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Trade-0ff Characterization
Between Social and
Environmental Impacts Using
Agent-Based Product Adoption
Models and Life Cycle
Assessment

Meeting the United Nations (UN) sustainable development goals efficiently requires design-
ers and engineers to solve multi-objective optimization problems involving trade-offs
between social, environmental, and economical impacts. This paper presents an approach

for designers and engineers to quantify the social and environmental impacts of a product at

a population level and then perform a trade-off analysis between those impacts. In this
approach, designers and engineers define the attributes of the product as well as the mate-
rials and processes used in the product’s life cycle. Agent-based modeling (ABM) tools that
have been developed to model the social impacts of products are combined with life cycle
assessment (LCA) tools that have been developed to evaluate the pressures that different
processes create on the environment. Designers and engineers then evaluate the trade-
offs between impacts by finding non-dominated solutions that minimize environmental
impacts while maximizing positive and/or minimizing negative social impacts. Product
adoption models generated by ABM allow designers and engineers to approximate popula-
tion level environmental impacts and avoid Simpson’s paradox, where a reversal in choices
is preferred when looking at the population level impacts versus the individual product-level
impacts. This analysis of impacts has the potential to help designers and engineers
create more impactful products that aid in reaching the UN sustainable development goals.
[DOI: 10.1115/1.4056006]
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1 Introduction

The United Nations (UN) has published the sustainable develop-
ment goals that are intended to improve the quality of human life
around the world while protecting the environment and increasing
economic activity [1]. These goals have been linked to social, eco-
nomic, and environmental impact categories [2,3] and can be con-
sidered a multi-objective optimization problem involving at least
those three dimensions [4,5].

For any multi-objective design optimization problem there is
potential for trade-offs to be present between objectives, particu-
larly near optimal regions of the design objective space [6]. Design-
ers seeking to create products that help humanity reach the
sustainable development goals would benefit from being able to
understand where trade-offs exist between impacts. Designers
would also benefit from having tools that enable them to quantify
and compare those trade-offs in order to make informed design
decisions [4]. Engineering for global development research has
emphasized the need for defining and quantifying the social
impacts of designs in communities [7,8]. Likewise, quantifying
environmental impacts is important because the earth has limited
resources that can be consumed and a limited ability to absorb
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generated emissions [9,10]. In response to these needs, researchers
are starting to create methods that simultaneously assess the social
and environmental impacts of products [4,11,12]. Other studies
have compared the trade-offs between social and economic
impacts [13].

The goal of this paper is to share an adoption-based approach for
quantifying social and environmental impact that designers can use
to perform trade-off analyses and comparisons between designs.
This approach uses agent-based modeling (ABM) tools that have
been developed to model the social impacts of products [14]—as
it relates to product adoption—combined with life cycle assessment
(LCA) tools that have been developed to evaluate the pressures that
different processes create on the environment [15]. The approach
will be expanded in future research to include tools that quantify
economic impacts. This will allow designers to assess where trade-
offs between the three impact categories exist when design changes
are proposed and will also allow designers to quantify those
trade-offs.

In an LCA, the damage a product has on the environment is mea-
sured in three different categories, often called areas of protection
(AOPs) [15]. The three AOPs are damage to human health,
damage to the ecosystem, and damage to resource availability
[15,16]. An LCA calculates the impact of a product on the environ-
ment during the product’s life cycle (design and prototyping, mate-
rial extraction, production, distribution, use and disposal of the
product) [9,17]. At each stage of the life cycle, the inputs and
outputs of the processes involved in that stage create environmental
pressures [15]. These environmental pressures are related to the
three AOPs through characterization factors and damage pathways
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[16]. There are many methods for evaluating the impact of a product
on the environment, such as the IMPACT World+ method [18], the
ReCiPe method [16], and the LC-IMPACT method [15]. These
LCAs can be either attributional (focused on how the attributes of
a product impact the environment) or consequential (focused on
how the use of a product impacts the environment) [19]. The
scope of an LCA (i.e., the system that consumes resources and
creates emissions) can be product-based, company-based,
consumer-based, or nationally based [17].

LCA has the potential to help predict the environmental impacts
of new products before they are introduced into the market. Predict-
ing impacts requires designers to define the materials and processes
used in the product before the product is created. Human behavior,
however, cannot be modeled by LCA [20]. Therefore, traditional
LCA is not well suited to model the complex, evolving nature of
anew product’s introduction into society [21]. The human behavior
that needs to be modeled is sometimes referred to as the social and
economic factors that influence LCA [22,23]. These factors influ-
ence information about the product, such as adoption numbers
and critical design details. This means that scaling the results of
an attributional LCA to a population level without a product adop-
tion model will not lead to accurate information about the environ-
mental impacts of the product [24].

In order to accurately scale attributional LCA results, a tool is
needed that can model product adoption. ABM is a predictive
tool that can be used to assess the effects of new products that are
not well established in the market place [21,25]. ABM has the
ability to model these social and economic factors [20] and has
been used to predict product adoption and explore what if scenarios
[26-28]. Some important human behaviors that influence LCA
include non-price-driven human behavior (i.e., irrational and
social behaviors) [20,26] and the rebound effect.

Rebound effect occurs when a designer creates a product that is
more efficient in order to reduce the product’s impact on the envi-
ronment. The consumer, however, uses more of the product
because it is more efficient. This increased use of the product coun-
ters the reduced environmental impact that the designer was hoping
for. The end result is a more efficient product with a greater environ-
mental impact, which is the opposite of what the designer intended.
ABM can help designers predict the rebound effect and account for
it in their LCA [20,29,30]. A good example of this effect is smart
homes designed to reduce electricity use. Policy makers hoped
that smart homes would decrease the amount of energy used per
home but ABM simulations indicated that an increase in smart
homes would actually increase the amount of energy used per
home [20]. The product adoption models generated by ABMs are
also starting to be used in parallel and in series with LCA to
better predict the impacts of new products and policy changes on
the environment [22,25,29,30].

It has also been shown that LCA results are influenced by ABM
results [31]. Some examples of how LCA can be altered by ABM
results include the following: (1) LCA results can be altered by dif-
ferent product adoption results predicted in an ABM [21] and (2)
LCA results can be calculated at different time intervals during
the product adoption ABM and fed to the agents, influencing
their decisions in the model [28,32]. ABM results can also help
designers and researchers understand all of the varying use cases
that need to be modeled [24,27,29,30]. These examples show that
there is a need to integrate LCA and ABM when modeling impacts.

This paper seeks to understand environmental impacts at a pop-
ulation level using both LCA and ABM to estimate how many prod-
ucts are adopted throughout the population, thus indicating to what
degree a product has an overall environmental impact, and to what
degree a product impacts society as a whole. Under the reasonable
possibility that there are trade-offs between environmental and
social impact, the method presented allows decision-makers to
more clearly understand those trade-offs.

