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Abstract— This paper proposes an anti-windup mechanism
for a model reference adaptive control scheme subject to
actuator saturation constraints. The proposed compensator has
the same architecture as well known non-adaptive schemes,
which rely on the assumption that the system model is known
fairly accurately. This is in contrast to the adaptive nature
of the controller, which assumes that the system (or parts of
it) is unknown. The approach proposed here uses of an “esti-
mate” of the system matrices for the anti-windup compensator
formulation and modifies the adaptation laws that update the
controller gains. It will be observed that if the (unknown) ideal
control gain is reached, a type of “model recovery anti-windup”
formulation is obtained. In addition, it is shown that if the
ideal control signal eventually lies within the control constraints,
then, under certain conditions, the system states will converge
to those of the reference model as desired. The paper highlights
the main challenges involved in the design of anti-windup
compensators for model-reference adaptive control systems and
demonstrates its success via a flight control simulation.

I. INTRODUCTION

Model reference adaptive controller (MRAC) is well
known in the control community, with a large body of
work being devoted to its development [1], [2]. The main
idea behind MRAC is to use a reference model, chosen
by the designer, in order to generate a state tracking error
which is then used to govern adaptation of the control
gains. MRAC has become one of the preferred adaptive
control architectures and there is compelling evidence of
successful deployment on real systems - see for example [3],
[4], [5], [6]. Unfortunately, MRAC systems are vulnerable
to the effects of unmatched uncertainty, disturbances and
unmodeled actuator dynamics, hence different robustifying
modifications have been proposed (see for example [1]).
A further “uncertainty” present in all real applications is
actuator saturation, and this appears also to be pernicious
to adaptive control systems. In essence, the saturation non-
linearity corrupts the mechanisms by which the control gains
are updated [7], in addition to the traditional wind-up effects
that occur in many constrained systems [8], [9].

Several researchers have highlighted the impact of sat-
uration in the adaptation process, and various papers have
attempted to address the issue (for example [10], [11], [12],
[13], [14], [6]). Most of the work presented is focused on
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addressing the input constraints using approaches that di-
verge from the more traditional anti-windup philosophy used
in linear control systems. The advantage of the “traditional”
anti-windup (AW) approach is its two-stage philosophy [15],
[16], [17]: when no saturation is present, the compensator is
inactive and the baseline (nominal) controller stabilizes the
closed-loop and guarantees acceptable performance; in the
event of input saturation, an additional element (the anti-
windup compensator) becomes active and improves perfor-
mance and enhances stability properties. For linear systems,
the development of most anti-windup schemes [16], [17],
[18], [8], [9] requires knowledge of the model of the plant;
in MRAC the model is assumed to be unknown so the
generalisation to the adaptive case is not trivial.

Consequently, anti-windup for adaptive controllers lacks
thorough investigation, due to its complexity in demonstrat-
ing stability and correct adaptation of the controller gains.
However some work exists, notably the work [19] where an
indirect adaptive control is developed; the pseudo-hedging
technique described in [20]; the sliding mode technique given
in [21] for systems with rate-limits; the output feedback
adaptive controller with AW in [22]; the adaptive scalar
AW gain for chaotic systems in [23]; and most recently the
application of the approach of [18] to systems with inertia
variations [24]. Most of these schemes have drawbacks.

Additionally, recent work on positive µ modification [25],
which relies on a modified reference model that includes
information about the saturating input, exhibits AW-like be-
haviour. In fact, under certain assumptions, the error between
the ideal model state and the plant state will converge,
provided that the ideal steady-state control signal is within
the control bounds [26], [27]. However, the structure of this
scheme is quite different from standard anti-windup schemes;
the main contribution of this paper is to formulate and solve a
“model reference anti-windup”(MRAW) problem for MRAC
schemes.

A. Notation
A positive (negative) square matrix P is denoted as P > 0

(P < 0). The Hermitian of a square matrix is defined as

He{A} = A′ +A.

