is observed for waters with mineral-dominated particulate 
assemblages. 

In the following Sections 3.3.1, 3.3.2 and 3.3.3 we describe the 
analysis of the Arctic dataset to formulate algorithms for estimating 
SPM, POC/SPM, and POC from Rrs(λ) measured in spectral bands 
available on SeaWiFS satellite ocean color sensor. Analogous algorithms 
based on sensor-specific spectral bands available on other satellite sen
sors (i.e., MODIS, VIIRS, MERIS, and OLCI) are described in Supple
mentary Material. 

3.3.1. SPM algorithms 
The algorithms for estimating SPM in surface waters of aquatic en

vironments from measurements of Rrs(λ) using spectral bands in the VIS 
and NIR spectral regions have been extensively explored in the past 
(e.g., Doxaran et al., 2002, 2012; Nechad et al., 2010; Siswanto et al., 
2011; Han et al., 2016; Wei et al., 2021). Several studies demonstrated 
that the relationships between SPM and Rrs(λ) measured at a single 
waveband or combination of wavebands from the red and NIR spectral 
regions can provide a relatively simple and effective algorithm 
(e.g., Hu et al., 2004; Miller and McKee, 2004; Ouillon et al., 2008; 
Nechad et al., 2010; Ondrusek et al., 2012; Han et al., 2016; Novoa et al., 
2017). We determined that a third-degree polynomial function between 
the log-transformed variables of SPM and Rrs in the red spectral band 
provides good representation of the Arctic dataset over the entire range 
of measured SPM from about 20 to over 20,000 mg m−3 (Fig. 11a, grey 
line). Although this single formula provides a good fit to our field data 
over the entire range of SPM and the use of the red band minimizes 
CDOM effects, the performance of such algorithm with satellite obser
vations is expected to decline with a decrease in particle concentration 
as Rrs in the red spectral region becomes very low. As shown in Fig. 11a, 
Rrs(670) is generally less than about 0.001 sr−1 when SPM is <2000 mg 
m−3 and decreases to values below 0.0001 sr−1 in very clear waters 
where SPM can be <100 mg m−3. Another potential challenge in the 
context of algorithm application to satellite observations in clear waters 
is that satellite-derived Rrs in the red spectral region may be subject to 
significant relative bias (Bisson et al., 2021). 

To circumvent these potential limitations, we formulated the hybrid 
SPM algorithm which consists of two empirical formulas based on the 
Arctic dataset. Specifically, at low Rrs(670) < 0.0008 sr−1 corresponding 
to SPM approximately <2000 mg m−3 (for convenience referred to as 
low SPM waters), the algorithm for estimating SPMlow is based on the 
green-to-blue band ratio of reflectance. For Rrs(670) > 0.0012 sr−1 

corresponding to higher SPM (referred to as high SPM waters), our 
hybrid algorithm for estimating SPMhigh uses the single red band. The 
best-fit regression functions for SeaWiFS bands are: 

SPMlow = 10
[

2.93073+1.80878 RG/B−0.87138 (RG/B)
2
]

(6a)  

SPMhigh = 10[6.57007+1.56050 RR+0.13979 (RR)2 ] (6b)  

where RG/B = log[Rrs(G)/Rrs(B)], RR = log[Rrs(R)], and Rrs(B), Rrs(G) 
and Rrs(R) are measured in the blue (B), green (G), and red (R) spectral 
bands. For SeaWiFS, these bands are centered at 490, 555, and 670 nm, 
respectively. The formula for SPMlow represents the best-fit to data 
which satisfied the condition Rrs(R) < 0.0012 sr−1 (N = 87, Fig. 11b). 
The formula for SPMhigh was obtained using data with Rrs(R) > 0.0008 
sr−1 (N = 16, Fig. 11a, solid black line). We note that within this range of 
Rrs(R), the SPMhigh function in Eq. (6b) is consistent with the third- 
degree polynomial function that was fitted to the entire dataset 
(Fig. 11a, grey line). A weighting approach is applied to both formulas of 
the hybrid algorithm in the transition range 0.0008 ≤ Rrs(R) ≤ 0.0012 
sr−1: 

