

1 **Photonic metacrystal: Design methodology**
2 **and experimental characterization**

3 **S. HU,^{1,3} M. KHATER,^{2,*} E. KRATSCHMER,² S. ENGELMANN,² W. M. J.**

4 **GREEN,² S. M. WEISS^{1,4}**

5 *¹Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville,*
6 *Tennessee 37235, USA.*

7 *²IBM T J Watson Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA.*

8 **Current affiliation: INanoBio Inc, 1600 Adams Drive, Menlo Park, CA 94025, USA.*

9 *³shuren.hu@vanderbilt.edu*

10 *⁴sharon.weiss@vanderbilt.edu*

11 **Abstract:** We report a design methodology for creating high-performance photonic crystals
12 with arbitrary geometric shapes. This design approach enables the inclusion of subwavelength
13 shapes into the photonic crystal unit cell, synergistically combining metamaterials concepts
14 with on-chip guided-wave photonics. Accordingly, we use the term “*photonic metacrystal*” to
15 describe this class of photonic structures. Photonic metacrystals exploiting three different
16 design freedoms are demonstrated experimentally. With these additional degrees of freedom in
17 the design space, photonic metacrystals enable added control of light-matter interactions and
18 hold the promise of significantly increasing temporal confinement in all-dielectric
19 metamaterials.

20 © 2021 Optica Publishing Group under the terms of the [Optica Publishing Group Open Access Publishing
21 Agreement](#)

22 **1. Introduction**

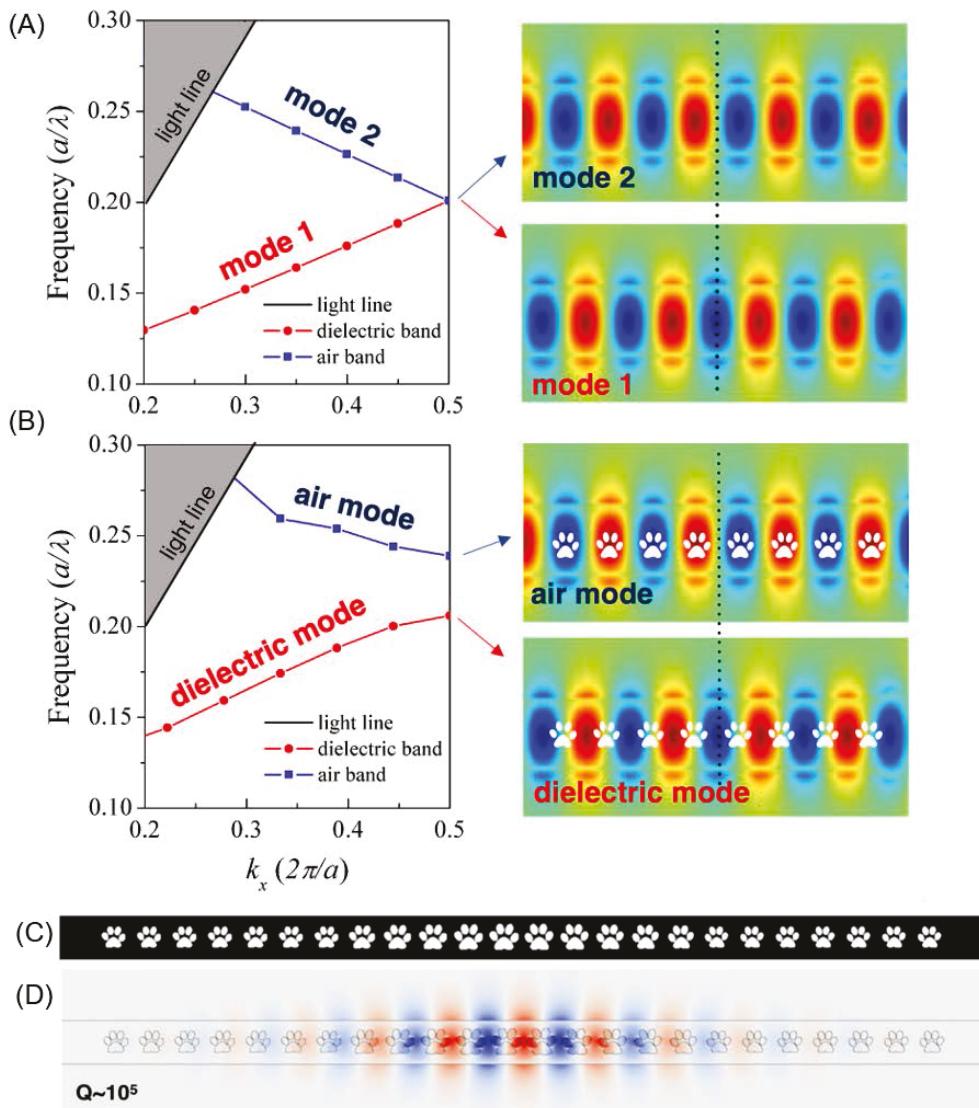
23 Resonances in photonic structures have been exploited for applications ranging from laser
24 cavities [1–2] and on-chip modulators [3–5] to ultra-sensitive biosensors [6–10]. Many
25 different types of resonances can be supported in photonic systems, including surface plasmon
26 resonances [2, 11–16], Fano resonances [13, 17, 18], and optical cavity resonances in photonic
27 crystals [19–26], ring resonators [3, 5–7, 10, 26, 27], and Fabry-Perot resonators [26, 28, 29].
28 In general, the formation of a resonant mode can be understood as a two-step process: (1)
29 temporally confine photons in the designed structure and (2) spatially redistribute the trapped
30 electromagnetic waves according to boundary conditions. These two steps are independent of
31 each other. Different photonic structures use different mechanisms to achieve the first step of
32 temporal confinement. Plasmonic resonators, such as bowties and metallic metamaterials,
33 temporally confine photons based on the surface plasmon resonance while photonic crystals
34 temporally confine photons based on the photonic bandgap. One key difference in the temporal
35 confinement of these two photonic platforms is the losses: surface plasmons are very lossy due
36 to the high absorption coefficient in metal materials [30, 31] while photonic crystals have low
37 losses and can support high quality (Q) factors above 10^4 . Although significant progress has
38 been made in replacing metal with dielectric materials in metamaterial structures to reduce
39 losses [30–32], all-dielectric metamaterials intrinsically lack an effective mechanism for
40 enabling temporal confinement and therefore do not exhibit high Q-factors even when
41 absorption losses are low [33–35]. Hence, the possibility of combining the desirable attributes
42 of low loss, high Q-factor photonic crystals with the unique light-matter interactions achievable
43 with metamaterials is of great interest to expanding the capabilities of photonic systems. In
44 addition, bringing the control of amplitude and phase achievable in metamaterials that are
45 utilized for out-of-plane applications to photonic crystals would enable new design freedoms
46 and capabilities for on-chip, guided-wave photonics. In order to combine the best properties of