This paper will first present an approach to quantifying and com-
paring social and environmental impacts. It will then present a
simple illustration of how to implement the approach using the
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COVID-19 virus and face masks as an example. Finally, there
will be a discussion about the approach and important findings.
The goal of the approach is to enable designers to recognize how
design changes result in trade-offs and help designers perform
trade-off analyses between impact categories. This will result in
designers having a greater understanding of how design changes
affect these impact categories and will enable designers to identify
designs that minimize environmental impacts while maximizing
positive and/or minimizing negative social impacts.

2 Methodology

There are three stages to integrate LCA and ABM to assess the
trade-offs between environmental and social impacts. The stages
are: (1) product definition, (2) product analysis, and (3) impact
trade-off analysis. The three stages and the steps involved are
shown in Fig. 1.

The integrated analysis uses the ABM developed by Mabey et al.
[14] to model social impacts and product adoption, and the OPENLCA
software package to calculate environmental impacts. It is important
to note, however, that any LCA tool capable of calculating environ-
mental impacts and any ABM capable of calculating social impacts
and product adoption numbers can be used in this method.

2.1 Stage 1: Product Definition. The first stage is the product
definition stage. This stage is important because the product defini-
tion will influence the results of the LCA and the ABM. The product
definition consists of three parts: material specifications, process
specifications, and product attributes (as shown in Fig. 1).

The first step is to define the materials and manufacturing pro-
cesses used as accurately as possible to ensure that the LCA
results represent the actual impact of the product on the environ-
ment. Approximations about quantities, material types, processes,
and other inputs may be made, but they will decrease the accuracy
of the LCA results. It is up to the designer to decide how much accu-
racy is desired.

The second step is to create a list of product attributes that define
key elements of the product. Product attributes are characteristics of
the product that will affect the social impact of the product and a
person’s decisions to adopt the product. The attributes should
allow for application to multiple versions of the product. They are
quantifiable and describe performance requirements of the
product. These product attributes are synonymous with the func-
tional units of the product system [33]. Examples of attributes
include esthetics, comfort, and effectiveness. The product definition
contains the product’s ratings for each attribute. When the designer
makes changes to product features, the product should be re-rated
for each attribute. These new ratings will be used in the new
product definition. The product’s rating for each attribute influences
the agent’s adoption decision in the model [14].

The results of this stage are a product definition consisting of
materials used, manufacturing processes used, and ratings for
each product attribute. Figure 1 shows how the attributes enter
the ABM in stage 2 while the materials and processes used
during the product life cycle enter the LCA in stage 2.

2.2 Stage 2: Product Analysis. The second stage of the
process is the product analysis stage. This stage of the process is
to model the potential social and environmental impacts of the
product. The product analysis is broken down into four steps: (1)
performing an attributional LCA of the product, (2) performing a
sensitivity analysis of the results, (3) executing an ABM simulation
to obtain population level adoption numbers and the product social
impact data, and (4) integrating the product adoption model from
the ABM with the results of the sensitivity analysis and LCA.
Because the ABM and LCA results are independent of each
other, they can be run in parallel. The result of this analysis is
data on the social and environmental impacts of the product.
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Block diagram illustrating approach for using LCA and ABM results to inform engi-

neering decision-making process. The results of the analysis are both environmental and
social impacts that must be weighed by the designer in an impact trade-off analysis.

2.2.1 Attributional Life Cycle Assessment. This step is illus-
trated by the box labeled “Attributional Life Cycle Assessment”
in Fig. 1. The LCA can be built using any LCA software
package. The designer can also use any of the various databases
containing information about pressure placed on the environment
by resource extraction, refining, and manufacturing processes
when building the LCA. Once the LCA is built, it will be used to
evaluate the product’s environmental impacts.

There are many methods for evaluating environmental impacts.
All of these methods have similar midpoint and endpoint impact
categories [15,16,34]. The ReCiPe(H) midpoint method will be
used to perform the evaluation because it is a well-established
method in the literature [9,35]. The midpoint method calculates
the impact of environmental pressures and links them to 17 environ-
mental impact categories [16]. Those impact categories include
types of acidification (increases in acidity), toxicity (presence of
toxins in the food chain), eutrophication (presence of nutrients lim-
iting aquatic biomass), and damages to the atmosphere [36]. The
ReCiPe(H) endpoint method (which links environmental pressures
to the three AOPs stated in the introduction [16]) can be used for a
simpler analysis. The 17 midpoint impact categories and three

Table 1 ReCiPe midpoint impact categories [16]

Midpoint impact category Units

Climate change
Ozone depletion

kg CO,-eq to air

kg chorofluorocarbon
(CFC)-11-eq to air
kBq Co-60-eq to air
kg PM2.5-eq to air
kg NOx-eq to air

Ionizing radiation

Fine particulate matter formation
Photochemical oxidant formation:
terrestrial ecosystems

Photochemical oxidant formation:

human health

Terrestrial acidification
Freshwater eutrophication
Human toxicity: cancer

Human toxicity: non-cancer
Terrestrial ecotoxicity
Freshwater ecotoxicity
Marine ecotoxicity

Land use

Water use

Mineral resource scarcity
Fossil resource scarcity

kg NOx-eq to air

kg SO,-eq to air

kg P-eq to freshwater

kg 1,4-dichlorobenzene (DCB)-eq
to urban air

kg 1,4-DCB-eq to urban air

kg 1,4-DCB-eq to industrial soil
kg 1,4-DCB-eq to freshwater
kg 1,4-DCB-eq to marine water
m?x year annual cropland-eq
m® water-eq consumed

kg Cu-eq

kg oil-eq

AOPs are listed in Tables 1 and 2, respectively. Because the mid-
point method yields a more detailed understanding of environmen-
tal impacts, it will be used in this paper. When evaluating the
environmental impacts, P represents the environmental impacts at
a product level. If there are m impact categories, then P is defined
by Eq. (1)

P=[P|P2~--Pj~~-Pm]T (1

where P is calculated using the LCA software (e.g., oPENLCA). The
functions used in the LCA software to evaluate the environmental
impacts of the input variables in the model are represented by
f(u), where

P=f(u (@)

and y is a set of n variables of the form

w=lp o) 3)

that represent the inputs to the LCA.
The results of the LCA evaluation are represented in Fig. 1 by the
database symbol labeled “Environmental Impacts (Product Level).”

2.2.2 Agent-Based Model. This step is illustrated by the box
labeled “Agent-Based Model” in Fig. 1. In the approach presented
in this paper, the purpose of the ABM is to inform the patterns of
product adoption in the population and to subsequently understand
the social impacts of the product on the larger society. We use an
ABM previously developed by the authors [14], where inputs for
different sub-models are used to construct the ABM. This frame-
work for social impact ABM requires information about the
product, the society the product exists within, the particular scenario
or context for the model, and what social impacts are being inves-
tigated. Possible areas of social impact should be explored, and
indicators to measure the selected social impacts should be selected.