A′ denotes the transpose of a matrix A, and tr(A) its trace.
A signal x(t) is said to belong to L2 if

‖x(t)‖2 :=

(∫ ∞

0

‖x(t)‖2dt

) 1

2

< ∞

where ‖x‖ denotes the euclidean norm of the vector. A signal
x(t) is said to belong to L∞ if

‖x(t)‖∞ := sup
t≥0

max
i

|xi(t)| < ∞
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The scalar saturation function, sat(.) : R → [ui, ūi], is
defined as

sati(ui) =







ui if ui < ui < ūi

ūi if ui ≥ ūi

ui if ui ≤ ui

The values ūi and ui are the upper and lower limits respec-
tively; if ūi = −ui, the saturation is said to be symmetric.
The vector saturation function sat(.) : Rm → R

m is simply

sat(u) = [sat1(u1) . . . satm(um)]
′

Extensive use is made of the deadzone function, Dz(u) which
can be defined via the identity

sat(u) + Dz(u) = u

Both saturation and deadzone function are globally Lipschitz
with unity gain, such that the following property holds:

‖ψi(u1 + u2)− ψ(u1)‖ ≤ ‖u2‖ ∀u1, u2 ∈ R

B. Preliminaries

Fact 1: The saturation and deadzone functions are slope
restricted, viz

0 ≤
σi(u1)− σi(u2)

u1 − u2
≤ 1 ∀u1, u2 ∈ R

where σi(·) is the i’th component of either the saturation or
the deadzone function. �

Fact 1 implies that the saturation and deadzone functions
both satisfy the following incremental sector condition

(σ(u1)− σ(u2))
′W

(
u1 − u2 − σ(u1) + σ(u2)

)
≥ 0 (1)

for all diagonal matrices W > 0 and all u1, u2 ∈ R
m. The

following lemma from [26] is also required.
Lemma 1: Consider the dynamics

ẋ = Ax+Bλsat(u) (2)

where A ∈ R
n×n, B ∈ R

n×nu and λ is a positive scalar. If A
is Hurwitz, then the state x(t) is bounded for all u(t) ∈ R

nu .

II. MODEL REFERENCE ADAPTIVE CONTROL

Consider the linear-time-invariant (LTI) plant

G ∼

{
ẋ = Ax+Bu
y = x

(3)

where A ∈ R
n×n, B ∈ R

n×nu . The signal y is an objective
signal for performance purposes. The state is assumed to be
available to the controller.

Assumption 1: Matrix A is unknown but Hurwitz, while
matrix B is completely known.

The plant is stabilised via a (state feedback) MRAC
controller where the reference model is given by

Gm ∼ {ẋm = Amxm +Bmr (4)

It is assumed that the reference model is compatible with
the plant structure, hence the following Model Matching
Conditions are assumed to be true:

Assumption 2 (Model matching conditions): There exist
matrices K∗

x ∈ R
nu×m and K∗

r ∈ R
nu×nr such that

Am = A+BK∗
x Bm = BK∗

r (5)
It is important to note that K∗

x and K∗
r are not known and

are assumed to be the “ideal” feedback gains. The selection
of a reference model that guarantees the existence of such
gains is restrictive and is one of the main limitations in the
applicability of MRAC strategies. If no saturation is present,
the standard MRAC controller (6)-(7), below, ensures that
the tracking error e(t) = xm(t)−x(t) converges to zero and
all controller gains are bounded [1].

u = K̂xx+ K̂rr (6)

A ∼

{ ˙̂
K ′

x = Γxx(e
′P1B)

˙̂
K ′

r = Γrr(e
′P1B)

(7)

The symmetric positive definite matrix P1 is obtained from
the solution, for some Q1 > 0, of the Lyapunov equation

A′
mP1 + P1Am +Q1 = 0 (8)

Following the previous discussion, saturation of the control
signal can be highly detrimental to closed-loop system
performance/stability and thus the above strategy requires
modification in its is presence.

