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We understand very little about the timing and origins of bioluminescence,
particularly as a predator avoidance strategy. Understanding the timing of
its origins, however, can help elucidate the evolution of this ecologically
important signal. Using fireflies, a prevalent bioluminescent group where
bioluminescence primarily functions as aposematic and sexual signals, we
explore the origins of this signal in the context of their potential predators.
Divergence time estimations were performed using genomic-scale datasets
providing a robust estimate for the origin of firefly bioluminescence as both
a terrestrial and as an aerial signal. Our results recover the origin of terrestrial
beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial biolumi-
nescence at 133.18 (117.86-152.47) Ma using a large dataset focused on
Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma,
with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a
complementary Elateroidea dataset. These ages pre-date the origins of all
known extant aerial predators (i.e. bats and birds) and support much older
terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes,
hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence
in beetles. These ages also support the hypothesis that sexual signalling was
probably the original function of this signal in aerial fireflies.

1. Introduction

Bioluminescence has evolved independently almost 100 times across both eukar-
yotes and prokaryotes (e.g. insects, crustaceans, other marine invertebrates, fish,
protists, fungi and bacteria [1-4]). The function of bioluminescence varies across
organisms including: prey attraction, [5-8] predator avoidance [9,10], counterillu-
mination [11,12], sexual communication [13,14] and spore dispersal [15,16]. In the
terrestrial environment, bioluminescence is principally used as an aposematic
signal [10,17-19].

While Lampyridae (fireflies) are perhaps the most well-known group of bio-
luminescent beetles, there are four additional extant families that contain
bioluminescent species in the superfamily Elateroidea: Elateridae, Sinopyro-
phoridae, Phengodidae and Rhagophthalmidae. Two independent origins of
bioluminescence in Elateroidea were suggested by the phylogenetic analysis
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of Martin et al. [20] and Kusy et al. [21]. One origin of biolu-
minescence in the common ancestor of fireflies and their
relatives (Lampyridae, Rhagophtalmidae, Phengodidae and
Sinopyrophoridae) was supported by Kusy et al. [21], and a
second independent origin in click beetles (Elateridae).
Evidence for these two origins is corroborated by Fallon
et al. [22], who provided genomic evidence that strongly
supports the independent evolution of elaterid and lampyrid
luciferases. We focus our analysis on the origin of bio-
luminescence in the lampyroid group, including the
families Lampyridae, Phengodidae and Rhagophthalmidae.
All known lampyroid larvae are bioluminescent [23],
suggesting larval bioluminescence is the ancestral state for
each of these families and their common ancestor. These
larvae are also largely terrestrial [13].

Current evidence suggests that larval elateroid biolumi-
nescence probably originated as a predator avoidance
strategy in fireflies [20,24-27] by allowing these ground-
dwelling invertebrates to advertise their chemical defences
to potential predators [17,18,26,27]. For example, Underwood
et al. [28] found that firefly predators learned to avoid dis-
tasteful prey when it was associated with light, ultimately
resulting in effective predator avoidance. This demonstrates
the effectiveness of bioluminescence, when accompanied by
chemical defences, as a strong aposematic signal.

Independent from larval bioluminescence, adult firefly
bioluminescence (with light organs in different abdominal
segments: [24]) subsequently evolved separately in several
firefly lineages [20,24,29]. Today, this adult bioluminescence
is mainly used for sexual communication in the form of
complex aerial bioluminescent courtship displays by male
fireflies, followed by a response from usually sedentary con-
specific females on the ground or in the vegetation above [30].
There is evidence that adult firefly bioluminescence also
accelerates avoidance learning by potential predators and
thus also functions as an aposematic signal for aerial preda-
tors (i.e. bats [31,32]). However, it is unclear how adult
firefly bioluminescence originated. In fact, despite the
modern interactions between larval and adult fireflies with
many different predator groups [33,34], and a few claims
that specific predators caused adult firefly bioluminescence
[32], none of these groups can yet be attributed to the
origin of bioluminescence as an aposematic signal in fireflies.