Table 2 ReCiPe endpoint areas of protection [16]

Area of protection Units Explanation

Damage to human Disability adjusted ~ Years lost due to disease or

health life years accident

Damage to Species-year Disappeared species per year
ecosystems

Damage to resource  USD Extra cost required for future
availability resource extraction

Journal of Mechanical Design
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Agents, which represent individuals within a population, are
ideally created based on data from real-world populations. These
data may be obtained through census data or surveys. Within the
model, rules are created that govern the decision-making of
agents and whether they will adopt the product. Rules are also
made to govern the probability that the product will have a social
impact on the agent based on the choice to adopt or not adopt the
modeled product. An example of this would be, if a person
adopts the use of cigarets, then there is an increased probability
of lung disease. In that case, cigarets would be the product, the
social impact category would be health and safety of that individual,
and rates of lung disease as the indicator for the social impact. It is
important that these rules are created based on empirical data to
more closely match the model to real-world behavior.

The selection of impact categories and indicators will differ based
on the product. Because social impact analysis has not yet reached
the level of maturity that environmental impact analysis has, there is
no commonly expected set of social impacts to include in a social
impact model [2]. This requires the designer to define the social
impact categories to model and select metrics to measure the
social impacts. Difficulties in this process have been noted by the
UN and include the following: (1) many social impacts are qualita-
tive and it is difficult to consistently quantify results across different
studies and (2) it can be expensive to collect the large amounts of
data required to build social impact models when that data do not
already exist [37].

To facilitate social impact modeling, the UN has published guide-
lines for choosing social impacts to measure in the United Nations
Environment Program Guidelines for Social Life Cycle Assessment
of Products [37]. An example of how to choose social impact cate-
gories can also be found in Ref. [2] where the UN sustainable devel-
opment goals are used directly to create impact categories.
Designers can use the guidelines in this paper when choosing
which social impacts to model and which ABM tools to use.

Constructing an ABM of social impact is not trivial but it can be
valuable since ABM can expose the connection between a product’s
impact on a single individual and its adoption across and impact on
the larger population. Importantly, impact and adoption at the agent
level can be aggregated to understand population level trends.
These population level trends influence both social and environ-
mental impacts.

It is important to note that ABM is a stochastic process, so it will
be necessary to run ABM simulations a sufficient number of times
to understand the distribution of results. The exact number of times
the simulation needs to be run will vary based on the specific case,
but at a minimum, it should be enough times that the standard devia-
tion of results does not change significantly with more simulation
runs. More detailed information on the creation of social impact
ABMs can be found in Ref. [14]. This previously developed frame-
work outputs results for the number of agents that adopt the product
and the social impacts investigated. The number of agents who
chose to adopt the product during the simulation is called the
product adoption number. In Fig. 1, it is represented by the database
symbol labeled ‘“Product Adoption (Population Level).” It is also
represented by the variable a and will be used to properly scale
the attributional LCA results. The calculated social impacts are rep-
resented in Fig. 1 by the database symbol labeled “Social Impacts
(Pop. Level).”

2.2.3  Scale Impacts. The product-level environmental impacts
are scaled by the product adoption model to produce the population
level environmental impacts in this step, as shown in Fig. 1. In
Eq. (4), I represents the environmental impacts at a population
level, while a is a scalar that represents the product adoption
number calculated using the ABM. /is calculated by scaling P by a.

I=aP (4)

The results of this step are represented in Fig. 1 by the database
symbol labeled “Environmental Impacts (Pop. Level).” I can be
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compared in stage 3 to the population level social impacts (see
Fig. 1).

2.2.4  Impact Sensitivity Analysis. This step is illustrated by the
box labeled “Impact Sensitivity Analysis” in Fig. 1. S is an mxn
matrix that represents how P varies with respect to the variations
in p. Each column in S represents how the environmental
impacts, P, are sensitive to a variation in input y;.

S S22 0 S o St
$21 S22 vt 82ttt Son
oP : : . :
S=—= (5)
ou Sjt Sjp2 S ji Son
L Sml Sm2 v S Sy

The columns of S are calculated using Eq. (6)

Si=f(&i) (6)
where

E = A,‘,Ll (7)

and A; is an nxn identity matrix with the iith term replaced by &
where ¢ represents the percent variation

1 0 --- 0 --- 07]
O1 --- 0 --- 0

Ai=10 o b 0 ®
(00 -~~~ 0 - 1]

The results of Eq. (7) are a vector of the form

6i=[ﬂ1ﬂ2~-~5ﬂi~-~”n]T ©

It is important to note in Eq. (9) that only g; is scaled by &. This
means that each of the inputs to the LCA can be tested indepen-
dently of the other inputs to determine its sensitivity to variation.
The results of the sensitivity analysis represented in Fig. 1 are
used when considering the impact of potential changes to the
product definition.

2.3 Stage 3: Impact Trade-Off Analysis. This paper is based
on the reasonable assumption that environmental impacts may be in
conflict with social impacts [4] and that the designer would benefit
from being able to characterize the trade-offs between them for the
purpose of decision-making. There are various ways for designers
to visualize or explore trade-offs between sustainability objectives
[12]; finding and then visualizing Pareto frontiers, or Pareto sets,
or simple non-dominated solution sets are one particular way,
which we suggest as part of this paper.

We make this suggestion because of the rich literature existing on
Pareto-based trade-off exploration [5,6,38—40], which demonstrates
the value of plotting/visualizing non-dominated solution sets in a
design objective space such as a sustainability space [12].

A non-dominated set of solutions (sometimes derived from
Pareto frontiers in the literature) represent the set of solutions for
which trade-offs are present, meaning to improve in one objective
such as minimizing negative social impact, one must give up some-
thing in another objective such as minimizing negative environmen-
tal impact. The non-dominated set is important to designers because
it represents the set of solutions from which an optimal solution can
be selected. All dominated solutions are pragmatically worse in
every way when compared to at least one solution in the non-
dominated set, thus the non-dominated set is of interest.

Transactions of the ASME
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Simple two- and three-dimensional Pareto sets can be easily visu-
alized [41]. Larger n-dimensional spaces can also be easily explored
through visual analytics techniques [38,39]. Once designers choose
specific solutions from the Pareto set, the design parameters
required to achieve that design can be easily known [5], thus
informing how to change the design to achieve the desired outcome.

For Pareto-based exploration methods to be useful, a meaningful
non-dominated set must first be acquired. There are various tech-
niques used to acquire such sets, ranging from deterministic
gradient-based methods, to stochastic genetic algorithms, to
simply acquiring the set through brute force, and filtering [5].
When using this approach, the special case involving no conflict
at all simply results in a single optimal design that optimizes all
objectives without conflict. Therefore, the Pareto-based exploration
approach presented herein works regardless of the presence of con-
flict. It is important to note, however, that the presence of a conflict
is rarely known without performing a trade-off analysis, which is
why this paper advocates that stage 3 (impact trade-off analysis)
be carried out.