III. MAIN RESULTS

Now consider the plant with input saturation,

ẋ = Ax+Bsat(u) (9)

The main results in this paper show how an anti-windup com-
pensator can be used to modify the nominal adaptive control
algorithms (6)-(7) so that stability and convergence of the
tracking error is guaranteed for this plant. As with standard
AW schemes, the proposed AW compensator modifies the
closed-loop system’s response, during periods of saturation
or during the recovery from it. It is emphasized that the
system matrix A is unknown, and thus the model recovery
structure, that relies on a coprime factorization of the plant
[18], cannot be directly implemented. Having this in mind,
the following AW compensator structure is presented:

Σ ∼







ẋaw = (Am −BK̂x)xaw +BFxaw +BDz(u)
v1 = Fxaw

v2 = xaw

(10)
The compensator has two outputs, namely v1, v2. These are
the compensation signals that modify the output and input of
the controller respectively. The (compensated) control signal
is then defined as the difference of an adaptive control law
plus terms emanating from the anti-windup compensator

u = K̂x(x+ v2) + K̂rr − v1
= K̂x(x+ xaw) + K̂rr − Fxaw

(11)

where F is the anti-windup “gain” matrix from (10) and
the adaptive gain matrices are updated in the same way as
described in (7) except, using the modified error state-vector

e = x+ xaw
︸ ︷︷ ︸

xl

−xm (12)

63



Since it is assumed that A is unknown, an “estimate” Am −
BK̂x(t)) is used, see (10), which may converge to A under
the model matching conditions in Assumption 2.

The closed-loop system with anti-windup is depicted in
Figure 1. The saturation nonlinearity and the uncertain nature
of the system (A is unknown) have two main effects on the
proposed model recovery AW and MRAC configurations: (i)
initially, the AW is unaware of the true system dynamics and,
hence the decoupling of the closed-loop system into nominal
closed-loop dynamics and nonlinear dynamics (as presented
by [17]) is not directly achievable (see Figure 2); and (ii)
the AW states feed into the model reference error dynamics,
hence boundedness of the states and controller gain estimates
is more involved. These two issues add complexity to the
proof of stability and asymptotic convergence to the origin
of the tracking error.

The main results are presented as two propositions. The
first proposition ensures that the error e(t) = xl(t)− xm(t)
decays, asymptotically, to zero and that the adaptive gains are
bounded; the second provides conditions under which xaw(t)
will also decay asymptotically to zero and hence ensure that
x(t) approaches the ideal reference model states as t → ∞.

Proposition 1: Let Assumptions 1 and 2 be satisfied and
consider the interconnection of the plant (9), the reference
model (4), the control law (11), the adaptive laws (7) and
the anti-windup compensator (10). Additionally, assume r ∈
L∞. Then the error defined in equation (12) is such that
limt→∞ e(t) = 0 and the adaptive gains K̂x(t) and K̂r(t)
are bounded.
Proof: Using the dynamics (9), (10) and (4) it follows that

ė = Ax+Bsat(u)−Amxm −Bmr

+ (Am −BK̂x +BF )xaw +BDz(u)

= Ax+B
(
K̂x(x+ xaw) + K̂rr − Fxaw

)
−BDz(u)

−Amxm −Bmr + (A−BK̂x +BF )xaw +BDz(u)

= Ax+BK̂xx+BK̂rr −Amxm −Bmr +Amxaw

= Ame+B(K̂x −K∗
x)x+B(K̂r −K∗

r )r

K̂x, K̂r

Gm

A

xm

v1

v2

xl

r

Σ

Gsat
x

ul

Fig. 1. Closed-loop saturated system

where the matching condition Assumption 2 has been used,
along with the control law (11). Defining ∆Kx(t) = K̂x(t)−
K∗

x and ∆Kr(t) = K̂r(t)−K∗
r then yields

ė = Ame+B∆Kxx+B∆Krr

Forming the Lyapunov function

V1 = e′P1e+ tr[∆KxΓ
−1
x ∆K ′

x] + tr[∆KrΓ
−1
r ∆K ′

r]

it follows in the same way as standard MRAC, using the
adaptive laws (7), that V̇1 = −e′Q1e This enables one to
conclude that e(t), ∆Kx(t) and ∆Kr(t) are bounded, and
then that K̂x(t) and K̂r(t) are also bounded.