SPM = w SPMlow + (1–w) SPMhigh (7a)  

w = 0.5 + 0.5 cos
(

π [Rrs(R)–0.0008 ]

0.0004

)

(7b)  

where the argument of the cosine function is expressed in radians. The 
weighting function w decreases from 1 to 0 with an increase in Rrs(R) 
from 0.0008 to 0.0012 sr−1, and ensures a smooth transition near the 
boundaries of the transition region. A similar approach for SPM algo
rithm using such boundaries within the dynamic range of reflectance 
was recently proposed by Wei et al. (2021). 

The SPM hybrid algorithm described by Eqs. (6) and (7) provides 
generally good agreement between the algorithm-derived and measured 
SPM, for example MdR is 0.96 and MdAPD is 20.66% (Fig. 11c). Similar 
SPM algorithms for the MODIS, VIIRS, MERIS, and OLCI sensors utilize 
the reflectances Rrs(B), Rrs(G), and Rrs(R) at sensor-specific spectral 
bands closest to those on SeaWiFS (Table S1, Supplementary Material). 
The associated statistical parameters characterizing the goodness-of-fit 
of sensor-specific SPM algorithms are given in Table S2 (Supplemen
tary Material). 

3.3.2. POC/SPM algorithms 
In the Arctic dataset the spectral shapes of Rrs(λ) exhibit significant 

overlap between the particle-composition classes although the average 
spectral shape for mineral-dominated class is clearly different from the 
organic-dominated and mixed classes (Fig. S3, Supplementary Material). 
The organic-dominated and mixed classes, however, show no significant 
difference in average spectral shape of Rrs(λ). This result indicates po
tential limitations of the optical water type classification based on the 
spectral shape of Rrs(λ) to differentiate water bodies that differ in terms 
of particulate composition parameterized with POC/SPM. 

In order to formulate the Rrs-based algorithm for estimating POC/ 
SPM we examined the concurrent POC/SPM and Rrs(λ) measurements 
and found that a multiple regression model involving three reflectance 
predictors spanning the spectral range from the blue through the red 
bands provides a reasonably good algorithm. The best-fit algorithm 
formula utilizing the blue, green and red bands of SeaWiFS is: 

POC
SPM

= 10(−3.58449−1.08487 RB−0.52062 RB RG+0.43186 RB RR) (8)  

where RB = log[Rrs(490)], RG = log[Rrs(555)], RR = log[Rrs(670)], and 
N = 98. Similar POC/SPM algorithms for the MODIS, VIIRS, MERIS, and 
OLCI sensors are presented in Table S3 (Supplementary Material). Also, 
the data of POC/SPM plotted as a function of Rrs(490), Rrs(555), and 
Rrs(670) are shown in Fig. S4 (Supplementary Material). 

Fig. 12 shows that POC/SPM derived from Eq. (8) agrees generally 
well with measured POC/SPM, for example MdR is virtually 1 and 
MdAPD is 21.65%. As the estimation of POC/SPM from this Rrs-based 
algorithm provides a means to classify the particulate assemblages into 
the three particle-composition classes, Fig. 12 also illustrates which 
specific data of algorithm-derived POC/SPM were properly classified 
and which data were misclassified. The same criteria for successful 
classification were applied as described in Section 3.2.3 in relation to the 
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IOP-based algorithm. The results of compositional classification of the 
Rrs-based algorithm are summarized in Table 3 which also shows similar 
results for the IOP-based algorithm discussed in Section 3.2.3. Although 
the size of the development dataset of Rrs-based algorithm is much 
smaller than that for IOP-based algorithm (i.e., N = 98 vs. N = 294), the 
patterns of successful classification and misclassifications are similar for 
both types of algorithms. For example, the rate of total successful clas
sifications is essentially the same and quite high, i.e., 77.6% for the Rrs- 
based algorithm vs. 77.9% for the IOP-based algorithm. Also, the highest 
rates of successful classifications (>80%) are obtained for mineral- 
dominated and organic-dominated particulate assemblages and the 
misclassifications of mineral-dominated or organic-dominated assem
blages are always categorized as mixed assemblages. The success rate of 
classifications of mixed particle assemblages is somewhat lower for the 
Rrs-based algorithm (64.3%) than the IOP-based algorithm (68%) and 
most of misclassified mixed assemblages are classified as organic- 
dominated. 