To perform the impact trade-off analysis, various instances of the
design are considered. For each instance, the mean environmental
impacts are compared with the mean social impacts. Each dimen-
sion of the environmental impacts (e.g., the AOPs or midpoint envi-
ronmental impacts) should be compared to each dimension of the
social impacts calculated by the ABM.

Figure 2 illustrates how various instances of a hypothetical
design (product definition 1 and product definition 2) can be com-
pared. The plot shows the designer that both product definition 1
and product definition 2 contain non-dominated solutions. These
are the solutions closest to the solid curve (or trade-off curve).
This representation of the trade-offs helps the designer see not
only which instance of a particular definition is best but also that
there are environmental/social trade-offs between product defini-
tions 1 and 2. Product definition 1 is shown to be best socially,
but product definition 2 is shown to be best environmentally.
Therefore, a trade-off exists between product definition 1 and
product definition 2.

Furthermore, using S from Eq. (5), the designer can gain under-
standing of which inputs to the LCA have the greatest influence on
environmental impacts. This can inform the designer which parts of
the product definition to change. An easy way to interpret S is to

A
s
(8]
@
o
E
C
(8]
o
(7]
. 0,00
‘QQD 0 0
m

Low High
Environmental Impact
o Product Definition 1 A Product Definition 2

Fig.2 An example of a social impact and a scaled environmental
impact being compared using a trade-off curve
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convert the elements of S into percent changes in impact. These
percent changes in impact can be represented by the matrix D

rdn do - dy - dip7
dy dyn - dy - dyy
D= : : " : 10
djy dj dji oy (10
- dml dm2 e dmi e dmn -
where the elements of D can be calculated using Eq. (11).
Sj,'
dj =100 ——1 (11)
pj

The elements of D represent the percent change (i.e., the sensitivity)
of an environmental impact to &;. If §; is greater than 1 (representing
an increase in input ), then s; is generally greater than p; and s;/p;
is greater than 1. The result of Eq. (11) is the percent increase in
impact. The inverse is true when &; is less than 1 (representing an
decrease in input ;). A higher percent change indicates a higher
sensitivity. Designers can use this information to make informed
decisions about which changes to the product definition will
likely decrease certain environmental impacts.

Returning to stage 1, the designer can redefine the product based
on potential improvements and perform the analysis again. The new
product definition (product definition 3) can be compared with the
old product definitions (product definitions 1 and 2) so that the
designer can evaluate if the changes have resulted in a new non-
dominated solution. Changes to the product definition should be
evaluated again because it is possible that changes intended to
reduce environmental impacts may have negative effects on social
and/or environmental impacts. The designer can continue to make
changes to the product definition and perform the analysis until
the product definition results in non-dominated solutions. Ulti-
mately it is up to the designer choose a single design from the non-
dominated set, which he/she believes will be best when trying to
meet the UN sustainable development goals or other sustainability
goals.

3 Simple Illustrative Example

In this section, the method presented in Sec. 2 is illustrated by a
simple design example. The product being designed in the illustra-
tion is a face mask intended to slow the transmission of COVID-19.
The simple case of designing COVID-19 face masks was chosen
because the problem, candidate solutions, and health impacts can
be understood with minimal text to introduce them. In addition,
there is enough citable data on face masks and COVID-19 to
perform social and environmental impact analyses without the
need for lengthy discussion or the need to overburden the paper
with data [14].

It is not the intent of the authors to propose a new mask design or
to use the results of this simple illustration to affect policy or any-
thing of the sort. Instead, the purpose of the illustration is to show
how a designer, working through the design process, would evalu-
ate the environmental and social impacts of alternative design
concepts.

The social impact considered in this example is the total number
of COVID-19 cases per 10,000 people [14], and the environmental
impacts considered are the environmental pressures created by all
steps in the production of the mask as listed in Table 1.

In this simple example, three COVID-19 mask designs are com-
pared. They are an N95 mask, a cloth mask, and a neck gaiter (see
Fig. 3). The authors chose to use opENLCA and the ABM created by
Mabey et al. [14], even though various LCA and ABM models
could be used. For simplicity, the LCA used here only considers
the environmental impacts during production, not during
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Fig. 3 Three COVID-19 face mask designs considered in the
example: N95 (right), gaiter (top), and cloth mask (bottom)

distribution, use, or disposal. While this is the case for this simple
illustration, there is nothing about this paper’s overall framework
(presented in Sec. 2) that prevents these LCA elements from
being considered. Similarly, social impacts are considered only
for the use phase. Social impacts during production, distribution,
and disposal, such as the health of manufacturing line workers,
were not included. A full life cycle analysis of this problem
would, of course, need to include these other important parts of a
product’s life cycle. The justifications for these choices in construct-
ing this simple model are that: (1) approximately 75% of energy
consumption in garment manufacturing occurs before the use and
disposal phases [42], (2) in the case of cotton garment production,
it is estimated that 88% of the water consumed during the garment’s
life cycle also occurs in the production phase [42], (3) there is an
abundance of data on COVID mask effectiveness and COVID
transmission rates from which to make accurate social impact
models for the use phase, and (4) these model simplifications
allow us to illustrate the approach without overburdening the
paper with a larger more complex model.

Table 3 Mask materials and material quantities

Mask feature Material Mass (g)
N95 mask [43,44]

Face covering Polypropylene 6.57
Straps Synthetic rubber 1.75
Nose bridge Aluminum 0.99
Foam nose guard Polyurethane 0.05
Cloth mask

Face covering Cotton 13.68
Straps Cotton 7.06
Neck gaiter

Face covering Polyester 36.01

032001-6 / Vol. 145, MARCH 2023

3.1 Stage 1: Mask Definition. The first step in defining the
masks is to articulate the materials and processes used to create
the masks. The materials and quantities used to create each mask
are defined in Table 3.

The processes used to create the masks were defined in oPENLCA
using data from Ecoinvent and Agribalyse found in the Environ-
mental Footprints (Nexus version 4) and the AGRIBALYSE v3.0
(Nexus version 1) databases downloaded from the oPENLCA
Nexus. These processes were represented by flow diagrams
shown in Figs. 4-6. Figure 4 shows the material and energy flows
required to form an N95 mask [44-46]. The box labeled “Electric-
ity” represents electricity that is required for different processes.
The boxes labeled “Polypropylene Fiber,” “Aluminum Extrusion,”
“Synthetic Rubber Straps,” and “Polyurethene Flex Foam” on the
far left of the flow diagram represent materials that are found in
the Ecoinvent and Agribalyse databases. These materials go
through different processes (represented by the other boxes) and
the output of the processes is an N95 mask that can be sent to
market.