Now, from Barbalat’s lemma, it follows that if V̇1(t) is
uniformly continuous, then limt→∞ V1(t) = 0 and hence,
since Q1 > 0, then limt→∞ e(t) = 0. Note that V̇1(t) is
uniformly continuous if V̈1(t) is bounded, where

V̈1(t) = −2e′Q
(
Ame+B∆Kxx+B∆Krr

)
(13)

By Lemma 1, x(t) is bounded, so since e(t), ∆Kx, ∆Kr

and r are all bounded, uniform continuity is established, from
which one infers convergence of e(t). ��

Although the above proposition guarantees that the adap-
tive laws will be bounded and convergence of the error

e(t) = xl(t)− xm(t) = x(t)− xaw(t)− xm(t)

will be achieved, note that the error is constructed as the
difference between some compensated states xl and the
reference model. Due to the presence of the xaw(t) state
vector, it is not clear that, as t → ∞ that x(t) → xm(t). If
it can be proved that, under certain conditions, xaw(t) itself
converges to the origin, then xl(t) = x(t) and x(t) will be
guaranteed to converge to xm(t). Proposition 2 below gives
conditions under which this will be achieved.

Proposition 2: Under the assumptions of Proposition 1,
limt→∞ x(t) = xm(t) if there exists a scalar η > 0 such
that the following conditions are satisfied:

1) K̂ ′
x(t)K̂x(t) ≤ η ∀t ≥ 0

2) There exist matrices P1 > 0, diagonal W > 0 and
F of suitable dimensions, and a scalar ǫ such that the
following matrix Ψ is negative semi-definite where

Ψ =

[

He{P1(Am +BF )}+ 1

ǫ
P1BB′P1 + ηǫI P1B−F

′W
⋆ −2W

]

(14)

3) Dz(Kss
x xm+Kss

r r) ∈ L2 where Kss
x and Kss

r are the
steady state values of the adaptive gains K̂x and K̂r

respectively, i.e. limt→∞ K̂(x,r) = Kss
(x,r).

In essence, this proposition ensures convergence of the
actual state x(t) to the desired state xm(t) if: the bound on
the adaptive control gain K̂x is known (condition 1); the
matrix P1 satisfies a stronger condition than the Lyapunov
equation, which involves knowledge of the bound on K̂x

(condition 2); and a certain signal belongs to L2 (condition
3). This final condition can be interpreted as requiring a
fictitious control law (i.e. Kss

x xm+Kss
r r), where the adaptive

controller gains are replaced by their steady state values, to
be below the saturation bounds as time approaches infinity.
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This same idea has been used extensively in linear anti-
windup research ([16]) and is a logical condition for which
one would expect acceptable performance from a system
equipped with anti-windup. The condition is a little more
complex in the case of an adaptive control law, since Kss

x and
Kss

r are not known in advance. Observe that the magnitude
of such control gains will depend on “how far” the plant
and the reference model are from each other (i.e. how far
Am is from A and Bm is from B), hence one might expect
saturations events to cease if the open-loop and the desired
closed-loop dynamics are not too far apart.

Proof of Proposition 2: As argued earlier, since
limt→∞ e(t) = 0, then limt→∞ x(t) = xm(t), if
limt→∞ xaw(t) = 0. Therefore, consider

ẋaw = (Am −BK̂x+BF )xaw +BDz(u)

and note that u can be re-written as

u = K̂x(x+ xaw) + K̂rr
︸ ︷︷ ︸

u0

−Fxaw

Then, defining φ(u0, xaw) = Dz(u0 −Fxaw)−Dz(u0) and
adding and subtracting BDz(u0), yields

ẋaw = (Am −BK̂x+BF )xaw +Bφ(u0, xaw) +BDz(u0)

Since Dz(·) is a slope-restricted nonlinearity (Fact 1), it
follows from inequality (1) that, for all diagonal W > 0,

φ(u0, xaw)
′W (−Fxaw − φ(u0, xaw) ≥ 0 (15)

Next, choosing a Lyapunov function V (xaw) = x′
awP1xaw,

its derivative is bounded by

V̇ (xaw) ≤ 2x′

aw
P1[(Am +BF )xaw −BK̂xxaw +Bφ

+BDz(u0)] + 2φ′

W (−Fxaw − φ)

=

[

xaw

φ

]

′
[

He{P1(Am +BF )} P1B−F
′W

⋆ −2W

] [

xaw

φ

]

+ 2x′

aw
P1BK̂xxaw + 2x′

aw
P1BDz(u0)

However, for some ǫ > 0, if Condition 1 of the proposition
holds, then

2x′
awP1BK̂xxaw ≤ xaw

(1

ǫ
P1B

′BP1 + ǫηI
)

xaw

which implies that

V̇ (xaw) ≤

[
xaw

φ

]′

Ψ

[
xaw

φ

]