Overall, the Rrs-based algorithm for estimating POC/SPM (Eq. (8)) 
has an excellent discriminatory power to distinguish between the 
mineral-dominated and organic-dominated particle assemblages. The 
algorithm also distinguishes well the mineral-dominated from mixed 
assemblages. The discrimination between the mixed and organic- 
dominated assemblages is not as good but the successful classification 
rates into the mixed class are still nearly 65%. The statistical parameters 
characterizing the goodness-of-fit and success rate of classification of 
other ocean color sensor-specific Rrs-based algorithms for estimating 
POC/SPM are given in Table S4 (Supplementary Material). 

3.3.3. Particle composition-specific algorithms for estimation of POC 
Similar to IOP-based algorithms, we present two methods for esti

mation of POC from Rrs-based algorithms that account for variation in 
POC/SPM (see Section 2.5 and Fig. 3). In the Method-1 algorithm, POC 
is determined from Rrs in a straightforward manner as a product of 
algorithm-derived SPM (Eqs. (6) and (7)) and the algorithm-derived 
POC/SPM (Eq. (8)). The goodness-of-fit parameters for ocean color 
sensor-specific Method-1 POC algorithms as obtained from the analysis 
of algorithm-derived vs. measured POC, are given in Table S5 (Supple
mentary Material). In the Method-2 algorithm, the POC/SPM algorithm 
(Eq. (8)) is first used to classify the Rrs measurements into the particle- 
composition classes, and then POC is obtained from the class-specific 
algorithm formulas using the classified Rrs data as input. 

Fig. 13a depicts the Arctic data of POC vs. MBR (maximum band 
ratio) where MBR is the highest value selected from the three reflectance 

(caption on next column) 

Fig. 11. (a) The relationship between SPM and remote-sensing reflectance in the 
red spectral band, Rrs(670). The solid black line is the best-fit regression function 
representing the SPMhigh component of the hybrid algorithm for estimating SPM 
from remote-sensing reflectance (Eq. (6b)). For comparison, the grey line is the 
best-fit regression function over the entire range of data. This function is: 
log(SPM) = a + b log[Rrs(670)] + c log[Rrs(670)]2 + d log[Rrs(670)]3 where 
a = 8.71184, b = 4.47426, c = 1.42229, and d = 0.18204. (b) The relationship 
between SPM and the spectral band ratio of remote-sensing reflectance, 
Rrs(555)/Rrs(490). The solid black line is the best-fit regression function repre
senting the SPMlow component of the hybrid algorithm for estimating SPM from 
remote-sensing reflectance (Eq. (6a)). (c) Scatter plot comparing SPM derived 
from the hybrid algorithm (Eqs. (6a), (6b), (7a), (7b)) with measured SPM. The 
log-transformed data were used to calculate the correlation coefficient R and 
model-II linear regression fit (black solid line). The 1:1 line (dashed line) and 
several statistical parameters are also shown in (c). Only data for near-surface 
samples (N = 98) used in the development of Rrs-based algorithms are pre
sented in this figure and, for illustrative purposes, data points depicted as blue 
open circles, green cross-marks, and orange triangles represent the organic- 
dominated, mixed, and mineral-dominated classes of suspended particulate 
matter, respectively. The presented regression functions in (a) and (b) represent 
the best fit to all data irrespective of the particulate composition parameter 
POC/SPM. 
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band ratios which are Rrs(443)/Rrs(555), Rrs(490)/Rrs(555), and 
Rrs(510)/Rrs(555) for SeaWiFS. The presented data are color coded ac
cording to assignment to one of the three particle-composition classes 
which suggests that the relationship between POC and MBR can be 
improved when data classified into organic-dominated and mixed par
ticulate assemblages are analyzed separately. Importantly, these two 
classes of data cover a broad dynamic range in POC and MBR and are 
quite well separated from each other with organic-dominated assem
blages exhibiting generally higher POC at any given value of MBR. The 