47 metamaterials and photonic crystals, subwavelength geometries must be integrated with
48 photonic crystal with sufficient periodicity maintained to allow temporal confinement based on
49 the photonic bandgap. For example, by introducing a subwavelength periodic variation in a
50 hyperbolic medium, one can design a photonic hypercrystal with a unique photonic band
51 structure and light-matter interactions [36, 37]. The design of hypercrystals typically leverage
52 one-dimensional multilayer stacking of materials to achieve the necessary subwavelength
53 periodicity. In this work, we take a different approach and instead introduce deep-
54 subwavelength-sized features inside the unit cells of traditional photonic crystals without a
55 requirement for utilizing a hyperbolic material. We have previously experimentally
56 demonstrated it is possible to use photonic bandgap confinement as the first order confinement
57 mechanism and subwavelength geometries consistent with metamaterial designs (e.g., bowtie
58 shape) inside the photonic crystal unit cell as the second step in modal confinement to achieve
59 extreme light concentration on par with plasmonic resonators [23, 25]. However, an in-depth
60 investigation of the broader design methodology involved in adding metamaterial-like
61 geometries to photonic crystals, including many new degrees of design freedom that are
62 enabled, has not been carried out. In this work, we present an extended study of the design
63 methodology with new experimental results.

64 Here, we use the name *photonic metacrystal* for structures that combine the concepts and
65 design attributes of both metamaterials and photonic crystals. Traditional photonic crystal
66 theory is built on the Bloch theorem, which operates at the length scale of the optical
67 wavelength. Photonic crystal unit cells are typically made of highly symmetric geometric
68 shapes (e.g., circles or rectangles), exclusive of any subwavelength features. We demonstrate
69 that it is beneficial to study subwavelength features in photonic crystal unit cells for additional
70 control of light-matter interactions. In fact, according to Bloch theorem, any geometric shape
71 can be designed as part of a unit cell inside a photonic crystal. In addition to differences in the
72 unit cell shape compared to traditional photonic crystals, photonic metacrystals must operate in
73 the air band (i.e., higher frequency band above the bandgap) while traditional photonic crystals
74 typically operate in the dielectric band (i.e., fundamental lower frequency band below the
75 bandgap). In the air band, the electromagnetic energy is primarily confined within the void
76 region (e.g., air holes), which leaves open the opportunity to add subwavelength dielectric
77 inclusions that can be used to tune both the mode distribution and the band structure. This is
78 not the case for operation in the dielectric band when the dielectric mode is concentrated in the
79 higher dielectric constant material comprising the photonic crystal; it is not practical to insert
80 additional design features beyond a narrow air slot in the dielectric region to modify the modal
81 distribution because the features become too small to fabricate [24, 38]. Importantly, the
82 additional degrees of design freedom afforded by utilizing the air band and subwavelength
83 dielectric features in the unit cell – either by adding subwavelength dielectric shapes into a
84 traditional circular or rectangular air hole or by altering the overall unit cell shape – enable an
85 interesting interplay between the polarization of light propagating in the photonic metacrystal
86 and electromagnetic boundary conditions. For example, for transverse electric (TE)
87 polarization, light is localized in air slots oriented along the direction of propagation and
88 dielectric bars (i.e., antislots) oriented orthogonal to the direction of propagation through the
89 slot and antislots effects [23, 25]. These air slots and dielectric antislots can also be used as
90 building blocks for localizing light in more complicated subwavelength features such as
91 bowties and other shapes used in metamaterials design [23, 25]. In the following sections, we
92 discuss simulations that demonstrate the feasibility of designing a photonic metacrystal with an
93 arbitrary shaped “cat-paw” unit cell and show experimental results for silicon photonic
94 metacrystals exploiting three different design freedoms: radius modulated bowtie-shaped unit
95 cell, rotation angle modulated bowtie-shaped unit cell, and bowtie connection width modulated
96 bowtie-shaped unit cell. The latter two design freedoms are not available in traditional photonic
97 crystals.

98

99


2. Photonic metacrystal and its design methodology

100 To build our intuition on the band structure of the photonic metacrystal, we first analyze the
 101 guiding mode in a traditional waveguide. Shown in **Figure 1A** is a photonic band diagram of a
 102 one-dimensional (1D) waveguide mode. Due to the translational invariance, modes 1 and 2 are
 103 degenerate modes of the waveguide, with a spatial phase difference of π , that correspond to the
 104 same mode in the band diagram. To break the translational invariance, we consider
 105 superimposing an array of repetitive air holes with arbitrary shapes, e.g., cat paw, on the
 106 waveguiding modes 1 and 2. Mode 1 becomes the “dielectric mode” for which most optical
 107 field intensity is located within the dielectric region between the air holes. Mode 2 becomes the
 108 “air mode” for which the maximum field intensity spatially overlaps with the air holes. These
 109 two types of modal overlaps give different energy perturbations and result in a mode split at
 110 the edge of the Brillouin zone in the photonic band diagram. The opening of this mode split is
 111 the photonic bandgap, within which light is not allowed to propagate, as shown in **Figure 1 B**.

112 As demonstrated by the cat paw cavity, a high Q photonic crystal can be designed using
 113 arbitrary geometrical shapes (**Figure 1 C and D**). Building on this concept, we propose a
 114 photonic metacrystal design methodology that focuses on engineering the shape of the unit
 115 cells. While the “cat paw” photonic crystal illustrates an extreme example of unit cell design
 116 freedom, **Figure 2 A-C** shows more practical examples of photonic metacrystal unit cells
 117 created by adding a dielectric nanowire (300×50 nm) or bowtie shaped nanoparticle to a circular
 118 unit cell. Such nanowire and bowtie shapes have been extensively studied as plasmonic
 119 elements and metamaterial building blocks [11–16, 18, 33–35]. A key aspect of the photonic
 120 metacrystal design is to utilize the air mode. The air mode traps light within the open area of
 121 the unit cell, which provides an ideal platform for inserting subwavelength scatterers of interest.
 122 The simulated electric field and electric energy mode profiles (air mode at band edge $k_x=0.5$)
 123 for TE-polarized light in **Figure 2 D** and E show the uniformly distributed electric field within
 124 the air hole of the circular unit cell and how inserting subwavelength nanoparticles into that
 125 unit cell can deterministically modify the mode profiles. The modified mode profile results
 126 from redistribution of the electric and displacement fields based on boundary conditions [23–
 127 25]. **Table 1** provides a summary of comparisons between traditional photonic crystal and
 128 photonic metacrystal design.