After defining the materials and processes, the next step is to
create a list of product attributes that each design can be rated on.
The attributes chosen to define these masks are (1) effectiveness,
(2) comfort, and (3) esthetics. These attributes were chosen
because they were identified in surveys of potential face mask
users as aspects of the mask that can be changed from a design per-
spective that affect a person’s choice of whether to adopt a face
mask [48]; ratings for comfort and esthetics were based upon this
survey data from 745 participants. Effectiveness also affects how
well a mask prevents a person from spreading or contracting
COVID-19. The effectiveness was based upon research on the filtra-
tion effectiveness of different mask types [49,50]. Rating scales for
each of the attributes were as follows: effectiveness was rated on a
scale of 0-5 with O being completely ineffective in stopping the
spread of COVID-19 and 5 being completely effective. Comfort
was rated on a scale of —5 to 0, with —5 being extremely

Electricity
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Fig. 4 Material and energy flow for production of an N95 mask
[44-46]
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Fig. 5 Material and energy flow for production of a cloth mask
[44,46,47]

uncomfortable and O being so comfortable that the mask is not
noticeable. Esthetics was rated on a scale of —5 to 5 with —5
being very unattractive and 5 being very attractive. All ratings
were normalized negative or positive between 0 and 5. Maximum
comfort was O given that all masks produce discomfort.
Minimum filtration was 0 given that masks cannot produce a nega-
tive filtration. And esthetics ranged from —5 to 5 indicating that
esthetics can persuade and dissuade mask adoption. Ratings for
the attributes of the three masks can be found in Table 4.

The materials listed in Table 3, the flows defined in Figs. 4-6, and
the product attribute ratings in Table 4 represent the product defini-
tion that are used in the next stage of the analysis.

3.2 Stage 2: Mask Analysis. In this stage, an LCA, ABM sim-
ulations, and a sensitivity analysis were performed for the different
mask product definitions to illustrate the approach. Using discrete
choice analysis, a binomial or multinomial choice model can be
used [51]. In the ABM, a binomial choice model was used in
order to isolate the impacts of a single mask type. Although a mul-
tinomial choice model would mimic society more closely, it would
be difficult to isolate differences in impact between the designs.
Using a binomial choice model allows the designer to compare
the relative results at the population level. The data generated in
this stage will be used in stage 3 to analyze the trade-offs
between the different product definitions.

3.2.1 Mask Life Cycle Assessment. The inputs and outputs of
the flow diagram shown in Fig. 4 represent the processes involved
in creating an N95 mask. Using oPENLCA, a free LCA software
package, flows were created that represent the flow of materials
and energy during different stages of the product’s life cycle.
These flows were linked together to form processes with inputs
and outputs. The output for these processes is a single unit of
product. A product system that could be evaluated was then
created in OPENLCA using the processes.

Similar product systems were created in OPENLCA based on the
flows shown in Figs. 5 and 6 for a cloth mask and a gaiter, respec-
tively. An attributional LCA was then performed for each mask
design in oPENLCA using the ReCiPe(H) midpoint method. In total,
three LCAs were performed: one for the gaiter, one for the cloth
mask, and one for the N95 mask. These LCAs calculated the
product-level impacts of each mask design on the environment.
The results of the LCA evaluation are found in Table 5.

3.2.2 Mask Agent-Based Model. A previously developed
ABM on COVID-19 and face masks was extended to meet the
needs of this study [14]. The ABM used data from the 2019 American
Community Survey [52], American Time Use Survey [53], and 2020
survey data on mask use [48,54] to build a population of agents
and the rules that govern their behavior. Virus parameters such as
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Fig. 6 Material and energy flow for production of a gaiter [44,46,47]
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Table 4 Mask attribute ratings for an N95 mask, a cloth mask,
and a neck gaiter [14]

Mask type Effectiveness Comfort Esthetics
NO95 4.75 —4.5 -3
Cloth 2.5 -25 3
Neck gaiter 1 -0.5 3

the replication rate and duration of illness were set according to data
provided by the United States Centers for Disease Control and Pre-
vention [55]. The adoption framework used in the model is based
on using discrete choice analysis [56] with the theory of planned
behavior [57] as done by Pakravan and MacCarty [58]. This approach
allows for taking into account attitudes toward face masks, social
influences, government mandates, virus severity, and face mask attri-
butes when an agent is making the decision to adopt the use of a face
mask. Mask mandates fall under a term called perceived behavioral
control in the theory of planned behavior. This term relates to how
much control a person has over his or her own choices regarding
the behavior. In the case of this model, the perceived behavioral
control term was held constant to focus on how changes to mask attri-
butes change the number of cases of COVID-19. We acknowledge
that using sociotechnical system models can help inform policy deci-
sions such as government mandates, but we have limited the scope of
this model to focus on changes to the product.

For simplicity of illustration, we included only one social sustain-
ability measure in this COVID-19 mask example. While we believe
there are various social sustainability measures that could be
included such as how education is impacted by COVID-19 infec-
tion and COVID-19 mask usage, or how paid work has been
affected by COVID-19 and COVID-19 mask usage, we choose
not to include them in this illustration, simply to keep the
example short and relatively obvious. Readers who are interested
in the author’s methods for including various social impacts into
a product evaluation are referred to Ref. [59], which details social
impact aggregation, but does it outside of the context of LCA.

The ABM simulated the mask adoption number (the number of
people per 10,000 who would choose to adopt the mask) and calcu-
lated the social impact of each mask type on the population (number
of COVID-19 cases per 10,000 people). The stochastic nature of
any ABM yields a distribution of results. Therefore, 100 repetitions
of the simulation were executed for each mask type so that the range
of results of adoption and social impacts could be found. This
number of repetitions was selected because for additional

Table 6 Social impact (COVID-19 case numbers) of masks

Mask type  CaseSyedian (per 10,000 ppl)  Casesgpey (per 10,000 ppl)
N95 62 11.31

Cloth 97 36.6

Gaiter 528.5 251.86

simulation runs the standard deviation of the results changed less
than 1%, and the variation was sufficiently captured. Although
the validation of predictive sociotechnical models is difficult, this
model was validated using macrovalidation and microvalidation
techniques as described by North and Macal [60]. Microvalidation
is the validation of individual components of the model. In this
model, microvalidation was carried out to ensure that virus param-
eters matched real-world estimates, the synthetic population of
agents matched the demographics of the real-world population,
and that mask parameters match lab studies and surveys. It is diffi-
cult to perform quantitative macrovalidation on each of the model
outputs, but adoption rates generally align with those observed in
the literature [61]. Complete details on the model creation and val-
idation can be found in Ref. [14].