relationship for the mineral-dominated class is inherently weaker and 
more difficult to establish because POC-bearing particles represent only 
a small fraction of the whole particulate assemblage that affects MBR. In 
our analysis, this difficulty is exacerbated by a small number of matchup 
measurements of POC and Rrs(λ) for the mineral-dominated class and a 
relatively small dynamic range of these data in the Arctic dataset. 
Nevertheless, we determined the best-fit regression function for the 
mineral-dominated class in addition to the best-fitting regression models 
for the organic-dominated and mixed classes. The formulas of these Rrs- 
based particle-composition class-specific algorithms are: 

POCorg = 10[2.57147−2.25381 log(MBR) ] (9a)  

POCmix = 10[2.19029−1.78080 log(MBR) ] (9b)  

POCmin = 10[2.27703−0.84220 log(MBR) ] (9c)  

where the number of observations is 59, 28, and 11 for the organic- 
dominated (org), mixed (mix), and mineral-dominated (min) classes, 
and MBR is based on SeaWiFS bands as indicated above. In this analysis 
of composition-specific subsets of data, we found no statistical justifi
cation for using higher degree polynomials than the first-degree poly
nomial. The best-fit functions corresponding to Eqs. (9a), (9b), and (9c) 
are depicted in Fig. 13a. Analogous class-specific algorithms for esti
mating POC from Rrs(λ) for other ocean color sensors and associated 
goodness-of-fit statistical parameters are presented in Table S6 and S7 
(Supplementary Material). 

For comparison, Fig. 13a also includes the best-fit function (black 
solid line) to all data regardless of POC/SPM. Many data points deviate 
greatly from this function indicating that such indiscriminate approach 
has high uncertainty and can often produce large errors when applied 
across wide range of particulate compositions. However, because one of 
our motivations to develop and demonstrate the particle composition- 
specific algorithms in this study is to stimulate further advancements 
of this approach towards its broader applicability across diverse envi
ronments beyond specific regional limits, it is of more interest for 
comparative analysis to illustrate how the current standard global POC 
algorithm performs with our Arctic data that covers a broad range of 
particulate compositions. To this end, Fig. 13b depicts our field data of 
POC vs. Rrs(443)/Rrs(555) along with the line representing the current 

Fig. 12. Scatter plot comparing the algorithm-derived POC/SPM with 
measured POC/SPM for the Rrs-based algorithm expressed by Eq. (8). The data 
points depicted as solid circles located within the grey shaded areas indicate 
that the algorithm-derived POC/SPM is correctly classified into one of the three 
particulate compositional classes, i.e., the mineral-dominated, mixed, or 
organic-dominated class. The data points depicted as cross-marks indicate 
incorrect classification. The calculations of correlation coefficient R and model- 
II linear regression fit (black solid line) were made using the ordinary (un
transformed) POC/SPM data. The 1:1 line (dashed line) and several statistical 
parameters are also shown. All data (i.e., both solid circles and cross-marks) 
were included in this analysis. 

Fig. 13. (a) The relationship between POC 
and the maximum band ratio of remote- 
sensing reflectance, MBR, where MBR is 
the highest value selected from the three 
reflectance band ratios, Rrs(443)/Rrs(555), 
Rrs(490)/Rrs(555), and Rrs(510)/Rrs(555). 
The blue, green, and orange lines depict 
the best-fit regression functions which 
represent the particle-composition class- 
specific algorithms for estimating POC 
from MBR for organic-dominated (Eq. 
(9a)), mixed (Eq. (9b)), and mineral- 
dominated (Eq. (9c)) classes of suspended 
particulate matter, respectively. The data 
points depicted as blue open circles, green 
cross-marks, and orange triangles represent 
the organic-dominated, mixed, and 
mineral-dominated classes of suspended 
particulate matter, respectively. For com
parison, the best-fit regression function for 
all data irrespective of particulate compo
sition parameter, POC/SPM, is shown in 
black line. The corresponding equation is: 