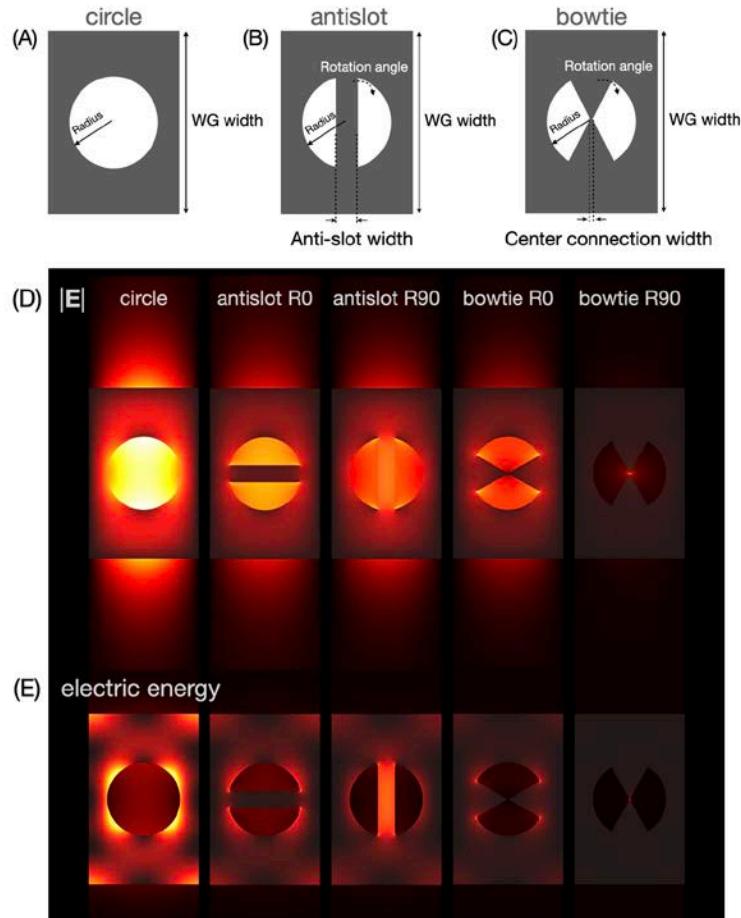
129 In the air mode, the optical field can be strongly perturbed by the presence of nanoparticles
 130 included in the air holes. Importantly, not only the shape but also the placement (e.g., rotational
 131 angle) of the nanoparticles affects the field profile. For example, as shown in **Figure 2 D** and
 132 E, due to electromagnetic boundary conditions, the antislots R0 unit cell exhibits the minimum
 133 electric field inside the dielectric nanowire, while the antislots R90 unit cell exhibits a nearly
 134 uniform electric field intensity in the dielectric nanowire and surrounding air region of the unit
 135 cell. Due to the discontinuity of the displacement field inside the antislots R90 unit cell, the
 136 majority of the electric energy resides inside the dielectric nanowire while minimal electric
 137 energy resides inside the nanowire in the antislots R0 unit cell. The bowtie unit cell shows even
 138 more drastic changes in the electric field and electric energy distribution between R0 and R90
 139 cases. In the R0 bowtie unit cell, most of the electric field is distributed in the air region.
 140 However, in the R90 bowtie unit cell, the electric field is highly concentrated at the bowtie tips.
 141 These trends are accentuated even more when comparing the electric energy distributions of
 142 the R0 and R90 bowtie unit cells. This ability to engineer the mode profile of the air-mode
 143 photonic crystal with strategically shaped and oriented dielectric nanoparticle inclusions (i.e.,
 144 the photonic metacrystal) opens the door to studying light-matter interactions under extremely
 145 high Q factor regimes using in-plane guided waves with modest input light intensity.

146

147

148

149


150

151

152

153

Figure 1. 1D photonic crystal and its bandgap formation from the guided mode. (A) Photonic band structure and electric field profile of degenerated waveguide mode (mode 1 and 2) with a spatial phase difference of π . (B) Photonic band structure and conceptual illustration showing cat paw PhC unit cells superimposed on the electric field profiles for waveguided mode 1 and 2, revealing the origin of the distinct air and dielectric band edge modes. (C) Schematic of 1D cat paw photonic crystal with three mirror unit cells and nine taper unit cells. (D) 3D FDTD simulated dielectric mode profile of cat paw photonic crystal with $Q \sim 10^5$.

154

155

156

157

158

159

Figure 2. Examples of different unit cells in photonic metacrystal designs. Design degrees of freedom in a (A) typical circle, (B) antislot, and (C) bowtie unit cell. (D) and (E) show simulated mode distribution of electric field and electric energy, respectively, in different unit cells.

Table 1. Comparison between traditional photonic crystals and photonic metacrystals

	Traditional photonic crystal	Photonic metacrystal
Unit cell	Highly symmetric shape (e.g., circles, squares, and rectangles)	Any geometric shape
Mode	Dielectric mode (lower frequency below the bandgap)	Air mode (higher frequency above the bandgap)
Design focus	Improve Q-factor	Interaction between subwavelength scatterers and light while maintaining a high Q-factor
Design parameters	Periodicity and filling factors	Any degree of freedom within the unit cell, such as rotation angle and other dimension changes