In this paper, changes were made to the ABM developed in Mabey
et al.’s study in order to tabulate the total number of people who
adopted masks in the population (M). This number was different
from a in Eq. (4). M represented the number of people who chose
to adopt the mask whereas a represented the total number of masks
used by the community. The reason for this difference was the
assumption made by the authors that people adopting a mask were
likely to use multiple product units. To relate @ to M, Eq. (12) was
used. M was scaled by the number of masks that each person who
adopted a mask used (y) and an approximation of the number of
people in the US population (p =300, 000, 000) [62].

M

“=10,000" (12)
The social impacts of the different masks can be found in Table 6.
These values represent the median number of cases and the standard
deviation between the number of cases for the 100 simulations for
each mask design.

According to Grand View Research, the value of the reusable
mask market in 2020 was USD 19.2 billion and 28.4% of that
market that was in North America [63]. Based on these numbers,

Table 5 Environmental impacts at a product level and at a population level

Product level Population level

Midpoint impact category NO95 Cloth Gaiter NO95 Cloth Gaiter
Climate change (kg CO,-eq) 13%x107%  5.0x107"  95x107>  7.97x107 589x10° 1.14x10®
Ozone depletion (kg CFC-11-eq) 44x107°  1.1x107® 39x10™® 274x10' 123x10° 4.59x10'
Tonizing radiation (kBq Co-60-eq) 2.1x107°  51x107>  1.2x1072  1.28x107 595x10"  1.37x10’
Fine particulate matter formation (kg PM2.5-eq) 1.8x107°  1LIx107° 21x107*  1.12x10° 124x10° 2.53x10°
Photochemical oxidant formation: terrestrial ecosystems (kg NOx-eq)  2.8x10™  1.1x10™>  2.1x10™*  1.7x10° 1.3x10° 2.5x10°
Photochemical oxidant formation: human health (kg NOx-eq) 26x107°  1.I1x107°  20x10™*  1.6x10° 13x10° 24x10°
Terrestrial acidification (kg SO,-eq) 46x107°  20x107°  34x10™  29x10°  24x10°  4.0x10°
Freshwater eutrophication (kg P-eq) 53x107°  25x10™*  5.1x107°  33x10*  29x10°  6.1x10*
Human toxicity: cancer (kg 1,4-DCB-eq) 59%x10™  28x1072  39x107°  3.7x10°  33x107  4.7x10°
Human toxicity: non-cancer (kg 1,4-DCB-eq) 75%107  33x107"  5.6x1072  46x10°  38x10®  6.7x107
Terrestrial ecotoxicity (kg 1,4-DCB-eq) 14%x107>  67x107"  11x107"  87x10"  7.8x10° 1.3x10*
Freshwater ecotoxicity (kg 1,4-DCB-eq) 43x107  22x107>  44x107°  27x10°  26x107  53x10°
Marine ecotoxicity (kg 1,4-DCB-eq) 57x107* 27x1072 57x107°  3.6x10°  32x10"  6.8x10°
Land use (m* X year annual cropland-eq) 55x107*  20x107"  1L1x107*  3.4x10° 24x10°  1.3x10°
Water use (m® water-eq) 1.9x107*  48x1072 64x107* 1.2x10° 5.7x107 7.6 x10°
Mineral resource scarcity (kg Cu-eq) 28x107°  70x10™*  75x10~° 1.8x10°  82x10°  8.9x10*
Fossil resource scarcity (kg oil-eq) 6.0x107>  12x107"  24x107%  3.7x107 1.4x10° 2.9x 107

Note: Cases where Simpson’s paradox occurs are bolded.
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Table 7 Adoption numbers from ABM simulations

Y Individual
Mask Mytedian (per Msiapey (per (masks/ QMedian
type 10,000 ppl) 10,000 ppl) adopter) (masks)
NO95 8279 31.90 25 6.21x10°
Cloth 9746 16.91 4 1.17x10°
Gaiter 9931.5 106.11 4 1.19%10°

the value of masks sold in North America was USD 5.45 billion.
According to a survey conducted by McKinsey and Co. 77% of
women and 71% of men wore a reusable mask at least once a
week [64]. The U.S. Census reports that the US population was
331,449,281 people in 2020 and that 50.8% of the population are
women [62]. Based on these data, there are approximately 246
million reusable mask users in the USA. The average price of the
40 top selling reusable masks on Amazon.com was USD 5.85 at
the time this study was performed. The number of reusable masks
sold was 932 million based on the average cost per mask and the
market value of masks sold in North America in a year. This
means that the average reusable mask user bought 3.79 masks per
year. Because people cannot own part of a mask, this number is
rounded up to four masks per year or y=4 for each person who
adopts a cloth mask or gaiter.

Studies suggest that each N95 mask can be used up to 25 times
before filtration decreases [65] and the CDC recommends that
N95 masks be used no more than five times by healthcare
workers [66]. Based on this information, it is assumed that each
person who adopts an N95 mask uses it 15 times before replacing
it. Assuming one use per day means that the N95 mask will
be replaced every 15 days and 25 masks will be used in a year or
y =25 for N95 masks.

The median mask adoption numbers, mask adoption standard
deviation, individual adoption number, and adoption number are
found in Table 7. These values represent the 100 repetitions for
each mask in the ABM.

3.2.3  Scale Impacts. The environmental impacts of each mask
calculated during the LCA step (see Table 5) are scaled by the
number of masks used by the population, a (see Table 7), using

Eq. (4). The a value for each simulation is used to scale each envi-
ronmental impact. The median population level impacts for each
mask design calculated in this step are found in Table 5. One impor-
tant detail to note is that some designs have a lower impact relative
to the other designs at a product level (individual-level) but a higher
impact relative to the other designs at a population level and vice
versa. This paradox is called Simpson’s paradox. Simpson’s
paradox occurs when a dataset appears to have a certain trend but
that trend is reversed when the data are aggregated [67]. In this
case, some mask designs appear to have lower relative environmen-
tal impacts until those impacts are scaled by a product adoption
model. This paradox is a good example of why using product adop-
tion models to scale LCA results is important. Impacts not scaled by
a product adoption model can lead designers to make trade-offs that
are unintentionally worse for the environment. This is similar to the
rebound effect that can occur with products intended to decrease
environmental impacts [20,29,30]. Examples of Simpson’s
paradox are highlighted in Table 5.

3.2.4 N95 Mask Sensitivity Analysis. The N95 mask has the
largest set of materials in its product definition compared to the
other masks being analyzed so it was used as the example for con-
ducting the sensitivity analysis. In practice, designers should
conduct a sensitivity analysis for each product definition.

In this sensitivity analysis, 6 =1.2 and 6§ =0.8 were used for each
input. This represents a 20% variation plus or minus in each input
parameter. Each input to the LCA model (electricity, polypropylene
fiber, aluminum, synthetic rubber, and polyurethane flex foam) was
varied by 6= 1.2 and then by 6=0.8 and the model was evaluated.
These steps are represented by Eqgs. (5), (6), and (8). The two S
matrices, S;, and Sgg, were then converted to percentages using
Eq. (11). The resulting D matrices, Dy, and Dyg, are found in
Table 8.