POC = 10(2.32893−1.42557 log(MBR)+0.66318 [log(MBR)]2−3.28291 [log(MBR)]3). (b) The relationship between POC and remote-sensing reflectance band ratio, 
Rrs(443)/Rrs(555). The data points representing measurements are compared with current standard global POC algorithm (black line) used by NASA OBPG. The 
equation of the standard algorithm is: POC = 203.2 [Rrs(443)/Rrs(555)]–1.034 (Stramski et al., 2008). Only data for near-surface samples (N = 98) used in the 
development of Rrs-based algorithms are presented in this figure.   
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standard global POC algorithm used by NASA Ocean Biology Processing 
Group (OBPG) to generate the satellite-derived POC product from the 
reflectance band ratio Rrs(443)/Rrs(555) which was available on Sea
WiFS (Stramski et al., 2008; NASA Ocean Color Web https://oceancolor. 
gsfc.nasa.gov/atbd/poc/). Similar global algorithms based on the blue- 
to-green reflectance band ratio are used by NASA OBPG for other sat
ellite sensors. By design such global algorithms are intended primarily 
for use in open-ocean pelagic environments where surface waters are 
typically dominated by phytoplankton and co-varying organic matter 
(Stramski et al., 2008, 2022). Nevertheless, these algorithms are 
routinely applied to generate the global POC product indiscriminately 
across various water bodies encompassing large variation in particulate 
composition. Fig. 13b shows that the standard algorithm does not 
adequately represent the variability in the relationship between POC 
and reflectance observed in our field dataset that covers a wide dynamic 
range of particulate concentration and composition. 

By comparing the algorithm-derived with measured POC, Fig. 14 
illustrates the evaluation of particle composition-specific algorithms for 
estimating POC from Rrs(λ) using our algorithm development dataset. 
The comparison of the Method-1 algorithm (Fig. 14a) and the Method-2 
algorithm (Fig. 14b) indicates similar performance with the MdR, MdB, 
MdAPD, and MdSA statistical parameters marginally better for the 
Method-2 algorithm and other statistics (R, S, I, RMSD) marginally 
better for the Method-1 algorithm. Importantly, the results in Fig. 14a,b 
demonstrate a superiority of composition-specific algorithms formu
lated with both Method-1 and Method-2 over the standard global POC 
algorithm (Fig. 14c). For example, while the RMSD and MdAPD values 
for the standard global algorithm are about 194 mg m−3 and 63.2% 

respectively (Fig. 14c), these statistics decrease about two-fold for the 
Method-1 (Fig. 14a) and Method-2 (Fig. 14b) algorithms. In addition, 
the standard global algorithm tends to produce significant positive bias 
across a broad range of POC with an aggregate measure of bias MdR =
1.63. In contrast, the Method-1 and Method-2 algorithms do not produce 
significant biasing effects. This comparison, while demonstrating the 
known limitations of standard global algorithms for indiscriminate ap
plications across diverse water bodies, supports the potential for 
improved performance of particle composition-specific algorithms. In 
addition, we note that the regression function fitted to all data regardless 
of POC/SPM (Fig. 13a, solid black line) also yields inferior statistics 
compared to the particle composition-specific algorithms. For example, 
the analysis of POC derived from this indiscriminate best-fit function vs. 
measured POC yielded RMSD of 132 mg m−3, S = 0.8 and I = 0.41, 
where the latter two parameters are indicative of significant positive and 
negative biases within the ranges of low and high POC, respectively. 

Fig. 14d is provided for comparison with the Method-2 algorithm in 
Fig. 14b. The results in Fig. 14d were obtained with the compositional 
class assignment of Rrs(λ) input to the class-specific formulas, i.e., the 
MBR input to Eqs. (9a), (9b), (9c) is based on measured POC/SPM rather 
than the algorithm-derived POC/SPM from Eq. (8). Thus, in contrast to 
the operational Method-2 algorithm shown in Fig. 14b which is subject 
to some misclassifications associated with the use of POC/SPM algo
rithm, the results in Fig. 14d are free of misclassification errors. Thus, 
the statistics in Fig. 14d are better than in Fig. 14b. 