+ 2x′
awP1BDz(u0) (16)

Therefore, if Condition 2 of the proposition holds, one infers
that there exist positive scalars c1 and c2 such that

V̇ (xaw) ≤ −c1‖xaw‖
2 + c2‖xaw‖‖Dz(u0)‖ (17)

Now observe that by using the Lipschitz property of the
deadzone, then ‖Dz(u0)‖ may be rewritten as

‖Dz(u0)‖ = ‖Dz(K̂x(xm + e) + K̂rr)‖

≤ ‖Dz(Kss

x
xm +K

ss

r
r)‖+ ‖K̂xe‖

+ ‖(K̂x −K
ss

x
)xm + (K̂r −K

ss

r
r)‖

Thus, since limt→∞ e(t) = 0, limt→∞ K̂(x,r) = Kss
(x,r) and

xm, r and K̂x are bounded it follows that Dz(u0) ∈ L2 if

K̂x, K̂r

Gm

A

v1

v2
xl

Σ

G

Dz

x

ul
r

K̂x

Non-linear Loop

Fig. 2. Alternative representation of the closed-loop system

Dz(Kss
x xm+Kss

r r) ∈ L2. Applying the Comparison Lemma
to equation (17), it therefore follows that xaw → 0 as t → ∞
if Dz(u0) ∈ L2, which holds if Dz(Kx,ssxm+Kr,ssr) ∈ L2,
which is exactly Condition 3 in the proposition. ��

A. Solving the matrix inequality

Condition 2 of Proposition (2) contains a nonlinear matrix
inequality which is difficult to solve. To circumvent this
difficulty, the matrix inequality in (14) can be “linearised” via
the Schur complement and some similarity transformations.

Lemma 1: There exist matrices P1 > 0, diagonal W > 0
and F and a scalar ǫ > 0, such that Ψ < 0 (see equation
(14)), if there exist matrices Q > 0, diagonal U > 0 and
L, and a scalar ǫ̃ > 0 such that the following linear matrix
inequality is satisfied,




He{AmQ+BL}+ ǫ̃BB′ BU − L′ Q
⋆ −2W 0
⋆ ⋆ −ǫ̃ 1

η



 < 0 (18)

In particular, the relationship between the matrices is Q =
P−1
1 U = W−1, ǫ̃ = ǫ−1 and F = LQ−1.
This inequality has a similar form to the matrix inequality

required to be solved for the linear anti-windup problem
discussed in [18]; the extra terms involving ǫ̃ and η capture
the fact that the matrix A is not known and hence an estimate
must be used. Clearly, the bound on η influences the solution
of the matrix inequality and the anti-windup gain F returned.

B. Estimating η

A key element of Proposition 2 is the estimation of η,
since this is used in the matrix inequality from which the
anti-windup gain F is computed. Furthermore, η must be
chosen correctly since if it is under-estimated, the stability
results will actually be local rather than global.

From the proof of Proposition 1 it is known that
V̇1(e,∆Kx,∆Kr) ≤ 0 which implies that

tr(∆Kx(t)Γ
−1
x ∆Kx(t)) ≤ e(0)′Pe(0) +

tr(∆Kx(0)Γ
−1
x ∆Kx(0)

′)+tr(∆Kr(0)Γ
−1
r ∆Kr(0)

′)
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Assuming that e(t) is initially zero and that K̂x(0) = 0 and
K̂r(0) = 0 also, the above inequality simplifies to

tr(K̂xΓ
−1

K̂x) ≤tr(K∗

r
Γ−1

r
K

∗

r
) + δtr(K̂xΓ

−1
K̂x))

+
1

δ
tr(K∗

x
Γ−1

x
K

∗

x
)

for some nonnegative δ < 1. Thus,

tr(K̂ ′
xK̂x) ≤

tr(Γ−1
x )‖K∗

r ‖
2 + 1

δ
tr(Γ−1

r )‖K∗
x‖

2

(1− δ)tr(Γ−1
x )

The left hand side is simply ‖K̂x‖
2 and thus the right hand

side can be used to obtain η, under the conditions assumed on
the initial values of e(0) and K̂x(0) and K̂r(0). This implies
that η can be calculated provided the bounds on ‖K∗

x‖ and
‖K∗

r ‖ can themselves be estimated adequately.