3.3 Stage 3: Mask Impact Trade-Off Analysis. In the trade-
off analysis, the population level social impacts in Table 6 are com-
pared to the population level environmental impacts in Table 5. To
acquire the non-dominated set for this paper, we carried out the
ABM simulation 100 times, collected the results, and filtered
them to retain only the set of non-dominated solutions. All the solu-
tions have been included in the plots but the non-dominated

Table 8 Results of the sensitivity analysis for the N95 mask expressed as percent changes in impact due to 6

Percent change in impact due to §

Polypropylene

Aluminum Foam Strap fiber (PPF) Electricity
Impact category Unit 6=12 6=08 6=12 6=08 6=12 =08 6=12 6=08 6=12 6=0.8
Fine particulate matter formation kg PM2.5-eq 0.362 -0.362 16.316 —-16.316 1.196 —1.196 2.127 -2.127 0 0
Fossil resource scarcity kg oil-eq 0 0 20.000 —20.000 0 0 0 0 0 0
Freshwater ecotoxicity kg 1,4-DCB 0 0 20.000 —20.000 0 0 0 0 0 0
Freshwater eutrophication kg P-eq 0 0 20.000 —20.000 0 0 0 0 0 0
Global warming kg COx-eq 0 0 20.000 —20.000 © 0 0 0 0 0
Human carcinogenic toxicity kg 1,4-DCB  —0.001  0.001 19.971 -19.971 0.001 -0.001 0.029 -0.029 0 0
Human non-carcinogenic toxicity kg 1,4-DCB  —0.006 0.006 19.694 —19.694 0.024 —-0.024 0.289 -0.289 0 0
Ionizing radiation kBq Co-60-eq 0 0 20.000 —20.000 0 0 0 0 0 0
Land use m2a crop-eq 0 0 20.000 —20.000 O 0 0 0 0 0
Marine ecotoxicity kg 1,4-DCB —-0.226 0226 8.680 —8.680 0.501 —-0.501 11.045 -11.045 0 0
Marine eutrophication kg N-eq 0 0 20.000 —20.000 O 0 0 0 0 0
Mineral resource scarcity kg Cu-eq —-1.261 1.261 4.007 -4.007 12.684 -12.684 4570 —4.570 0 0
Ozone formation, human health kg NOx-eq 1.103 -1.103 8.736 —8.736 3.649 -3.649 6.512 —6.512 0 0
Ozone formation, terrestrial ecosystems kg NOx-eq 1.080 —-1.080 8949 —8949 3576 -3.576 6395 —6.395 0 0
Stratospheric ozone depletion kg CFCl1-eq 0 0 20.000 —20.000 O 0 0 0 0 0
Terrestrial acidification kg SOx-eq 0.426 -0.426 15.657 —15.657 1410 -1.410 2507 -2.507 0 0
Terrestrial ecotoxicity kg 1,4-DCB  —0.001  0.001 19.992 -19.992 0 0 0.009  —0.009 0 0
Water consumption m3 0 0 20.000 —20.000 0 0 0 0 0 0

Note: Cases where § results in a percent change in impact greater than 5% are bolded.
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Pareto frontier (solid line) shows the non-dominated solutions for each trade-off.

solutions are shown using overlaid trade-off curves (shown as solid
lines).

Plots like the one in Fig. 2 allow designers to visualize trade-offs
between social impacts and environmental impacts. In this example,
two plots have been generated to illustrate the trade-offs. In Fig. 7,
one plot represents the trade-off between climate change and
COVID-19 cases and the other plot represents the trade-off
between water consumed and COVID-19 cases. In the climate
change plot, a trade-off curve shows that the non-dominated solu-
tions are all N95 masks. This means that in the simulations, the
NO5 offers the best solutions for minimizing COVID-19 cases
and climate change. From a practical point of view, the designer
can be satisfied that the N95 mask is better at minimizing climate
change and reducing the number of COVID-19 cases than the
other mask concepts.

The water consumed plot, however, shows that the non-
dominated set of solutions originates from both the gaiter design
and the N95 mask design, and that all solutions belonging to the
cloth mask design are dominated. From a practical point of view,
the designer will need to consider if lowering the number of
COVID-19 cases is worth the increased water consumption to man-
ufacture the mask, or if the reduced number of COVID-19 cases jus-
tifies the increase use of water in the mask’s production.

As mentioned earlier, the data used in this case study have been
simplified. Thus these two plots should not be considered a full life
cycle analysis, but a simplified example to demonstrate how the
method can be used. A full analysis would include trade-off
studies like the plots in Fig. 7 of each combination of social and
environmental impacts. Trade-off curves can help designers under-
stand the comparable suitability of each product design.

Part of this analysis requires the designer to use engineering judg-
ment to assess the significance of the differences in impact. Based
on the data in Table 5, the difference in water consumed between
the gaiter and the N95 mask is 407,000,000 L over the course of
a year. The effect of this additional water usage depends on

032001-10 / Vol. 145, MARCH 2023

where the masks are produced. In some areas of high mask produc-
tion, such as India and the western United States, water availability
is a major consideration. In other locations, such as China and
Vietnam, water availability is less of a concern, although water pol-
lution is still an important focus [68,69]. The designer needs to
understand both the nature of the trade-offs and how the impact
may differ regionally in the world.

One benefit of this method is that design changes can be made to
products to create new non-dominated solutions in the trade-off
analysis. For the purpose of this illustration, steps will now be
taken to reduce the amount of water consumed while not increasing
the number of COVID-19 cases. The new product definition would
ideally result in a new non-dominated solution that is a better trade-
off than the previous solutions.

Proper understanding of the sensitivity analysis results in Table 8
helps designers understand where to make changes to the product
definition in order to reduce certain environmental impacts.
Table 8 gives designers an intuitive understanding of which input
parameters are contributing most to each environmental impact. It
shows the percent changes in impact due to variations in input
parameters. It is worth noting that the sum of the rows of Table 8
always add up to the total percent variation in the input parameters,
i.e., if the parameters are independently varied by +20%, the sum of
all of those variations in impact on the product will be +20%. This
is intuitive because it is expected that the environmental impacts
would all increase by a certain percentage if the input parameters
were simultaneously increased by the same certain percentage.

Higher percent changes in impact categories indicate areas where
designers should focus their efforts when creating a new product
definition. These represent areas where changes to the product
will have the greatest impact on the environment. In the N95
example, many of the environmental impacts are sensitive to
changes in the amount of foam used. This is especially true of the
amount of water consumed. If the designer is trying to reduce the
amount of water consumed by the N95 mask production, reducing
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the amount of foam used in the mask would be a good initial change
to the product definition.