To investigate the origins of bioluminescence in the preda-
tor context, we distinguish between terrestrial bioluminescence
and aerial bioluminescence to test which predator groups may
have driven the origin of larval bioluminescence in the
common ancestor of Lampyridae (fireflies), Rhagophthalmi-
dae (railroad worms) and Phengodidae (glowworms), and
which predator groups may have contributed to the origin of
adult bioluminescence in fireflies. From a predator perspective,
adult larviform or wingless (apterous or brachypterous)
females tend to be active on the ground and thus display ter-
restrial bioluminescence. The origin and evolution of terrestrial
bioluminescence as an aposematic signal would probably have
been driven by terrestrial predators (e.g. carabid beetles, ara-
chnids, centipedes, amphibians, reptiles and rodents) [33]. By
contrast, winged (pterous) adult males use aerial biolumines-
cence (above ground) in their complex and highly visible
courtship displays, and their winged adult females also tend
to respond with individual flashes from higher up in the
vegetation (above ground or aerial bioluminescence). For
aerial bioluminescence to arise as an aposematic signal,

aerial predators (e.g. bats, dusk/night active birds [33,35]) [ 2 |

would have to pre-date or coincide with the origin of aerial
bioluminescence displays. Most importantly, to contribute to
the origin of terrestrial and/or aerial (above ground) biolumi-
nescence in fireflies, a potential predator group would have to
pre-date or coincide with the respective origins of terrestrial or
aerial bioluminescence.

Here, we estimate when terrestrial, larval beetle biolumi-
nescence (Lampyridae, Phengodidae and Rhagophthalmidae)
originated, as well as the time of the first origin of adult,
aerial bioluminescence in fireflies (Lampyridae). We take
advantage of eight described fossils and two genomic-scale
phylogenies [36,37] to date the origins of bioluminescence in
elateroid beetles. Both phylogenies were focused on elateroid
beetles, but with a different emphasis in taxon sampling.
Martin et al. [36] focused on subfamilies and tribes within
Lampyridae while Douglas et al. [37] focused on subfamily
relationships within the Elateridae. By dating each of these
two topologies independently, we can take into account how
taxon sampling and fossil placement may affect the resulting
divergence time estimates, thereby providing the most robust
estimate for the age of bioluminescence in this group to date.
We use the resulting age estimates to examine the presence
of potential terrestrial and aerial predator groups at the estima-
ted origins of terrestrial bioluminescence in beetles and aerial
bioluminescence in fireflies to test hypotheses on the roles of
these predators in the origin of bioluminescence. These results
shed light on potential selective agents for the origin of beetle
bioluminescence, both on the ground and in the air, ultimately
giving rise to some of the most diverse and captivating light
displays seen in the terrestrial environment.

Bayesian divergence time estimation combines phylogenetic
hypotheses with prior knowledge of molecular clocks or, in
this case, the fossil record allowing for investigations into the
time of origin for organisms and their ecological innovations
[38,39]. Fossil calibrations are known to have a significant
impact on divergence time estimation depending on their place-
ment and the ages provided by the user [40,41]. We obtained
both the tree file and alignments from Martin et al. [40] and the
alignments provided by Douglas et al. [37] to perform divergence
time estimation. The alignments from Douglas et al. [37] were run
in ModelFinder [42] and then used to reconstruct a topology in
IQ-Tree v. 1.6.12 [43] using ultrafast bootstraps [44] and
compared with the published phylogeny to confirm congruence.

We used chronoPL as implemented in the R package [45] APE
[46] to produce fixed topologies of the Martin and Douglas trees
for divergence time analyses [47,48]. Using a fixed topology cuts
down on the necessary computing time and ensures that the
resulting ages are not impacted by minor differences in topology.
This program allowed us to transform the topologies into ultra-
metric trees and adjust the node heights such that they were
within the bounds of the fossil prior distributions we provided
in subsequent divergence time estimation (see 'Fossil selection
and placement’ below).

We selected a total of nine fossils with a focus on those that could
provide reliable calibration points for major clades across each
topology. Two of these fossils were used on both topologies.
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The placement of the fossils was determined based on morpho-
logical similarities with extant taxa and currently proposed
placements (see electronic supplementary material, table S1).
Other described fossils were not included (e.g. [49,50]) when
older fossil representatives in their corresponding clades were
available. Relative ages for each fossil were obtained by the
Paleobiology Database [51], which uses stratigraphic information
to assign ages to geologic deposits.