160

161

162

163

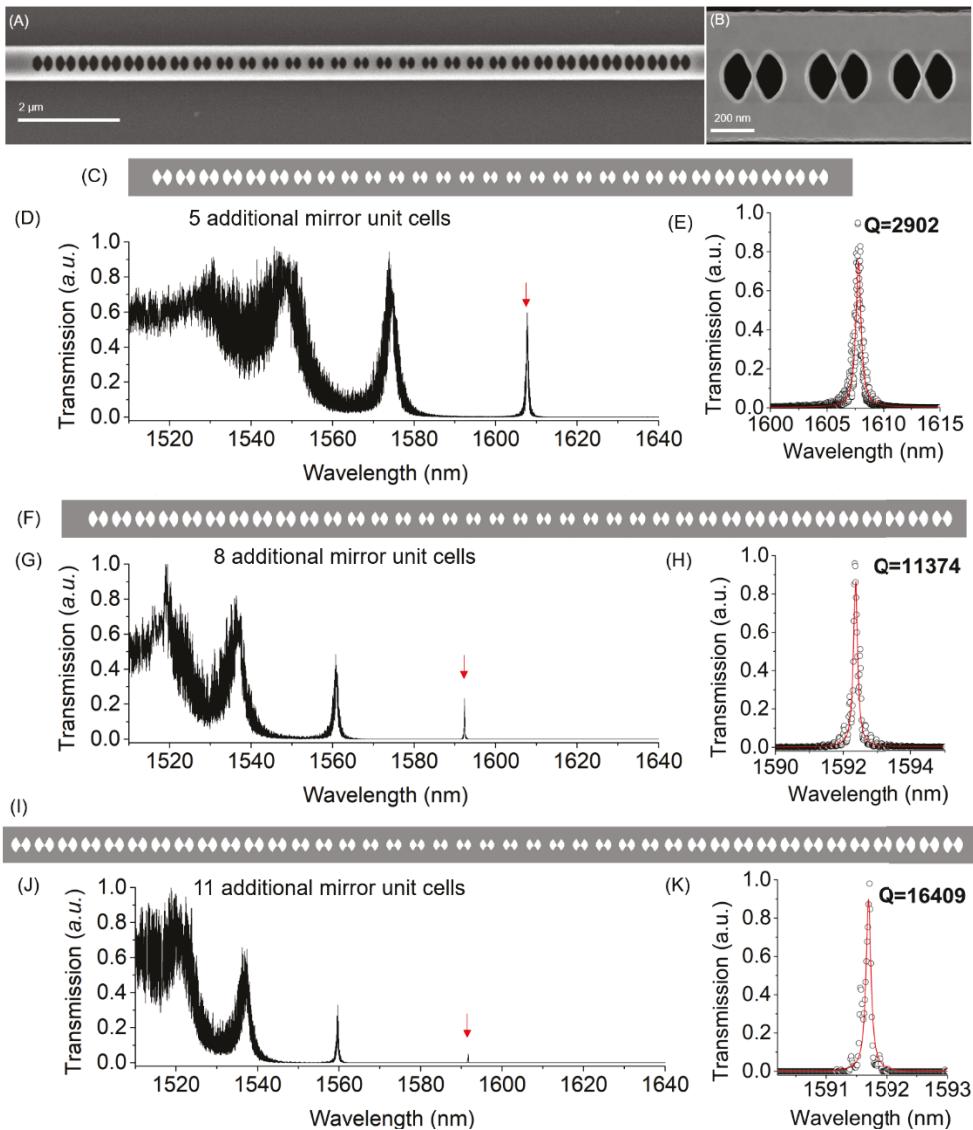
164

165

166

In the following section, we take the bowtie unit cell as an example of a photonic metacrystal unit cell and explore new approaches to cavity design enabled by new degrees of freedom in the unit cell. As illustrated in **Figure 2 A-C**, the degrees of freedom in a traditional circular unit cell include only radius and waveguide width. By adding a rectangular dielectric nanowire (i.e., antislot), two more degrees of freedom are enabled: rotational angle of the antislot and antislot width. With a bowtie shaped dielectric block inside the air hole, even more

167 degrees of freedom are enabled, including the bowtie tip angle, bowtie connection width, and
168 bowtie rotation angle.


169 **3. Bowtie photonic metacrystal design and experimental results**

170 The bowtie photonic metacrystals presented in this section are designed to have in-line coupling
171 between the bus waveguide (*i.e.*, ridge waveguide with no air holes) and photonic metacrystal
172 cavities. For this coupling configuration, photons at the resonance frequencies tunnel through
173 the mirror segments of the photonic metacrystal and evanescently couple into the cavity. The
174 coupling coefficient between the waveguide and cavity is determined in large part by the mirror
175 strength of the photonic metacrystal unit cells. The total mirror strength can be controlled by
176 two design parameters: the mirror strength of each mirror unit cell and the number of mirror
177 unit cells. Regarding the strength of each mirror unit cell, we refer to the mirror strength
178 calculation discussed in Refs. 21–22. There are two key parameters for mirror strength: the size
179 of the photonic band gap and the frequency span between the resonance frequency and midgap
180 frequency. The mirror strength of a single unit cell is strongest when 1) the size of the band gap
181 is maximized and 2) the resonance frequency is located in the middle of the band gap. There
182 are other coupling configurations, such as side-coupling, that can achieve similar or potentially
183 improved performance without the trade-off between Q and transmission [39].

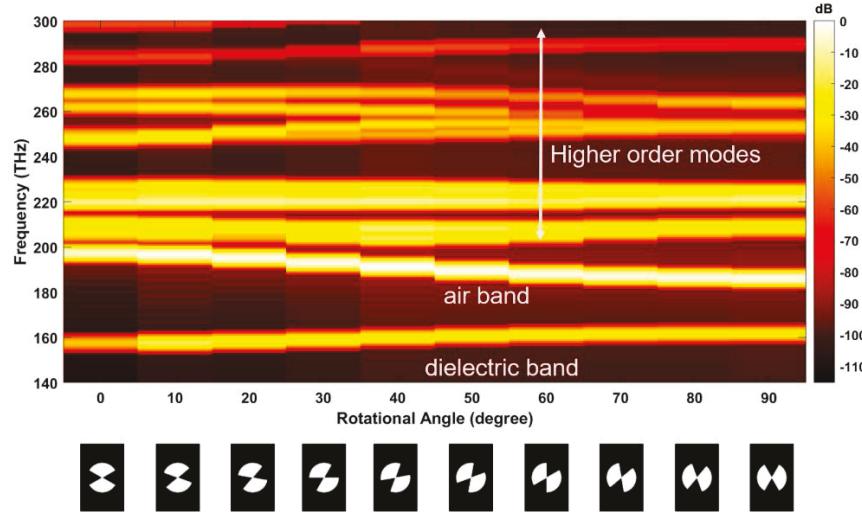
184 *3.1 Bowtie photonic metacrystal cavities designed by radius modulation*

185 **Figure 3** shows silicon bowtie photonic metacrystals designed following a traditional method
186 of modulating the filling factor of the unit cells (*i.e.*, the size of the air holes). The cavity is
187 formed with 450 nm constant periodicity, 700 nm waveguide width, a center unit cell of 150
188 nm radius and mirror unit cells of 187 nm radii on both sides. The air hole size is gradually
189 tapered from the center to the mirror segments. Design details including the choice of photonic
190 crystal dimensions and FDTD boundary conditions are discussed in Ref. 23 and 25. **Figure 3**
191 A–B shows SEM images of one of the fabricated devices using standard electron beam
192 lithography (EBL) and reactive ion etching processes. The bowtie connection is accurately
193 formed by the EBL process. The photonic metacrystals were fabricated on 8-inch silicon-on-
194 insulator wafers with a 220 nm device layer and 2 μ m-thick buried oxide layer (Soitec).
195 Detailed fabrication process information is included in Ref. 25.