IV. SIMULATION EXAMPLE

Consider a flight control application where the plant
is the longitudinal attitude dynamics of the JAXA µ-Pal
experimental aircraft [28]. The aircraft is trimmed at flight
condition, levelled wings straight flight, of altitude 1524m,
velocity V TAS = 66.5m/s, angle of attack α = 4.98 deg.
The linearised plant has state-space model:

A =







−0.0175 0.173 −9.77 −5.63
−0.192 −1.09 −0.846 64.6

0 0 0 1
0.0081 −0.0738 0.0062 −1.9






B =







−0.428
4.91
0

4.22







The states are given by x = [ux, uz, θ, q]
T , where the

first two states are the translational velocity in the x and z
directions respectively, and the last two are pitch angle θ, and
pitch rate q. The control signal is the deflection angle of the
elevator, which is assumed to be (symmetrically) saturated
with ū = 50. In this example we assume that B is known,
but A is unknown. Access to all the states is assumed.

Define the reference model matrices Am and Bm as:

Am=







−0.03 0.166 12.56 37.29
−0.052 −1.02 −1554.7 −427.82

0 0 0 1
0.128 −0.0142 −1335.49 −425.12






Bm=







−138.1
1584.2

0
1361.6







The MRAC parameters were chosen as Γx =
diag{1, 1, 10, 10} and Γr = 1, and the solution for the
associated Lyapunov is obtained with Q1 = 10I . The AW
gain F was obtained from Lemma 1 with η = 100 , which is
the maximum before the LMI solution becomes infeasible,
and applying Lemma 1. The matrix obtained is

F = 104
[
0.436 0.0112 −5.5556 0.0102

]

The system is subject to a reference pulse with magnitude
of 30 deg and duration of 100 seconds, and its nominal
response (no saturation) is presented in Figure 3 (with zero
initial conditions for the controller gains). The MRAC system
provides a well-damped transient response and ensures a
small tracking error. Nonetheless, the control signal saturates
severely (with commands of the order of magnitude of 103

degrees) during the attitude acquisition stage, which means
that some detriment to stability and performance may be
present. Indeed, the saturated system with no AW augmen-
tation remains stable but shows a loss of performance, with

0 20 40 60 80 100 120 140 160 180 200

TIME

-5

0

5

10

15

20

25

30

35

 [r
ad

]

m

Fig. 3. Pitch attitude response of closed-loop system with no saturation

the system unable to track the reference model and exhibiting
large oscillations (see Figure 4); the control signal is severely
saturated, presents high frequency dynamics and is unable
to recover from saturation . The closed-loop response of the
system with AW compensation recovers system performance,
presenting a clear reduction in oscillation and enhancement
of steady state tracking error, and the control signal recovers
linear dynamics during period of no saturation of the nominal
system (see Figure 5)

The results show how the adaptive MRAC compensator is
able to achieve stability and retain performance even during
periods of saturation. It is noted that for this reference signal,
the “ideal” control signal ul converges to a value that is
within the control constraints, i.e. in steady state Dz(ul) = 0.
Further simulations (not shown) with this model, reveal that
as the reference amplitude increases, and as control signal
saturation becomes more severe, the response of the system
without anti-windup degrades further. However, this can be
arrested substantially by the inclusion of anti-windup.

V. CONCLUSIONS

This paper has proposed a full-order, model recovery
anti-windup compensator for MRAC schemes. Traditional
MRAW anti-windup uses a copy of the plant in order to
achieve stability and system decoupling properties. In this
paper, an “estimate” of the plant’s A-matrix has been used
instead, by making use of the model matching conditions
(5) and an adaptation law that guarantees that the “ideal”
behaviour is recovered. In fact, it was shown that if a
fictitious linear control signal lies within the constraint set,
the nominal MRAC formulation is recovered. The effects of
disturbances, measurement noise and unmodelled dynamics
have not been accounted for, hence future work must address
the addition of the so-called robust adaptive control modi-
fications and their implications for the anti-windup scheme
under consideration.
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