For the Martin et al. [36] topology, four fossil priors were
placed based on the published classification and study of the
original descriptions and images. One was placed at the base
of Luciolinae (Protoluciola albertalleni [52]) and one at the node
Phengodidae + Rhagophthalmidae (Cretophengodes azari [53]), a
third fossil was placed at the base of the subfamily Lamprohizi-
nae (Phausis fossilis [54,55]) and the fourth at the base of the
Photinus (Photinus kazantsevi [56]). Due the questionable assign-
ment of P. kazantsevi to the genus Photinus and its therefore
problematic placement within the phylogeny (M.AB. &
L.EL.D.S. 2022, unpublished data), we also ran a subset of ana-
lyses on the Martin topology excluding this fossil. Removal of
the Phontinus fossil prior had minimal impact on the ages for sur-
rounding nodes (-1 to +8 Ma). For the Douglas et al. [37]
topology, we used two fossil priors that overlapped with the cali-
bration points used for Martin et al. [36]. These were placed at the
base of Lampyridae (Protoluciola albertalleni [52]) due to a lack of
species determinations used by Douglas et al. [37]. The other was
once again placed at the base of Phengodidae + Rhagophthalmi-
dae (Cretophengodes azari [53]). Additionally, we placed four
fossils to constrain major Elateridae clades across the topology:
one at the base of the Agrypninae (Ageratus delicatus [57]), one
at the base of the Lissomini (Lissomus taxodii [57]), one at the
base of the Negastrini (Ganestrius elongatus [57]) and one at the
base of Cardiophorus (Cardiophorus exhumatus [57]). Each of
these four fossils was assigned a soft maximum of 242 Ma
based on the oldest Elateridae (Elateridium spp. [57]).

When using fossil specimens as calibration points, we used
an exponential probability distribution as it allows relative ages
of each fossil to be used as ‘hard’” minimums, as there is no
need to sample ages younger than the fossil evidence being
used. By contrast, maximum ages are ‘soft’ allowing the diver-
gence time estimation to sample ages older than that proposed
maximum, but do so by decreasing the probability of those
ages as they get further from that maximum age [58]. Further-
more, an exponential distribution is preferred in the absence of
additional information as it requires only two parameters (mini-
mum age and the mean) to be set by the user over the three
required for a log-normal distribution [58]. We generated poten-
tial age distributions by setting the relative age of the fossil as
the hard minimum, and adjusting the mean age such that the
95% quantile of the exponential distribution matches that of
our soft maximum, but does not exceed the age of the oldest
known representative of the parent clade (i.e. the maximum
age for the subfamily Agrypninae does not exceed the age of
the oldest known representative for the family Elateridae).

(c) Divergence time estimation

Next, we employed BEAUT! [59] to set all analysis parameters
such as fossil placement and age distributions, fixed starting
trees, and the tree and clock models. To account for sensitivity
to model choice, four different analyses were performed on
each dataset (i.e. Martin and Douglas). Each analysis used a
different combination of tree and clock models which included:
birth—-death (BD) and relaxed clock exponential (RCE), BD and
relaxed clock log normal (RCLN), Yule and RCE, Yule and
RCLN. Analyses were performed. Divergence time estimation,
using the files prepared in BEAUTI, were run in BEAST v. 2.6.0
[59] via the CIPRES Science Gateway v. 3.3 (www.phylo.org).

To ensure convergence of our Bayesian analyses, and to deter-
mine burn-in, the resulting log file for each analysis was
viewed in TRACER v. 1.7.1 [60]. Analyses were run until effective
sample sizes of parameters of interest were greater than 100,
with many parameters being greater than 200 (this required a
chain length of 200000000 and 450000000 for Martin and
Douglas, respectively). Lastly, TREEANNOTATOR v. 1.10.4 [38] was
used to generate consensus ages for each analysis after a burn-
in (10-50%) was discarded. All ages are reported as the
median age followed by the 95% highest posterior density
interval (HPD).

(d) Ancestral state reconstruction

We evaluated the origin of bioluminescence for both the larval
and adult life stages. Larval bioluminescence was coded as
absent (0) or present (1). In these analyses, larval bioluminescence
was considered equivalent to adult terrestrial bioluminescence
because all known larval fireflies lack wings and thus would
not be expected to be displaying in the aerial environment
during this life stage [13]. Adult bioluminescence was coded
as either absent (0), female-only terrestrial bioluminescence,
with non-bioluminescent males (1), or aerial bioluminescence of
either males and females (2) (electronic supplementary material,
table 52). Maximum parsimony and maximume-likelihood ances-
tral state reconstructions were conducted for both datasets with
Mesquite v. 3.61 [61].