196 **Figure 3 C–K** shows the measurement results with different numbers of mirror segments.
197 All transmission measurements reported in this work were carried out using our polarization
198 maintained optical fiber coupling setup with piezo-controlled XYZ stages. A tunable
199 continuous-wave laser (Stantec TSL-510) was used to perform passive transmission
200 measurements, using quasi-TE polarization, over the wavelength range of 1500 to 1630 nm.
201 Transmitted optical power was measured by a near infrared photodetector. The expected
202 tradeoff between the peak transmission and Q factor is evident with higher Q resonances having
203 lower transmission intensity. **Figure 3 C–E** shows the results from a device with 10 taper unit
204 cells from the cavity center to the mirror and 5 additional mirror unit cells on each side. The
205 transmission spectrum is normalized to its highest peak at the band edge. For the fundamental
206 mode, the normalized transmission is 0.6 and Q factor is near 3,000. As the number of mirror
207 segments is increased to 8 unit cells on each side, the normalized transmission of the
208 fundamental mode decreases to 0.2 while the Q factor increases to \sim 11,000 (**Figure 3 F–H**).
209 Finally, when the number of mirror segments is increased to 11 unit cells on each side, the
210 normalized transmission is only 0.08 but the Q factor is increased to \sim 16,000 (**Figure 3 I–K**).
211 We note that the measured resonances are close to the air band edge, unlike the case for
212 traditional photonic crystal resonators that are designed for dielectric modes. Due to fabrication
213 variations, the absolute resonance wavelengths are likely to vary between devices. However,
214 since the tapering profiles are the same among these three devices, the distance between
215 resonance and band edge (2nd mode) wavelength remains the same, as shown in Figure 3 C, G
216 and J.

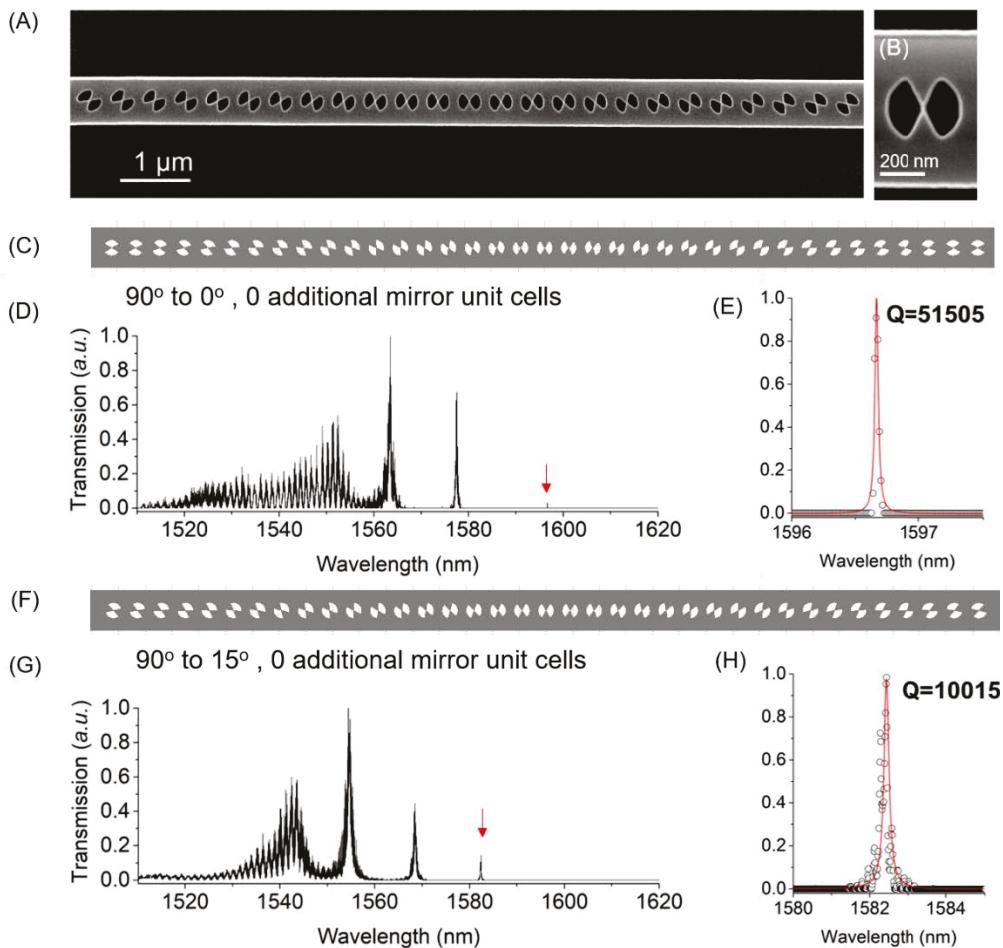
217

218 Figure 3. Silicon bowtie photonic metacrystal designed with radius modulation. (A) SEM image of fabricated device.
 219 (B) Zoom-in SEM of three mirror unit cells. (C) Schematic and (D-E) measured transmission of a radius modulated
 220 bowtie photonic metacrystal designed with 5 mirror unit cells and 10 taper unit cells. (F) Schematic and (G-H)
 221 measured transmission of a radius modulated bowtie photonic metacrystal designed with 8 mirror unit cells and 10
 222 taper unit cells. (I) Schematic and (J-K) measured transmission of a radius modulated bowtie photonic metacrystal
 223 designed with 11 mirror unit cells and 10 taper unit cells.