Fig. 14. Scatter plots comparing the 
algorithm-derived POC with measured POC 
for different variants of Rrs-based algo
rithms: (a) Method-1 particle composition- 
specific algorithm utilizing Eq. (6a), (6b), 
(7a), (7b), and (8) for calculating POC, (b) 
Method-2 particle composition-specific al
gorithm utilizing Eq. (8) for POC/SPM-based 
classification and Eq. (9a), (9b), (9c) for 
calculating POC from class-specific for
mulas, (c) standard global POC algorithm 
(black line Fig. 13b), and (d) similar to (b) 
but POC/SPM-based classification was made 
using the measured values of POC/SPM 
instead of Eq. (8). For illustrative purposes, 
data points depicted as blue open circles, 
green cross-marks, and orange triangles 
represent the organic-dominated, mixed, 
and mineral-dominated classes of suspended 
particulate matter, respectively. The log- 
transformed data were used to calculate 
the correlation coefficient R and model-II 
linear regression fit (black solid line). The 
1:1 line (dashed line) and several statistical 
parameters are also shown.   
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3.4. Demonstration of application to satellite observations 

Fig. 15 demonstrates the operational applicability of Rrs-based al
gorithms for estimating SPM (Fig. 15a), POC/SPM (Fig. 15b), as well as 
POC using the Method-1 particle composition-specific algorithm 
(Fig. 15c) from satellite observations in the Arctic region encompassing 
the Beaufort Sea, the Chukchi Sea, and the northern portion of the 
Bering Sea. The results represent the 10-year average data for the 
months of June and September obtained from daily satellite observa
tions with MODIS-Aqua over the period 2012–2021. These maps reveal 

several salient features in the decadal averages of monthly characteris
tics of particulate assemblages in this Arctic region. For example, the 
elevated SPM observed around the coast of Alaska (Fig. 15a) is generally 
associated with relatively low POC/SPM indicative of significant or 
dominant contribution of mineral particles to SPM (Fig. 15b). The 
feature of elevated SPM and low POC/SPM produced by discharge of 
Mackenzie River has larger northward extent in the spring-to-summer 
transition period (June) than the summer-to-autumn transition period 
(September). 

The northern part of the investigated region located south of the sea 

Fig. 15. (a) SPM derived from the 
MODIS-specific algorithm (Eqs. S1a, 
S1b and Table S1 in Supplementary 
Material). (b) POC/SPM derived from 
the MODIS-specific algorithm (Eq. S2 
and Table S3 in Supplementary Mate
rial). (c) POC derived from the MODIS- 
specific algorithm that uses Method-1 
algorithm approach to account for the 
composition of particulate suspended 
matter. Specifically, POC was calcu
lated as a product of algorithm-derived 
SPM shown in panel (a) and the 
algorithm-derived POC/SPM shown in 
panel (b). (d) Relative difference in 
percent between POC derived from the 
Method-1 particle composition-specific 
algorithm shown in panel (c) and POC 
derived from the standard global POC 
algorithm used by NASA OBPG for 
processing MODIS-Aqua imagery. This 
difference was calculated as 100 ×

[POCmethod-1 – POCstandard]/POCstandard. 
These results represent the 10-year 
average data for the months of June 
and September over the period 
2012–2021 obtained from daily satel
lite ocean color observations with 
MODIS-Aqua of the Beaufort Sea, the 
Chukchi Sea, and the northern Bering 
Sea (the latitude and longitude bound
aries of the illustrated region are 
57o-75o N; 125o-180o W). The white 
areas indicate the lack of valid satellite 
data, for example associated with sea 
ice cover in the northern part of the 
region.   
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ice cover includes surface waters with the lowest SPM (often <200 mg 
m−3; Fig. 15a) and lowest POC (<20 mg m−3; Fig. 15c). Interestingly, 
the POC/SPM retrievals indicate that these very clear waters can have 
low POC/SPM and thus be dominated by mineral particles (Fig. 15b). It 
is conceivable that this feature, which is especially well-pronounced in 
the June image of POC/SPM, may be related to release of particles from 
retreating sea ice. However, it must be noted that when SPM and POC 
are very low the retrievals of POC/SPM are susceptible to potential in
crease in relative error. It is also notable that whereas the POC/SPM 
maps reveal essentially no presence, or only minor presence, of distinct 
areas with clear dominance of organic particles (POC/SPM > 0.28) in 
the Chukchi and Beaufort Seas, large portions of this region have in
termediate values of POC/SPM characteristic of mixed particulate as
semblages (Fig. 15b). This lack of distinct areas with high POC/SPM may 
be largely related to the decadal scale of averaging the satellite obser
vations. The POC maps derived from the particle composition-specific 
algorithm show generally elevated levels of POC in coastal waters 
(Fig. 15c). Another notable feature is the presence of extensive areas 
north and south of the Bering Strait which have higher POC in 
September than in June. 