(e) Potential predators

If larval beetle bioluminescence arose to advertise a chemical
defence in terrestrial larvae then there must have been predation
pressure by terrestrial predators selecting for this trait. If adult
firefly bioluminescence arose as an aposematic signal during
aerial displays then there must have been aerial predators prey-
ing upon these aerial bioluminescent individuals. Terrestrial
and aerial animal groups known to prey on fireflies (e.g. insecti-
vores) were compiled from [33,62], and authors’ personal
observations (see results). Extinct insectivorous groups (e.g. Pter-
osauria) were also considered [63]. To assess the potential role of
each predatory group in the origins of terrestrial (larval and
flightless females) and aerial adult beetle bioluminescence, pred-
ator group ages were compared with our estimates for the origin
of terrestrial and aerial bioluminescence. The ages of each firefly
predator group were gathered from the literature [41,63-71]
(electronic supplementary material, table S3).

3. Results and discussion

Terrestrial (larval) bioluminescence is an ancestral trait in
Lampyridae (and their relatives: Phengodidae and Rha-
gophthalmidae), preceding the origin of adult aerial
bioluminescence (figure 1) [24] (see also electronic supplemen-
tary material, figures S1-S4), this topological result is
supported by 100% bootstraps as reported by Martin et al.
[36] (figure 1). Our results recover the origin of terrestrial
beetle bioluminescence at 141.17 (122.63-161.17) Ma. This
was followed by the origin of aerial bioluminescence, recov-
ered to originate at a more derived node in fireflies
(Lampyridae), at 133.18 (117.86-152.47) Ma (figure 1). These
ages are corroborated by our analysis of the Douglas et al.
[37] dataset. These independent divergence time estimates
recovered the origins of terrestrial bioluminescence at 148.03
(130.12-166.80) and aerial bioluminescence at 104.97 (99.00—
120.90). Both sets of recovered ages are older than previous
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estimations and preclude modern aerial predators as selective
agents for the origin of beetle bioluminescence.

(a) Divergence time estimation
Accurate divergence time estimation relies on a combina-
tion of broad taxon sampling, an accurate phylogenetic

reconstruction, and sufficient breadth and depth of fossil
sampling [40,41,72]. A limited fossil record, the difficulty of
placing extinct taxa, and the immense extant diversity for a
group like Elateroidea (21000 described species), have led
to continued disagreement for the ages of these groups. In
addition, the systematics of the group has a level of uncer-
tainty (see [21,37]). This broader-scale uncertainty, however,
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will have little impact on the ages recovered for the biolumi-
nescent taxa here. Previous estimates for the origin of
Elateroidea ranged from 220 to 130 Ma, and estimates for
the origin of Lampyridae ranged from 130 to 75Ma
[73-75]. These large ranges were probably due to a combi-
nation of limited taxon sampling for lampyrids and limited
fossil calibration points. For example, Bocak et al. [74] hypo-
thesized the age of Elateroidea to be approximately 220 Ma
and Lampyridae as approximately 130 Ma based on two
extant fireflies, 19 total Elateroidea taxa, and a single elateri-
form fossil calibration point (15 gene dataset). Similarly,
McKenna et al. [73] estimated the age of Elateroidea to be
approximately 130 Ma and Lampyridae to be approximately
78 Ma, with a dataset of four firefly taxa (eight gene dataset).
In a subsequent analysis, McKenna et al. [73] reconstructed a
phylogeny of Coleoptera and estimated the of Elateroidea to
be approximately 187 Ma and approximately 120 Ma for the
branch leading to Lampyridae; however, this study included
only a single lampyrid species and no internal elateroid fossil
calibration, instead using an ancestral click beetle at the base
of Elateroidea + Byrroidea (4800 gene dataset). Oba et al. [25]
reconstructed the luciferase gene for the common ancestor of
elateroids and estimated the origin for this luciferase at
approximately 102.55Ma using seven taxa and a single
gene tree (18S).

Our analyses based on Martin et al. [36] with 436 loci, 88
firefly species (98 taxa total) and four fossil calibrations across
the topology recovered the age of terrestrial bioluminescence
as 141.17 (122.63-161.17) Ma and aerial bioluminescence of
133.18 (117.86-152.47) Ma. While the divergence time esti-
mates we performed include largely overlapping HPD
intervals, limiting the discussion about the amount of time
between the origins of terrestrial and aerial bioluminescence,
the order of these origins is strongly supported and corrobo-
rated by previous studies [24,36,37]. Our analyses based on
Douglas et al. [37] with 958 loci, two firefly species (an
additional two ‘lampyroids’) (88 taxa total) and seven fossil
calibrations. Divergence time estimates for this dataset
recovered the root age for Elateroidea as 278.61 (262.03-
294.86) Ma, the age of terrestrial bioluminescence as 148.03
(130.12-166.80) Ma, and the age of aerial bioluminescence
at 104.97 (99.00-120.90) Ma. It also recovered an independent
origin of adult bioluminescence in Elateridae where
Pyrophorini branches off at 115.42 (91.70-133.70) Ma.