224

3.2 Bowtie photonic metacrystal cavities designed by rotation angle modulation

225

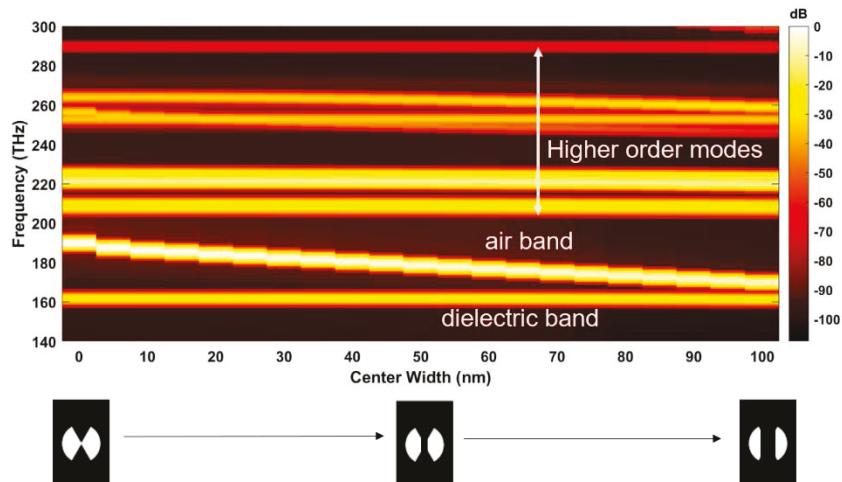

226 When a subwavelength dielectric feature is added to the air hole unit cell, the rotational
 227 symmetry of the unit cell is broken. This rotational degree of freedom can be utilized to design
 228 a unique rotational photonic metacrystal cavity. As shown in the **Figure 4**, the band edge
 229 frequency of the air band decreases as the rotation angle increases from 0° to 90° (i.e., from the
 230 R0 unit cell to the R90 unit cell). Here R0 means the bowtie is oriented parallel to the
 231 propagation direction of light and R90 means that the bowtie is oriented orthogonal to the
 232 propagation direction. The reduction in air band edge frequency is due to the antislot effect and
 relative change in the field distribution in the unit cell, as discussed in detail in Refs. 23 and 25.

233 Because the R90 band edge frequency lies within the bandgap of the R0 unit cell, it is possible
 234 to design a photonic metacrystal resonator with an R90 unit cell at the center of the cavity and
 235 R0, or other low rotation angle unit cells at both ends, serving as mirror unit cells. The mirror
 236 strength of the R0 unit cell is the strongest because it has the largest band gap, as shown in
 237 **Figure 4**. The confinement strength of each individual unit cell can be continuously adjusted
 238 by tuning the rotation angle.

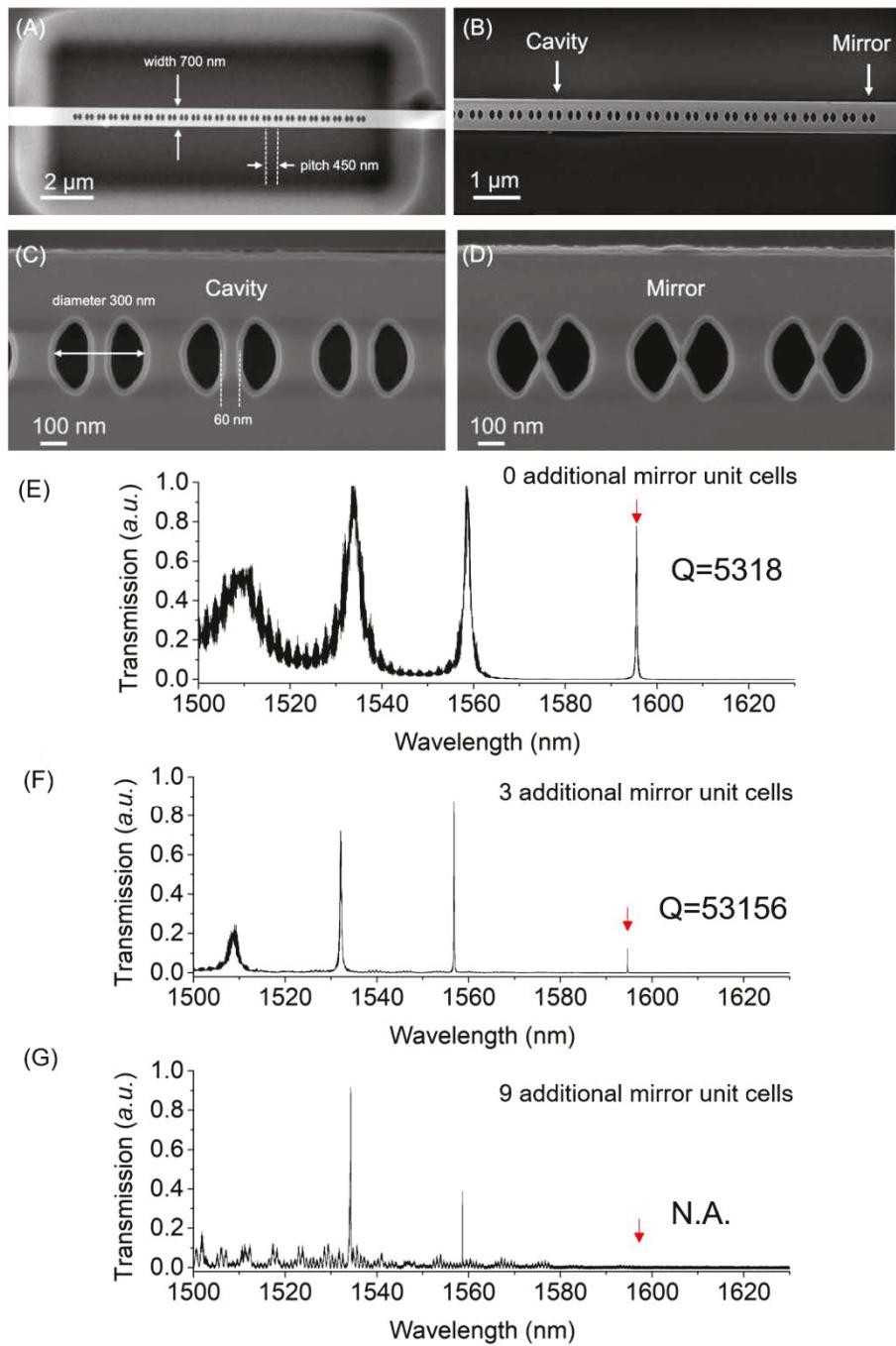
239
 240 Figure 4. Photonic band edge frequency change as a function of bowtie rotation angle. The color map represents the
 241 transmission intensity with brighter yellow indicating higher transmission and darker red indicating low or no
 242 transmission.

243 **Figure 5** shows the first reported experimental results on the rotational silicon bowtie
 244 photonic metacrystal cavity, following our earlier design work [23]. The SEM images in **Figure**
 245 **5 A and B** show that the center bowtie is well resolved after fabrication and all bowties maintain
 246 a consistent shape through the different rotation angles. **Figure 5 C-H** shows transmission
 247 measurements of two cavities designed with R0 or R15 as the mirror unit cell. Both cavities are
 248 designed with 150 nm radius, 700 nm waveguide width, 400 nm constant periodicity, and
 249 tapered at 5°/step. The cavity designed using R0 as the mirror unit cell has higher Q factor ~
 250 51,000, but lower transmission ~ 0.03. In comparison, the cavity designed with R15 as the
 251 mirror unit cell has lower Q factor ~ 10,000 and higher transmission ~ 0.2. This result is
 252 consistent with the band diagram (**Figure 4**) that indicates that the R15 unit cell has lower
 253 mirror strength than the R0 unit cell.