For comparison, Fig. 15d shows the relative difference in percent 
between POC derived from the Method-1 particle composition-specific 
algorithm and the current MODIS-specific standard global algorithm 
used by NASA OBPG. This difference was calculated as 100 ×

[POCmethod-1 – POCstandard]/POCstandard. The largest differences are 
generally observed in the northern portion of the region where POC 
retrieved from the particle-composition algorithm can be tens of per
centage points lower relative to the standard POC product. In other areas 
including the waters adjacent to the Alaskan coast the differences are 
also significant. For the entire investigated region, the median difference 
in June is −37.4% and the 25th and 75th percentiles are −49.8% and 
−23.1%, respectively. In September these metrics of difference are 
−46.3%, −69.6%, and −33.1%, respectively. These results are most 
likely indicative of a tendency of POC overestimation by the standard 
global algorithm because it does not account for variations in the 
composition of suspended particulate matter. Such tendency to over
estimate POC by the standard algorithm is consistent with the analysis of 
this algorithm with our algorithm development dataset as shown in 
Figs. 13b and 14c. 

We have also generated the POC maps similar to those shown in 
Fig. 15c but using the Method-2 particle-composition class-specific al
gorithm. This result is shown in Fig. S5 (Supplementary Material). The 
spatial patterns of POC retrieved with the Method-1 and Method-2 al
gorithms are highly consistent. Given the differences in the design of the 
Method-1 and Method-2 algorithms, the POC estimates from these al
gorithms are expected to exhibit some differences which are also illus
trated in Fig. S5. These results indicate, however, that the satellite-based 
retrievals of POC using the Method-1 and Method-2 algorithms are 
generally in good agreement to within ±10 to 30%. 

4. Summary and future perspectives 

High complexity and variability in the composition of seawater 
constituents within the global ocean pose major challenges for the 
development of unified algorithm approaches for estimation of POC and 
other biogeochemically important constituents from optical observa
tions across a continuum of diverse aquatic environments. To address 
these challenges, in this study we present an adaptive optical algorithm 
approach for estimating POC which accounts for variability in the 
composition of suspended particulate matter. We use the ratio of POC/ 
SPM as a proxy for particulate composition to optically differentiate 
water bodies with varying proportions of organic and mineral particles. 
Using field data from the western Arctic seas that exhibit a broad range 
of water composition and optical properties, we developed empirical 
algorithms to estimate SPM and POC/SPM either from the particulate 
inherent optical properties (IOPs) of seawater (i.e., the spectral 

absorption ap(λ) and backscattering bbp(λ) coefficients) or directly from 
the spectral remote-sensing reflectance of the ocean, Rrs(λ). The optical 
algorithms to retrieve POC/SPM enabled formulation of particle 
composition-specific algorithms for estimating POC either from partic
ulate IOPs or from Rrs(λ). In each of these two algorithm categories we 
formulated the particle composition-specific algorithms to estimate POC 
from two methods. In the Method-1 algorithms POC is determined from 
the algorithm-derived SPM and POC/SPM. In the Method-2 algorithms 
POC is determined from particle composition class-specific formulas 
following POC/SPM-based classification of input optical data into one of 
the three particle-composition classes, i.e., organic-dominated, mineral- 
dominated, and mixed. In the category of Rrs-based algorithms a suite of 
satellite sensor-specific algorithms was formulated which are applicable 
to observations with several past and current satellite ocean color 
missions. 