These divergence time estimates for Lampyridae are
older than previously published estimates, probably due to
improved taxon sampling. McKenna et al. [73,76] had limited
lampyrid and broader elateroid taxon sampling with limited
fossil calibrations that resulted in much younger ages for
Lampyridae, and Coleoptera overall, which was already
noted by others [41,77]. Our age estimates are closely aligned
to the estimates of Bocak et al. [74], which is probably due
to their larger elateroid sampling and ingroup fossil calibra-
tions (e.g. Elaterophanes). Although not included in this
study, the placement of the elaterid-like clicking beetles,
Sinopyrophoridae, was recovered by Kusy ef al. [21] as sister
to the Lampyridae + Phengodidae + Rhagophthalmidae. If
this placement was confirmed, it would only further increase
the age of the origin of bioluminescence in this group. With
updated clade ages, and the species-level biological infor-
mation gathered for bioluminescence across our phylogeny,
we can now examine the validity of previous hypotheses
relating to predation and the origin of firefly bioluminescence.

Clade ages for bioluminescence were largely congruent
between all different clock and tree models implemented
with minor variations in estimated ages reported between
each parameter combination (electronic supplementary
material, table 54). The Yule model does not account for
any extinction and elateroid beetles have experienced at
least two global extinction events. Thus, we have focused
our discussion going forward on the ages resulting from
BD tree models and those using the Martin et al. [36] dataset
as the taxon sampling for bioluminescent taxa is much
greater. However, we report the variation in age for each
model to demonstrate the robustness of our analyses. The
age estimates for each clock model combination largely over-
lapped for the BD models; here we discuss the RCLN model,
which assumes the branch rates are normally distributed and
has been shown to more precisely estimate ages and therefore
is widely used [78,79]. Our ancestral state reconstruction
placed the origin of terrestrial bioluminescence operating as
an aposematic signal during the early Cretaceous period.
This was followed by the origin of aerial bioluminescence
functioning as a sexual signal in extant fireflies (electronic
supplementary material, figures S1-S4) [24]. Terrestrial biolu-
minescence is an ancestral trait in Lampyridae and relatives
(Phengodidae and Rhagophthalmidae), preceding the origin
of adult aerial bioluminescence that is used widely as a
sexual signal in modern fireflies [23,24,80]. Assuming that
the original function of bioluminescence was predator deter-
rence, it begs the question as to what predator, or predators,
could have driven the origin of firefly bioluminescence.

Clade ages for potential predators that fireflies probably
encountered during their early history, that would have con-
tributed to the origin of bioluminescence as an aposematic
signal, were compiled. We identified potential groups of fire-
fly predators that were hypothesized to feed on these groups
and were prevalent and broad enough in distribution to
potentially function as significant firefly predators. Terrestrial
predators included: Opiliones (harvestmen) [70], Araneae
(spiders) [64], Carabidae (carabid beetles) [41], Anura (frog
and toads) [67], Squamata (lizards and snakes) [65], Reduvii-
dae (assassin bugs) [69] and Rodentia [68]. Aerial predators
included Aves (birds) [71] and Chiroptera (bats) [66]. An esti-
mation for the origins of terrestrial bioluminescence allows
us to discuss the likeliness of these predator groups as drivers
of the evolution of warning signals. Several of the terrestrial
predator groups including Anura, Araneae, Carabidae,
Opiliones and Squamata emerged prior to the Jurassic
(greater than 200 Ma), before the origin of terrestrial beetle
bioluminescence and therefore could have contributed to
the origin of aposematic beetle bioluminescence that arose
141 Ma. Reduviidae emerged around 178 Ma; however,
most of the diversity in this group did not appear until the
Late Cretaceous (approx. 97 Ma) [69].