Product adoption also impact population level social and envi-
ronmental impacts and is influenced by the product attributes. As
such, all three elements of the product definition (materials,
process, and product attributes) can be considered for change by
the designer. Once the designer has made changes to the product
definition, another iteration of the analysis should be executed so
that the designer can compare the impacts of the updated product
definition to the previous product definitions.

4 Discussion

The relatively simple illustration provided in the previous section
has shown that there can be trade-offs between social and environ-
mental impacts and that quantifying and comparing those trade-offs
allows designers to better understand what the trade-offs are and
how to change the design to improve both environmental and
social impacts. The use of a trade-off curve help designers focus
on non-dominated solutions in the design space.

We acknowledge that there are limitations to the illustration pro-
vided in the previous section, which include (1) the low number of
social impacts that were modeled compared to the number of envi-
ronmental impacts and (2) the simplification resulting from consid-
ering only the production phase of the product’s life cycle in
the LCA, and only the use phase of the product in the social
impact assessment. While these decisions were made to simplify
the illustration, they are not limitations in frame work presented
in Sec. 2.

The single social impact indicator was used because there was an
abundance of data available about COVID-19 cases with which to
calibrate the ABM [14]. This single social impact works well for the
purpose of illustrating the importance of the method presented, but
the example does not illustrate the multifaceted nature of social
impact [70] nor how to combine multiple social impacts, nor how
to prioritize competing stakeholder needs [59]. Both of these
topics are the subject of other work by the authors. Nevertheless,
the method would work similarly with any ABM that can calculate
social impacts and product adoption numbers.

Other simplifications made included the number of masks each
adopter uses, the mask attribute ratings, and the materials and pro-
cesses used. The ABM simulation was run 100 times for each mask
type to understand the distribution of results that happen due to the
stochastic nature of ABMs. The results of the ABM represent likely
trends in mask adoption and social impacts and are useful when
viewed as approximations. Many of these approximations represent
real assumptions that designers have to make during the design
process when details about the product are still unknown. These
approximations do not invalidate the method but rather combine
to give the designer a good understanding of what the impacts of
the product could be. For this reason, the accuracy of the results
of the analysis are dependent on the accuracy of the assumptions
made.

It was shown in the example that the environmental impacts of
two product definitions can differ relative to each other depending
on whether the impacts are at a product level or a population
level. When this occurs, it is called Simpson’s paradox. In Simp-
son’s paradox, the data appear to support a certain conclusion at a
local level, but actually supports a different conclusion at a popula-
tion level. This can lead designers to make incorrect assumptions
about what the product’s environmental impacts will be. In the
example, Simpson’s paradox occurs because of two factors: (1)
the difference in the number of adopters between the N95 mask
and the gaiter and (2) the difference in the number of product
units that each adopter uses. Those differences are large enough
that the lesser impact becomes greater and vice versa when the
impacts are scaled to the population level. Using product adoption
models to scale environmental impacts to the population level
allows designers to avoid Simpson’s paradox.

Journal of Mechanical Design

The unintended damage to the environment created by Simpson’s
paradox is similar to the unintended damage that the rebound effect
can have. In both cases, human factors that could not be modeled by
LCA [20] were the cause of the unintended impacts. Scaling the
environmental impacts with the product adoption model results is
similar to performing a consequential LCA analysis. In many con-
sequential LCA studies, the goal is to influence policy decisions
[25]. The goal in this approach, however, is to influence design
decisions.

To that end, it is important for designers to consider which com-
munities will be affected by the impacts of a product when examin-
ing the trade-off curves. This awareness, combined with quantified
impacts, can help designers protect both vulnerable communities
and the global community. The goal of this approach is to enable
designers to create products that contribute to reaching the UN sus-
tainable development goals so minimizing impacts to vulnerable
communities and the global community are an important part of
reaching this goal. Designers can also specify maximum (or
minimum) acceptable social and environmental impacts. Those
limits can be used in the trade-off analysis stage to increase consis-
tency in decision-making, keeping in mind that the ultimate goal of
the method is to minimize the negative social and environmental
impacts of the product.

An especially interesting finding is that all three parts of the
product definition influence the environmental impacts of the
product, not just the materials and processes. Changing the materi-
als and processes used in the product definition can also affect the
social impacts of the product. For example, in the mask analysis,
the material used for the filtration part of the mask directly
impacts the effectiveness of the mask at preventing the spread of
COVID-19. The differences in case numbers in Table 6 help illus-
trate this. Also, the discussion earlier about Simpson’s paradox
shows how a change in mask use predicted by the ABM (which
uses the product attributes) can alter the environmental impacts dra-
matically without the materials and processes being changed. These
relationships show that the social and environmental impacts are
linked to each other. Trade-off analyses are a good tool for design-
ers to understand these relationships and find non-dominated solu-
tions that minimize impacts.

In order to integrate a method for calculating economic impacts
to this approach, an additional step could easily be added where
economic impacts are calculated. The economic impacts could
then be compared to the social and environmental impacts. This
would give designers understanding of the triple bottom line of
their products. More work on relating environmental, social, and
economic impacts to the UN sustainable development goals and
integration of that work into this approach would create a powerful
tool for designers to understand how their product’s contribute
towards sustainable development as defined by the UN.

5 Conclusion

Designing products that contribute towards meeting the UN sus-
tainable development goals can be viewed as a multi-objective
design problem involving trade-offs between social, environmental,
and economic impacts. The approach presented in this paper helps
designers quantify social and environmental impacts and analyze
the trade-offs between those impacts using a non-dominated set
of solutions that minimize negative impacts and maximize positive
impacts. The three stages of this approach—(1) product definition,
(2) product analysis, and (3) impact trade-off analysis—are simple
and the result allows designers to compare impacts and iterate on
their designs. When using predictive models, it is helpful to keep
in mind that the goal of the model is to improve the decision-making
process. Although there is uncertainty associated with predictive
social and environmental impact models, they can still provide
useful information in making improved design decisions. This
approach helps designers understand the relationships between
environmental and social impacts and also helps designers avoid
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Simpson’s paradox by using environmental impacts scaled by pop-
ulation adoption models.

The contribution of this paper is the ability to scale the environ-
mental impacts of a product based on modeled adoption patterns,
which is influenced by the social impacts experienced by the popu-
lation while using the product. This allows for making design deci-
sions based on the dynamic adoption of a product, and the scaled
environmental impacts of increased manufacturing and use. In real-
istic cases, there will be trade-offs between the social and environ-
mental impacts and this method provides guidance on how to
analyze trade-offs and move forward in making design decisions.

Future work can expand this approach to include economic
impact trade-offs. This expanded approach would be a valuable
tool for designers seeking to create products that contribute
towards reaching the UN sustainable development goals and
improving the quality of life for people around the world.
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