The analysis of field data showed significant improvements in POC 
estimates from particle composition-specific algorithms in optically- 
complex Arctic waters compared with algorithms that do not account 
for variations in particulate composition, especially the current standard 
POC algorithm used for global satellite applications. We also demon
strated the example application of the Rrs-based algorithms to satellite 
ocean color observations in the Arctic region. Although our study uses 
data from the Arctic region, the underlying concept of adaptive algo
rithms based on optically-derivable characteristics of water constituents 
is not intended to be limited to specific regions but rather is expected to 
be more broadly applicable. Also, while the present study demonstrates 
the adaptive optical algorithms relying on the use of POC/SPM, the 
prospect of incorporation of additional water-constituent properties 
related, for example, to particle size distribution and CDOM has the 
potential to further improve the adaptive approach in terms of ac
counting for optical variability caused by water constituents across 
diverse environments. 

Although the algorithms for estimating chlorophyll-a concentration 
(Chla) are outside the scope of this study, it is noteworthy that the 
particle composition-specific approach could be also useful to improve 
Chla retrievals from optical algorithms. This expectation is supported by 
our Arctic data of Chla plotted versus particulate IOPs in Fig. 16 which 
show qualitatively similar patterns to those for POC vs. IOPs in Fig. 6. 
Unsurprisingly, the data points in Fig. 16 are spread widely because 
chlorophyll-a is essentially found only in phytoplankton which coexist 
with many types of organic and inorganic particles suspended in water 
and multiple characteristics of phytoplankton and all other types of 
particles affect the relationships between Chla and particulate IOPs. 
However, Fig. 16 also shows that the observed data spread is largely 
associated with changes in particulate composition parameterized by 
POC/SPM. It is seen, for example, that samples dominated by organic 
particles with high values of POC/SPM exhibit relatively tight re
lationships, especially between Chla and ap(λ) (Fig. 16a,b,c). As POC/ 
SPM decreases with decreasing contribution of organic particles, these 
relationships weaken. 

Whereas the demonstrated capability to estimate POC/SPM from 
optical measurements provided a mechanistically-based framework for 
particle composition-specific algorithms to estimate POC, it is also 
noteworthy that POC/SPM can itself be a useful product for biogeo
chemical studies, for example, when investigating the role of mineral 
particles as ballast that enhances the export flux of POC from the surface 
layer to deep ocean, stimulation of primary productivity by aeolian 
input of iron-rich dust, or organic matter incorporation into sediments 
(e.g., Armstrong et al., 2001; Le Moigne et al., 2014; Schartau et al., 
2019; Van der Jagt et al., 2018). In addition, the Rrs-derived POC/SPM 
can provide a useful quality flag for current standard global products of 
POC and Chla derived from satellite ocean color missions, especially in 
waters dominated by mineral particles (i.e., low POC/SPM) where these 
standard products can be subject to gross error. 

In closing, this study demonstrates that differentiation of water 
bodies based on particulate composition proxy of POC/SPM provides a 
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promising adaptive framework for optical algorithms with improved 
performance along the continuum of water bodies exhibiting large 
variability in particulate composition and optical properties. This sup
ports a need for further evaluation of presented algorithms with inde
pendent field and satellite data from various regions to assess the 
performance and uncertainties under different application and envi
ronmental scenarios as well as explore further refinements and ad
vancements in the adaptive algorithm approach that accounts for 
variability in cause-and-effect relationships between water-constituent 
properties and optical properties. 
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Woźniak, S.B., Stramski, D., Stramska, M., Reynolds, R.A., Wright, V.M., Miksic, E.Y., 
Cichocka, M., Cieplak, A.M., 2010. Optical variability of seawater in relation to 
particle concentration, composition, and size distribution in the nearshore marine 
environment at Imperial Beach,California. J. Geophys. Res. 115, C08027. https:// 
doi.org/10.1029/2009jc005554. 
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