By contrast, several other insectivore clades (Aves,
Chiroptera and Rodentia) originated much later (less than
70 Ma) than beetle bioluminescence and thus could not
have been selective agents in either terrestrial or aerial biolu-
minescence. It has been suggested that modern aerial
predators, specifically bats, could have driven the origin of
aerial bioluminescence as a predator avoidance strategy
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[32]. This is contradicted by our data, with bats originating at
approximately 65 Ma [66], about 52-87 million years after the
origin of aerial bioluminescence in fireflies. This result sup-
ports the idea that the original purpose of adult, aerial
bioluminesence was that of sexual signalling. However, it is
possible that once bioluminescence was used by adult fireflies
in aerial displays, potential aerial predators like bats and
birds could use adult firefly bioluminescence as an additional
cue to avoid distasteful prey [32]. The sensory systems of
insectivorous bats can detect both the light spectrum of firefly
light emissions and the ultrasonic wingbeat clicks emitted by
flying fireflies [81,82]. In addition, bats can learn to discrimi-
nate between flying insects based on their different echo
signatures in their echolocation calls [83,84], and they make
adaptive prey selection decisions to increase profitability
[85]. Bats have indeed been shown to reject flying fireflies
based on their chemical defences, reinforced by their sonar
profile and/or bioluminescent signal that speed up avoid-
ance learning [32]. Whether predators like bats impose
selection on the aerial bioluminescence of fireflies and poss-
ibly contribute to the maintenance of aerial light signals in
beetles remains to be tested. Other predators such as noctur-
nal birds and rodents [33] that could have preyed on
bioluminescent fireflies also originated significantly after
the origin of both terrestrial and aerial bioluminescence
(figure 2). For example, modern birds originated approxi-
mately 75 Ma [71] and rodents at approximately 61 Ma [68],
placing them approximately 65-79 million years after the
estimated origin of terrestrial bioluminescence and approxi-
mately 58-72 million years after aerial bioluminescence
(figure 2). Our age estimates for bats, birds and rodents are
almost certainly older than the actual insectivorous lineages

within each. Given that beetle larval bioluminescence
evolved first and operated in a terrestrial environment,
aerial predators, such as bats, could not have been the
original receivers or drivers of these aposematic signals.
The signal would have been directed toward contemporary
predators of elateroids in the early Cretaceous.

There are several extinct vertebrate insectivore groups that
could have also preyed on lampyrids and other elateroid bee-
tles prior to or during the early Cretaceous (greater than
100 Ma) [86]. Most of the early mammalian insectivores are
more limited in both known diversity and distribution in
the fossil record [86] and would thus probably have only
added to an already existing predation pressure in the terres-
trial environment. One potential exception could have been
the aerial pterosaurs [87]. Pterosaurs were the first vertebrate
group to develop true flight in the late Triassic (approx.
229 Ma), with the common ancestor of the group hypoth-
esized to be insectivorous [88]. Furthermore, Pterosauria
had a broad enough distribution to have encountered biolu-
minescent beetles [87], and some species are assumed to
have been crepuscular or even nocturnal [89] and thus
could have been early receivers of the aposematic signals of
fireflies and other elateroid beetles. However, due to the limit-
ations of the fossil record, we do not have evidence to it
confirm that pterosaurs fed on elateroid beetles, and if they
did, whether this behaviour was prevalent.

In summary, our extensive taxon sampling and numerous
well-placed fossils across each topology, recovered well-
supported and congruent ages for bioluminescent beetles.
These ages are older than previous estimations and preclude
modern aerial predators as selective agents for the origin of
beetle bioluminescence. However, several groups of modern
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terrestrial predators pre-date the origin of bioluminescence
and thus could have functioned as selective agents for the
origin of terrestrial bioluminescence in fireflies, and possibly
other elateroid beetles. Based on the present-day use and
abundance of terrestrial bioluminescence as aposematic sig-
nals and the presence of terrestrial insectivores at the origin
of beetle bioluminescence strongly suggests that terrestrial
beetle bioluminescence arose as an aposematic signal. By con-
trast, aerial beetle bioluminescence, which is widely used as a
sexual signal during mate search in extant beetles, probably
originated as such. We do not rule out that extant insectivores
such as bats, birds and rodents, that emerged in the fossil
record after the origin of firefly bioluminescence, may still
operate as contributing factors in maintaining biolumines-
cence. However, it is now clear that the origin of aerial
bioluminescence in fireflies pre-dates any extant aerial
predator group. We find that adult firefly bioluminescence
outshines, or pre-dates, the origins of extant aerial predators
by roughly 60 million years.
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