254
255 Figure 5. Silicon bowtie photonic metacrystal designed by modifying the rotation angle of the bowtie unit cell. (A)
256 SEM image of fabricated device. (B) Zoom-in SEM of center cavity R90 unit cell. (C) Schematic and (D-E) measured
257 transmission of a rotation angle modulated bowtie photonic metacrystal designed with R0 as mirror unit cell.
258 (F) Schematic and (G-H) measured transmission of a rotation angle modulated bowtie photonic metacrystal designed with
259 R15 as mirror unit cell. Both cavities in (C) and (F) are designed to have 5°/step tapering from the center (90°) to the
260 mirror unit cells (0° or 15°).


261 *3.3 Bowtie photonic metacrystal cavities designed by bowtie tip connection width
262 modulation*

263 While an ideal bowtie shape has very sharp tips with a connection width approaching zero,
264 fabrication limitations require a finite connection width of size dictated by the fabrication
265 approach utilized. Here we demonstrate that using the bowtie connection width as a tunable
266 parameter can enable another unique approach to designing a photonic metacrystal. Because
267 the optical energy is highly confined in the bowtie tip connection region (e.g., see the mode
268 profile in **Figure 2**), the light-matter interaction is strongest at this location. As a result, the
269 photonic band structure is strongly influenced by refractive index perturbations in this center
270 connection region.


271 The photonic band edge frequency change as a function of bowtie connection width is
272 shown in **Figure 6**. Similar to the rotational design case (**Figure 4**), the dielectric band edge
273 frequency remains nearly constant, but the air band edge frequency has a strong dependence on
274 the connection width. By changing the connection width from 0 to 100 nm, where a 100 nm

275 connection width essentially converts the bowtie to an antislot shape, the air band frequency
 276 drops from 190.7 THz to 160.8 THz, corresponding to a wavelength change from 1573 nm to
 277 1866 nm. It is interesting to note that the silicon volume change corresponding to the geometry
 278 change from a 0 to 100 nm connection width is only $1.9 \times 10^6 \text{ nm}^3$, which is equivalent to a
 279 silicon mass change of ~ 4.4 femtogram. Remarkably, these values reveal a spectral sensitivity
 280 of ~ 66 nm per femtogram of silicon mass change. This extreme spectral sensitivity can be an
 281 advantage or challenge depending on the application. For example, the bowtie photonic crystal
 282 could be employed as an ultrasensitive biosensor, assuming molecules would be guided to the
 283 bowtie connection tip through clever flow geometries and with the assistance of the optical
 284 gradient force that results from the strong gradient in energy density in the tip region [40].
 285 However, for applications that rely on reproducibly fabricating devices at a precise resonance
 286 wavelength, resistive heaters or other active approaches would likely be required to fine tune
 287 the resonance position.

288 **Figure 7 A - D** shows SEM images of a fabricated silicon bowtie connection width
 289 modulated photonic metacrystal. This cavity was designed by linearly changing the connection
 290 width from 60 nm to 0 nm with a 5 nm/step tapering profile. The width of the nanobeam is 700
 291 nm, the diameter of the air holes is 300 nm, and the period is 450 nm. The device shown in
 292 **Figure 7** was suspended using a standard photolithography and buffered oxide etch undercut
 293 process to remove the supporting oxide layer. Detailed process steps are discussed in Ref. 10.
 294 The 0 nm bowtie connection width design turned out to be ~ 5 nm after fabrication. The device
 295 performance can be improved further by optimizing the tapering profile in the design following
 296 the actual process limitations. **Figure 7 E – G** shows the measured transmission spectra for
 297 cavity designs with different numbers of additional mirror unit cells (0, 3 and 9). Similar to the
 298 trends discussed previously, the photonic metacrystal cavities with fewer additional mirror unit
 299 cells have a lower Q but higher peak transmission of the fundamental mode. Accordingly, the
 300 highest transmission and lowest Q ~ 5000 occurs for the bowtie connection width modulated
 301 photonic metacrystal with no additional mirror unit cells (**Figure 7E**). As number of additional
 302 mirror unit cells increases to 3, the Q increases to $\sim 50,000$ but the transmission decreases
 303 (**Figure 7F**). For the bowtie connection width modulated photonic metacrystal with 9 additional
 304 mirror unit cells, the fundamental peak is below our measurement noise and can no longer be
 305 resolved (**Figure 7G**).

306
 307 Figure 6. Photonic band edge frequency change as a function of bowtie connection width. The color map represents
 308 the transmission intensity in dB with brighter yellow indicating higher transmission and darker red indicating low or
 309 no transmission.

310

311 Figure 7. (A-D) SEM images of a suspended, connection-width modulated silicon bowtie photonic metacrystal cavity.
 312 The connection width of the cavity center unit cell is 60 nm and tapers to a connection width approaching zero for the
 313 mirrors. (E-G) Measured transmission spectra of cavities with 0, 3 and 9 additional mirror unit cells shown with the
 314 fundamental resonance near 1594.7 nm.

315

4. Conclusion

316 We described a class of photonic crystal – the *photonic metacrystal* – that combines the
 317 advantages of photonic crystals and metamaterials by introducing subwavelength scatterers into
 318 the photonic crystal unit cell. With the requirement of operation in the air mode, light-matter

319 interaction can be tailored through the deterministic design of the subwavelength dielectric
320 features inside the air holes of the photonic metacrystal. We experimentally demonstrated that
321 new unit cell design features, including the rotation angle and connection width of a bowtie-
322 shaped unit cell, can be modified to predictably tune the optical band structure and create high
323 Q cavities. These additional degrees of freedom, which are not present in traditional photonic
324 crystals, provide new ways to simultaneously control the band structure in k space and the mode
325 profile in real space. We believe the continued investigation and utilization of photonic
326 metacrystals will significantly expand the application space of guided wave photonics, leading
327 to breakthroughs with quantum emitters, spin-orbit coupling, topological optics and optical
328 sensing.

329 **Funding.** National Science Foundation (ECCS1407777; ECCS1809937).

330 **Acknowledgments.** This work was supported in part by the National Science Foundation (ECCS1407777;
331 ECCS1809937). The photonic metacrystal cavities were fabricated in the Microelectronics Research Laboratory
332 (MRL) at the IBM Thomas J. Watson Research Center. The authors are grateful to the MRL staff for their contributions
333 to the success of this work. Simulations presented in this work were conducted in part using the resources of the
334 Advanced Computing Center for Research and Education at Vanderbilt University.

335 **Disclosures.** The authors declare no conflicts of interest.

336 **Data availability.** Data underlying the results presented in this paper are not publicly available at this time but may
337 be obtained from the authors upon reasonable request.

338 **References**

1. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," *Nat. Photon.* **1**(8), 449–458 (2008).
2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," *Nature* **461**(7264), 629–632 (2009).
3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," *Nature* **435**(7040), 325–327 (2005).
4. G. T. Reed, G. M. Asanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," *Nat. Photon.* **4**(8), 518–526 (2010).
5. J. C. Rosenberg, W. M. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, "A 25 Gbps silicon microring modulator based on an interleaved junction," *Opt. Express* **20**(24), 26411 (2012).
6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, "Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation," *IEEE J. Sel. Top. Quantum Electron.* **16**(3), 654–661 (2010).
7. F. Vollmer and L. Yang, "Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices," *Nanophotonics* **1**(3–4), 267–291 (2012).
8. S. Chakravarty, W. Lai, Y. Zou, H. A. Drabkin, R. M. Gemmill, G. R. Simon, S. H. Chin, and R. T. Chen, "Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors," *Biosens. Bioelectron.* **43**(15), 50–55 (2013).
9. S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, "Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density," *ACS Photon.* **1**(7), 590–597 (2014).
10. G. Gaur, S. Hu, R. L. Mernaugh, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, "Label-free detection of Herceptin using suspended silicon microring resonators," *Sens. Act. B* **275**(1), 394–401 (2018).
11. H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," *Opt. Express* **16**(12), 9144–9154 (2008).
12. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," *Nat. Mater.* **9**(3), 193–204 (2010).
13. B. Luk'Yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," *Nat. Mater.* **9**(9), 707–715 (2010).
14. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, "Gap-plasmon nanoantennas and bowtie resonators," *Phys. Rev. B* **85**(4), 045434 (2012).
15. S. Park, J. W. Hahn, and J. Y. Lee, "Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation," *Opt. Express* **20**(5), 4856–4870 (2012).
16. V. Flauraud, T. S. van Zanten, M. Mivelle, C. Manzo, M. F. G. Parajo, and J. Brugger, "Large-scale arrays of bowtie nanoaperture antennas for nanoscale dynamics in living cell membranes," *Nano Lett.* **15**(6), 4176–4182 (2015).
17. W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, "Progress in 2D photonic crystal Fano resonance photonics," *Prog. Quantum Electron.* **38**(1), 1–74 (2014).

377 18. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, "Directional Fano resonance in a silicon
378 nanosphere dimer," *ACS Nano* **9**(3) 2968–2980 (2015).

379 19. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic
380 crystal," *Nature* **425**(6961), 944–947 (2003).

381 20. B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," *Nat.
382 Mater.* **4**(3), 207–210 (2005).

383 21. Q. Quan, P. B. Deotare, and M. Loncar, "Photonic crystals nanobeam cavity strongly coupled to the feeding
384 waveguide," *Appl. Phys. Lett.* **96**(20), 203102 (2010).

385 22. Q. Quan and M. Loncar, "Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam
386 cavities," *Opt. Express* **19**(19), 18529–18542 (2011).

387 23. S. Hu and S. M. Weiss, "Design of photonic crystal cavities for extreme light concentration," *ACS Photon.*
388 **3**(9), 1647–1653 (2016).

389 24. H. Choi, M. Heuck, and D. Englund, "Self-similar nanocavity design with ultrasmall mode volume for single-
390 photon nonlinearities," *Phys. Rev. Lett.* **118**(22), 223605 (2017).

391 25. S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss,
392 "Experimental realization of deep subwavelength confinement in dielectric optical resonators," *Sci. Adv.* **4**(8),
393 eaat2355 (2018).

394 26. K. J. Vahala, "Optical microcavities," *Nature* **424**(6950), 839–846 (2003).

395 27. W. Bogaerts, P. D. Heyn, T. V. Vaerbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D.
396 V. Thourhout, and R. Baets, "Silicon microring resonators," *Laser Photon. Rev.* **6**(1), 47–73 (2012).

397 28. M. S. Unlu and S. Strite, "Resonant cavity enhanced photonic devices," *J. Appl. Phys.* **78**(2), 607–639 (1995).

398 29. C. Hofmann, A. Gorbunov, M. Gorbunov, M. Strauss, S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß,
399 S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, "AlAs/GaAs micropillar cavities with
400 quality factors exceeding 150,000," *Appl. Phys. Lett.* **90**(25), 251109 (2007).

401 30. J. B. Khurgin, "How to deal with the loss in plasmonics and metamaterials," *Nat. Nano.* **10**(1), 2–6 (2015).

402 31. A. Boltasseva, V. M. Shalaev, "All that glitters need not be gold," *Science* **347**(6228), 1308–1310 (2015).

403 32. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-
404 dielectric zero-index optical metamaterial," *Nat. Photonics* **7**(10), 791–795 (2013).

405 33. Q. Lu, F. Shu, and C. Zhou, "Dielectric bow-tie nanocavity," *Opt. Lett.* **38**(24) 5311–5314 (2013).

406 34. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Dominguez, L. Gonzaga, A. Samusev, Y.
407 Kivshar, B. Lku'yanchuk, and A. I. Kuznetsov, "Magnetic and electric hotspots with silicon nanodimers," *Nano
408 Lett.* **15**(3), 2137–2142 (2015).

409 35. A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, "Purcell effect for active tuning of light
410 scattering from semiconductor optical antennas," *Science* **358**(6369), 1407–1410 (2017).

411 36. E. E. Narimanov, "Photonic hypercrystals," *Phys. Rev. X* **4**(4), 041014 (2014).

412 37. T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, "Photonic hypercrystals for control of light-matter
413 interactions," *Proc. Natl. Acad. Sci.* **114**(20), 5125–5129 (2017).

414 38. J. D. Ryckman and S. M. Weiss, "Low mode volume slotted photonic crystal single nanobeam cavity," *Appl.
415 Phys. Lett.* **101**(7), 071104 (2012).

416 39. S. I. Halimi, S. Hu, F. O. Afzal, and S. M. Weiss, "Realizing high transmission intensity in photonic crystal
417 nanobeams using a side-coupling waveguide," *Opt. Lett.* **43**(17), 4260–4263 (2018).

418 40. S. Yang, J. A. Allen, C. Hong, K. P. Arnold, S. M. Weiss, and J. C. Ndukaife, "Multiplexed long-range
419 electrohydrodynamic transport and nano-optical trapping with cascaded bowtie photonic crystal cavities,"
420 arXiv:2109.14168